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ABSTRACT
In this paper we introduce the concepts of neutrosophic upper and neutrosophic lower semi-continuous

multifunctions and study some of their basic properties.
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1 INTRODUCTION

There is no doubt that the theory of multifunctions plays an important role in functional
analysis and fixed point theory. It also has a wide range of applications in economic theory,
decision theory, non-cooperative games, artificial intelligence, medicine and information sci-
ences. Inspired by the research works of Smarandache (1999; 2001; 2007), we introduce
and study the notions of neutrosophic upper and neutrosophic lower semi-continuous mul-
tifunctions in this paper. Further, we present some characterizations and properties of such

notions.
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2 PRELIMINARIES

Throughout this paper, by (X, 7) or simply by X we will mean a topological space in the
classical sense, and (Y, 7;) or simply Y will stand for a neutrosophic topological space as
defined by Salama and Alblowi (2012).

Definition 1. Smarandache (1999, 2001, 2007) Let X be a non-empty fized set. A neutro-
sophic set A is an object having the form A =< x, ua(z), oa(x), ya(x) >, where pa(z), oa(z)
and ya(x) are represent the degree of member ship function, the degree of indeterminacy, and

the degree of non-membership, respectively of each element x € X to the set A.

Definition 2. (Salama € Alblowi, 2012) A neutrosophic topology on a nonempty set X is

a family T of neutrosophic subsets of X which satisfies the following three conditions:
1. 0,1 e,
2. Ifg,h e, theirg \Nh e,
3. If fi € T for each i € I, then Vi f; € T.
The pair (X, 7) is called a neutrosophic topological space.

Definition 3. Members of T are called neutrosophic open sets, denoted by NO(X), and com-
plement of neutrosophic open sets are called neutrosophic closed sets, where the complement

of a neutrosophic set A, denoted by A°, is 1 — A.

Neutrosophic sets in Y will be denoted by A, 7, d, p, etc., and although subsets of X will
be denoted by A, B,U,V, etc. A neutrosophic point in Y with support y € Y and value
a(0 < o < 1) is denoted by y,. A neutrosophic set A in Y is said to be quasi-coincident
(q-coincident) with a neutrosophic set p, denoted by Agu, if and only if there exists y € YV
such that A(y)+u(y) > 1. A neutrosophic set A of Y is called a neutrosophic neighbourhood
of a fuzy point y, in Y if there exists a neutrosophic open set p in Y such that y, € u < .
The intersection of all neutrosophic closed sets of Y containing A is called the neutrosophic
closure of A and is denoted by CI(\). The union of all neutrosophic open sets contained
in A is called the neutrosophic interior of A and is denoted by Int(A). The family of all
open sets of a topological space X is denoted by O(X) and O(X,z) denoted the family
{A € O(X)|z € A}, where x is a point of X.

Definition 4. Let (X, 7) be a topological space in the classical sense and (Y, 1) be an neu-
trosophic topological space. F : (X, 7) — (Y, 1) is called a neutrosophic multifunction if and

only if for each x € X, F(x) is a neutrosophic set in Y.

346



New Trends in Neutrosophic Theory and Applications. Volume II

Definition 5. For a neutrosophic multifunction F : (X,7) — (Y, 71), the upper inverse
FT(\) and lower inverse F~(X\) of a neutrosophic set X in'Y are defined as follows:
Ft(\) ={x € X|F(z) <A} and F~(\) ={z € X|F(x)g\}.

Lemma 1. For a neutrosophic multifunction F' : (X,7) — (Y, ), we have F~(1 — \) =
X — F(\), for any neutrosophic set X in'Y.

3 NEUTROSOPHIC SEMICONTINUOUS MULTI-
FUNCTIONS

Definition 6. A neutrosophic multifunction F : (X, 1) — (Y, 1) is said to be

1. neutrosophic upper semicontinuous at a point x € X if for each A € NO(Y') containing
F(x) (therefore, F(x) < \), there exists U € O(X,x) such that F(U) < X (therefore
UcC Ft(\).

2. neutrosophic lower semicontinuous at a point x € X if for each X € NO(Y') with
F(z)g\, there exists U € O(X, x) such that U C F~(\).

3. neutrosophic upper semicontinuous (neutrosophic lower semicontinuous) if it is neutro-

sophic upper semicontinuous (neutrosophic lower semicontinuous) at each point x € X.

Theorem 1. The following assertions are equivalent for a neutrosophic multifunction F' :
(X,7) = (Y,7):

1. F' is neutrosophic upper semicontinuous;

2. For each point x of X and each neutrosophic neighbourhood X\ of F(z), F*()\) is a

neighbourhood of x;

3. For each point x of X and each neutrosophic neighbourhood X of F(z), there exists a
neighbourhood U of x such that F(U) < A;

4. Ft(\) € O(X) for oeach A\ € NO(Y);
5. F~(9) is a closed set in X for each neutrosophic closed set § of Y;
6. CI(F~(pn)) € F~(Cl(w)) for each neutrosophic set p of Y.

Proof. (1)=-(2) Let € X and p be a neutrosophic neighbourhood of F(z). Then there
exists A € NO(Y) such that F(z) < A < p, By (1), there exists U € O(X,x) such that
F(U) < A. Therefore x € U C F*(u) and hence F*(u) is a neighbourhood of x.

(2)=(3) Let € X and A be a neutrosophic neighbourhood of F(z). Put U = F*()). Then
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by (2), U is neighbourhood of z and F(U) = \/ F(x) < A\
xcU

(3)=(4) Let A € NO(Y), we want to show that F*(\) € O(X). So let x € F*()\).
Then there exists a neighbourhood G of x such that F(G) < A. Therefore for some U €
O(X,z),U C G and F(U) < A. Therefore we get € U C F*(\) and hence F'*(\) € O(X).
(4)=(5) Let § be a neutrosophic closed set in Y. So, we have X\ F~(0) = F*(1-9) € O(X)
and hence F~(9) is closed set in X.

(5)=-(6) Let p be any neutrosophic set in Y. Since Cl(u) is neutrosophic closed set in Y,
F~(Cl()) is closed set in X and F'~(u) € F~(Cl(n)). Therefore, we obtain CI(F~(u)) C
P(Cl(n).

(6)=(1) Let z € X and A € NO(Y) with F(z) < A. Now FF~(1-\) = {z € X|F(z)q(1-\)}.
So, for x not belongs to F'~(1—\). Then, we must have F'(x)A(1—\) and this implies F(z) <
1 —(1—X) = X which is true. Therefore x ¢ F~(1— ) by (6), z ¢ CI(F~(1— X)) and there
exists U € O(X, ) such that UNF~(1—\) = (). Therefore, we obtain F(U) = \/ F(x) < \.

zelU
This proves F' is neutrosophic upper semicontinuous. ]

Theorem 2. The following statements are equivalent for a neutrosophic multifunction F :
(X,7)— (Y, 7):

1. F'is neutrosophic lower semicontinuous;

2. For each A\ € NO(Y) and each x € F~()\), there exists U € O(X,z) such that U C
F=();

3. F~(\) € O(X) for every A € NO(Y).

4. FT(0) is a closed set in X for every neutrosophic closed set § of Y ;
5. CI(FT () € FT(Cl(u)) for every neutrosophic set p of Y';

6. F(CL(A)) < CI(F(A)) for every subset A of X;

Proof. (1)=(2) Let A € NO(Y) and = € F~(\) with F(x)gA. Then by properties—1, there
exists U € O(X, x) such that U C F~(A).

(2)=(3) Let A € NO(Y) adn € F~(A\). Then by (2), there exists U € O(X,z) such
that U C F~(\). Therefore, we have x € U C ClInt(U) C ClInt(F~(A)) and hence
F~(A\) € O(X).

(3)=(4) Let § be a neutrosophic closed in Y. So we have X\F* () = F~(1 —¢) € O(X)
and hence F7(0) is closed set in X.

(4)=-(5) Let p be any neutrosophic set in Y. Since Cl(u) is neutrosophic closed set in Y,
then by (4), we have F*(Cl(u)) is closed set in X and F*(u) C F*(Cl(u)). Therefore, we
obtain C1(F(u)) C FT(Cl(p)).

(5)=(6) Let A be any subset of X. By (5), CI(A) C CIFT(F(A)) C F*(CI(F(A))).
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Therefore we obtain Cl(A) C F*(C1F(A)). This implies that F(CI(A)) < C1F(A).
(6)=(5) Let p be any neutrosophic set in Y. By (6), F(CIF*(u)) < CI(F(F*(n))) and
hence CI(F*(u)) € FH(CYF(F*(n)))) € F(Cl(u)). Therefore CI(F*(u)) C FF(Cl(u)).
(5)=(1) Let z € X and A € NO(Y) with F(x)g\. Now, F*(1—-\) = {z € X|F(z) <1-\}.
So, for = not belongs to F+(1—\), then we have F(z) £ 1 — X and this implies that F'(z)gA.
Therefore, z ¢ F*(1—\). Since 1—\ is neutrosophic closed set in Y, by (5), z ¢ CIl(FT(1-)))
and there exists U € O(X, ) such that ) = UNFH(1 —X) =U N (X\F(A\)). Therefore,

we obtain U C F'~(A). This proves F' is neutrosophic lower semicontinuous. ]

Definition 7. For a given neutrosophic multifunction F : (X,7) — (Y, 71), a neutrosophic
multifunction CI(F') : (X,7) — (Y, 1) is defined as (C1F)(x) = CLF(x) for each x € X.

We use Cl F' and the following Lemma to obtain a characterization of lower neutrosophic

semicontinuous multifunction.

Lemma 2. If F: (X, 7) — (Y, 1) is a neutrosophic multifunction, then (CLF)~(\) = F~())
for each X € NO(Y').

Proof. Let A € NO(Y) and x € (C1F)~(\). This means that (ClF)(z)g\. Since A €

NO(Y), we have F(x)g\ and hence x € F~(\). Therefore (C1 F))~ ( JCF~(\) — —— (%).
Conversely, let x € F~(\) since A € NO(Y) then F(z)g\ C (ClF)(x)gA\ and hence
€ (C1F)~(A). Therefore F~(\) C (CLF)™(\) — — — —(xx).
From (%) and (xx), we get (CLF)~(\) = F~(A). O

Theorem 3. A neutrosophic multifunction F : (X, 1) — (Y, 1) is neutrosophic lower semi-

continuous if and only if CLF : (X, 1) — (Y, 1) is neutrosophic lower semicontinuous.

Proof. Suppose F' is neutrosophic lower semicontinuous. Let A € NO(Y') and F(z)gA. This
means that x € F~(\). Then there exists U € O(X, x) such that U C F~(\). Therefore, we
have x € U C Int(U) C Int F~(\) and hence F~(\) € O(X). Then by Lemma 2, we have
UCF (A= (CIF)" (A and (C1F)~(\) € O(X), and hence (Cl F')(z)g\. Therefore C1 F' is
fuzy lower semicontinuous. Conversely, suppose Cl F' is neutrosophic lower semicontinuous.
If for each A € NO(Y') with (Cl F)(z)g\ and x € (C1 F))~()\) then there exists U € O(X, z)
such that U C (C1 F)~(A). By Lemma 2 and Theorem 2, we have U C (C1F~())) = F~())

and F~(\) € O(X). Therefore F' is neutrosophic lower semicontinuous. O

Definition 8. Given a family {F; : (X,7) — (Y,0) : i € I} of neutrosophic multifunctions,

we define the union ‘\/IE and the intersection ‘/\IE as follows: 'VIE (X, 1) = (Y,0),
1€ 1S 1€

(V F)(x) =V Fi(z) and A\ F;: (X,7) = (Y,0), (A F)(x) = A Fy(z).

i€l i€l i€l i€l i€l

Theorem 4. If F; : X — Y are neutrosophic upper semi-continuous multifunctions for

n
i=1,2,...,n, then V F; is a neutrosophic upper semi-continuous multifunction.
iel
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Proof. Let A be a neutrosophic open set of Y. We will show that ('GIF;)J“(A) ={reX:
1€

\T}IFZ(SC) C A} isopen in X. Let z € (@IFZ)+(A) Then Fi(x) C A for i =1,2,...,n. Since

1€ 1€

F; : X — Y is neutrosophic upper semi-continuous multifunction for ¢ = 1,2,...,n, then

there exists an open set U, containing = such that for all z € U,, Fi(z) C A. Let U = CJI Us.
S

Then U C (GIE)+(A) Thus, (\n/l F;)*(A) is open and hence ‘@IFi is a neutrosophic upper
1€ 1€ 1€

semi-continuous multifunction. O

Lemma 3. Let {A;}ier be a family of neutrosophic sets in a neutrosophic topological space

X. Then a neutrosophic point x is quasi-coincident with VA; if and only if there exists an

i € I such that xqA,,.

Theorem 5. If F; : X — Y are neutrosophic lower semi-continuous multifunctions for
. n . . . . . .
1=1,2,...,n, then V F; is a neutrosophic lower semi-continuous multifunction.

iel

Proof. Let A be a neutrosophic open set of Y. We will show that (‘C/]Fi)_(A) ={reX:
1€

(.\n/]FZ-)(x)qA} is open in X. Let z € (\T;I F;)~(A). Then (‘\n/]FZ-)(x)qA and hence F(z)qA
1€ 1€ 1€
for an ig. Since F; : X — Y is neutrosophic lower semi-continuous multifunction, there

exists an open set U, containing = such that for all z € U, Fjp(2)gA. Then (\7}1 F;)(2)qA and
1€

hence U C (\ZE)_(A) Thus, (\7}[ F;)~(A) is open and hence 'GIFi is a neutrosophic lower
1€ 1€ e

semi-continuous multifunction. ]

Theorem 6. Let F': (X, 7) — (Y, 0) be a neutrosophic multifunction and {U; : i € I} be an

open cover for X. Then the following are equivalent:
1. Fy = Fy, is a neutrosophic lower semi-continuous multifunction for alli € I,
2. F is neutrosophic lower semi-continuous.

Proof. (1) = (2): Let x € X and A be a neutrosophic open set in Y with € F'~(A). Since
{U; :i € I} is an open cover for X, then x € Uy for an ig € I. We have F(x) = Fjo(x) and
hence x € F,j(A). Since Fjy, is neutrosophic lower semi-continuous, there exists an open
set B = G N Uy in Uy such that © € B and F~(A) NU;, = Fly,(A) D B = G N Uy, where
G is open in X. We have v € B =GNUy C Fi;((A) = F~(A)NUyp C F~(A). Hence, F is
neutrosophic lower semi-continuous.

(2) = (1): Let 2 € X and x € U;. Let A be a neutrosophic open set in Y with F;(x)gA.
Since F' is lower semi-continuous and F'(x) = Fj(x), there exists an open set U containing
x such that U C F~(A). Take B = U; N U. Then B is open in U; containing . We have

B C F7i(A). Thus F; is a neutrosophic lower semi-continuous. ]

Theorem 7. Let F': (X, 7) — (Y, 0) be a neutrosophic multifunction and {U; : i € I} be an

open cover for X. Then the following are equivalent:
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1. F; = Fy, is a neutrosophic upper semi-continuous multifunction for all i € I,
2. F' 1is neutrosophic upper semi-continuous.
Proof. 1t is similar to that of Theorem 6. O

Remark 8. A subset A of a topological space (X, T) can be considered as a neutrosophic set

with characteristic function defined by

Alz) = 1 ifze A
o= 0 ifzé¢ A

Let (Y, 0) be a neutrosophic topological space. The neutrosophic sets of the form A x B with
A €1 and B € o form a basis for the product neutrosophic topology T x 0 on X XY, where
for any (z,y) € X XY, (A x B)(z,y) = min{A(z), B(y)}.

Definition 9. For a neutrosophic multifunction F : (X, 7) — (Y, 0), the neutrosophic graph
multifunction Gg : X — X XY of F is defined by Gr(x) = x1 X F(x) for every x € X.

Theorem 9. If the neutrosophic graph multifunction G of a neutrosophic multifunction
F : (X,7) — (Y,0) is neutrosophic lower semi-continuous, then F is neutrosophic lower

semi-continuous.

Proof. Suppose that Gy is neutrosophic lower semi-continuous and x € X. Let A be a
neutrosophic open set in Y such that F'(z)gA. Then there exists y € Y such that (F(z))(y)+
A(y) > 1. Then (Gp(z))(z,y) + (X x A)(x,y) = (F(x))(y) + A(y) > 1. Hence, Gp(z)q(X X
A). Since G is neutrosophic lower semi-continuous, there exists an open set B in X such that
r € Band Gp(b)q(X x A) for all b € B. Let there exists by € B such that F'(by)gA. Then for
ally €Y, (F(by))(y)+A(y) < 1. For any (a,c) € X xY, we have (Gr(by))(a,c) C (F(bo))(c)
and (X x A)(a,c) C A(c). Since for all y € Y, (F(b))(y) + A(y) < 1, (Gp(by))(a,c) +
(X x A)(a,c) < 1. Thus, Gp(by)q(X x A), where by € B. This is a contradiction since
Gr(b)g(X x A) for all b € B. Hence, F' is neutrosophic lower semi-continuous. O

Theorem 10. If the neutrosophic graph multifunction Gg of a neutrosophic multifunction
F . X — Y is neutrosophic upper semi-continuous, then F' is neutrosophic upper semi-

continuous.

Proof. Suppose that G is neutrosophic upper semi-continuous and let x € X. Let A be
neutrosophic open in Y with F(x) C A. Then Gp(x) C X x A. Since G is neutrosophic
upper semi-continuous, there exists an open set B containing z such that Gp(B) C X x A.
For any b € B and y € Y, we have (F(b))(y) = (Gr(b))(b,y) C (X x A)(b,y) = A(y). Then
(F(b)(y) C A(y) for all y € Y. Thus, F(b) C A for any b € B. Hence, F is neutrosophic

upper semi-continuous. O
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Theorem 11. Let F : (X,7) — (Y, 0) be a neutrosophic multifunction. Then the following

are equivalent:

1. F' is neutrosophic lower semi-continuous,

2. For any x € X and any net (x;);e; converging to x in X and each neutrosophic open
set B in'Y with v € F~(B), the net (x;);cr is eventually in F~(B).

Proof. (1) = (2): Let (z;) be a net converging to x in X and B be any neutrosophic open
set in Y with x € F~(B). Since F is neutrosophic lower semi-continuous, there exists an
open set A C X containing = such that A C F~(B). Since x; — x, there exists an index
igp € I such that x; € A for every i > ig. We have x; € A C F~(B) for all i > 4. Hence,
(x;)ier is eventually in F~(B).

(2) = (1): Suppose that F' is not neutrosophic lower semi-continuous. There exists a point
x and a neutrosophic open set A with z € F~(A) such that B ¢ F~(A) for any open set
B C X containing z. Let x; € B and z; ¢ F~(A) for each open set B C X containing x.
Then the neighborhood net (x;) converges to x but (x;);es is not eventually in F~(A). This

is a contradiction. O

Theorem 12. Let F : (X,7) — (Y, 0) be a neutrosophic multifunction. Then the following

are equivalent:

1. F' is neutrosophic upper semi-continuous,

2. For any x € X and any net (x;) converging to x in X and any neutrosophic open set
B in'Y with x € F*(B), the net (z;) is eventually in F™(B).

Proof. The proof is similar to that of Theorem 11. O

Theorem 13. The set of all points of X at which a neutrosophic multifunction F: (X, 1) —
(Y,0) is not neutrosophic upper semi-continuous is identical with the union of the frontier

of the upper inverse image of neutrosophic open sets containing F(z).

Proof. Suppose F' is not neutrosophic upper semi-continuous at x € X. Then there exists
a neutrosophic open set A in Y containing F'(z) such that AN (X\F*(B)) # 0 for every
open set A containing x. We have z € CI(X\F*(B)) = X\ Int(F*(B)) and z € F*(B).
Thus, x € Fr(F*(B)). Conversely, let B be a neutrosophic open set in Y containing F'(z)
with € Fr(F*(B)). Suppose that F' is neutrosophic upper semi-continuous at x. There
exists an open set A containing x such that A C F*(B). We have x € Int(F*(B)). This is

a contradiction. Thus, F' is not neutrosophic upper semi-continuous at x. O

Theorem 14. The set of all points of X at which a neutrosophic multifunction F : (X, 1) —
(Y, o) is not neutrosophic lower semi-continuous is identical with the union of the frontier

of the lower inverse image of neutrosophic closed sets which are quasi-coincident with F(x).
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Proof. 1t is similar to that of Theorem 13. O

Definition 10. A neutrosophic set A of a neutrosophic topological space Y is said to be

neutrosophic compact relative to'Y if every cover {\o}aca of X by neutrosophic open sets of

Y has a finite subcover {\;}_; of .

Definition 11. A neutrosophic set A of a neutrosophic topological space Y is said to be
neutrosophic Lindelof relative to Y if every cover {\,}aca of A by neutrosophic open sets of

Y has a countable subcover {\,}nen of A.

Definition 12. A neutrosophic topological space Y is said to be neutrosophic compact if xy

(characteristic function of Y ) is neutrosophic compact relative to Y .

Definition 13. A neutrosophic topological space Y is said to be neutrosophic Lindelof if xy

(characteristic function of Y ) is neutrosophic Lindelof relative to Y .

Definition 14. A neutrosophic multifunction F : (X,7) — (Y, 1) is said to be punctually
neutrosophic compact (resp. punctually neutrosophic Lindelof) if for each © € X, F(z) is

neutrosophic compact (resp. neutrosophic Lindelof).

Theorem 15. Let the neutrosophic multifunction F : (X,7) — (Y, 71) be a neutrosophic
upper semicontinuous and F' is punctually neutrosophic compact. If A is compact relative to

X, then F(A) is neutrosophic compact relative to Y .

Proof. Let {\s|a € A} be any cover of F(Z) by neutrosophic copen sets of Y. We claim
that F'(A) is neutrosophic compact relative to Y. For each x € A, there exists a finite subset
A(x) of A such that F(z) < U{A\,]Ja € A(x)}. Put AM(z) = U{\.|a € A(x)}. Then F(z) <
A(z) € NO(Y) and there exists U(x) € O(X, z) such that F(U(x)) < A(x). Since {U(z)|z €
A} is an open cover of A there exists a finite number of A, say, xi,zs,..,x, such that
A C U{U(z)|i = 1,2,..,n}. Therefore we obtain F(A) < F(ZQ1 Ux;)) < 191 F(U(x;)) <

.[LJI Az;) < [LJI( U( )/\a). This shows that F'(A) is neutrosophic compact relative to Y. [
1= =1 acA(x;

Theorem 16. Let the neutrosophic multifunction F : (X,7) — (Y, 71) be a neutrosophic
upper semicontinuous and F' is punctually neutrosophic Lindelof. If A is Lindelof relative to
X, then F(A) is neutrosophic Lindelof relative to Y.

Proof. The proof is similar to that of Theorem 15 O
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