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Abstract: In this paper, we have investigated neutrosophic soft expert multisets (NSEMs) in detail.
The concept of NSEMs is introduced. Several operations have been defined for them and their
important algebraic properties are studied. Finally, we define a NSEMs aggregation operator
to construct an algorithm for a NSEM decision-making method that allows for a more efficient
decision-making process.

Keywords: aggregation operator; decision making; neutrosophic soft expert sets; neutrosophic soft
expert multiset

1. Introduction

Multiple criteria decision making (MCDM) is an important part of modern decision science and
relates to many complex factors, such as economics, psychological behavior, ideology, military and so
on. For a proper description of objects in an uncertain and ambiguous environment, indeterminate
and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced
by Atanassov [1], followed by Molodtsov [2] on soft set and neutrosophy logic [3] and neutrosophic
sets [4] by Smarandache. The term neutrosophy means knowledge of neutral thought and this neutral
represents the main distinction between fuzzy and intuitionistic fuzzy logic and set. Presently, work on
soft set theory is progressing rapidly. Various operations and applications of soft sets were developed
rapidly, including multi-adjoint t-concept lattices [5], signatures, definitions, operators and applications
to fuzzy modelling [6], fuzzy inference system optimized by genetic algorithm for robust face and
pose detection [7], fuzzy multi-objective modeling of effectiveness and user experience in online
advertising [8], possibility fuzzy soft set [9], soft multiset theory [10], multiparameterized soft set [11],
soft intuitionistic fuzzy sets [12], Q-fuzzy soft sets [13–15], and multi Q-fuzzy sets [16–18], thereby
opening avenues to many applications [19,20]. Later, Maji [21] introduced a more generalized concept,
which is a combination of neutrosophic sets and soft sets and studied its properties. Alkhazaleh and
Salleh [22] defined the concept of fuzzy soft expert sets, which were later extended to vague soft
expert set theory [23], generalized vague soft expert set [24], and multi Q-fuzzy soft expert set [25].
Şahin et al. [26] introduced neutrosophic soft expert sets, while Hassan et al. [27] extended it further to
Q-neutrosophic soft expert sets. Broumi et al. [28] defined neutrosophic parametrized soft set theory
and its decision making. Deli [29] introduced refined neutrosophic sets and refined neutrosophic
soft sets.

Since membership values are inadequate for providing complete information in some real
problems which has different membership values for each element, different generalizations of
fuzzy sets, intuitionistic fuzzy sets and neutrosophic sets have been introduced called the multi
fuzzy set [30], intuitionistic fuzzy multiset [31] and neutrosophic multiset [32,33], respectively. In the
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multisets, an element of a universe can be constructed more than once with possibly the same or
different membership values. Some work on the multi fuzzy set [34,35], on the intuitionistic fuzzy
multiset [36–39] and on the neutrosophic multiset [40–43] have been studied. The above set theories
have been applied to many different areas including real decision-making problems [44–47]. The aim of
this paper is allow the neutrosophic set to handle problems involving incomplete, indeterminacy and
awareness of inconsistency knowledge, and this is further developed to neutrosohic soft expert sets.

The initial contributions of this paper involve the introduction of various new set-theoretic
operators on neutrosophic soft expert multisets (NSEMs) and their properties. Later, we intend to
extend the discussion further by proposing the concept of NSEMs and its basic operations, namely
complement, union, intersection AND and OR, along with a definition of a NSEMs-aggregation
operator to construct an algorithm of a NSEMs decision method. Finally we provide an application of
the constructed algorithm to solve a decision-making problem.

2. Preliminaries

In this section we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets, and NP-aggregation operator required as preliminaries.

Definition 1 ([4]). A neutrosophic set A on the universe of discourse U is defined as A =

{〈u, (µA(u), vA(u), wA(u))〉 : u ∈ U, µA(u), vA(u), wA(u) ∈ [0, 1]}. There is no restriction on the sum
of µA(u); vA(u) and wA(u), so 0− ≤ µA(u) + vA(u) + wA(u) ≤ 3+.

Definition 2 ([21]). Let U be an initial universe set and E be a set of parameters. Consider A ⊆ E. Let NS(U )
denotes the set of all neutrosophic sets of U . The collection (F, A) is termed to be the neutrosophic soft set over
U , where F is a mapping given by F : A→ NS(U ) .

Definition 3 ([22]). U is an initial universe, E is a set of parameters X is a set of experts (agents), and
O = {agree = 1, disagree = 0} a set of opinions. Let Z = E× X ×O and A ⊆ Z. A pair (F, A) is called a
soft expert set over U , where F is mapping given by F : A→ P(U ) where P(U ) denote the power set of U .

Definition 4 ([26]). A pair (F, A) is called a neutrosophic soft expert set over U , where F is mapping given by

F : A→ P(U ) (1)

where P(U ) denotes the power neutrosophic set of U.

Definition 5 ([26]). The complement of a neutrosophic soft expert set (F, A) denoted by (F, A)c and is defined as
(F, A)c = (Fc, A) where Fc = ¬A→ P(U ) is mapping given by Fc(x) = neutrosophic soft expert complement
with µFc(x) = wF(x), vFc(x) = vF(x), wFc(x) = µF(x).

Definition 6 ([26]). The agree-neutrosophic soft expert set (F, A)1 over U is a neutrosophic soft expert subset
of (F, A) is defined as

(F, A)1 = {F1(m) : m ∈ E× X× {1}}. (2)

Definition 7 ([26]). The disagree-neutrosophic soft expert set (F, A)0 over U is a neutrosophic soft expert
subset of (F, A) is defined as

(F, A)0 = {F0(m) : m ∈ E× X× {0}}. (3)

Definition 8 ([26]). Let (H, A) and (G, B) be two NSESs over the common universe U. Then the union
of (H, A) and (G, B) is denoted by “(H, A)

∼
∪ (G, B)” and is defined by (H, A)

∼
∪ (G, B) = (K, C), where
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C = A ∪ B and the truth-membership, indeterminacy-membership and falsity-membership of (K, C) are
as follows:

µK(e)(m) =


µH(e)(m), i f e ∈ A− B,
µG(e)(m), i f e ∈ B− A,

max
(

µH(e)(m), µG(e)(m)
)

, i f e ∈ AB.

vK(e)(m) =


vH(e)(m), i f e ∈ A− B,
vG(e)(m), i f e ∈ B− A,

vH(e)(m)+vG(e)(m)

2 , i f e ∈ AB.

wK(e)(m) =


wH(e)(m), i f e ∈ A− B,
wG(e)(m), i f e ∈ B− A,

min
(

wH(e)(m), wG(e)(m)
)

, i f e ∈ AB.

(4)

Definition 9 ([26]). Let (H, A) and (G, B) be two NSESs over the common universe U. Then the intersection
of (H, A) and (G, B) is denoted by “(H, A)

∼
∩ (G, B)” and is defined by (H, A)

∼
∩ (G, B) = (K, C), where

C = A ∩ B and the truth-membership, indeterminacy-membership and falsity-membership of (K, C) are
as follows:

cµK(e)(m) = min
(

µH(e)(m), µG(e)(m)
)

,

vK(e)(m) =
vH(e)(m) + vG(e)(m)

2
,

wK(e)(m) = max
(

wH(e)(m), wG(e)(m)
)

,

(5)

i f e ∈ AB.

Definition 10 ([29]). Let U be a universe. A neutrosophic multiset set (Nms) A on U can be defined as follows:

A =
{
≺ u,

(
µ1

A(u), µ2
A(u), . . . , µ

p
A(u)

)
,
(

v1
A(u), v2

A(u), . . . , vp
A(u)

)
,
(

w1
A(u), w2

A(u), . . . , wp
A(u)

)
�: u ∈ U

}
where,

c µ1
A(u), µ2

A(u), . . . , µ
p
A(u) : U → [0, 1],

v1
A(u), v2

A(u), . . . , vp
A(u) : U → [0, 1],

and
w1

A(u), w2
A(u), . . . , wp

A(u) : U → [0, 1],

such that
0 ≤ supµi

A(u) + supvi
A(u) + supwi

A(u) ≤ 3

(i = 1, 2, . . . , P) and(
µ1

A(u), µ2
A(u), . . . , µ

p
A(u)

)
,
(

v1
A(u), v2

A(u), . . . , vp
A(u)

)
and

(
w1

A(u), w2
A(u), . . . , wp

A(u)
)

This is the truth-membership sequence, indeterminacy-membership sequence and
falsity-membership sequence of the element u, respectively. Also, P is called the dimension
(cardinality) of Nms A, denoted d(A). We arrange the truth-membership sequence in decreasing order
but the corresponding indeterminacy-membership and falsity-membership sequence may not be in
decreasing or increasing order.

The set of all neutrosophic multisets on U is denoted by NMS(U ).
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Definition 11 ([28]). Let ΨK ∈ NP-soft set. Then an NP-aggregation operator of ΨK, denoted by Ψagg
K is

defined by
Ψagg

K =
{(
〈u, Tagg

K , Iagg
K , Fagg

K 〉
)

: u ∈ U
}

,

which is a neutrosophic set over U,

Tagg
K : U → [0, 1] Tagg

K (u) = 1
|U| ∑

e ∈ E
u ∈ U

TK(u).λ fK(x)(u),

Iagg
K : U → [0, 1] Iagg

K (u) = 1
|U| ∑

e ∈ E
u ∈ U

IK(u).λ fK(x)(u),

Fagg
K : U → [0, 1] Fagg

K = 1
|U| ∑

e ∈ E
u ∈ U

FK(u).λ fK(x)(u)

(6)

and where,

λ fK(x)(u) =

{
1, x ∈ fK(x)(u),
0, otherwise.

(7)

|U| is the cardinality of U.

3. Neutrosophic Soft Expert Multiset (NSEM) Sets

This section introduces neutrosophic soft expert multiset as a generalization of neutrosophic soft
expert set. Throughout this paper, V is an initial universe, E is a set of parameters X is a set of experts
(agents), and O = {agree = 1, disagree = 0} a set of opinions. Let Z = E× X×O and G ⊆ Z and u is
a membership function of G; that is, Ω : G →= [0, 1] .

Definition 12. A pair
(

FΩ, G
)

is called a neutrosophic soft expert multiset over V, where FΩ is mapping
given by

FΩ : G → N (V)×, (8)

where N (V) be the set of all neutrosophic soft expert subsets of U. For any parameter e ∈ G, F(e) is referred as
the neutrosophic value set of parameter e, i.e.,

F(e) =

〈 v(
D1

F(e)(v), . . . , Dn
F(e)

)
,
(

I1
F(e)(v), . . . , In

F(e)

)
,
(

Y1
F(e)(v), . . . , Yn

F(e)

) 〉
, (9)

where Di,i , Yi : U → [0, 1] are the membership sequence of truth, indeterminacy and falsity respectively of the
element v ∈ V. For any v ∈ V, e ∈ G and i = 1, 2, . . . , n.

0 ≤ Di
F(e)(v) +

i
F(e)(v) + Yi

F(e)(v) ≤ 3

In fact FΩ is a parameterized family of neutrosophic soft expert multisets on V, which has the degree of
possibility of the approximate value set which is prepresented by Ω(e) for each parameter e. So we can write it
as follows:

FΩ(e) =
{(

v1

F(e)(v1)
,

v2

F(e)(v2)
,

v3

F(e)(v3)
, · · · ,

vn

F(e)(vn)

)
, Ω(e)

}
. (10)
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Example 1. Suppose that V = {v1} is a set of computers and E = {e1, e2} is a set of decision parameters. Let
X = {p, r} be set of experts. Suppose that

cFΩ(e1, p, 1) =
{(

v1

(0.4, 0.3, . . . , 0.2), (0.5, 0.7, . . . , 0.2), (0.6, 0.1, . . . , 0.3)

)
, 0.4

}
FΩ(e1, r, 1) =

{(
v1

(0.3, 0.2, . . . , 0.5), (0.8, 0.1, . . . , 0.4), (0.5, 0.6, . . . , 0.2)

)
, 0.8

}
FΩ(e2, p, 1) =

{(
v1

(0.7, 0.3, . . . , 0.6), (0.3, 0.2, . . . , 0.6), (0.8, 0.2, . . . , 0.1)

)
, 0.5

}
FΩ(e2, r, 1) =

{(
v1

(0.8, 0.3, . . . , 0.4), (0.3, 0.1, . . . , 0.5), (0.2, 0.3, . . . , 0.4)

)
, 0.4

}
FΩ(e1, p, 0) =

{(
v1

(0.5, 0.1, . . . , 0.2), (0.6, 0.3, . . . , 0.4), (0.7, 0.2, . . . , 0.6)

)
, 0.1

}
FΩ(e1, r, 0) =

{(
v1

(0.4, 0.2, . . . , 0.1), (0.6, 0.1, . . . , 0.3), (0.7, 0.2, . . . , 0.4)

)
, 0.4

}
FΩ(e2, p, 0) =

{(
v1

(0.8, 0.1, . . . , 0.5), (0.2, 0.1, . . . , 0.4), (0.6, 0.3, . . . , 0.1)

)
, 0.6

}
FΩ(e2, r, 0) =

{(
v1

(0.7, 0.2, . . . , 0.3), (0.4, 0.1, . . . , 0.6), (0.3, 0.2, . . . , 0.1)

)
, 0.2

}
The neutrosophic soft expert multiset (F, Z) is a parameterized family {F(ei), i = 1, 2, . . .} of all

neutrosophic multisets of V and describes a collection of approximation of an object.

Definition 13. For two neutrosophic soft expert multisets (NSEMs)
(

FΩ, G
)

and (Hη , R) over U,
(

FΩ, G
)

is
called a neutrosophic soft expert subset of (Hη , R) if

i. R ⊆ G,
ii. for all ε ∈ H, Hη(ε) is neutrosophic soft expert subset FΩ(ε).

Example 2. Consider Example 1. Suppose that G and R are as follows.

cG = {(e1, p, 1), (e2, p, 1), (e2, p, 0), (e2, r, 1)}
R = {(e1, p, 1), (e2, r, 1)}

Since R is a neutrosophic soft expert subset of G, clearly R ⊂ G. Let (Hη , R) and
(

FΩ, G
)

be defined
as follows:

c
(

FΩ, G
)
=

{[
(e1, p, 1),

(
v1

(0.4, 0.3, . . . , 0.2), (0.5, 0.7, . . . , 0.2), (0.6, 0.1, . . . , 0.3)

)
, 0.4

]
,[

(e2, p, 1),
(

v1

(0.7, 0.3, . . . , 0.6), (0.3, 0.2, . . . , 0.6), (0.8, 0.2, . . . , 0.1)

)
, 0.5

]
,[

(e2, p, 0),
(

v1

(0.8, 0.1, . . . , 0.5), (0.2, 0.1, . . . , 0.4), (0.6, 0.3, . . . , 0.1)

)
, 0.6

]
,[

(e2, r, 1),
(

v1

(0.8, 0.3, . . . , 0.4), (0.3, 0.1, . . . , 0.5), (0.2, 0.3, . . . , 0.4)

)
, 0.4

]}
.

(Hη , R) =
{[

(e1, p, 1),
(

v1

(0.4, 0.3, . . . , 0.2), (0.5, 0.7, . . . , 0.2), (0.6, 0.1, . . . , 0.3)

)
, 0.4

]
,[

(e2, r, 1),
(

v1

(0.8, 0.3, . . . , 0.4), (0.3, 0.1, . . . , 0.5), (0.2, 0.3, . . . , 0.4)

)
, 0.4

]}
.

Therefore (Hη , R) ⊆
(

FΩ, G
)
.
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Definition 14. Two NSEMs
(

FΩ, G
)

and (Gη , B) over V are said to be equal if
(

FΩ, G
)

is a NSEM subset of
(Hη , R) and (Hη , R) is a NSEM subset of

(
FΩ, G

)
.

Definition 15. Agree-NSEMs
(

FΩ, G
)

1 over V is a NSEM subset of
(

FΩ, G
)

defined as follows.(
FΩ, G

)
1
= {F1(∆) : ∆ ∈ E× X× {1}}. (11)

Example 3. Consider Example 1. The agree- neutrosophic soft expert multisets (FΩ, Z)1 over V is

c(FΩ, Z)1 =

{[
(e1, p, 1),

(
v1

(0.4, 0.3, . . . , 0.2), (0.5, 0.7, . . . , 0.2), (0.6, 0.1, . . . , 0.3)

)
, 0.4

]
,[

(e1, r, 1),
(

v1

(0.3, 0.2, . . . , 0.5), (0.8, 0.1, . . . , 0.4), (0.5, 0.6, . . . , 0.2)

)
, 0.8

]
,[

(e2, p, 1),
(

v1

(0.7, 0.3, . . . , 0.6), (0.3, 0.2, . . . , 0.6), (0.8, 0.2, . . . , 0.1)

)
, 0.5

]
,[

(e2, r, 1),
(

v1

(0.8, 0.3, . . . , 0.4), (0.3, 0.1, . . . , 0.5), (0.2, 0.3, . . . , 0.4)

)
, 0.4

]}
.

Definition 16. A disagree-NSEMs
(

FΩ, G
)

0 over V is a NSES subset of
(

FΩ, G
)

is defined as follows:

(FΩ, A)0 = {F0(∆) : ∆ ∈ E× X× {0}}. (12)

Example 4. Consider Example 1. The disagree- neutrosophic soft expert multisets (FΩ, Z)0 over V are

(FΩ, Z)0 =

{[
(e1, p, 0),

(
v1

(0.5, 0.1, . . . , 0.2), (0.6, 0.3, . . . , 0.4), (0.7, 0.2, . . . , 0.6)

)
, 0.1

]
,[

(e1, r, 0),
(

v1

(0.4, 0.2, . . . , 0.1), (0.6, 0.1, . . . , 0.3), (0.7, 0.2, . . . , 0.4)

)
, 0.4

]
,[

(e2, p, 0),
(

v1

(0.8, 0.1, . . . , 0.5), (0.2, 0.1, . . . , 0.4), (0.6, 0.3, . . . , 0.1)

)
, 0.6

]
,[

(e2, r, 0),
(

v1

(0.7, 0.2, . . . , 0.3), (0.4, 0.1, . . . , 0.6), (0.3, 0.2, . . . , 0.1)

)
, 0.2

]}
.

4. Basic Operations on NSEMs

Definition 17. The complement of a neutrosophic soft expert multiset (FΩ, G) is denoted by (FΩ, G)
c and is

defined by (FΩ, G)
c
=
(

FΩ(c),¬G
)

where Fu(c) : ¬G → N (V)× is mapping given by

FΩ(c)(∆) =
{

Di
F(∆)(c)

= Yi
F(∆), Ii

F(∆)(c)
= 1− Ii

F(∆), Yi
F(∆)(c)

= Di
F(∆) and Ωc(∆) = 1−Ω(∆)

}
(13)

for each ∆ ∈ E.
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Example 5. Consider Example 1. The complement of the neutrosophic soft expert multiset FΩ denoted by FΩ(c)

is given by as follows:

c(FΩ(c), Z) =
{[

(¬e1, p, 1),
(

v1

(0.2, 0.7, . . . , 0.4), (0.2, 0.3, . . . , 0.5), (0.3, 0.9, . . . , 0.6)

)
, 0.6

]
,[

(¬e1, r, 1),
(

v1

(0.5, 0.8, . . . , 0.3), (0.4, 0.9, . . . , 0.8), (0.2, 0.4, . . . , 0.5)

)
, 0.2

]
,[

(¬e2, p, 1),
(

v1

(0.6, 0.7, . . . , 0.7), (0.6, 0.8, . . . , 0.3), (0.1, 0.8, . . . , 0.8)

)
, 0.5

]
,[

(¬e2, r, 1),
(

v1

(0.4, 0.7, . . . , 0.8), (0.5, 0.9, . . . , 0.3), (0.4, 0.7, . . . , 0.2)

)
, 0.6

]
,[

(¬e1, p, 0),
(

v1

(0.2, 0.9, . . . , 0.5), (0.4, 0.7, . . . , 0.6), (0.6, 0.8, . . . , 0.7)

)
, 0.9

]
,[

(¬e1, r, 0),
(

v1

(0.1, 0.8, . . . , 0.4), (0.3, 0.9, . . . , 0.6), (0.4, 0.8, . . . , 0.7)

)
, 0.6

]
,[

(¬e2, p, 0),
(

v1

(0.5, 0.9, . . . , 0.8), (0.4, 0.9, . . . , 0.2), (0.1, 0.7, . . . , 0.6)

)
, 0.4

]
,[

(¬e2, r, 0),
(

v1

(0.3, 0.8, . . . , 0.7), (0.6, 0.9, . . . , 0.4), (0.1, 0.8, . . . , 0.3)

)
, 0.8

]}
.

Proposition 1. If (FΩ, G) is a neutrosophic soft expert multiset over V, then

1. ((FΩ, G)
c
)

c
= (FΩ, G)

2. ((FΩ, G)1)
c
= (FΩ, G)0

3. ((FΩ, G)0)
c
= (FΩ, G)1

Proof. (1) From Definition 17, we have (FΩ, G)
c
=
(

FΩ(c),¬G
)

where FΩ(c)(∆) = Di
F(∆)(c)

= Yi
F(∆),

Ii
F(∆)(c)

= 1− Ii
F(∆), Yi

F(∆)(c)
= Di

F(∆) and Ωc(∆) = 1−Ω(∆) for each ∆ ∈ E. Now ((FΩ, G)
c
)

c
=((

FΩ(c)
)c

, G
)

where

(
FΩ(c)

)c
(∆) = [Di

F(∆)(c)
= Yi

F(∆), Ii
F(∆)(c)

= 1− Ii
F(∆), Yi

F(∆)(c)
= Di

F(∆),
(
Ωi)c

(∆) = 1− Ωi(∆)]c

= Di
F(∆) = Yi

F(∆)(c)
, Ii

F(∆) = 1− Ii
F(∆)(c)

, Yi
F(∆) = Di

F(∆)(c)
, Ωi(∆) = 1−

(
Ωi)(∆)

= 1− (1− Ii
F(∆)) = 1−

(
1−Ωi(∆)

)
= Ii

F(∆) = Ωi(∆)

Thus
(
(FΩ, G)

c
)c

=
((

FΩ(c)
)c

, G
)
= (FΩ, G), for all ∆ ∈ E.

The Proofs (2) and (3) can proved similarly. �

Definition 18. The union of two NSEMs (FΩ, G) and (Kρ, L) over V, denoted by (FΩ, G)
∼
∪ (Kρ, L) is a

NSEMs (Hσ, C) where C = G ∪ L and ∀ e ∈ C,

(Hσ, C) =


max

(
Di

(FΩ(e)(m), Di
(Kρ(e)(m)

)
i f ∆ ∈ G ∩ L

min
(

Ii
(FΩ(e)(m), Ii

(Kρ(e)(m)
)

i f ∆ ∈ G ∩ L

min
(

Yi
(FΩ(e)(m), Yi

(Kρ(e)(m)
)

i f ∆ ∈ G ∩ L

(14)

where σ(m) = max
(

Ω(e)(m), ρ(e)(m)
)

.
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Example 6. Suppose that (FΩ, G) and (Kρ, L) are two NSEMs over V, such that

c(FΩ, G) =

{[
(e1, p, 1),

(
v1

(0.7, 0.3, . . . , 0.6), (0.5, 0.2, . . . , 0.4), (0.7, 0.6, . . . , 0.3)

)
, 0.3

]
,[

(e2, q, 1),
(

v1

(0.4, 0.3, . . . , 0.6), (0.8, 0.2, . . . , 0.4), (0.5, 0.1, . . . , 0.7)

)
, 0.6

]
,[

(e3, r, 1),
(

v1

(0.8, 0.2, . . . , 0.3), (0.6, 0.3, . . . , 0.7), (0.4, 0.2, . . . , 0.8)

)
, 0.5

]}
.

(Kρ, L) =
{[

(e1, p, 1),
(

v1

(0.4, 0.3, . . . , 0.1), (0.7, 0.2, . . . , 0.3), (0.5, 0.4, . . . , 0.7)

)
, 0.6

]
,[

(e3, r, 1),
(

v1

(0.8, 0.3, . . . , 0.2), (0.6, 0.1, . . . , 0.2), (0.3, 0.5, . . . , 0.3)

)
, 0.7

]}

Then (FΩ, G)
∼
∪ (Kρ, L) = (Hσ, C) where

c(Hσ, C) =
{[

(e1, p, 1),
(

v1

(0.7, 0.3, . . . , 0.1), (0.7, 0.2, . . . , 0.3), (0.7, 0.4, . . . , 0.3)

)
, 0.6

]
,[

(e2, q, 1),
(

v1

(0.4, 0.3, . . . , 0.6), (0.8, 0.2, . . . , 0.4), (0.5, 0.1, . . . , 0.7)

)
, 0.6

]
,[

(e3, r, 1),
(

v1

(0.8, 0.2, . . . , 0.2), (0.6, 0.1, . . . , 0.2), (0.4, 0.2, . . . , 0.3)

)
, 0.7

]}
.

Proposition 2. If (FΩ, G), (Kρ, L) and
(

HΩ, C
)

are three NSEMs over V, then

1.
(
(FΩ, G)

∼
∪ (Kρ, L)

) ∼
∪ (Hσ, C) = (FΩ, G)

∼
∪
(
(Kρ, L)

∼
∪ (Hσ, C)

)
2. (FΩ, G)(FΩ, G) ⊆ (FΩ, G).

Proof. (1) We want to prove that(
(FΩ, G)

∼
∪ (Kρ, L)

) ∼
∪ (Hσ, C) = (FΩ, G)

∼
∪
(
(Kρ, L)

∼
∪ (Hσ, C)

)
by using Definition 18, we consider the case when if e ∈ G ∩ L as other cases are trivial. We will have

(FΩ, G)
∼
∪ (Kρ, L)

=
{(

v/max
(

Di
FΩ(e)(m), Di

Gρ(e)(m)
)

, min
(

Ii
FΩ(e)(m), Ii

Gρ(e)(m)
)

, min
(

Yi
FΩ(e)(m), Yi

Gρ(e)(m)
))

,

max
(

Ω(e)(m), ρ(e)(m)
)

, v ∈ V
}

Also consider the case when e ∈ H as the other cases are trivial. We will have(
(Fu, A)

∼
∪ (Gη , B)

) ∼
∪
(

HΩ, C
)

=
{(

v/max
(

Di
FΩ(e)(m), Di

Gρ(e)(m)
)

, min
(

Ii
FΩ(e)(m), Ii

Gρ(e)(m)
)

, min
(

Yi
FΩ(e)(m), Yi

Gρ(e)(m)
))

,(
v/Di

HΩ(e)(m), Ii
HΩ(e)(m), Yi

HΩ(e)(m)
)

, max
(

u(e)(m), η(e)(m), Ω(m)
)

, v ∈ V
}

=


(

v/Di
FΩ(e)(m), Ii

FΩ(e)(m), Yi
FΩ(e)(m)

)
,(

v/max
(

Di
Gu(e)(m), Di

Hη(e)(m)
)

, min
(

Ii
Gu(e)(m), Ii(m)

)
, min

(
Yi

Gu(e)(m), Yi(m)
))

max
(

Ω(e)(m), ρ(e)(m),σ(m)
)

, v ∈ V
}

= (FΩ, G)
∼
∪
(
(Kρ, L)

∼
∪ (Hσ, C)

)
.
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(2) The proof is straightforward. �

Definition 19. The intersection of two NSEMs (FΩ, G) and (Kρ, L) over V, denoted by (FΩ, G)
∼
∩ (Kρ, L) =(

Pδ, C
)

where C = G ∩ L and ∀ e ∈ C,

(
Pδ, C

)
=


min

(
Di

(FΩ(e)(m), Di
(Kρ(e)(m)

)
i f e ∈ G ∩ L

max
(

Ii
(FΩ(e)(m), Ii

(Kρ(e)(m)
)

i f e ∈ G ∩ L

max
(

Yi
(FΩ(e)(m), Yi

(Kρ(e)(m)
)

i f e ∈ G ∩ L

(15)

where δ(m) = min
(

Ω(e)(m), ρ(e)(m)
)

.

Example 7. Suppose that (FΩ, G) and (Kρ, L) are two NSEMs over V, such that

c(FΩ, G) =

{[
(e3, r, 1),

(
v1

(0.8, 0.3, . . . , 0.2), (0.6, 0.1, . . . , 0.2), (0.3, 0.5, . . . , 0.3)

)
, 0.4

]
,[

(e1, q, 1),
(

v1

(0.8, 0.2, . . . , 0.2), (0.7, 0.3, . . . , 0.2), (0.4, 0.2, . . . , 0.3)

)
, 0.7

]
,[

(e3, q, 0),
(

v1

(0.4, 0.3, . . . , 0.6), (0.8, 0.2, . . . , 0.4), (0.5, 0.1, . . . , 0.7)

)
, 0.6

]}
.

(Kρ, L) =
{[

(e1, p, 1),
(

v1

(0.7, 0.3, . . . , 0.1), (0.7, 0.2, . . . , 0.3), (0.7, 0.4, . . . , 0.3)

)
, 0.3

]
,[

(e3, r, 1),
(

v1

(0.4, 0.7, . . . , 0.8), (0.5, 0.9, . . . , 0.3), (0.4, 0.7, . . . , 0.2)

)
, 0.8

]}

Then (FΩ, G)
∼
∩ (Kρ, L) =

(
Pδ, C

)
where

(
Pδ, C

)
=

{[
(e3, r, 1),

(
v1

(0.4, 0.3, . . . , 0.2), (0.6, 0.9, . . . , 0.3), (0.4, 0.7, . . . , 0.3)

)
, 0.4

]}
.

Proposition 3. If (FΩ, G), (Kρ, L) and
(

HΩ, C
)

are three NSEMs over V, then

1.
(
(FΩ, G)

∼
∩ (Kρ, L)

) ∼
∩ (Hσ, C) = (FΩ, G)

∼
∩
(
(Kρ, L)

∼
∩ (Hσ, C)

)
2. (FΩ, G)

∼
∩ (FΩ, G) ⊆ (FΩ, G).

Proof. (1) We want to prove that(
(FΩ, G)

∼
∩ (Kρ, L)

) ∼
∩ (Hσ, C) = (FΩ, G)

∼
∩
(
(Kρ, L)

∼
∩ (Hσ, C)

)
by using Definition 19, we consider the case when if e ∈ G ∩ L as other cases are trivial. We will have

(FΩ, G)
∼
∩ (Kρ, L)

=
{(

v/min
(

Di
FΩ(e)(m), Di

Gρ(e)(m)
)

, max
(

Ii
FΩ(e)(m), Ii

Gρ(e)(m)
)

, max
(

Yi
FΩ(e)(m), Yi

Gρ(e)(m)
))

,

min
(

Ω(e)(m), ρ(e)(m)
)

, v ∈ V
}
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Also consider the case when ∆ ∈ H as the other cases are trivial. We will have(
(Fu, A)

∼
∩ (Gη , B)

) ∼
∩
(

HΩ, C
)

=
{(

v/max
(

Di
FΩ(e)(m), Di

Gρ(e)(m)
)

, min
(

Ii
FΩ(e)(m), Ii

Gρ(e)(m)
)

, min
(

Yi
FΩ(e)(m), Yi

Gρ(e)(m)
))

,(
v/Di

HΩ(e)(m), Ii
HΩ(e)(m), Yi

HΩ(e)(m)
)

, min
(

u(e)(m), η(e)(m), Ω(m)
)

, v ∈ V
}

=


(

v/Di
FΩ(e)(m), Ii

FΩ(e)(m), Yi
FΩ(e)(m)

)
,(

v/min
(

Di
Gu(e)(m), Di

Hη(e)(m)
)

, max
(

Ii
Gu(e)(m), Ii(m)

)
, max

(
Yi

Gu(e)(m), Yi(m)
))

min
(

Ω(e)(m), ρ(e)(m),σ(m)
)

, v ∈ V
}

= (FΩ, G)
∼
∩
(
(Kρ, L)

∼
∩ (Hσ, C)

)
.

(2) The proof is straightforward. �

Proposition 4. If (FΩ, G), (Kρ, L) and
(

HΩ, C
)

are three NSEMs over V. Then

1.
(
(FΩ, G)

∼
∪ (Kρ, L)

) ∼
∩ (Hσ, C) =

(
(FΩ, G)

∼
∩ (Hσ, C)

) ∼
∪
(
(Kρ, L)

∼
∩ (Hσ, C)

)
.

2.
(
(FΩ, G)

∼
∩ (Kρ, L)

) ∼
∪ (Hσ, C) =

(
(FΩ, G)

∼
∪ (Hσ, C)

) ∼
∩
(
(Kρ, L)

∼
∪ (Hσ, C)

)
.

Proof. The proofs can be easily obtained from Definitions 18 and 19. �

5. AND and OR Operations

Definition 20. Let (FΩ, G) and (Kρ, L) be any two NSEMs over V, then (FΩ, G)AND(Kρ, L)” denoted
(FΩ, G) ∧ (Kρ, L) is defined by

(FΩ, G) ∧ (Kρ, L) = (Hσ, G× L) (16)

where (Hσ, G× L) = Hσ(α, β) such that Hσ(α, β) = FΩ(α) ∩ Kρ(β) for all (α, β) ∈ G × L where ∩
represent the basic intersection.

Example 8. Suppose that (FΩ, G) and (Kρ, L) are two NSEMs over V, such that

c(FΩ, G) =

{[
(e1, p, 1),

(
v1

(0.2, 0.3, . . . , 0.6), (0.2, 0.1, . . . , 0.8), (0.3, 0.2, . . . , 0.6)

)
, 0.1

]
,[

(e2, r, 0),
(

v1

(0.5, 0.3, . . . , 0.4), (0.6, 0.5, . . . , 0.4), (0.2, 0.4, . . . , 0.3)

)
, 0.5

]}
.

(Kρ, L) =
{[

(e1, p, 1),
(

v1

(0.3, 0.2, . . . , 0.1), (0.5, 0.2, . . . , 0.3), (0.8, 0.3, . . . , 0.4)

)
, 0.2

]
,[

(e2, q, 0),
(

v1

(0.6, 0.4, . . . , 0.7), (0.3, 0.4, . . . , 0.2), (0.6, 0.1, . . . , 0.5)

)
, 0.6

]}
.

Then (FΩ, G) ∧ (Kρ, L) = (Hσ, G× L) where

c(Hσ, G× L) =
{[

(e1, p, 1), (e1, p, 1)
(

v1

(0.2, 0.2, . . . , 0.1), (0.5, 0.2, . . . , 0.8), (0.8, 0.3, . . . , 0.6)

)
, 0.1

]
,[

(e1, p, 1), (e2, q, 0),
(

v1

(0.2, 0.3, . . . , 0.6), (0.3, 0.4, . . . , 0.8), (0.6, 0.2, . . . , 0.6)

)
, 0.1

]
,[

(e2, r, 0), (e1, p, 1),
(

v1

(0.3, 0.2, . . . , 0.1), (0.6, 0.5, . . . , 0.4), (0.8, 0.4, . . . , 0.4)

)
, 0.2

]
,[

(e2, r, 0), (e2, q, 0),
(

v1

(0.5, 0.3, . . . , 0.4), (0.6, 0.5, . . . , 0.4), (0.6, 0.4, . . . , 0.5)

)
, 0.5

]}
.



Mathematics 2019, 7, 50 11 of 17

Definition 21. Let (FΩ, G) and (Kρ, L) be any two NSEMs over V, then (FΩ, G)OR(Kρ, L)” denoted
(FΩ, G) ∨ (Kρ, L) is defined by

(FΩ, G) ∨ (Kρ, L) = (Hσ, G× L) (17)

where (Hσ, G× L) = Hσ(α, β) such that Hσ(α, β) = FΩ(α) ∪ Kρ(β) for all (α, β) ∈ G × L where ∪
represent the basic union.

Example 9. Suppose that (FΩ, G) and (Kρ, L) are two NSEMs over V, such that

c(FΩ, G) =

{[
(e1, p, 1),

(
v1

(0.2, 0.3, . . . , 0.6), (0.2, 0.1, . . . , 0.8), (0.3, 0.2, . . . , 0.6)

)
, 0.1

]
,[

(e2, r, 0),
(

v1

(0.5, 0.3, . . . , 0.4), (0.6, 0.5, . . . , 0.4), (0.2, 0.4, . . . , 0.3)

)
, 0.5

]}
.

(Kρ, L) =
{[

(e1, p, 1),
(

v1

(0.3, 0.2, . . . , 0.1), (0.5, 0.2, . . . , 0.3), (0.8, 0.3, . . . , 0.4)

)
, 0.2

]
,[

(e2, q, 0),
(

v1

(0.6, 0.4, . . . , 0.7), (0.3, 0.4, . . . , 0.2), (0.6, 0.1, . . . , 0.5)

)
, 0.6

]}
.

Then (FΩ, G) ∨ (Kρ, L) = (Hσ, G× L) where

c(Hσ, G× L) =
{[

(e1, p, 1), (e1, p, 1)
(

v1

(0.3, 0.3, . . . , 0.6), (0.2, 0.1, . . . , 0.3), (0.3, 0.2, . . . , 0.4)

)
, 0.2

]
,[

(e1, p, 1), (e2, q, 0),
(

v1

(0.6, 0.4, . . . , 0.7), (0.2, 0.1, . . . , 0.2), (0.3, 0.1, . . . , 0.5)

)
, 0.6

]
,[

(e2, r, 0), (e1, p, 1),
(

v1

(0.5, 0.3, . . . , 0.4), (0.5, 0.2, . . . , 0.3), (0.2, 0.3, . . . , 0.3)

)
, 0.2

]
,[

(e2, r, 0), (e2, q, 0),
(

v1

(0.6, 0.4, . . . , 0.7), (0.3, 0.4, . . . , 0.2), (0.2, 0.1, . . . , 0.3)

)
, 0.6

]}
.

Proposition 5. Let (FΩ, G) and (Kρ, L) be NSEMs over V. Then

1. ((FΩ, G) ∧ (Kρ, L))c
= (Fu, A)c ∨ (Gη , B)c

2. ((FΩ, G) ∨ (Kρ, L))c
= (Fu, A)c ∧ (Gη , B)c

Proof. (1) Suppose that (FΩ, G) and (Kρ, L) be NSEMs over V defined as:

(FΩ, G) ∧ (Kρ, L) =
(

FΩ(α) ∧ Kρ(β)
)c

=
(

FΩ(α) ∩ Kρ(β)
)c

=
(

FΩ(α) ∩ Kρ(β)
)c

=
(

FΩ(c)(α) ∪ Kρ(c)(β)
)

=
(

FΩ(c)(α) ∨ Kρ(c)(β)
)

= (Fu, A)c ∨ (Gη , B)c

(2) The proofs can be easily obtained from Definitions 20 and 21. �
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6. NSEMs-Aggregation Operator

In this section, we define a NSEMs-aggregation operator of NSEMs to construct a decision method
by which approximate functions of a soft expert set are combined to produce a neutrosophic set that
can be used to evaluate each alternative.

Definition 22. Let ΓG ∈ NSEMs. Then NSEMs-aggregation operator of ΓG, denoted by Γagg
G , is defined by

Γagg
G =

{(
〈v,
(

Di
)agg

G
(v),

(
Ii
)agg

G
(v),

(
Yi
)agg

G
(v)〉

)
: v ∈ V

}
,

which are NSEMs over V,

(
Di
)agg

G
: V → [0, 1]

(
Di
)agg

G
(v) =

 1
|V| ∑

e ∈ E
v ∈ V

Di
G(v)

.Ω,

(
Yi)agg

G : V → [0, 1]
(
Yi)agg

G (v) =

 1
|V| ∑

e ∈ E
v ∈ V

Yi
G(v)

.Ω,

(
Ii
)agg

G
: V → [0, 1]

(
Ii
)agg

G
(v) =

 1
|V| ∑

e ∈ E
v ∈ V

Ii
G(v)

.Ω

(18)

where |V| is the cardinality of V and Ωi is defined below

Ω =
1
n

.
n

∑
i=1

Ω(ei). (ei, i = 1, 2, 3, . . . , n) (19)

Definition 23. Let ΓG ∈ NSEMs, Γagg
G be NSEMs. Then a reduced fuzzy set of Γagg

G is a fuzzy set over is
denoted by

Γagg
G =

{
λΓagg

G (v)
v

: v ∈ V

}
, (20)

where λΓagg
G (v) : V → [0, 1] and vi =

∣∣∣(Di)agg
Gi
−
(
Yi)agg

Gi
−
(

Ii)agg
Gi

∣∣∣.
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7. An Application of NSEMs

In this section, we present an application of NSEMs theory in a decision-making problem. Based
on Definitions 22 and 23, we construct an algorithm for the NSEMs decision-making method as follows:

Step 1 -Choose a feasible subset of the set of parameters.
Step 2 -Construct the NSEMs for each opinion (agree, disagree) of expert.
Step 3 -Compute the aggregation NSEMS Γagg

G of ΓG and the reduced fuzzy set(
Di
)agg

Gi
,
(

Yi
)agg

Gi
,
(

Ii
)agg

Gi
of Γagg

G

Step 4 -Score (vİ) = (max− agree(vi))− (min− disagree(vi))

Step 5 -Choose the element of vi that has maximum membership. This will be the optimal solution.

Example 10. In the architectural design process, let us assume that the design outputs used in the design of
moving structures are taken by a few experts at certain time intervals. So, let us take the samples at three different
timings in a day (in 08:30, 14:30 and 20:30) The design of moving structures consists of the architectural design,
the design of the mechanism and the design of the surface covering membrane. Architectural design will be
evaluated from these designs., V = {v1, v2, v3}. Suppose there are three parameters E = {e1, e2, e3} where the
parameters ei (i = 1, 2, 3) stand for “time”, “temperature” and “spatial needs” respectively. Let X = {p, q} be
a set of experts. After a serious discussion, the experts construct the following NSEMs.

Step 1-Choose a feasible subset of the set of parameters:

(FΩ, Z) ={[
(e1, p, 1),

(
v1

(0.3,0.1,0.4),(0.2,0.1,0.5),(0.5,0.2,0.6)

)
,
(

v2
(0.4,0.2,0.3),(0.7,0.1,0.6),(0.3,0.2,0.6)

)
,
(

v3
(0.5,0.3,0.4),(0.2,0.1,0.8),(0.4,0.2,0.3)

)
, 0.7

]
,[

(e1, q, 1),
(

v1
(0.4,0.2,0.5),(0.3,0.1,0.2),(0.6,0.3,0.4)

)
,
(

v2
(0.5,0.3,0.2),(0.8,0.2,0.4),(0.5,0.3,0.2)

)
,
(

v3
(0.6,0.3,0.8),(0.3,0.2,0.1),(0.5,0.4,0.3)

)
, 0.6

]
,[

(e2, p, 1),
(

v1
(0.6,0.4,0.2),(0.3,0.1,0.4),(0.8,0.2,0.5)

)
,
(

v2
(0.8,0.3,0.4),(0.2,0.1,0.5),(0.4,0.3,0.5)

)
,
(

v3
(0.8,0.3,0.2),(0.3,0.1,0.4),(0.2,0.1,0.4)

)
, 0.8

]
,[

(e2, q, 1),
(

v1
(0.5,0.2,0.4),(0.3,0.2,0.5),(0.6,0.1,0.3)

)
,
(

v2
(0.6,0.4,0.7),(0.5,0.3,0.2),(0.6,0.2,0.4)

)
,
(

v3
(0.6,0.5,0.4),(0.1,0.3,0.2),(0.6,0.2,0.3)

)
, 0.4

]
,[

(e3, p, 1),
(

v1
(0.8,0.1,0.5),(0.2,0.3,0.4),(0.5,0.2,0.3)

)
,
(

v2
(0.7,0.2,0.5),(0.1,0.2,0.3),(0.3,0.2,0.1)

)
,
(

v3
(0.4,0.3,0.7),(0.3,0.1,0.4),(0.5,0.3,0.2)

)
, 0.3

]
,[

(e3, q, 1),
(

v1
(0.7,0.2,0.4),(0.3,0.1,0.5),(0.6,0.2,0.1)

)
,
(

v2
(0.9,0.4,0.5),(0.2,0.4,0.5),(0.1,0.2,0.3)

)
,
(

v3
(0.6,0.8,0.9),(0.2,0.1,0.6),(0.3,0.1,0.4)

)
, 0.4

]
,[

(e1, q, 0),
(

v1
(0.7,0.1,0.4),(0.3,0.2,0.1),(0.4,0.2,0.5)

)
,
(

v2
(0.6,0.5,0.4),(0.4,0.2,0.1),(0.8,0.2,0.6)

)
,
(

v3
(0.9,0.4,0.5),(0.2,0.1,0.3),(0.6,0.2,0.3)

)
, 0.7

]
,[

(e2, p, 0),
(

v1
(0.6,0.5,0.7),(0.3,0.5,0.4),(0.6,0.3,0.4)

)
,
(

v2
(0.5,0.2,0.3),(0.2,0.1,0.3),(0.4,0.3,0.5)

)
,
(

v3
(0.6,0.3,0.4),(0.1,0.2,0.4),(0.5,0.3,0.2)

)
, 0.8

]
,[

(e2, q, 0),
(

v1
(0.3,0.1,0.2),(0.4,0.1,0.3),(0.5,0.2,0.6)

)
,
(

v2
(0.7,0.2,0.4),(0.4,0.3,0.6),(0.5,0.1,0.6)

)
,
(

v3
(0.7,0.3,0.5),(0.2,0.4,0.3),(0.5,0.2,0.3)

)
, 0.4

]
,[

(e3, p, 0),
(

v1
(0.8,0.5,0.4),(0.2,0.4,0.3),(0.6,0.3,0.4)

)
,
(

v2
(0.5,0.2,0.3),(0.4,0.1,0.2),(0.2,0.1,0.4)

)
,
(

v3
(0.4,0.3,0.2),(0.2,0.1,0.6),(0.7,0.3,0.2)

)
, 0.5

]
,[

(e3, q, 0),
(

v1
(0.6,0.1,0.4),(0.2,0.1,0.5),(0.4,0.2,0.3)

)
,
(

v2
(0.7,0.2,0.5),(0.4,0.3,0.2),(0.1,0.2,0.3)

)
,
(

v3
(0.5,0.3,0.4),(0.3,0.2,0.4),(0.4,0.2,0.3)

)
, 0.1

]}
.

Step 2-Construct the neutrosophic soft expert tables for each opinion (agree, disagree) of expert.
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Step 3-Now calculate the score of agree (vi) by using the data in Table 1 to obtain values in Table 2.

(
D1
)agg

G1
=

(
D1

G1
+D1

G2
+D1

G3
3

)
.
(

Ω1+Ω2+Ω3
3

)
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( 0.3+0.6+0.8

3
)
.
( 0.7+0.8+0.3

3
)
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D2
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+D2

G2
+D2

G3
3

)
.
(

Ω1+Ω2+Ω3
3

)
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0.1+0.4+0.1
3

)
.
( 0.7+0.8+0.3

3
)

= 0.12(
D3
)agg
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(
D3

G1
+D3
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+D3

G3
3

)
.
(

Ω1+Ω2+Ω3
3

)
=
(

0.4+0.2+0.5
3

)
.
( 0.7+0.8+0.3

3
)

= 0.22
(D)

agg
G1

(p, v1) = 0.34+0.12+0.22
3 = 0.2267(

I1
)agg

G1
=

(
I1
G1

+I1
G2

+I1
G3

3

)
.
(
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3

)
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=

(
I2
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+I2
G2

+I2
G3

3

)
.
(

Ω1+Ω2+Ω3
3

)
=
(

0.1+0.1+0.3
3

)
.
( 0.7+0.8+0.3

3
)

= 0.1002(
I3
)agg

G1
=

(
I3
G1

+I3
G2

+I3
G3

3

)
.
(

Ω1+Ω2+Ω3
3

)
=
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0.5+0.4+0.4
3

)
.
( 0.7+0.8+0.3

3
)

= 0.2604
(I)agg

G1
(p, v1) = 0.1404+0.1002+0.2604

3 = 0.167(
Y1
)agg

G1
=

(
Y1

G1
+Y1

G2
+Y1

G3
3

)
.
(

Ω1+Ω2+Ω3
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=
( 0.5+0.8+0.5

3
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.
( 0.7+0.8+0.3

3
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= 0.36(
Y2
)agg

G1
=

(
Y2

G1
+Y2

G2
+Y2

G3
3

)
.
(

Ω1+Ω2+Ω3
3
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=
( 0.2+0.2+0.2
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G1
+Y3

G2
+Y3

G3
3

)
.
(

Ω1+Ω2+Ω3
3

)
=
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= 0.2802
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(p, v1) = 0.36+0.12+0.2802
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G1
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G1
− (Y)agg

G1

∣∣∣ = |0.2267− 0.167− 0.2534| = 0.1937

Table 1. Agree-neutrosophic soft expert multiset.

v1 v2 v3 Ω

(e1, p) 〈(0.3, 0.1, 0.4), (0.2, 0.1, 0.5), (0.5, 0.2, 0.6)〉 〈(0.4, 0.2, 0.3), (0.7, 0.1, 0.6), (0.3, 0.2, 0.6)〉 〈(0.5, 0.3, 0.4), (0.2, 0.1, 0.8), (0.4, 0.2, 0.3)〉 0.7
(e2, p) 〈(0.6, 0.4, 0.2), (0.3, 0.1, 0.4), (0.8, 0.2, 0.5)〉 〈(0.8, 0.3, 0.4), (0.2, 0.1, 0.5), (0.4, 0.3, 0.5)〉 〈(0.8, 0.3, 0.2), (0.3, 0.1, 0.4), (0.2, 0.1, 0.4)〉 0.8
(e3, p) 〈(0.8, 0.1, 0.5), (0.2, 0.3, 0.4), (0.5, 0.2, 0.3)〉 〈(0.7, 0.2, 0.5), (0.1, 0.2, 0.3), (0.3, 0.2, 0.1)〉 〈(0.4, 0.3, 0.7), (0.3, 0.1, 0.4), (0.5, 0.3, 0.2)〉 0.3
(e1, q) 〈(0.4, 0.2, 0.5), (0.3, 0.1, 0.2), (0.6, 0.3, 0.4)〉 〈(0.5, 0.3, 0.2), (0.8, 0.2, 0.4), (0.5, 0.3, 0.2)〉 〈(0.6, 0.3, 0.8), (0.3, 0.2, 0.1), (0.5, 0.4, 0.3)〉 0.6
(e2, q) 〈(0.5, 0.2, 0.4), (0.3, 0.2, 0.5), (0.6, 0.1, 0.3)〉 〈(0.6, 0.4, 0.7), (0.5, 0.3, 0.2), (0.6, 0.2, 0.4)〉 〈(0.6, 0.5, 0.4), (0.1, 0.3, 0.2), (0.6, 0.2, 0.3)〉 0.4
(e3, q) 〈(0.7, 0.2, 0.4), (0.3, 0.1, 0.5), (0.6, 0.2, 0.1)〉 〈(0.9, 0.4, 0.5), (0.2, 0.4, 0.5), (0.1, 0.2, 0.3)〉 〈(0.6, 0.8, 0.9), (0.2, 0.1, 0.6), (0.3, 0.1, 0.4)〉 0.4
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Table 2. Degree table of agree- neutrosophic soft expert multiset.

v1 v2 v3

p 0.1136 0.1267 0.093
q 0.1142 0.0933 0.015

Now calculate the score of disagree (vi) by using the data in Table 3 to obtain values in Table 4.

Table 3. Disagree-neutrosophic soft expert multiset.

v1 v2 v3 Ω

(e1, p) 〈(0.5, 0.1, 0.7), (0.4, 0.2, 0.3), (0.5, 0.4, 0.1)〉 〈(0.8, 0.2, 0.3), (0.2, 0.1, 0.4), (0.3, 0.4, 0.5)〉 〈(0.5, 0.2, 0.6), (0.3, 0.4, 0.1), (0.2, 0.3, 0.1)〉 0.9
(e2, p) 〈(0.6, 0.5, 0.7), (0.3, 0.5, 0.4), (0.6, 0.3, 0.4)〉 〈(0.5, 0.2, 0.3), (0.2, 0.1, 0.3), (0.4, 0.3, 0.5)〉 〈(0.6, 0.3, 0.4), (0.1, 0.2, 0.4), (0.5, 0.3, 0.2)〉 0.8
(e3, p) 〈(0.8, 0.5, 0.4), (0.2, 0.4, 0.3), (0.6, 0.3, 0.4)〉 〈(0.5, 0.2, 0.3), (0.4, 0.1, 0.2), (0.2, 0.1, 0.4)〉 〈(0.4, 0.3, 0.2), (0.2, 0.1, 0.6), (0.7, 0.3, 0.2)〉 0.5
(e1, q) 〈(0.7, 0.1, 0.4), (0.3, 0.2, 0.1), (0.4, 0.2, 0.5)〉 〈(0.6, 0.5, 0.4), (0.4, 0.2, 0.1), (0.8, 0.2, 0.6)〉 〈(0.9, 0.4, 0.5), (0.2, 0.1, 0.3), (0.6, 0.2, 0.3)〉 0.7
(e2, q) 〈(0.3, 0.1, 0.2), (0.4, 0.1, 0.3), (0.5, 0.2, 0.6)〉 〈(0.7, 0.2, 0.4), (0.4, 0.3, 0.6), (0.5, 0.1, 0.6)〉 〈(0.7, 0.3, 0.5), (0.2, 0.4, 0.3), (0.5, 0.2, 0.3)〉 0.4
(e3, q) 〈(0.6, 0.1, 0.4), (0.2, 0.1, 0.5), (0.4, 0.2, 0.3)〉 〈(0.7, 0.2, 0.5), (0.4, 0.3, 0.2), (0.1, 0.2, 0.3)〉 〈(0.5, 0.3, 0.4), (0.3, 0.2, 0.4), (0.4, 0.2, 0.3)〉 0.1

Table 4. Degree table of disagree-neutrosophic soft expert multiset.

v1 v2 v3

p 0.1631 0.1468 0.1386
q 0.1155 0.0933 0.04

Step 4-The final score of vi is computed as follows:

Score(v1) = 0.1142− 0.1155 = −0.0013,
Score(v2) = 0.1267− 0.0933 = 0.0334,
Score(v3) = 0.093− 0.04 = 0.053.

Step 5-Clearly, the maximum score is the score 0.053, shown in the above for the v3. Hence the best
decision for the experts is to select worker v2 as the company’s employee.

8. Comparison Analysis

The NSEMs model give more precision, flexibility and compatibility compared to the classical,
fuzzy and/or neutrosophic models.

In order to verify the feasibility and effectiveness of the proposed decision-making approach, a
comparison analysis using neutrosophic soft expert decision method, with those methods used by
Alkhazaleh and Salleh [18], Maji [17], Sahin et al. [22], Hassan et al. [23] and Ulucay et al. [40] are given
in Table 5, based on the same illustrative example as in An Application of NSEMs. Clearly, the ranking
order results are consistent with those in [17,18,22,23,40].

Table 5. Comparison of fuzzy soft set and its extensive set theory.

Fuzzy Soft Expert Neutrosophic
Soft Set

Neutrosophic
Soft Expert

Q-Neutrosophic
Soft Expert

Generalized
Neutrosophic

Soft Expert
NSEMs

Methods Alkhazaleh and
Salleh [22] Maji [21] Sahin et al. [26] Hassan et al.

[27] Ulucay et al. [48] Proposed Method
in this paper

Domain Universe of
discourse

Universe of
discourse

Universe of
discourse

Universe of
discourse

Universe of
discourse

Universe of
discourse

True Yes Yes Yes Yes Yes Yes
Falsity No Yes Yes Yes No No

Indeterminacy No Yes Yes Yes No No
Expert Yes No Yes Yes Yes No

Q No No No Yes Yes Yes
Ranking v1 > v3 > v2 v1 > v3 > v2 v1 > v2 > v3 v1 > v3 > v2 v1 > v3 > v2 v3 > v2 > v1

Membershipvalued Membership-valued Single-valued single-valued Single-valued Single-valued Multi-valued
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9. Conclusions

In this paper, we reviewed the basic concepts of neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets and NP-aggregation operator before establishing the concept
of neutrosophic soft expert multiset (NSEM). The basic operations of NSEMs, namely complement,
union, intersection AND and OR were defined. Subsequently a definition of NSEM-aggregation
operator is proposed to construct an algorithm of a NSEM decision method. Finally an application
of the constructed algorithm to solve a decision-making problem is provided. This new extension
will provide a significant addition to existing theories for handling indeterminacy, and spurs more
developments of further research and pertinent applications.
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