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1. Introduction

Among many algebraic structures, algebras of logic form important class of algebras.
Examples of these are BCK-algebras [7], BCI-algebras [8], BCH-algebras [4], KU-algebras
[18], SU-algebras [13] UP-algebras [5] and so on. They are strongly connected with logic.
For example, BCI-algebras were introduced by Iséki [8] in 1966 have connections with BCI-
logic being the BCI-system in combinatory logic which has application in the language of
functional programming. BCK and BCl-algebras are two classes of logical algebras. They
were introduced by Imai and Iséki [7, 8] in 1966 and have been extensively investigated
by many researchers. It is known that the class of BCK-algebras is a proper subclass of
the class of BCl-algebras. The above-mentioned section has been derived from [12].

The branch of the logical algebra, UP-algebras were introduced by Iampan [5]. Later
Somjanta et al. [23] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-filters of
UP-algebras. Guntasow et al. [3] introduced and studied fuzzy translations of a fuzzy set
in UP-algebras. Kesorn et al. [14] studied intuitionistic fuzzy sets in UP-algebras. Kaijae
et al. [11] introduced and investigated anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras.
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Tanamoon et al. [26] introduced and studied Q-fuzzy sets in UP-algebras. Sripaeng et
al. [25] studied anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras.
Dokkhamdang et al. [2] studied Generalized fuzzy sets in UP-algebras. Songsaeng and
Iampan [24] studied N-fuzzy UP-algebras and their level subsets.

The notion of neutrosophic sets was introduced by Smarandache [22] in 1999. Wang et
al. [28] introduced the notion of interval neutrosophic sets in 2005. The notion of neutro-
sophic N-structures and their applications in semigroups was introduced by Khan et al.
[15] in 2017. Jun et al. [9] applied the notion of neutrosophic N-structures to BCK/BCI-
algebras in 2017. Khan et al. [15] discussed neutrosophic N -structures and their appli-
cations in semigroups in 2017. Jun et al. [10] studied neutrosophic positive implicative
N-ideals in BCK-algebras in 2018. Kim et al. [16] studied generalizations of neutrosophic
subalgebras in BCK/BClI-algebras based on neutrosophic points in 2018. Rangsuk et al.
[19] introduced the notions of (special) neutrosophic N-UP-subalgebras, (special) neu-
trosophic N-near UP-filters, (special) neutrosophic N/-UP-filters, (special) neutrosophic
N-UP-ideals, and (special) neutrosophic N -strongly UP-ideals of UP-algebras in 2019.

In this paper, the notions of neutrosophic UP-subalgebras, neutrosophic near UP-
filters, neutrosophic UP-filters, neutrosophic UP-ideals, and neutrosophic strongly UP-
ideals of UP-algebras are introduced, and several properties are investigated. Conditions
for neutrosophic sets to be neutrosophic UP-subalgebras, neutrosophic near UP-filters,
neutrosophic UP-filters, neutrosophic UP-ideals, and neutrosophic strongly UP-ideals of
UP-algebras are provided. Relations between neutrosophic UP-subalgebras (resp., neu-
trosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals, neutrosophic
strongly UP-ideals) and their level subsets are considered.

2. Basic results on UP-algebras

Before we begin our study, we will give the definition and useful properties of UP-
algebras.

Definition 1. [5/ An algebra X = (X,-,0) of type (2,0) is called a UP-algebra where X
is a nonempty set, - is a binary operation on X, and 0 is a fized element of X (i.e., a
nullary operation) if it satisfies the following axioms:

(UP-1) (Vz,y,2 € X)((y-2)-((z-y)- (z-2)) =0),
(UP-2) (Vz € X)(0-z =),

(UP-3) (Vz € X)(z-0=0), and

(UP-4) (Vo,ye X)(z-y=0,y-2=0=z=1y).

From [5], we know that the notion of UP-algebras is a generalization of KU-algebras
(see [18]).

Example 1. [21] Let X be a universal set and let Q2 € P(X) where P(X) means the power
set of X. Let Po(X) ={A € P(X) | Q C A}. Define a binary operation - on Pqo(X) by
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putting A- B = BN (AU Q) for all A, B € Pq(X) where A means the complement of
a subset A. Then (Pq(X),-,RQ) is a UP-algebra and we shall call it the generalized power
UP-algebra of type 1 with respect to Q. Let PHX) = {A € P(X) | A C Q}. Define a
binary operation * on PHX) by putting Ax B = BU (A° N Q) for all A,B € P*(X).
Then (PQ(X), x,Q) is a UP-algebra and we shall call it the generalized power UP-algebra
of type 2 with respect to Q. In particular, (P(X),-,0) is a UP-algebra and we shall call it
the power UP-algebra of type 1, and (P(X),*, X) is a UP-algebra and we shall call it the
power UP-algebra of type 2.

Example 2. [2] Let IN be the set of all natural numbers with two binary operations o and
e defined by

(Vz,y € IN) (xoy:{ g ifx <y, )

otherwise

and

(Vw,ye]N)(xoy:{g ifx >y oraz=0, >

otherwise
Then (IN,0,0) and (N, e,0) are UP-algebras.

Example 3. [17] Let X = {0,1,2,3,4,5} be a set with a binary operation - defined by the
following Cayley table:

OO O OO OO
N O N ONNDN
O WO W W ww
N O =N
O Ot Ot Ot Ot Ot Ot

1
1
0
1
1
0
0

QL W N~ Of -

Then (X,-,0) is a UP-algebra.

For more examples of UP-algebras, see [1, 6, 20, 21].
In a UP-algebra X = (X, -,0), the following assertions are valid (see [5, 6]).

(Vx € X)(x-x =0), (2.1)
Vx,y,z€ X)(z-y=0,y-2=0=2x-2=0), (2.2)
Vx,y,z€e X)(z-y=0=(2-2)-(z2-y) =0), (2.3)
Vzx,y,ze X)(z-y=0=(y-2)-(x-2)=0), (2.4)
(Vx,y € X)(z- (y-x) =0), (2.5)
Vz,ye X)((y-z) - 2=0&2=y-a), (2.6)
(Va,y € X)(z- (y-y) =0), (2.7)
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Va,z,y,z € X)((z-(y-2)-(z-((a-y)-(a-2)))

(

(Va,z,y,z € X)((((a-z) - (a-y))-2)- ((z-y) - 2)
(
(
(

Il
==

Ve,y,z€ X)(z-y=0=2x2-(z-y) =0),
Va,y,z € X)(((x-y) - 2) - (x- (y-2)) = 0), and
Va,z,y,2 € X)(((x-y)-2) - (y- (a-2)) = 0).

1385

/N TN /N /N

e
N = O ©

NN NI N NN

On a UP-algebra X = (X, -,0), we define a binary relation < on X [5] as follows:

Ve,ye X)(z<y<sax-y=0).
Definition 2. /3, 5, 23] A nonempty subset S of a UP-algebra (X,-,0) is called
(1) a UP-subalgebra of X if Vx,y € S)(x -y € S).
(2) a near UP-filter of X if

(i) the constant 0 of X is in S, and
(ii)) Vr,y e X)(ye S=x-ye€S).

(3) a UP-filter of X if

(i) the constant 0 of X is in S, and
(ii)) Vz,ye X)(z-yeS,xeS=yell).

(4) a UP-ideal of X if

(i) the constant 0 of X is in S, and
(ii)) Ve,y,z€ X)(x-(y-2)€S,yeS=x-2€585).

(5) a strongly UP-ideal of X if

(i) the constant 0 of X is in S, and
(ii) (Vr,y,z€ X)((z-y)-(z-x2) €S,ye S=ze€b9).

Guntasow et al. [3] proved that the notion of UP-subalgebras is a generalization of
near UP-filters, the notion of near UP-filters is a generalization of UP-filters, the notion of
UP-filters is a generalization of UP-ideals, and the notion of UP-ideals is a generalization
of strongly UP-ideals. Moreover, they also proved that a UP-algebra X is the only one

strongly UP-ideal of itself.
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3. NSs in UP-algebras

In 1965, Zadeh [29] introduced the notion of fuzzy sets as the following definition.

A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy subset of X) is an arbitrary
function f : X — [0,1] where [0,1] is the unit segment of the real line, and the fuzzy set
f defined by f(x) =1 — f(x) for all z € X is said to be the complement of f in X.

In 1999, Smarandache [22] introduced the notion of neutrosophic sets as the following
definition.

A neutrosophic set (briefly, NS) in a nonempty set X is a structure of the form:

A ={(z, \r(z), \1(x), A\p(z)) | z € X} (3.1)

where A\r : X — [0, 1] is a truth membership function, A\; : X — [0,1] is an indeterminate
membership function, and Ap : X — [0, 1] is a false membership function.

For our convenience, we will denote a NS as A = (X, A, A\, \p) = (X, A\rrp) =
{(z, A\ (), A\(z), A\p(x)) | x € X}.

Definition 3. [22] Let A be a NS in a nonempty set X. The NS A = (X, XT717F) in X
defined by

)\T(.’L‘) =1- )\T(I‘)
(Vz e X) | M(z)=1-X(x) (3.2)
XF($> =1- )\F(x)

is called the complement of A in X.
Remark 1. For all NS A in a nonempty set X, we have A = A.
Lemma 1. [27] Let a,b,c € R. Then the following statements hold:
(1) a —min{b, c} = max{a — b,a — ¢}, and
(2) a —max{b,c} = min{a — b,a — c}.
The following lemma is easily proved.

Lemma 2. Let f be a fuzzy set in a nonempty set X. Then the following statements hold:

(1) (Vo,y,2 € X)(f(z) > min{f(y), f(2)} & f(z) < max{f(y), f(2)}).
(2) (V,y,2 € X)(f(z) <min{f(y), f(2)} & f(z) > max{f(y), f(2)}),
(3) (Vo,y,2 € X)(f(2) = max{f(y), f(2)} & f(z) < min{f(y), f(2)}), and
(4) (Vo,y,2 € X)(f(2) < max{f(y), f(2)} & f(z) > min{f(y), f(2)})-
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In what follows, let X denote a UP-algebra (X, -,0) unless otherwise specified.

Now, we introduce the notions of neutrosophic UP-subalgebras, neutrosophic near UP-
filters, neutrosophic UP-filters, neutrosophic UP-ideals, and neutrosophic strongly UP-
ideals of UP-algebras, provide the necessary examples, investigate their properties, and
prove their generalizations.

Definition 4. A NS A in X is called a neutrosophic UP-subalgebra of X if it satisfies the
following conditions:

(Va,y € X)(Ar(z - y) = min{Ar(z), Ar(y)}), (3.3)
(Vm, y e X)(Af(x ’ y) < maX{)\I<$)7 AI(:‘/)})? (34)
(Vo,y € X)(Ap(z - y) = min{Ap (), Ar(y)}). (3.5)

Example 4. Let X = {0,1,2,3,4} be a UP-algebra with a fized element 0 and a binary
operation - defined by the following Cayley table:

0 2

_— o O O |
WO NN Ww
[ RN NN ESS

=W N = O
o O O O O
N OO NN

We define a NS A in X as follows:

(01203 4N (01 2 3 4) (01 2 3 4
7809070503037 \008040204/)" " \106080302)/"

Hence, A is a neutrosophic UP-subalgebra of X.

Definition 5. A NS A in X is called a neutrosophic near UP-filter of X if it satisfies the
following conditions:

(Vx € X)(Ar(0) > Ap(x)), (3.6)
(Vx € X)(A1(0) < Ar(z)), (3.7)
(Vz € X)(Ap(0) > Ap(z)), (3.8)
(Vz,y € X)(Ar(z - y) = Mr(y)), (3.9)
(Vo,y € X)(Ar(z-y) < Ai(y)), (3.10)
(Va,y € X)(Ar(z - y) = Ar(y)). (3.11)

Example 5. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

01 2 3 4
0j0 1 2 3 4
110 01 2 4
2/0 0 01 4
3]0 0 0 0 4
410 1 2 3 0
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We define a NS A in X as follows:

W (012 3 4N (0 1 2 3 4) (0 1 2 3 4
T=\107050408/)" " \0102030706/)""F \0908040305)/"

Hence, A is a neutrosophic near UP-filter of X.

Definition 6. A NS A in X is called a neutrosophic UP-filter of X if it satisfies the
following conditions: (3.6), (3.7), (3.8), and

(VZ’, (7S X)(ATQ/) > min{)‘T(x ' y)? )\T(x)})7 (312)
(Va,y € X)(Ar(y) < max{(z-y), \1(2)}), (3.13)
(Vz,y € X)(Ar(y) > min{Ap(z - y), Ap(x)}). (3.14)

Example 6. Let X = {0,1,2,3,4} be a UP-algebra with a fized element 0 and a binary
operation - defined by the following Cayley table:

0

= O O -
NO N NN
SO W W W w
O W W o

=W N = O
o O O O O

We define a NS A in X as follows:

(0 12 3 4N (0 1 2 3 4) (0 1 2 3 4
T=%0904030101/)"" " \0203070808/)" " \08 07040303/

Hence, A is a neutrosophic UP-filter of X .

Definition 7. A NS A in X is called a neutrosophic UP-ideal of X if it satisfies the
following conditions: (3.6), (3.7), (3.8), and

(Vx,y,z € X)(Ar(xz - z) > min{A\p(z - (y-2)), \r(y)}), (3.15)
(Va,y,z € X)(Ar(x - 2) <max{A;(z-(y-2)), \1(y)}), (3.16)
(Vx,y,z € X)(Ap(z-2) > min{Ap(z- (y-2)), A\r(y)}). (3.17)

Example 7. Let X = {0,1,2,3,4} be a UP-algebra with a fized element 0 and a binary
operation - defined by the following Cayley table:

0

o O O -
N OO N NN
WO N W W W
O R e R

=W N = O
o O O o O
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We define a NS A in X as follows:

w01 2 3 4N (01 2 3 4) (01 2 3 4
T=\107060604/)" 7" \003050507/)""F " \108070705)"

Hence, A is a neutrosophic UP-ideal of X.

Definition 8. A NS A in X is called a neutrosophic strongly UP-ideal of X if it satisfies
the following conditions: (3.6), (3.7), (3.8), and

(Va,y,2 € X)(Ar(x) > min{Ar((z - y) - (2 - 2)), Ar(y)}), (3.18)
(Va,y,z € X)(Ar(z) <max{Ar((z-y) - (z-2)), A1(y)}), (3.19)
(Va,y,2 € X)(Ap(z) 2 min{Ar((2-y) - (2 2)), Ar(y)})- (3.20)

Example 8. Let X = {0,1,2,3,4} be a UP-algebra with a fized element 0 and a binary
operation - defined by the following Cayley table:

01 2 3 4
0j0 1 2 3 4
110 0 2 3 4
210 1 0 2 4
3]0 1 0 0 4
410 1 0 3 O
We define a NS A in X as follows:
Ar(z) =1
(Vx e X) | Ar(x) =0.2
Ar(z) =0.8

Hence, A is a neutrosophic strongly UP-ideal of X .

Definition 9. A NS A in X is said to be constant if A is a constant function from X to
[0,1]3. That is, Ay, A\;, and A\ are constant functions from X to [0,1].

Theorem 1. FEvery neutrosophic UP-subalgebra of X satisfies the conditions (3.6), (3.7),
and (3.8).

Proof. Assume that A is a neutrosophic UP-subalgebra of X. Then for all z € X,

Ar(0) = Ap(x - ) > min{Ap(x), \p(x)} = Ap(2), (2.1) and (3.3)
A1(0) = Ar(z - ) < max{A;(x),\r(z)} = Ar(x), (2.1) and (3.4)
Ar(0) = Ap(z - x) > min{Ap(z), Ap(2)} = Ap(z). (2.1) and (3.5)

Hence, A satisfies the conditions (3.6), (3.7), and (3.8).
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Theorem 2. A NS A in X is constant if and only if it is a neutrosophic strongly UP-ideal
of X.

Proof. Assume that A is constant. Then for all z € X, Ap(x) = Ar(0), Ar(x) = A7(0),
and Ap(xz) = Ap(0) and so Ar(0) > Ar(x), A7(0) < Ar(z), and Ap(0) > Ap(z). Next, for
all z,y,2 € X,

Ar(z) = Ar(0) = min{A7(0), Az(0)} = min{Ar((z - y) - (z - 2)), Ar(y)},
Ar(x) = Ar(0) = max{A7(0), A7(0)} = max{A;((z-y) - (z- x)), Ar(y)},
Ar(z) = Ap(0) = min{Ar(0), Ar(0)} = min{Ar((z-y) - (- 2)), Ar(y)}-
Hence, A is a neutrosophic strongly UP-ideal of X.

Conversely, assume that A is a neutrosophic strongly UP-ideal of X. For any = € X,
we have

Ar(z) > min{Ar((z-0) - (z-x)), A\r(0)} (3.18)
= min{Ar(0- (z - x)), Ar(0)} (UP-3)
= min{\r(z - ), A\r(0)} (UP-2)
= min{Ar(0), A\r(0)} (2.1)
= Ar(0),

Ar(z) <max{A;((z-0)- (z-x)),\;(0)} (3.19)
=max{A;(0- (z-x)),A\r(0)} (UP-3)
= max{\;(z - z), \;(0)} (UP-2)
= max{\7(0), A\;(0)} (2.1)
= A1(0),

Ap(z) > min{Ap((z-0) - (z-2)),A\r(0)} (3.20)
= min{Ap(0- (z-2)), Ar(0)} (UP-3)
= min{A\p(z - z), \r(0)} (UP-2)
— win{Ar(0), A (0)} 1)
= Ap(0).

Thus Ar(z) = Ar(0),A\;(z) = A7(0), and Ap(x) = Ap(0) for all x € X. Hence, A is
constant.

Theorem 3. FEvery neutrosophic strongly UP-ideal of X is a neutrosophic UP-ideal.

Proof. Assume that A is a neutrosophic strong UP-ideal of X. Then A satisfies the
conditions (3.6), (3.7), and (3.8). By Theorem 2, we have A is constant. Then for all
x € X, Ap(z) = Ar(0), Ar(x) = A7(0), and Ap(z) = Ap(0). Thus

Ar(z - z) = min{Ar((z-y) - (2 (2 2))), Ar(y)} (3.18)
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= min{Ar((z - y) - 0), Ar(y)} (2.5)
= min{Ar(0), Ar(y)} (UP-3)
= M (y) (3.6)
= min{Ar(z - (y - 2)), Ar(y)}

Ar(@ - z) =max{Ar((z-y) - (2 (z-2))), A\r(y)} (3.19)
=max{A;((z-y) - 0),A\r(y)} (2.5)
=max{A;(0), \;(y)} (UP-3)
= A\r(y) (3.7)
< max{Ar(z - (y-2)),A\r(y)}

Ap(z - z) =min{Ap((2-y) - (2 (z-2))), Ar(y) } (3.20)
=min{Ar((z-y)-0), Ar(y)} (2.5)
= min{\r(0), Ap(y)} (UP-3)

8)

Hence, A is a neutrosophic UP-ideal of X.

The following example show that the converse of Theorem 3 is not true.

Example 9. From Ezample 7, we have A is a neutrosophic UP-ideal of X. Since A is
not constant, it follows from Theorem 2 that it is not a neutrosophic strongly UP-ideal of
X.

Theorem 4. Every neutrosophic UP-ideal of X is a neutrosophic UP-filter.

Proof. Assume that A is a neutrosophic UP-ideal of X. Then A satisfies the conditions
(3.6), (3.7), and (3.8). Next, let z,y € X. Then

Ar(y) = Ar(0-y) (UP-2)
> min{Ar(0- (2 - 3)), Ar(2)} (3.15)
= min{Ar(x - y), A\r(z)}, (UP-2)

Ar(y) = Ar(0-y) (UP-2)
<max{A;(0- (z-y)),\r(z)} (3.16)
= max{/\[(x “y), A\r(z)}, (UP-2)

Ar(y) = Ar(0-3) (UP-2)
> min{Ar(0- (z-y)), A\r(z)} (3.17)
= min{Ap(z-y), A\r(z)}. (UP-2)

Hence, A is a neutrosophic UP-filter of X.

The following example show that the converse of Theorem 4 is not true.
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Example 10. From Ezample 6, we have A is a neutrosophic UP-filter of X. Since Ap(3-
4) =03 <04 =min{Ar(3-(2-4)), \r(2)}, we have A is not a neutrosophic UP-ideal of
X.

Theorem 5. Fvery neutrosophic UP-filter of X is a neutrosophic near UP-filter.

Proof. Assume that A is a neutrosophic UP-filter. Then A satisfies the conditions
(3.6), (3.7), and (3.8). Next, let z,y € X. Then

Ar(z-y) > min{Ar(y - (z-y)), A\r(y)} (3.12)
= min{Ar(0), Ar(y)} (2.5)
= A (y), (3.6)
Ar(z - y) < max{Ar(y- (z-y)), A\r(y)} (3.13)
= max{A7(0), A\r(y)} (2.5)
= Ai(y), (3.7)
Ap(z-y) > min{Ar(y - (z-9)), Ar(y)} (3.14)
= min{Ar(0), \r(y)} (2.5)
= Ap(y). (3.8)

Hence, A is a neutrosophic near UP-filter of X.
The following example show that the converse of Theorem 5 is not true.

Example 11. From Ezample 5, we have A is a neutrosophic near UP-filter of X. Since
Ar(3) = 0.7 > 0.3 = max{A;(2-3),A1(2)}, we have A is not a neutrosophic UP-filter of
X.

Theorem 6. Every neutrosophic near UP-filter of X is a neutrosophic UP-subalgebra.
Proof. Assume that A is a neutrosophic near UP-filter of X. Then for all z,y € X

Ar(z-y) > Ar(y) > min{Ar(z), Ar(y)}, (3.9)
Ar(@-y) < Ar(y) < max{A;(x), Ar(y)}, (3.10)
Ar(z-y) > Ap(y) > min{Ar(z), \r(y)}. (3.11)

Hence, A is a neutrosophic UP-subalgebra of X.
The following example show that the converse of Theorem 6 is not true.

Example 12. From Ezxample 4, we have A is a neutrosophic UP-subalgebra of X. Since
A1(2-3)=0.4 > 0.2 = \;(3), we have A is not a neutrosophic near UP-filter of X.

By Theorems 3, 4, 5, and 6 and Examples 9, 10, 11, and 12, we have that the notion
of neutrosophic UP-subalgebras is a generalization of neutrosophic near UP-filters, the
notion of neutrosophic near UP-filters is a generalization of neutrosophic UP-filters, the
notion of neutrosophic UP-filters is a generalization of neutrosophic UP-ideals, and the
notion of neutrosophic UP-ideals is a generalization of neutrosophic strongly UP-ideals.
Moreover, by Theorem 2, we obtain that neutrosophic strongly UP-ideals and constant
neutrosophic set coincide.
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Theorem 7. If A is a neutrosophic UP-subalgebra of X satisfying the following condition:

Ar(z) = Ar(y)
Vz,ye X) |z -y# 0= < A\(z) < A\ (y) , (3.21)
Ap(z) 2 Ar(y)

then A is a neutrosophic near UP-filter of X.

Proof. Assume that A is a neutrosophic UP-subalgebra of X satisfying the condition
(3.21). By Theorem 1, we have A satisfies the conditions (3.6), (3.7), and (3.8). Next, let
z,y € X.

Case 1: -y =0. Then

Ar(z-y) = Ar(0) = Ar(y), (3
Ar(z-y) = Ar(0) < Ar(y), (3.7)
Ar(z - 9) = Ar(0) > Ap(y). 3
Case 2: -y # 0. Then
Ar(z - y) > min{Ar(z), A\r(y)} = Ar(y), (3.3) and (3.21) for Ar
Ar(z - y) <max{Ar(x), A\r(y)} = A\1(y), (3.4) and (3.21) for Ay
Ar(z - y) > min{Ap(x), \r(y)} = A\r(y). (3.5) and (3.21) for Ap

Hence, A is a neutrosophic near UP-filter of X.

Theorem 8. If A is a neutrosophic near UP-filter of X satisfying the following condition:
AT = A1 = Ap, (3.22)
then A is a neutrosophic UP-filter of X.

Proof. Assume that A is a neutrosophic near UP-filter of X satisfying the condition
(3.22). Then A satisfies the conditions (3.6), (3.7), and (3.8). Next, let z,y € X. Then

min{Ar(z - y), A\r(z)} = min{A\;(z - y), \r(z)} (3.22)
< min{As(y), Ar(x)} (3.10)
= min{Ar(y), A\r(z)} (3.22)
< M (y),

max{A(z - y), \r(x)} = max{Ar(x - y), A\r(x)} (3.22)
> max{Ar(y), A\r(z)} (3.9)
= max{Ar(y), A\r(x)} (3.22)
> Ai(y),

min{Ap(z - y), Ap(x)} = min{A\;(z - y), \p(z)} (3.22)
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< min{A;(y), Ar(z)} (3.10)
= min{Ar(y), \r(z)} (3.22)
< Ar(y).

Hence, A is a neutrosophic UP-filter of X.

Theorem 9. If A is a neutrosophic UP-filter of X satisfying the following condition:

Ar(y - (z-2)) = Ar(z - (y-2))
(Ve,y,z€ X) | Mi(y-(z-2)=X(z-(y-2)) |, (3.23)
Ap(y - (z-2) =Ar(z- (y-2))

then A is a neutrosophic UP-ideal of X.

Proof. Assume that A is a neutrosophic UP-filter of X satisfying the condition (3.23).
Then A satisfies the conditions (3.6), (3.7), and (3.8). Next, let z,y,z € X. Then

A 2) > min{Aa(y - (2 2)), M) (3.12)
= min{Ar(z - (y-2)), A\r(y)}, (3.23) for A
Az 2) < max{Ar(y - (z - 2), M(®)} (3.13)
=max{A;(z- (y-2)), \1(y)}, (3.23) for Ar
Ar(z - 2) > min{Ar(y - (@ - 2)), Ar(y)} (3.14)
=min{A\r(z-(y-2)), \r(y)}. (3.23) for Ap

Hence, A is a neutrosophic UP-ideal of X.

Theorem 10. If A is a NS in X satisfying the following condition:
>
(Vz,y,2 € X) [ 2 <2y = { Ar(2) < max{Ar(z), A\r(y)} : (3.24)
>

then A is a neutrosophic UP-subalgebra of X.

Proof. Assume that A is a NS in X satisfying the condition (3.24). Let x,y € X. By
(2.1), we have (z-y) - (x-y) =0, that is, z -y < z - y. It follows from (3.24) that

Ar(e - y) > min{Ar(2), e (y)},
Ar(e - y) < max{Ar(2), Ar(y)},
Ap(x - y) > min{Ap(z), Ar(y)}.

Hence, A is a neutrosophic UP-subalgebra of X.
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Theorem 11. If A is a NS in X satisfying the following condition:

Ar(z) = Ar(y)
(Vz,y,ze X) | z2<z-y= ¢ A\(2) < \(y) ; (3.25)

then A is a neutrosophic near UP-filter of X.

Proof. Assume that A is a NS in X satisfying the condition (3.25). Let z € X. By
(UP-2) and (2.1), we have 0 - (z - z) = 0, that is, 0 < z - z. It follows from (3.25) that
Ar(0) > Ar(x),A1(0) < Ar(z), and Ap(0) > Ap(z). Next, let z,y € X. By (2.1), we
have (z-y) - (z-y) = 0, that is, x -y < x - y. It follows from (3.25) that Ap(x -y) >
Ar(y), Ar(z-y) < Ar(y), and Ap(x-y) > Ar(y). Hence, A is a neutrosophic near UP-filter
of X.

Theorem 12. If A is a NS in X satisfying the following condition:

Ar(y) = min{Ar(z2), Ar ()}
(Vz,y,z€ X) | z<x-y= < A\(y) <max{\;(2),\(2)} , (3.26)
)

Ar(y) = minfAp(2), Ap(2)}
then A is a neutrosophic UP-filter of X.

Proof. Assume that A is a NS in X satisfying the condition (3.26). Let z € X. By
(UP-3), we have z - (z - 0) = 0, that is, x < x - 0. It follows from (3.26) that

A7(0) > min{Ar(z), Ar(x)} = Ap(x),
A7(0) < max{Ar(z), A\r(x)} = A\ (z),
Ar(0) > min{Ap(z), Ap(z)} = Ap(x).

Next, let z,y € X. By (2.1), we have (z-y) - (x-y) =0, that is, x -y < x - y. It follows
from (3.26) that

A
Ar(y) > min{Ap(z - y), A\p(x)}.

Hence, A is a neutrosophic UP-filter of X.

Theorem 13. If A is a NS in X satisfying the following condition:

Ar(z - z) > min{Ar(a), Ar(y)}
Va,z,y,ze X) |a<z-(y-2) =< A\(z-2) <max{\(a), \1(y)} , (3.27)
Ar(z - z) = min{Ap(a), Ap(y)}

then A is a neutrosophic UP-ideal of X.
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Proof. Assume that A is a NS in X satisfying the condition (3.27). Let x € X. By
(UP-3), we have z - (0- (z-0) =0, that is, z < 0- (x - 0). It follows from (3.27) that

)\T(O) = )\T(O . 0) 2 min{)\T(:L‘), )\T({L‘)} = )\T(ZL'), (UP-2)
A7(0) = A7(0-0) < max{A;(x), \;(x)} = Ar(x), (UP-2)
Ap(0) = Ap(0- 0) > min{\p(z), A\p(2)} = Ap(2). (UP-2)

Next, let z,y,z € X. By (2.1), we have (z-(y-2))-(z-(y-2)) = 0, that is, z-(y-z) < z-(y-2).
It follows from (3.27) that

Ar(x - z) > min{Ar(z - (y - 2)), Ar(y)},
Ar(x - z) <max{Ar(z - (y-2)), Ar(y)},
Ap(z - 2) 2 min{Ap(z - (y - 2)), Ar(y)}-

Hence, A is a neutrosophic UP-ideal of X.

For any fixed numbers a™,a~, 87,87 ,v",7~ € [0, 1] such that a™ > o=,8" >
Byt >~ andanonemptysubsetGofX aNS AC[® iR ’7] (X, AG[O‘Jr] )\G[ ])\G[ )

a— Bty

in X where )\G[ °, /\G[ .|, and /\G[ ,] are functions on X which are given as follows:

o ot ifzxedq,
AT (@) :{ . .

o~ otherwise,

ML) = {5_ red

BT otherwise,
+ .
+ ~t ifxzed,
A%fm(a:):{ ) .
v~ otherwise.

Lemma 3. If the constant 0 of X is in a nonempty subset G of X, then a NS AG[ 8 +]

Bty
in X satisfies the conditions (3.6), (3.7), and (3.8).

Proof. 1f 0 € G, then AF[27](0) = o™, A7[5,)(0) = 87, AG["](0) = 7*. Thus

Hence, AG[ 7§+ ,] satisfies the conditions (3.6), (3.7), and (3.8).

Lemma 4. If a NS AG[ ,’ﬂJr ] in X satisfies the condition (3.6) (resp., (3.7), (3.8)),
then the constant 0 of X is in a nonempty subset G of X.
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Proof. Assume that the NS AG[ B ] in X satisfies the condition (3.6). Then

a~ B+
)\g[gt](O) > )\g[gf](m’) for all x € X. Since G is nonempty, there exists ¢ € G. Thus
A7) (g) = at and s0 AZ[27](0) > AE[7](g) = @t > AE[27](0), that is, AF[27](0) = ™.
Hence, 0 € G.

Theorem 14. A NS AG[O‘, g+z | in X is a neutrosophic UP-subalgebra of X if and only
if a nonempty subset G ofX 1s a UP-subalgebra of X.

Proof. Assume that AG[ B "+ _] is a neutrosophic UP-subalgebra of X. Let z,y € G.
Then AF[*](z) = o = AF[*](y). Thus
M5 )@ -y) = minAF 1) @), MW} = oF 2 M3 )@ y) (3.3)

and so )\G[ “J(x-y) =a'. Thus z -y € G. Hence, G is a UP-subalgebra of X.

Conversely, assume that G is a UP-subalgebra of X. Let z,y € X.
Case 1: z,y € G. Then

Thus

Since G is a UP—subalgebra of X, we have z-y € G and so )\G[ Jxy) =a™ )\G[ L(xey) =
B, and )\G[ _J(x-y) =~T. Hence,

M@ y) = ot > at =minAF7](2), 4157 1(0)}
J(zy) =87 < B =max{AF[], (), \{ [5:] ()},
ML (@ y) = 7" > = minAE (@), AE )W) -
Case 2: z ¢ G or y ¢ G. Then
M )@) = a” or M (y) = a7,
M [5e)(x) = BT or AP0, (y) = BT,

ML) =7~ or NG I(w) =7



M. Songsaeng, A. lampan / Eur. J. Pure Appl. Math, 12 (4) (2019), 1382-1409 1398

Thus
min{AZ[S0] (), M55 )(w)} = a7
max{A7[5.](@), A7 [5:1(9)} = 67,
min{AZ[ ) (@), AFL ()} =
Therefore,

ATz y) > o™ = min{AG[20] (@), AG 2T ()),
MG y) < BT = max{ A7 [, ](), AF [ ()},
M (@ y) > 97 = min{AG)](2), A

Hence, AC[0_ g _] is a neutrosophic UP-subalgebra of X.

Theorem 15. A NS A¢ [a+’ﬁ+’7,] i X is a neutrosophic near UP-filter of X if and only
if a nonempty subset G ofX is a near UP-filter of X.

Proof. Assume that A® [a A B+ ] is neutrosophic near UP-filter of X. Since A¢ [a g +’7+]

satisfies the condition (3.6), it follows from Lemma 4 that 0 € G. Next, let x € X and
y € G. Then A$[*"](y) = a*. Thus

A (@) = AE[2T)(y) = o 2 AG[20)(z - y) (3.9)

and so )\G[ “J(xz-y)=a'. Thus z -y € G. Hence, G is a near UP-filter of X.

Conversely, assume that G is a near UP-filter of X. Since 0 € G, it follows from Lemma
3 that AY [ztg;ﬂ] satisfies the conditions (3.6), (3.7), and (3.8). Next, let z,y € X.

Case 1: y € G. Then A¢[27](y) = o, A7 [, ](y) = B, and AG["](y) =" Since G
is a near UP-filter of X, we have x -y € G and so )\G[ Jz-y)=at )\G[ Jxey)=p",
and )\G[ _J(x-y) =~T. Thus
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M@ y) =7~ =2G000).

Hence, AG[ "g ,] is a neutrosophic near UP-filter of X.

Theorem 16. A NS A¢ [at g+,v | in X is a neutrosophic UP-filter of X if and only if a
nonempty subset G of X is a UP-filter of X.

Proof. Assume that A® [a y +’ﬂ’+] is a neutrosophic UP-filter of X. Since A¢[* ,’g R il ]
satisfies the condition (3.6), it follows from Lemma 4 that 0 € G. Next, let z,y € X be

such that z -y € G and € G. Then AG[ e y)—a+—)\G["‘+]( ). Thus

A1) (y) > min{AZ[ ] (@ - ), AF 20 (2)} = ™ = AF[21](y) (3.12)

and so A% [gf](y) = at. Thus y € G. Hence, G is a UP-filter of X.

Conversely, assume that G is a UP-filter of X. Since 0 € G, it follows from Lemma 3

that AG[ ’5+ 7,] satisfies the conditions (3.6), (3.7), and (3.8). Next, let z,y € X.
Case 1: z-y € G and x € G. Then

Since G is a UP-filter of X, we have y € G and so )\%[gf](y) =at, )\?[gﬂ(y) = 7, and
NE[Z)(y) = 7" Thus

Case 2: -y € G or x ¢ G. Then

M@ y) =a or A2 )(z) = a7,
MG y) =BT or AZ[5,](x) = BT,

ML (@) =77 or AEL ] (@) =

Thus
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min{AE[ (2 - 9), AF[ ) (@)} =7

Therefore,

A1) (y) > o7 = min{AG[20] (2 - ), AG[2)(2)},
MG w) < BT =max{AF[5.](x - y), A7 [5:] (@)},

M) > 7 = min{AE0 (2 ), A

Hence, A [ "ng - | is a neutrosophic UP-filter of X.

Theorem 17. A NS AG[ ?B ,] in X is a neutrosophic UP-ideal of X if and only if a
nonempty subset G of X is a UP ideal of X.

Jr

Proof. Assume that A¢ [a ngYY ] is a neutrosophic UP-ideal of X. Since A [a A 5+ 7]

satisfies the condition (3.6), it follows from Lemma 4 that 0 € G. Next, let z,y,z € X be
such that z - (y - 2) € G and y € G. Then )\g[gf](m (y-2)=at = /\g[gf](y) Thus

M) (@ 2) 2 minAE[ (@ (v - 2) A )W)} = o 2 M@ 2) (3.18)

and so /\G[ J(x-z) =at. Thus -z € G. Hence, G is a UP-ideal of X.
Conversely, assume that G is a UP-ideal of X. Since 0 € G, it follows from Lemma 3

that AC[? _’g+’7_] satisfies the conditions (3.6), (3.7), and (3.8). Next, let z,y,z € X.

Case 1: z-(y-2) € G and y € G. Then

Thus
min{ A5 (@ - (v 2)), A1)} = o,
max{A{ [ )@ (- 2), A{ ] w)} = B,
min{AZ[ ] (x - (y - 2)), MG (w)} = 7

Since G is a UP-ideal of X, we have z-z € G and so )\G[ N(z-2) = ot A\ [BJF](:B z)=p",
and )\G[ _J(x-z) =~T. Thus
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M (@ 2) =7+ > 7 = min{ 0G0 (- (v - ), AE ()}
Case 2: z-(y-2) € G or y € G. Then
- (y-2) =a or A )(y) =a”,
MG (y-2) =87 or AP, ](y) = BT,

M@ (v 2) =7 or MG )w) =

Thus
min{AF [ )(z - (y - 2)), AG[2T (W)} = a7,
max{AF [0, )@ (- 2), A7 ] (w)} = BT,
min{AZ[ ] (z - (- 2)), AFw)} =
Therefore,

M) (@ 2) > a7 = min{AZ[ (- (y - 2)), A2 ()},
M 2) < 87 = max{AF[ (@ (v 2), G 021W)
M (@ 2) > 77 = min{ MG (- (y - ), MG ()}

Hence, AC[ ’g+ 7_] is a neutrosophic UP-ideal of X.

Theorem 18. A NS AG[ —7/3+ 7_} in X is a neutrosophic strongly UP-ideal of X if and
only if a nonempty subset G ofX 1s a strongly UP-ideal of X.

Proof. Assume that AG[a B b’+ ] is a neutrosophic strongly UP-ideal of X. By Theo-
rem 2, we have AG[ 'g N ,] is constant, that is, A [gf] is constant. Since G is nonempty,

we have )\g[a_](x) =at for all x € X. Thus G = X. Hence, G is a strongly UP-ideal of
X.

Conversely, assume that G is a strongly UP-ideal of X. Then G = X, so
(vz € X) | A [5.](2) = B~

Thus )\G °‘+ )\G , and )\G _] are constant, that is, AG B ’7_ is constant. By The-
ﬁ+
[ 776

orem 2, we have AG g+ ,] is a neutrosophic strongly UP—1deal of X.
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4. Level subsets of a NS

In this section, we discuss the relationships between neutrosophic UP-subalgebras
(resp., neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals, neu-
trosophic strongly UP-ideals) of UP-algebras and their level subsets.

Definition 10. /23] Let f be a fuzzy set in A. For any t € [0, 1], the sets

U(f;it) ={z e X[ f(z) = t},
L(f;t) ={x e X | f(x) <t},
E(f;t) ={r e X[ f(z) =t}

are called an upper t-level subset, a lower t-level subset, and an equal t-level subset of f,
respectively.

Theorem 19. A NS A in X is a neutrosophic UP-subalgebra of X if and only if for
all a, B,y € [0,1], the sets U(Ap; ), L(Ar; B), and U(Ap;7y) are UP-subalgebras of X if
U(Ar; ), L(Ar; B), and U(Ap; ) are nonempty.

Proof. Assume that A is a neutrosophic UP-subalgebra of X. Let «, 3,7 € [0,1] be
such that U(Ar; ), L(Ar; 8), and U(Ap;y) are nonempty.

Let z,y € U(Ar;). Then Ar(z) > a and Ar(y) > «, so a is an lower bound of
{A\r(z),A\r(y)}. By (3.3), we have Ap(z - y) > min{Ap(z), \r(y)} > a. Thus z -y €
U(Ar; @v).

Let z,y € L(Ar;8). Then A\;(z) < g and A;(y) < S, so [ is a upper bound of
{A1(z), A\r(y)}. By (3.4), we have Aj(z-y) < max{A;(z), \r(y)} <. Thus z-y € L(Ar; B).

Let z,y € U(Ap;vy). Then Ap(z) > v and Ap(y) > 7, so v is an lower bound of
{Ar(z),\r(y)}. By (3.5), we have Ap(x - y) > min{A\p(z),\r(y)} > 7. Thus z -y €
U(Ar;7)-

Hence, U(Ar; ), L(Ar; ), and U(Ap; ) are UP-subalgebras of X.

Conversely, assume that for all «, 3,y € [0, 1], the sets U(Ap; ), L(Ar; 8), and U(Ap;7y)
are UP-subalgebras of X if U(Ar; ), L(Ar; 8), and U(Ap;y) are nonempty.

Let z,y € X. Then Ap(x),Ar(y) € [0,1]. Choose o = min{Ar(x), A\r(y)}. Thus
Ar(z) > a and A\p(y) > «, so x,y € U(Ap; ) # 0. By assumption, we have U(Ap; @) is a
UP-subalgebra of X and so z -y € U(Ar;a). Thus Ap(z - y) > a = min{Ar(z), A\r(y)}.

Let z,y € X. Then A;(x),A\;(y) € [0,1]. Choose f = max{A;(z),\;(y)}. Thus
Ar(z) < B and A\(y) < B, so xz,y € L(Ar;8) # (0. By assumption, we have L(Ar; 8) is a
UP-subalgebra of X and so x -y € L(Ar; 8). Thus A\j(z-y) < 8 = max{\;(x),\;(y)}.

Let z,y € X. Then Ap(x),Ap(y) € [0,1]. Choose v = min{Ap(z),A\r(y)}. Thus
Ap(xz) >~ and Ap(y) > v, so z,y € U(Ap;v) # 0. By assumption, we have U(Ap;7) is a
UP-subalgebra of X and so -y € U(Ap;7). Thus Ap(z-y) > v = min{Ap(x), Ar(y)}.

Therefore, A is a neutrosophic UP-subalgebra of X.
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Theorem 20. A NS A in X is a neutrosophic near UP-filter of X if and only if for
all a, B,y € [0,1], the sets U(Ap; ), L(Ar; B), and U(Ap;7y) are near UP-filters of X if
U(Ar; ), L(Ar; ), and U(Ap;7y) are nonempty.

Proof. Assume that A is a neutrosophic near UP-filter of X. Let «, 3,7 € [0,1] be
such that U(Ap; ), L(Ar; 8), and U(Ap; ) are nonempty.

Let z € U(Ar;a). Then Ap(x) > a. By (3.6), we have Ar(0) > Ar(z) > a. Thus
0 € U(Ar;a). Next, let x € X and y € U(Ap; ). Then Ap(y) > a. By (3.9), we have
Ar(z-y) > Ar(y) > a. Thus z -y € U(Ar; ).

Let x € L(Ar;8). Then Af(z) < 5. By (3.7), we have A;(0) < Ar(z) < 8. Thus
0 € L(A1;8). Next, let x € X and y € L(Ar;5). Then A\;(y) < 8. By (3.10), we have
Ar(z-y) < Ar(y) < B. Thus z -y € L(Ar; B).

Let x € U(Ap;7y). Then Ap(x) > 7. By (3.8), we have Ap(0) > Ap(z) > . Thus
0 € U(Ar;7y). Next, let z € X and y € U(Ap;7y). Then Ap(y) > 7. By (3.11), we have
Ap(z-y) =2 Ap(y) = 7. Thus z -y € U(Ap;7).

Hence, U(Ar; «), L(Ar; 8), and U(Ap; ) are near UP-filters of X.

Conversely, assume that for all a, 8, € [0, 1], the sets U(Ar; @), L(Ar; 8), and U (Ap; )
are near UP-filters of X if U(Ar; ), L(Ar; 8), and U(Ap;7y) are nonempty.

Let x € X. Then Ap(xz) € [0,1]. Choose a = Ap(z). Thus Ap(z) > «, so z €
U(Ar;a) # 0. By assumption, we have U(Ap; @) is a near UP-filter of X and so 0 €
U(Ar;a). Thus Ar(0) > a = Ap(x). Next, let x,y € X. Then Ap(y) € [0,1]. Choose
a = Ap(y). Thus Ar(y) > a, so y € U(Ar; ) # (0. By assumption, we have U(Ar; @) is a
near UP-filter of X and so z -y € U(Ar;a). Thus Ap(z-y) > a = Ar(y).

Let x € X. Then A\;(z) € [0,1]. Choose 8 = Ar(x). Thus A\;(z) < B,s0 2 € L(Ar; 5) #
(. By assumption, we have L(Ar;3) is a near UP-filter of X and so 0 € L(A;;3). Thus
Ar(0) < B = Ar(x). Next, let z,y € X. Then A;(y) € [0,1]. Choose 5 = A7(y). Thus
Ai(y) < B, s0y € L(Ar; 8) # 0. By assumption, we have L(Ar; 3) is a near UP-filter of X
and so -y € L(Ar; 8). Thus A\f(z-y) < 8= A1(y).

Let x € X. Then Ap(z) € [0,1]. Choose v = Ap(x). Thus Ap(z) > v, so z €
U(Ar;7y) # 0. By assumption, we have U(Ap;v) is a near UP-filter of X and so 0 €
U(Ar;7y). Thus Ap(0) > v = Ap(x). Next, let z,y € X. Then Ap(y) € [0,1]. Choose
v = Ap(y). Thus Ap(y) > 7, soy € U(Ap;v) # (. By assumption, we have L(Ap;7) is a
near UP-filter of X and so z -y € U(Apr;7). Thus Ap(z-y) > v = Apr(y).

Therefore, A is a neutrosophic near UP-filter of X.

Theorem 21. A NS A in X is a neutrosophic UP-filter of X if and only if for all o, B,y €
[0,1], the sets U(Ap; ), L(Ar; 8), and U(Ap;~y) are UP-filters of X if U(Ar; ), L(Ar; B),
and U(A\p;y) are nonempty.

Proof. Assume that A is a neutrosophic UP-filter of X. Let «, 3,7 € [0,1] be such
that U(Ar; «), L(Ar; 8), and U(Ap; ) are nonempty.
Let © € U(Ar;a). Then Ap(z) > a. By (3.6), we have Ap(0) > Ap(x) >

a.
0 € U(Ar;a). Next, let z,y € X be such that z -y € U(Ar; ) and x € U(Ap; ). Then
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Ar(z-y) > a and Ap(x) > «, so a is an lower bound of {\r(x - y), Ar(x)}. By (3.12), we
have A\p(y) > min{Ap(z - y), A\p(z)} > a. Thus y € U(A\p; ).

Let x € L(Ar;8). Then Af(z) < 5. By (3.7), we have A\;(0) < Ar(z) < 8. Thus
0 € L(Ar;B). Next, let x,y € X be such that z -y € L(A;;8) and « € L(Ar;3). Then
Ar(z-y) < B and A\f(x) < B, so 8 is a upper bound of {A;(x - y), A\;(z)}. By (3.13), we
have A\;(y) < max{A;(z-y), A\r(z)} < B Thus y € L(\;; B).

Let © € U(Ap;7y). Then Ap(x) > 7. By (3.8), we have Ap(0) > Ap(z) > . Thus
0 € U(Ap;7y). Next, let x,y € X be such that z -y € U(Apr;7) and € U(Ap;y). Then
Ar(x-y) >~ and Ap(x) > 7, so v is an lower bound of {\r(z - y), A\r(x)}. By (3.14), we
have Ap(y) > min{\r(z - y),\p(z)} > ~. Thus y € U(Ar;7).

Hence, U(Ar; o), L(Ar; B), and U(Ap;y) are UP-filters of X.

Conversely, assume that for all a, 8,y € [0, 1], the sets U(Ar; @), L(Ar; 8), and U (Ap; )
are UP-filters of X if U(Ap; ), L(Ar; B), and U(Ap;7y) are nonempty.

Let € X. Then Ap(xz) € [0,1]. Choose o = Ap(z). Thus Ap(z) > «, so x €
U(Ar; ) # 0. By assumption, we have U(Ar; a) is a UP-filter of X and so 0 € U(Ap; ).
Thus Ar(0) > a = Ap(z). Next, let z,y € X. Then Ap(z - y), A\r(z) € [0,1]. Choose
a=min{\r(z-y), A\p(x)}. Thus Ap(z-y) > a and A\p(x) > «, so x-y,z € UAp; ) # 0.
By assumption, we have U(Ar; ) is a UP-filter of X and so y € U(Ar; ). Thus Ar(y) >
a =min{Ar(z - y), \r(x)}.

Let + € X. Then A;(xz) € [0,1]. Choose f = Ar(z). Thus A\;(z) < B, so x €
L(\r;8) # 0. By assumption, we have L(Ar;3) is a UP-filter of X and so 0 € L(Ar; 3).
Thus A7(0) < B = Ar(z). Next, let ,y € X. Then A\;(z - y),A\r(z) € [0,1]. Choose
B = max{Ar(z-y),\r(x)}. Thus Aj(z-y) < S and A\f(z) < 8,80 x-y,x € L(\;;58) # 0.
By assumption, we have L(Ar; 3) is a UP-filter of X and so y € L(Ar;5). Thus A;(y) <
B =max{A\;(x-y),\;(x)}.

Let x € X. Then Ap(z) € [0,1]. Choose v = Ap(z). Thus Ap(z) > v, so z €
U(Ar;7) # (0. By assumption, we have U(Ap;~y) is a UP-filter of X and so 0 € U(Ap;7).
Thus Ap(0) > v = Ap(x). Next, let z,y € X. Then A\p(z - y),Ap(x) € [0,1]. Choose
v =min{Ap(z - y),\p(z)}. Thus Ap(z-y) >~ and Ap(z) > 7,80 x -y, z € U(Ap;v) # 0.
By assumption, we have U(Ap;7) is a UP-filter of X and so y € U(Ap;7). Thus Ap(y) >
5 = min{Ap(z ), Ar(2)}.

Therefore, A is a neutrosophic UP-filter of X.

Theorem 22. A NS A in X is a neutrosophic UP-ideal of X if and only if for all o, B,y €
[0,1], the sets U(Ap; ), L(Ar; 8), and U(Ap;7y) are UP-ideals of X if U(Ap; ), L(Ar; B),
and U(A\p;y) are nonempty.

Proof. Assume that A is a neutrosophic UP-ideal of X. Let «, 3,7 € [0,1] be such
that U(Ar; «), L(Ar; 8), and U(Ap; ) are nonempty.

Let z € U(Ar;a). Then Ap(x) > a. By (3.6), we have Ar(0) > Ap(z) > a. Thus
0 € U(Ar; ). Next, let x,y,z € X be such that z - (y - 2) € U(Ap;) and y € U(Ap; ).
Then Ap(x - (y-2)) > a and Ap(y) > «, so « is an lower bound of {Ap(x - (y-2)), Ar(y)}.
By (3.15), we have Ar(z - z) > min{\r(z - (y - 2)),A\r(y)} > a. Thus z -z € U(Ar; ).
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Let x € L(Ar;). Then Af(z) < 5. By (3.7), we have A;(0) < Ar(x) < 8. Thus
0 € L(Ar;B8). Next, let z,y,z € X be such that = - (y-2) € L(Ar;5) and y € L(Ar; ).
Then Af(z - (y-2)) < B and Ar(y) < B, so B is a upper bound of {A;(z - (v - 2)),A\r(y)}.
By (3.16), we have A\f(z - z) < max{A;(z- (y-2)),A\r(y)} < B. Thus z -z € L(\r; B).

Let x € U(Ap;7y). Then Ap(z) > ~. By (3.8), we have Ap(0) > Ap(z) > 7. Thus
0 € U(Ar;7y). Next, let z,y,z € X be such that - (y- z) € U(Ap;v) and y € U(Ap;7).
Then Ap(z - (y-2)) > v and Ap(y) > 7, so 7 is an lower bound of {A\r(z - (y-2)), Ar(y)}.
By (3.17), we have Ap(z - z) > min{Ap(z - (y - 2)),Ar(y)} > . Thus -z € U(Ap;7).

Hence, U(Ar; ), L(Ar; ), and U(Ap;y) are UP-ideals of X.

Conversely, assume that for all a, 8,y € [0, 1], the sets U(Ar; @), L(Ar; 8), and U (Ap; )
are UP-ideals of X if U(Ar; ), L(Ar; 8), and U(Ap;~y) are nonempty.

Let + € X. Then Ap(x) € [0,1]. Choose a@ = Ap(z). Thus Ap(z) > «, so z €
U(Ar; ) # 0. By assumption, we have U(Ar; «) is a UP-ideal of X and so 0 € U(Ar; «).
Thus Ar(0) > a = Ap(z). Next, let x,y,2 € X. Then Ap(x - (y - 2)), M\r(y) € [0,1].
Choose a@ = min{Ap(z - (y - 2)), Ar(y)}. Thus Ap(z - (y - 2)) > « and Ap(y) > a, so
x-(y-2),y € UAp;a) # 0. By assumption, we have U(Ap; «) is a UP-ideal of X and so
-z € UAp;a). Thus Ap(z - 2) > a=min{Ar(z- (v - 2)), \r(y)}.

Let z € X. Then Af(xz) € [0,1]. Choose f = Ar(z). Thus A\;(z) < B, so x €
L(\r;8) # 0. By assumption, we have L(Ar;3) is a UP-ideal of X and so 0 € L(Ar; 3).
Thus A\;(0) < 8 = Ar(x). Next, let z,y,z € X. Then A\(z - (y - 2)), \1(y) € [0,1].
Choose 8 = max{Ar(z - (y - 2)),A1(y)}. Thus Ar(z - (y-2)) < B and Ar(y) < B, so
x-(y-2),y € L(A\r; B) # 0. By assumption, we have L(Ar;3) is a UP-ideal of X and so
x-z € L(Ar; B). Thus A\f(z-2) < B =max{Ar(z- (y-2)), Ar(y)}.

Let x € X. Then Ap(z) € [0,1]. Choose v = Ap(z). Thus Ap(z) > v, so z €
U(Ar;y) # (0. By assumption, we have U(Ap;) is a UP-ideal of X and so 0 € U(Ap;7).
Thus Ap(0) > v = Ap(z). Next, let z,y,2 € X. Then Ap(z - (v - 2)), A\r(y) € [0,1].
Choose v = min{Ap(z - (y - 2)),Ar(y)}. Thus Ap(x - (y - 2)) > v and Ap(y) > 7, so
x-(y-2),y € UAp;vy) # 0. By assumption, we have U(Ap;7) is a UP-ideal of X and so
x-z€UAp;y). Thus Ap(z-2) > v =min{Ar(z- (y-2)), \r(y)}.

Therefore, A is a neutrosophic UP-ideal of X.

Theorem 23. A NS A in X is a neutrosophic strongly UP-ideal of X if and only if the
sets E(Ar; Ar(0)), E(Ar; Ar(0)), and E(Ap; Ap(0)) are strongly UP-ideals of X.

Proof. Assume that A is a neutrosophic strongly UP-ideal of X. By Theorem 2, we
have A is constant, that is, Ay, A\;, and A\p are constant. Thus

Ar(x) = Ap(0)
(Vl’EX) )\[(l‘) :A[(O)
Ar(x) = Ap(0)

Hence, E(Ar; Ar(0)) = X, E(Ar; A1(0)) = X, and E(Ap; Ap(0)) = X and so E(Ar; Ar(0)),
E(Ar;21(0)), and E(Ap; Ap(0)) are strongly UP-ideals of X.
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Conversely, assume that E(Ap; Ap(0)), E(Ar; A7(0)), and E(Ap; Ap(0)) are strongly
UP-ideals of X. Then E(Ar; A\r(0)) = X, E(A1; A1(0)) = X, E(Ar; Ar(0)) = X and so
(

Ar(z) = Ar(0)
(Vx S X) )\](.75) = /\[(0)
Ar(x) = Ap(0)

Thus A7, A7, and Ap are constant, that is, A is constant. By Theorem 2, we have A is a
neutrosophic strongly UP-ideal of X.

Definition 11. Let A be a NS in X. For «, 3, € [0,1], the sets
ULUA(Oéa/Ba’Y) = {IE e X | )‘T > aa)\l < 57)\17 > 7}7
LULA(OZ,,B,’Y) = {‘T €X | )‘T < Oé,)\[ > ﬁv)‘F < 7}7
Ex(o, B,7) ={z € X [ A\r = a, \; = B, \r =7}

are called a ULU-(av, 3,7)-level subset, a LUL-(«, 3,)-level subset, and an E-(a, (,7)-
level subset of A, respectively. Then we see that

ULUp(a, B,7) = U(Ar;a) N L(Ar; B) NU(AR; ),
LUL(c, B,v) = L(Ar; ) NU(A1; B) N L(Ap; ),
En(a, B,7) = E(Ar; ) N E(Ar; B) N E(AF; 7).

Corollary 1. A NS A in X is a neutrosophic UP-subalgebra of X if and only if for all
a,f,v € [0,1], ULUA(v, B,7) is a UP-subalgebra of X where ULUp (v, B,7) is nonempty.

Proof. 1t is straightforward by Theorem 19.

Corollary 2. A NS A in X is a neutrosophic near UP-filter of X if and only if for all
a, B,y €10,1], ULUx (v, B,7) is a near UP-filter of X where ULU\(«, 3,7) is nonempty.

Proof. Tt is straightforward by Theorem 20.

Corollary 3. A NS A in X is a neutrosophic UP-filter of X if and only if for all o, B,y €
[0,1], ULUA(ev, B,7) is a UP-filter of X where ULU\(cv, B,7) is nonempty.

Proof. 1t is straightforward by Theorem 21.

Corollary 4. A NS A in X is a neutrosophic UP-ideal of X if and only if for all o, B,y €
[0,1], ULUA(w, B8,7) is a UP-ideal of X where ULUx (v, 8,7) is nonempty.

Proof. 1t is straightforward by Theorem 22.
Corollary 5. A NS A in X is a neutrosophic strongly UP-ideal of X if and only if

E(\r, Ar(0)), E(A1,A\1(0)), and E(Ap, Ar(0)) are strongly UP-ideals of X, that is, E(Ap, A7(0)) =
X,E(A1,A1(0)) = X, and E(Ap, Ar(0)) = X.

Proof. 1t is straightforward by Theorem 23.
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5. Conclusions

In this paper, we have introduced the notions of neutrosophic UP-subalgebras, neutro-
sophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals, and neutrosophic
strongly UP-ideals of UP-algebras and investigated some of their important properties.
Then, we get the diagram of generalization of NSs in UP-algebras as shown in Figure 1.

(3.6), (3.7), (3.8)

T

Neutrosophic UP-subalgebra <+—— (3.24)

Tf l +(3.21)

Neutrosophic near-UP-filter —+—— (3.25)

M l +(3.22)

Neutrosophic UP-filter «— (3.26)

H/ l +(3.23)

Neutrosophic UP-ideal — (3.27)

4

Neutrosophic strongly UP-ideal

I

Constant neutrosophic set
Figure 1: NSs in UP-algebras

In our future study, we will apply this notion/results to other type of NSs in UP-
algebras. Also, we will study the soft set theory/cubic set theory of neutrosophic UP-
subalgebras, neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals,
and neutrosophic strongly UP-ideals.
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