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Abstract: Visual object tracking is a critical task in computer vision. Challenging things always exist 

when an object needs to be tracked. For instance, background clutter is one of the most challenging 

problems. The mean-shift tracker is quite popular because of its efficiency and performance in a 

range of conditions. However, the challenge of background clutter also disturbs its performance. In 

this article, we propose a novel weighted histogram based on neutrosophic similarity score to help 

the mean-shift tracker discriminate the target from the background. Neutrosophic set (NS) is a new 

branch of philosophy for dealing with incomplete, indeterminate, and inconsistent information. In 

this paper, we utilize the single valued neutrosophic set (SVNS), which is a subclass of NS to 

improve the mean-shift tracker. First, two kinds of criteria are considered as the object feature 

similarity and the background feature similarity, and each bin of the weight histogram is 

represented in the SVNS domain via three membership functions T(Truth), I(indeterminacy), and 

F(Falsity). Second, the neutrosophic similarity score function is introduced to fuse those two criteria 

and to build the final weight histogram. Finally, a novel neutrosophic weighted mean-shift tracker 

is proposed. The proposed tracker is compared with several mean-shift based trackers on a dataset 

of 61 public sequences. The results revealed that our method outperforms other trackers, especially 

when confronting background clutter. 

Keywords: tracking; mean-shift; neutrosophic set; single valued neutrosophic set; neutrosophic 

similarity score 

 

1. Introduction 

Currently, applications in the computer vision field such as surveillance, video indexing, traffic 

monitoring, and auto-driving have come into our life. However, most of the key algorithms still lack 

the performance of those applications. One of the most important tasks is visual object tracking, and 

it is still a challenging problem [1–3]. 

Challenges like illumination variation, scale variation, motion blur, background clutters, etc. may 

happen when dealing with the task of visual object tracking [2]. A specific classifier is always considered 

for tackling such kinds of challenging problems. Boosting [4] and semi-supervised boosting [5] were 

employed for building a robust classifier; multiple instance learning [6] was introduced into the 

classifier training procedure due to the interference of the inexact training instance; compressive 

sensing theory [7] was applied for developing effective and efficient appearance models for robust 

object tracking, due to factors such as pose variation, illumination change, occlusion, and motion blur. 

The mean-shift procedure was first introduced into visual object tracking by Comaniciu et al. 

[8,9]. The color histogram was employed as the tracking feature. The location of the target in each 

frame was decided by minimizing the distance between two probability density functions, which are 
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represented by a target histogram and a target candidate histogram. By utilizing the color histogram 

feature and the efficient seeking method, such a mean-shift tracker demonstrates high efficiency and 

good performance, even when confronting motion blur and deformation problems. On the other 

hand, the color histogram feature cannot help the tracker discriminate the target from the background 

effectively, especially when background clutter exists. Several new metrics or features were 

considered to deal with such a problem. For instance, Cross-Bin metric [10], SIFT (Scale-invariant 

feature transform) [11], and texture feature [12] were introduced into the mean shift based tracker, 

and the proposed trackers all earn a better performance than the traditional one. Besides, Tomas et 

al. [13] exploited the background to discriminate the target and proposed the background ratio 

weighting method. In addition, since estimating an adequate scale is essential for robust tracking, a 

more robust method for estimating the scale of the searching bounding box was proposed through the 

forward–backward consistency check. This mean-shift based tracker [13] outperforms several state-of-

the-art algorithms. Robert et al. [14] also proposed a scale selecting scheme by utilizing the Lindeberg’s 

theory [15] based on the local maxima of differential scale-space filters. Although so many kinds of 

visual trackers have been proposed, the visual tracking is still an open problem, due to the 

challenging conditions in the real tracking tasks. All in all, the mean-shift tracker demonstrates high 

efficiency and may earn an even better performance if a more effective method can be found to 

discriminate the target from the background. Thus, finding a suitable way to represent the 

information presented by the background, as well as the target, is of high relevance. 

Neutrosophic set (NS) [16] is a new branch of philosophy to deal with the origin, nature, and 

scope of neutralities. It has an inherent ability to handle the indeterminate information like the noise 

included in images [17–21] and video sequences. Until now, NS has been successfully applied in 

many areas [22]. For the computer vision research fields, the NS theory is widely utilized in image 

segmentation [17–21], skeleton extraction [23] and object tracking [24], etc. Before calculating the 

segmentation result for an image, a specific neutrosophic image was usually computed via several 

criteria in NS domain [17–21]. For object tracking, in order to improve the traditional color based 

CAMShift tracker, the single valued neutrosophic cross-entropy was employed for fusing color and 

depth information [24]. In addition, the NS theory is also utilized for improving the clustering 

algorithms, such as c-means [25]. While several criteria are always proposed to handle a specific 

image processing problem, an appropriate way for fusing information is needed. Decision-making 

[26–30] can be regarded as a problem-solving activity terminated by a solution deemed to be 

satisfactory, and it has been frequently employed for dealing with such an information fusion 

problem. The similarity measurement [30] using the correlation coefficient under single valued 

neutrosophic environment was successfully applied into the issue of image thresholding [21]. A 

single valued neutrosophic set (SVNS) [31] is an instance of a neutrosophic set and provides an 

additional possibility to represent uncertainty, imprecise, incomplete, and inconsistent information, 

which exists in the real world. The correlation coefficient of SVNS was proposed by the authors of 

[30] and was successfully applied for handling the multicriteria decision making problem. For the 

mean-shift tracker, the color histogram is employed for representing the tracked target. Due to the 

challenging conditions during the tracking procedure, indeterminate information always exists. For 

instance, object feature may changes due to object pose or external environment changes between 

frames. It is difficult to localize the object exactly during the tracking procedure. Thus, there exists 

indeterminate information when you try to utilize the uncertain bounding box to extract object 

feature. All in all, how to utilize the information of the object and the corresponding background to 

help the tracker discriminate the object is also an indeterminate problem. 

In this work, we propose a novel mean-shift tracker based on the neutrosophic similarity score 

[21,30] under the SVNS environment. We build a neutrosophic weight histogram, which jointly 

considered the indeterminate attributes of the object and the background information. First, we 

propose two criteria of the object feature similarity and the background feature similarity, where each 

one is represented as its bin of the histogram corresponding to three membership functions for the 

T(Truth), I(indeterminacy), and F(Falsity) element of the neutrosophic set. Second, the neutrosophic 

similarity score function is introduced to fuse those two criteria and build the final weighted 

histogram. Finally, the weight of each bin of the histogram is applied to modify the traditional mean-

shift tracker, and a novel neutrosophic weighted mean-shift tracker is proposed. To our own 
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knowledge, it is the first time to introduce the NS theory into the mean-shift procedure. Experiments 

results revealed that the proposed neutrosophic weighted mean-shift tracker outperforms several 

kinds of mean-shift based trackers [9,13,14]. 

The remainder of this paper is organized as follows: in Section 2, the traditional mean-shift 

procedure for visual object tracking and the definition of the neutrosophic similarity score are first 

given. Then the details of the method for calculating the neutrosophic weight histogram are 

presented, and the main steps of the proposed mean-shift tracker are illustrated in the following 

subsection. Experimental evaluations and discussions are presented in Section 3, and Section 4 has 

the conclusions. 

2. Problem Formulation  

In this section, we present the algorithmic details of this paper. 

For the visual tracking problem, the initial location of the target will be given in the first frame, 

and the location is always represented by a rectangle bounding box [1–3]. Then the critical task for a 

visual tracker is to calculate the displacement of the bounding box in the following frame 

corresponding to the previous one.  

2.1. Traditional Mean-Shift Tracker 

The main steps of the traditional mean-shift visual tracker are summarized in this subsection. 

The kernel-based histogram is employed by the traditional mean-shift tracker. At the beginning, 

the feature model of the target is calculated by 
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x  is the normalized pixel location which located in the initial bounding box; and n is the number of 

pixels belonging to the target. In order to reduce the interference of the background clutters, the 

kernel k(x) is utilized. k(x) is an isotropic, convex, and monotonic decreasing kernel. The kernel 

assigns smaller weights to pixels farther than the center. In this work, k(x) is defined as 
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The function   x  is the Kronecker delta function. Let y be the center of the target candidate and 

{xi}i = 1, …, nh be the pixel locations in the bounding box of the target candidate. Here, nh is the total 

number of the pixels falling in the bounding box. Then when using the same kernel profile k(x), the 

probability of the feature in the target candidate is given by 

 
2

1

ˆ
hn

i
u h i

i

p C k b u
h




 
      
 


y x

x  (3) 



Information 2017, 8, 122 4 of 13 

 

where h is the bandwidth and Ch is the normalization constant derived by imposing the condition 

1

ˆ 1
m

u
u

p


 . 

The metric based on Bhattacharyya coefficient is proposed to evaluate the similarity between the 

probability distributions of the target and the candidate target. Let   ˆˆ ,  
 p y q  be the similarity 

probability, then it can be calculated by 
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For the mean-shift tracker, the location 
0ŷ  in the previous frame is employed as the starting 

location for searching the new target location in the current frame. The estimate of a new target 

location is then obtained by maximizing the Bhattacharyya coefficient   ˆˆ ,  
 p y q  using a Taylor 

series expansion, see [8,9] for further details. To reach the maximum of the Bhattacharyya coefficient, 

the kernel is repeatedly moved from the current location 0
ŷ  to the new location 
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where g(x) is the negative derivative of the kernel k(x), i.e.,  ( ) ( )g x k x . Furthermore, it is assumed 

that g(x) exists for all  [0, )x  except for a finite set of points. The parameter wi in Equation (5) is 

denoted by 
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2.2. Neutrosophic Similarity Score 

A neutrosophic set with multiple criteria can be expressed as follows: 

Let A = {A1, A2, …, Am} be a set of alternatives and C = {C1, C2, …, Cn} be a set of criteria. Then the 

character of the alternative Ai (i = 1, 2, …, m) can be represented by the following information: 
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jC i
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does not satisfy the criterion Cj.  

A method for multicriteria decision-making based on the correlation coefficient under single-

valued neutrosophic environment is proposed in [30]. The similarity degree between two elements 

Ai and Aj is defined as: 
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Assume the ideal alternative  * * * *, ( ), ( ), ( ) 1... , 1...
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The alternative with high correlation coefficient is considered to be a good choice for the current 

decision. 

2.3. Calculate the Neutrosophic Weight Histogram 

Employing the information discriminated from the background is one of the most important 

issues for robustly tacking a visual object. As shown in Figure 1, the smallest region GO inside the red 

bounding box is the object region and this region corresponds to the location of the object in the 

corresponding frame. Then GO is decided by the tracker and its accuracy depends on the robustness 

of the tracker. In this work, the surrounding area of GO is defined as the background region GB. In 

order to eliminate the indeterminacy of the region GO to some extent, the region far from GO is 

employed as GB and GB = βGO  αGO. 

 

Figure 1. Illustration of the object region. 

To enhance the robustness of the traditional mean-shift tracker, a novel weight histogram wNS is 

defined in the neutrosophic domain. Each bin of the weighted histogram wNS is expressed in the SVNS 

domain via three membership functions T(Truth), I(indeterminacy), and F(Falsity). 

For the proposition of object feature is a discriminative feature, TCO, ICO, and FCO represent the 

probabilities when a proposition is true, indeterminate and false degrees, respectively. Finding the 

location of the tracked object in a new frame is the main task for a tracker, and the target model (object 

feature histogram in the initial frame) is frequently employed as major information to discriminate 

the object from the background. The region which owns more similarity to the object feature is more 

likely to be the object region. Using the object feature similarity criterion, we can further give the 

definitions: 

ˆ( )
CO u
T u q  (11) 
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ˆ ˆ( ) ( 1)
CO u u
I u q q t    (12) 

( ) 1 ( )
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where ˆ
u
q  is the u-th bin of the target model corresponding to the object region GO in the first frame 

of the tracking process and it is calculated by using Equation (1). 

The indeterminacy degree ICO (u) is defined in Equation (12). Then, ˆ ( 1)
u
q t   is the u-th bin of 

the updated object feature histogram in the previous frame. Suppose ˆ ( 1)
u
p t   is the feature 

histogram corresponding to the extracted object region at time t−1, then ˆ ( 1)
u
q t   is calculated by 

ˆ ˆ ˆ( 1) (1 ) ( 2) ( 1)
u u u
q t q t p t        (14) 

where λ is the updating rate for λ ∈ (0,1). 

As the tracker may drift from the object due to the similar surroundings, using the object features 

with high similarity to the background will bring risk to the accuracy of the tracker. The background 

feature similarity criterion is considered in this work. The corresponding three membership functions 

TCB, ICB and FCB are defined as follows: 
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where ˆ
u
b  is the u-th bin of the object background feature histogram. This histogram is initialized in 

the background region GB in the first frame, as shown in Figure 1. For ˆ
u
q , Equation (1) is also 

employed to calculate ˆ
u
b , and ˆ

u
b , which will be updated when the surroundings of the tracked 

target change dramatically. 

By substituting the corresponding T(Truth), I(indeterminacy), and F(Falsity) under the criteria of 

the object feature similarity and the background feature similarity into Equation (10), the u-th bin of 

the neutrosophic weight histogram can be calculated by 
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where wCO, wCB ∈ [0,1] are the corresponding weights of criteria and wCO + wCB = 1. The ideal alternative 

under two criteria is the same as * 1,0,0A  . 

2.4. Neutrosophic Weighted Mean-Shift Tracker 

In this work, the neutrosophic weighted histogram is introduced into the traditional mean-shift 

procedure, and this improved mean-shift tracker is called the neutrosophic weighted mean-shift 

tracker. The basic flow of the proposed tracker is described below: 
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Initialization 

Step 1: Read the first frame and select an object on the image plane as the target to be tracked. 

Step 2: Calculate the object feature histogram q̂  and object background feature histogram b̂  by 

using Equation (1). 

Tracking 

Input: (t + 1)-th video frame 

Step 3: Employ the location 0
ŷ  in the previous frame as the starting location for searching the new 

target location in the current frame. 

Step 4: Based on the mean-shift algorithm and neutrosophic weight histogram, derive the new 

location of the object according to Equation (19) and Equation (5) as follows: 

 
 1 0

ˆ

ˆ ˆ

m
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i i u
u u

q
w b u w

p y



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Step 5: If 
1 0 0

ˆ ˆ  y y , stop. Otherwise, set 0 1
ˆ ˆy y  and go to Step 4. 

Step 6: Derive ˆ ( 1)
u
q t   according to Equation (14) and then update object background feature 

histogram ˆ ˆ
c

b b  when the Bhattacharyya coefficient 1
ˆ ˆ,

c
b b   
 

, where ˆ
c
b  is the 

corresponding feature histogram in the current background region GB.  

Output: Tracking location. 

3. Experiment Results and Analysis 

We tested the neutrosophic weighted mean-shift tracker on a challenging benchmark[2]. As 

mentioned at the outset, background clutter is one of the most challenging problems for the mean-

shift tracker. Besides the 50 challenging sequences in this benchmark[2], another 10 sequences with 

the challenge of background clutter are also selected as testing sequences. The information of those 

10 sequences is given in Table 1. The abbreviations of several kinds of challenges included in the 

testing sequences are shown in the footer of Table 1. 

Table 1. An overview of another 10 sequences. 

Sequence Target Challenges Frames 

Board board SV, MB, FM, OPR, OV, BC 698 

Bolt2 human DEF, BC 293 

Box box IV, SV, OCC, MB, IPR, OPR, OV, BC, LR 1161 

ClifBar book SV, OCC, MB, FM, IPR, OV, BC 472 

Coupon coupon OCC, BC 327 

Crowds human IV, DEF, BC 347 

Car2 car IV, SV, MB, FM, BC 913 

Car1 car IV, SV, MB, FM, BC, LR 1020 

Human3 human SV, OCC, DEF, OPR, BC 1698 

Car24 car IV, SV, BC 3059 

Note: IV: Illumination Variation, SV: Scale Variation, OCC: Occlusion, DEF: Deformation, MB: Motion 

Blur, FM: Fast Motion, IPR: In-Plane Rotation, OPR: Out-of-Plane Rotation, OV: Out-of-View, BC: 

Background Clutters, and LR: Low Resolution. 

To gauge the performance of the proposed tracker, we compare our results to another three 

mean-shift based trackers including ASMS [13], KMS [9] and SMS [14]. Some experimental results 

have shown that ASMS [13] outperforms several state-of-the-art algorithms. KMS is the traditional 

mean-shift tracker. Both SMS and ASMS are scale adaptive. All of the tested algorithms employ the 

color histogram as object feature. 
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3.1. Setting Parameters 

For the proposed neutrosophic weighted mean-shift tracker, the parameter α and β relate to the 

background region GB are set to 1.2 and 1.48 respectively. The parameter λ in Equation (14) decides 

the updating rate of the object feature histogram. With the assumption that the appearance of the 

tracked object will not change dramatically, a low updating rate should be given. In this work, λ is 

set to 0.05. As seen in the Subsection 2.4, the accuracy of the result of the mean-shift procedure 

depends on the parameter ε0 to some extent, where ε0 is set to 0.1. A much greater value of ε0 may 

lead to failure. The parameter ε1 is a threshold for updating the object background feature histogram. 

During the tracking procedure, the surroundings of the object always change. Hence, it is essential to 

update the object background feature histogram when the similarity between the current 

surroundings and the object background feature falls to a specific value. If ε1 is set to 0, the updating 

process of the background feature will stop. If ε1 is set to 1, the updating frequency will be too high. 

Thus, a medium value is chosen as ε1 = 0.5. The neutrosophic weight histogram plays an essential 

role in this proposed mean-shift based tracker. In order to emphasize the background information 

when constructing the neutrosophic weight histogram, the corresponding parameter wCB should be 

set to a relatively high value. However, if this value is set too high, the effect of the first neutrosophic 

criteria will reduce, even to zero. In this work, wCB is set to 0.6, and wCO is set to 0.4. Finally, all the 

values of these parameters are chosen by hand-tuning, and all of them are constant for all 

experiments. 

3.2. Evaluation Criteria 

The overlap rate of the bounding box is used as the evaluation criterion, and the overlap rate is 

defined as 

 
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T G
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
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where ROITi is the target bounding box in the i-th frame and ROIGi is the corresponding ground truth 

bounding box. For the video datasets applied in this work, the ground truth bounding boxes of the 

tracked target are manually labeled for each frame. The success ratio is defined as: 

1

1
,
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
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


N i

i ii

if s r
R u N u

otherwise
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where N is the number of frames and r is the overlap threshold which decides the corresponding 

tracking result is correct or not. The success ratio is R ∈ [0,1]. When the overlap ratio si is greater than 

r on each frame, R achieves the maximum, and then this means the corresponding tracker performs 

very well in this sequence. On the contrary, R achieves the minimum when si is smaller than r on each 

frame, and then this means the corresponding tracker performs the worst. 

Both the one-pass evaluation (OPE) and temporal robustness evaluation (TRE) are employed as 

the evaluation metric. For the TRE, each testing sequence is partitioned into 20 segments, and each 

tracker is tested throughout all of the segments. The results for the OPE evaluation metric are derived 

by testing the tracker with one time initialization from the ground truth position in the first frame of 

each testing sequence. Finally, we use the area under curve (AUC) of each success plot to rank the 

tracking algorithms. For each success plot, the tracker with a greater value of AUC ranks better. 

3.3. Tracking Results 

Several screen captures for some of the testing sequences are given in Figures 2–5. Success plots 

of TRE and OPE for the whole testing sequences are shown in Figures 6a and 7a, and the success plots 
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for those sequences including background clutter challenge are shown in Figures 6b and 7b. In the 

following section, a more detailed discussion of the tracking results is documented. 

   
 

 

 

 

 

 

 

Figure 2. Screenshots of tracking results of the video sequence used for testing (mountainBike, target 

is selected in frame #1).  

   
 

 

 

 

 

 

 

Figure 3. Screenshots of tracking results of the video sequence used for testing (Box, target is selected 

in frame #1). 

MountainBike sequence: This sequence highlights the challenges of BC, IPR and OPR. As shown 

in Figure 2, an improper scale of the bounding box is estimated by the SMS tracker, and the SMS 

tracker has failed in frame #26. The ASMS tracker, as can be seen in frame #32, has drifted from the 

tracking target because of the similar color of the surroundings, although an appropriate scale is 

given. During the first half of the tracking process, both of the KMS and our NEUTMS perform well. 

However, compared to the NEUTMS, the KMS tracker sometimes drifts a little farer from the biker, 

as seen in frame #38. When the challenge of background clutter appears, the KMS tracker may also 

drift from the right location of the target, as seen in frame #178. During the whole tracking process, 

the NEUTMS tracker performs the best result. 
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Figure 4. Screenshots of tracking results of the video sequence used for testing (Football, target is 

selected in frame #1). 

Box sequence: The challenges included in this sequence can be found in Table 1. This sequence is 

more challenging than the MountainBike sequence. As seen in frame #31 in Figure 3, all the trackers 

except for the SMS tracker can give a right location of the tracked box, and the ASMS performs the 

best result so far. Due to the black background upon the box, the SMS tracker fails soon. While the 

box is passing by the circuit board on the table, both the ASMS and the KMS tracker begin to lose the 

box. By employing the information of the background region, our NEUTMS tracker has successfully 

overcome the challenges like BC and MB during this sequence. 

Football sequence: Challenges of BC, OCC, IPR and OPR are presented in this sequence. As shown 

in Figure 4, the SMS tracker has already failed in frame #10. The ASMS and KMS trackers fail when 

the tracked player getting close to another player on account of the factor of all the players wear the 

same helmet. However, the NEUTMS tracker performs well even the tracked player runs through 

some players with similar feature. 

   
 

 

 

 

 

 

 

Figure 5. Screenshots of tracking results of the video sequence used for testing (Bolt, target is selected 

in frame #1).  

Bolt sequence: This sequence presents the challenges of OCC, DEF, IPR and OPR. As shown in 

Figure 5, all the trackers perform well till frame #117. Compared to the ASMS and SMS trackers, the 

KMS and NEUTMS trackers cannot calculate a proper size for the bounding box due to the fixed 

scale. The KMS tracker has begun to drift form the target on the account of the improper size of the 

bounding box since frame #117. By fusing the information of the feature of the object and background 
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region, the NEUTMS tracker has successfully tracked the target throughout this sequence even with 

an inappropriate scale. Though a good scale is estimated by the ASMS tracker, it fails when Bolt 

passes by some other runners, as seen in frame #142 and #160. 

 
(a) 

 
(b) 

Figure 6. Success plots of one-pass evaluation (OPE): (a) Success plots of OPE over all the testing 

sequences; (b) Success plots of OPE over all the 31 testing sequences included the challenge of 

background clutters (BC). The value shown between the brackets is the area under curve (AUC) value 

corresponds to the tracker. 

 
(a) 

 
(b) 

Figure 7. Success plots of temporal robustness evaluation (TRE): (a) Success plots of TRE over all the 

testing sequences; (b) Success plots of TRE over all the 31 testing sequences included the challenge of 

BC. The value shown between the brackets is the AUC value corresponds to the tracker. 

We employ all the 61 sequences as the testing sequence dataset. Success plots of OPE and TRE 

over all the sequences are shown in Figure 6a and Figure 7a respectively, which show our NEUTMS 

tracker is superior to other trackers. Due to the fact that the focus of our work in this paper is to 

employ both the object and background feature to enhance the mean-shift tracker’s ability of 

overcoming the problem of similar surroundings, only the success plots for the challenge of BC are 

given, and then the BC challenge is one of the most challenging problems for the traditional mean-

shift tracker [13]. The results of the corresponding success plots are shown in Figure 6b and Figure 

7b, which show the robustness of the NEUTMS tracker when handling the challenge of BC. 

In order to test the performance of the proposed NEUTMS tracker over other kinds of challenges, 

all the AUC results for each tracker are given in Tables 2 and 3. The best result is highlighted in red 

italic type and the second result is highlighted in bold type. As seen in Tables 2 and 3, the NEUTMS 

tracker performs the best result when tackling the challenge of BC, MB, DEF, IPR, OCC or OPR when 
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the OPE evaluation is considered. For TRE, the NEUTMS tracker performs the best result when 

confronting the same kind of challenge to OPE except for the challenge of MB. The ASMS tracker 

wins over SV because a robust scale updating scheme is used. The NEUTMS tracker performs the 

second best result over FM, IV and OV mainly because some inaccurate background information may 

be brought into the background feature model. The NEUTMS tracker performs the second best result 

when confronting the challenge of LR on account of less information can be employed for enhancing 

the tracker. 

Table 2. AUC results of each tracker on sequences with different challenge for OPE. 

Challenge BC FM MB DEF  IV IPR LR OCC OPR OV SV Total 

NEUTMS 0.374 0.409 0.408 0.444 0.306 0.365 0.235 0.413 0.422 0.380 0.340 0.404 

ASMS 0.358 0.436 0.406 0.399 0.338 0.346 0.271 0.387 0.393 0.413 0.390 0.382 

KMS 0.284 0.325 0.322 0.302 0.292 0.277 0.185 0.315 0.315 0.369 0.290 0.306 

SMS 0.180 0.255 0.222 0.219 0.193 0.184 0.131 0.251 0.235 0.274 0.242 0.220 

Table 3. AUC results of each tracker on sequences with different challenge for TRE. 

Challenge BC FM MB DEF  IV IPR LR OCC OPR OV SV Total 

NEUTMS 0.395 0.422 0.418 0.480 0.361 0.402 0.252 0.432 0.442 0.392 0.366 0.432 

ASMS 0.389 0.442 0.434 0.453 0.392 0.401 0.271 0.416 0.437 0.418 0.387 0.421 

KMS 0.328 0.346 0.342 0.371 0.328 0.334 0.237 0.361 0.363 0.357 0.320 0.354 

SMS 0.209 0.274 0.243 0.277 0.224 0.220 0.153 0.281 0.268 0.258 0.247 0.249 

4. Conclusions 

In this paper, a neutrosophic weighted mean-shift tracker is proposed. The experimental results 

have revealed its robustness. While calculating the neutrosophic weighted histogram, two kinds of 

criteria are considered as the object feature similarity and the background feature similarity, and each 

bin of the weight histogram is represented in the SVNS domain via three membership functions T, I 

and F. Both the feature in the object and the background region are fused by introducing the weighted 

neutrosophic similarity score function. Finally, the neutrosophic weighted histogram is employed to 

decide the new location of the object. As discussed in this work, we have not considered the scale 

variation problem. To further improve the performance of our tracker in the future, our primary 

mission is to introduce a scale updating scheme into this neutrosophic weighted mean-shift tracker. 

Acknowledgments: This work is supported by National Natural Science Foundation of China under Grant No. 

61603258, the public welfare technology application research project of Zhejiang province under Grant 

No.2016C31082, and National Natural Science Foundation of China under Grant No. 61703280, 61772018. 

Author Contributions: Keli Hu conceived and designed the algorithm; Keli Hu, En Fan, Jun Ye and Changxing 

Fan performed and implemented experiments; Keli Hu and Shigen Shen analyzed the data; Keli Hu wrote the 

paper; Jun Ye and Yuzhang Gu have fully supervised the work and approved the paper for submission. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comp. Surv. 2006, 38, 13. 

2. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. 

3. Smeulders, A.W.M.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking: An 

experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1442–1468. 

4. Grabner, H.; Bischof, H. On-line boosting and vision. In Proceedings of the IEEE Conference on Computer 

Vision Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; pp. 260–267. 



Information 2017, 8, 122 13 of 13 

 

5. Grabner, H.; Leistner, C.; Bischof, H. Semi-supervised on-line boosting for robust tracking. In Proceedings 

of the European Conference on Computer Vision (ECCV), Marseille, France, 12–18 October 2008; Forsyth, 

D., Torr, P., Zisserman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 234–247. 

6. Babenko, B.; Ming-Hsuan, Y.; Belongie, S. Robust object tracking with online multiple instance learning. 

IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1619–1632. 

7. Kaihua, Z.; Lei, Z.; Ming-Hsuan, Y. Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 

36, 2002–2015. 

8. Comaniciu, D.; Ramesh, V.; Meer, P. Real-time tracking of non-rigid objects using mean shift. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hilton Head 

Island, SC, USA, 15 June 2000; pp. 142–149. 

9. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 

2003, 25, 564–577. 

10. Leichter, I. Mean shift trackers with cross-bin metrics. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 695–706. 

11. Zhu, C. Video object tracking using sift and mean shift. Master’s Thesis, Chalmers University of 

Technology, Gothenburg, Sweden, 2011. 

12. Bousetouane, F.; Dib, L.; Snoussi, H. Improved mean shift integrating texture and color features for robust 

real time object tracking. Vis. Comput. 2013, 29, 155–170. 

13. Vojir, T.; Noskova, J.; Matas, J. Robust scale-adaptive mean-shift for tracking. Pattern Recognit. Lett. 2014, 

49, 250–258. 

14. Collins, R.T. Mean-shift blob tracking through scale space. In Proceedings of the IEEE Conference on 

Computer Vision Pattern Recognition (CVPR), Madison, WI, USA, 18–20 June 2003; pp. 234–234. 

15. Lindeberg, T. Scale-Space Theory in Computer Vision; Kluwer Academic: Norwell, MA, USA, 1994; pp. 349–382. 

16. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, 

DE, USA, 1998; p. 105. 

17. Guo, Y.; Şengür, A. A novel image segmentation algorithm based on neutrosophic similarity clustering. 

Appl. Soft Comp. 2014, 25, 391–398. 

18. Anter, A.M.; Hassanien, A.E.; ElSoud, M.A.A.; Tolba, M.F. Neutrosophic sets and fuzzy c-means clustering 

for improving CT liver image segmentation. Adv. Intell. Syst. Comput. 2014, 303, 193–203. 

19. Karabatak, E.; Guo, Y.; Sengur, A. Modified neutrosophic approach to color image segmentation. J. Electron. 

Imag. 2013, 22, 4049–4068. 

20. Zhang, M.; Zhang, L.; Cheng, H.D. A neutrosophic approach to image segmentation based on watershed 

method. Signal Process. 2010, 90, 1510–1517. 

21. Guo, Y.; Şengür, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity score. 

Measurement 2014, 58, 175–186. 

22. El-Hefenawy, N.; Metwally, M.A.; Ahmed, Z.M.; El-Henawy, I.M. A review on the applications of 

neutrosophic sets. J. Comput. Theor. Nanosci. 2016, 13, 936–944. 

23. Guo, Y.; Sengur, A. A novel 3D skeleton algorithm based on neutrosophic cost function. Appl. Soft Comput. 

2015, 36, 210–217. 

24. Hu, K.; Ye, J.; Fan, E.; Shen, S.; Huang, L.; Pi, J. A novel object tracking algorithm by fusing color and depth 

information based on single valued neutrosophic cross-entropy. J. Intell. Fuzzy Syst. 2017, 32, 1775–1786. 

25. Guo, Y.; Sengur, A. NCM: Neutrosophic c-means clustering algorithm. Pattern Recognit. 2015, 48, 2710–2724. 

26. Biswas, P.; Pramanik, S.; Giri, B.C. Topsis method for multi-attribute group decision-making under single-

valued neutrosophic environment. Neural Comput. Appl. 2015, 27, 727–737. 

27. Kharal, A. A neutrosophic multi-criteria decision making method. New Math. Nat. Comput. 2014, 10, 143–162. 

28. Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. 

Model. 2014, 38, 1170–1175. 

29. Majumdar, P. Neutrosophic sets and its applications to decision making. Adapt. Learn. Optim. 2015, 19, 97–115. 

30. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued 

neutrosophic environment. Int. J. General Syst. 2013, 42, 386–394. 

31. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. Multispace 

Multistructure 2010, 4, 410–413. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


