
Neutrosophic segementaion of breast lesions for dedicated breast CT  
Juhun Lee*a, Robert M. Nishikawaa, Ingrid Reiserb, John M. Boonec 

a Dept. of Radiology, University of Pittsburgh, 3362 Fifth Ave, Pittsburgh, Pennsylvania, USA 
15213; bDept. of Radiology, University of Chicago, 5841 S. Maryland Ave, Chicago, Illinois, USA 
60637; cDept. of Radiology, University of California Davis Medical Center, 4860 Y St, Sacramento, 

California, USA 95817 

ABSTRACT  

We proposed the neutrosophic approach for segmenting breast lesions in breast Computer Tomography (bCT) images. 
The neutrosophic set (NS) considers the nature and properties of neutrality (or indeterminacy), which is neither true nor 
false. We considered the image noise as indeterminate component, while treating the breast lesion and other breast areas 
as true and false components. We first transformed the image into the NS domain. Each voxel in the image can be 
described as its membership in True, Indeterminate, and False sets. Operations a-mean, b-enhancement, and g-plateau 
iteratively smooth and contrast-enhance the image to reduce the noise level of the true set. Once the true image no longer 
changes, we applied one existing algorithm for bCT images, the RGI segmentation, on the resulting image to segment 
the breast lesions. We compared the segmentation performance of the proposed method (named as NS-RGI) to that of 
the regular RGI segmentation. We used a total of 122 breast lesions (44 benign, 78 malignant) of 123 non-contrasted 
bCT cases. We measured the segmentation performances of the NS-RGI and the RGI using the DICE coefficient. The 
average DICE value of the NS-RGI was 0.82 (STD: 0.09), while that of the RGI was 0.8 (STD: 0.12). The difference 
between the two DICE values were statistically significant (paired t test, p-value = 0.0007). We conducted a subsequent 
feature analysis on the resulting segmentations. The classifier performance for the NS-RGI (AUC = 0.8) improved over 
that of the RGI (AUC = 0.69, p-value = 0.006).  
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1. INTRODUCTION  
In image segmentation problems, the main goal is to distinguish the foreground from the background in the given image. 
However, all natural images (i.e., not simulated or computer-generated) include various types of noise, which are neither 
foreground nor background in segmentation problems. Such noises degrade the segmentation performance of any 
existing segmentation algorithms.  
 
In dedicated breast computer tomography (bCT), quantum noise is one the major source of noises in bCT images. It 
creates salt and pepper like noise in reconstructed bCT images which can degrade any segmentation algorithms. One can 
reduce quantum noise by increasing radiation dose. However, we need to limit the amount of radiation dose on patients 
as it may increase the cancer risk. Thus, one needs to balance the image quality (or image noise) and radiation dose, to 
maximize the patient benefits (e.g., detection of cancer).   
 
There exist many ways to control the noise in bCT images. One can use different reconstruction kernels e.g., smooth 
kernels for low noise but low spatial resolution, or sharp kernels for high noise but high spatial resolution. Recently, 
researchers are developing iterative image reconstruction algorithms for bCT 1,2, which can suppress the image noise 
while maintain the spatial resolution and contrast even in low radiation dose settings. In addition to these noise controls 
in the reconstruction domain, we can reduce image noise after reconstruction, directly on bCT images. One may simply 
smooth the entire image or region of interest of the image to reduce the effect of the noise. However, simply smoothing 
can remove useful information (e.g., edge of lesion) for segmentation. In this respect, it is beneficial to develop 
algorithms that suppress image noise while preserving useful information for segmentation.   
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This study attempted to distinguish and suppress the noise in the image after reconstruction, before applying the 
segmentation algorithms. Then, any segmentation algorithms can be applied to noise-suppressed (or cleaner) images to 
improve segmentation performance. For this study, we adopted neutrosophy theory to achieve the above objective. 
 
Neutrosophy is a branch of philosophy that generalizes dialectics and studies the concept and properties of neutralities3. 
Neutrosophy theory considers entity <A> and its relation to <Anti-A> and <Neut-A>, where <Anti-A> and <Neut-A> 
represent the opposite and the neutrality entity of <A>, respectively. Neutrosophy covers various concepts, including 
neutrosophic logic, neutrosophic probability, nuetrosophic set, etc3. One can consider neutrosophy logic as the 
generalized version of fuzzy logic, where it explicitly takes into account the neutrality or indeterminacy of the problem4. 
 
We can consider the noise in the image as a neutral or indeterminate element. The classical set and fuzzy set only handle 
this neutral or indeterminate element partially, as neutrality or indeterminacy is absorbed into either the true or false set 
(or background or foreground set). Due to the existence of neutrality, one can expect that the neutrosophy set can handle 
the noise element in the image effectively.  
 
This study, therefore, used the neutrosophy theory, specifically the neutrosophic set, to tackle segmentation problems for 
dedicated breast CT images. This study adapted and modified the segmentation approach proposed by Guo and Cheng5 
to solve our problem, i.e., segmenting breast lesion in bCT images. The method of Guo and Cheng started from 
transforming the given image into the neutrosophy set (NS) domain. Then, two operations called a-mean and b-
enhancement are applied to the resulting image iteratively to clean the foreground image by segregating foreground, 
noise, and background into true, indeterminant, false set in NS domain. The original method was used for segmenting 
breast lesions in 2D Ultrasound images6. We extended and modified their method to segment 3D bCT images. Once the 
reconstructed image is enhanced or cleaned via the proposed method, we used an existing algorithm to segment breast 
lesion in bCT image. Then, we compared the segmentation performance of the existing algorithm with and without the 
proposed noise reduction method. In addition, we conducted quantitative feature analysis (i.e., training/testing a 
classifier using quantitative image features from the lesion) to further show if the proposed method allows the 
improvement in classification performance of the trained classifier.  
 
  

2. METHODS 
2.1 Dataset 

We used a dataset of 122 pathology proven breast lesions (44 malignant, 78 benign) of 123 non-contrast bCT cases, 
which was consolidated under an approved Institutional Review Board (IRB) protocol. The prototype dedicated breast 
CT system at the University of California at Davis7 was utilized to obtain all patients’ bCT cases. This study used a 
clinical reconstruction algorithm8 to reconstruct each image. The voxel size of each reconstructed image varies from 190 
by 190 to 430 by 430 with coronal slice spacing ranged from 190 to 770 um. The mean voxel sizes are approximately 
340 by 340 by 260 um with the standard deviation of 40 by 40 by 80 um. Table 1 summarizes the detailed characteristics 
of the dataset, which include patient age, lesion size, breast density, and lesion diagnosis. 

2.2 Preprocessing 

To reduce false positives, we preprocessed bCT images such that they are within the range of the possible voxel intensity 
of breast tissues. We assumed that the range of Hounsfield unit (HU) of breast tissue as [-500, 300] HU. -500 HU and 
300 HU are the highest HU number for lung9 and the lowest HU number for cortical bone10, respectively. In fact, 
previous study11 showed that Hounsfield unit (HU) values for breast tissue in bCT images can be ranged from -350 
(adipose tissue at low kVp) to 100 (breast cancer at high kVp). Another study12 showed that contrast can enhance 
malignant breast lesion in bCT images up to 120 HU. Thus, we can expect that the range [-500, 300] HU should include 
all possible values for breast tissue in bCT images. Any voxels outside of this HU range were replaced with the averaged 
HU value of other neighboring voxels.  



 
 

 
 

Table 1. Characteristics of Image Dataset. Abbreviations used in this table include, IDC: Invasive Ductal Carcinoma, IMC: 
Invasive Mammary Carcinoma, ILC: Invasive lobular Carcinoma, DCIS: Ductal Carcinoma In Situ, FA: Fibroadenoma, FC: 
Fibrocystic, FCC: Fibrocystic changes, PASH: Pseudoangiomatous stromal hyperplasia, CAPPS: columnar alteration with 
prominent apical snouts and secretions.    

Total number of lesions  All 
122 

Subject Age [years] Mean [min, max] 55.6 [35, 80] 
Lesion diameter [mm] Mean [min, max] 13.8 [4, 35] 

Breast Density  
(% among lesions considered) 

1 12 (10%) 
2 46 (38%) 
3 46 (38%) 
4 18 (14%) 

Diagnosis* Malignant 
(% among malignant 
lesions considered) 

IDC 55 (71%) 
IMC 11 (14%) 
ILC 7 (9%) 

DCIS 4 (5%) 
Lymphoma 1 (1%) 

Benign 
(% among benign  

lesions considered) 

FA 18 (41%) 
FC 7 (16%) 

FCC 4 (9%) 
PASH 1 (2%) 
CAPPS 2 (4%) 

Other benign lesions such 
as sclerosing adenosis and 

cyst 
12 (28%) 

 

2.3 Neutrosophic image enhancement for breast CT images 

Let x(t,i,f) be an element of the neutrosophic set (NS). t, i, and f refer to the membership (%) of the element x in the 
neutrosophic components; true (T), indeterminacy (I), and false (F), respectively. In this study, we treated T, I, and F as 
foreground, noise, and background, respectively.  
 
Let V(x, y, z) be the voxel of the bCT image. Neutrosophic representation of V(x, y, z) is given as VNS(x, y, z) = {T(x, y, 
z), I(x, y, z), F(x, y, z)}, where each neutrosophic component is defined as the following equations,  

     (Eq 1) 

where p is the intensity level of V(x, y, z), and represents the mean filtering of the image with the 

cubic window size of w by w by w, and . We set w as 3 for this step. 
 
The a-mean operation,  is defined as 

           (Eq 2) 

where subscript w represents meanfilt( . , w), and . If the indeterminacy level of a voxel is higher than a, 

the a-mean operation locally smooths the portion around that voxel. We set a and w as 0.9 and 3.  
 
The b-enhancement operation,  is defined as 

        (Eq 3) 
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where and . 

The b-enhancement operation enhances the contrast of the given volumetric image by reducing the intensity level of a 
voxel when its corresponding indeterminacy level is higher than b. We set b and w as 0.5 and 3. 
 
The g-plateau operation,  is defined a 

       (Eq 4) 

where is Laplace operator. The g-plateau operation is a new addition to the original NS approach proposed by Guo and 
Cheng, where it changes the indeterminacy set as the edge-enhanced image. When it combines with a-mean operation, it 
smooths the volume surrounding the given voxel, when it is higher than a. As a result, a-mean operation with g-plateau 
operation smooths the peaks and valleys in the foreground and, therefore, creates the plateaued (i.e., smoothed) 
foreground. We set w as 3.  
 
Once the true (i.e., T or foreground), indeterminacy (i.e., I or noise), and false (i.e., F or background) components of the 
given image in the NS domain no longer changes, which is measured by the sum of entropies of true, indeterminacy, and 
false sets, VNS(x, y, z) is transformed back to V(x, y, z) with (l, w) = (0.5, 3) as, 

            (Eq 5) 

We set the threshold for stop the enhancement as 0.0001. Figure 1 shows the diagram explaining the procedure of NS 
enhancement for bCT images, and Figure 2 shows the effect of NS enhancement on an example bCT image.   

 

 
Figure 1. This diagram illustrates the procedures for the proposed Nuetrosophic image enhancement for bCT images. The 
algorithm transforms the bCT images into NS domain by assigning each voxel’s membership in true (foreground), false 
(background), and indeterminacy (noise) sets. After that, three operations iteratively smooth and enhance the NS image to 
increase the contrast between true (breast lesion) and false (other breast tissue) sets by isolating image noise. Once the 
change in true, intermediate, and false sets are stabilized, the algorithm transforms the NS images back to create cleaned or 
enhanced bCT images.  
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Figure 2. This figure illustrates how the proposed method enhances or cleans the given image for segmentation. A-C: input 
image in coronal, axial, and sagittal view. D-F: Images in NS domain after one iteration. G-I: output image in coronal, axial, 
and sagittal view. J-K: segmentation results in coronal view for NS-RGI and RGI. It is clear that the NS method was able to 
clean the noise from the image, while retaining other information (e.g., lesion edge information) in the image, thus resulted 
in better segmentation.  

 

2.4 Quantitative image feature analysis  

Then, we can apply any segmentation algorithms on the resulting cleaned image. In this study, we used the RGI 
segmentation algorithm13, which is a semi-automatic algorithm that requires a manually allocated lesion center to search 
the boundary of that lesion. It was shown that the RGI segmentation algorithm can successfully segment breast lesions in 
bCT images. We will call this segmentation approach NS-RGI. 

We then conducted quantitative feature analysis to determine if the cleaned image and the associated improved 
segmentation actually resulted in improving classification. We extracted 23 quantitative image features from segmented 
lesion images, which we used in previous studies on breast CT14–16. Using the leave-one-out cross-validation (LOOCV), 
we selected the most salient features for classifying breast lesions using a feature selection algorithm. Then, we trained 
and tested the logistic regression classifier within the same LOOCV loop. We used the area under the receiver operating 
curve (AUC) as a figure of merit. We compared the AUC values of the classifier trained on NS-RGI segmented images 
and those of RGI segmented images.  



 
 

 
 

3. RESULTS 
Mean and standard deviation of DICE coefficients for the NS-RGI algorithm and the regular RGI algorithm were [0.8, 
0.12] and [0.82, 0.09], respectively. The difference between the DICE values of the NS-RGI and RGI was statistically 
significant (paired t-test, p-value = 0.0006). The AUC values for NS-RGI and RGI obtained from LOOCV were 0.8 
(95% CI: [0.73, 0.88]) and 0.69 (95% CI: [0.6 0.78]), respectively (Table 2). We estimated the 95% confidence interval 
for AUC values of both NS-RGI and RGI cases using a statistical method by Delong et al.17. The difference in AUC 
values of NS-RGI and RGI was 0.11 with 95% CI of [0.032 0.19]. The differences between two AUC values were 
statistically significant with the p-value of 0.006. 

Table 2. Classification performance of trained LDA classifiers using LOOCV for NS-RGI and RGI. 

Performance Comparison (AUC) Difference in AUC 
NS-RGI RGI 

AUCL – AUCR [95% CI]  p-value AUCL [95% CI] AUCR [95% CI] 

0.8 [0.73, 0.88] 0.69 [0.6, 0.78] 0.11 [0.032, 0.19] 0.006 
 

4. CONCLUSION 
This study proposed a new approach to segment breast lesions in bCT images. Its segmentation and associated 
classification performances are statistically better than the previous method. Although we only tested the method on one 
segmentation algorithm, it can be worked as a preprocessing step, such that it can be combined with other segmentation 
algorithms. Further research with larger datasets is required to extend our finding to other imaging modalities, such as 
MRI. 
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