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ABSTRACT Traditional time series forecasting models mainly assume a clear and definite functional 

relationship between historical values and current/future values of a dataset. In this paper, we extended 

current model by generating multi-attribute forecasting rules based on consideration of combining multiple 

related variables. In this model, neutrosophic soft sets (NSSs) are employed to represent historical statues of 

several closely related attributes in stock market such as volumes, stock market index and daily amplitudes. 

Specifically speaking, the status of up, equal and down in historical stock index can be represented by truth, 

indeterminacy and false respectively by Neutrosophic Sets (NSs) and NSSs can build mappings of different 

related attributes to NSs. The advantages of proposed model are: (1) Using NSSs to enclose different 

historical characteristics in time series to preserve inherent complexity of a dataset with mapping adequate 

features. (2) With existing researches of NSSs, it’s efficient with using Euclidean distance to find the 

optimal rules thus the model can avoid incomplete of rules due to limited sample dataset. To evaluate the 

performance of the model, we explored the closing prices of Taiwan Stock Exchange Capitalization 

Weighted Stock Index (TAIEX) as the major parameter we forecast and the stock amplitudes and volumes 

as other factors to facilitate the predicting of the TAIEX. To show the universality of the model, we applied 

the proposed model to forecast some other influential indexes as well. 

INDEX TERMS fuzzy time series; neutrosophic soft set; Euclidean distance; forecasting model 

I. INTRODUCTION 

Predicting stock prices has been attractive to stock 

managers and financial analysts for a long time. The reason 

is stock market index would heavily influence stock 

investors when they make investment decisions, thus an 

accurate forecasting algorithm is eagerly desired. To 

achieve the algorithms, many scholars and financial 

analysts sought to generalize forecasting rules from 

historical data [1] and designed time series models with 

statistical tools. For example, regression analysis, moving 

averages, integrated moving average and autoregressive 
moving average models [2-5] have been widely used. 

Combining with complex network theory, many researchers 

implement nonlinear time series analysis by means of 

complex network methods [6-8]. Such methods obtain the 

characteristics of the transitions of the states in time series 

by analyzing the network’s topological structure. With 

development in computer science, some novel models such 

as artificial neural networks [9], quantile regression [10, 11] 

and random forest [12, 13] arose to handle upcoming 

problems that couldn’t efficiently be solved by traditional 

statistical methods, such as missing data and nonlinear 

relationships. In the purpose of processing historical data 

with linguistic terms and random noises, Song and Chissom 

[14-16] came up with models in fuzzy time series method. 

After those, many researchers have improved the original 

fuzzy time series models. For example, Chen [17] and 

Huarng [18] improved forecasting accuracy by modifying 
and extending some attributes of fuzzy time series models 

with findings suggest length of intervals could be essential 

regarding model performance, etc. As a generation of fuzzy 

set theory [19], Atanassov [20] developed intuitionistic 

fuzzy set (IFS) for expressing and processing uncertainty in 

a better fashion. Recently, several scholars researched IFS 

regarding its similarity measures [21] and developed 

forecasting models [22, 23] based on IFS.  

However, in stock index forecasting, many other inherent 

factors besides the historical data of the stock index itself 
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can significantly interact with stock market performance 

such as volumes, daily amplitude and performances of 

foreign stock markets etc., it would be helpful to generalize 

those factors into one forecasting model with expectation of 
more complete rules and preserved complexity. Recent 

years, many studies [24-26, 5] presented fuzzy time series 

forecasting models with consideration of foreign markets to 

build rules for forecasting future trends. Extending 

discussion to other fields, in 2002, Chen and Hwang [27] 

presented a fuzzy time series method with multiple 

attributes to predict local temperature. 

Regarding stock index forecasting, one efficient and 

accurate approach of conveniently comparing historical 

data is to divide them into three states of up, down and 

inconsistency. This idea coincided with neutrosophic sets 

(NSs) and their similarity comparisons. NS, firstly 
introduced by Smarandache [28], consists of three 

memberships: true, indeterminacy and false which could be 

matched to three states of stock index trends, respectively. 

Since introduced, NS has been developing robustly and 

introducing several extensions including single-valued NSs 

[29] and  interval-valued NSs [30]. Practically speaking, 

NSs have been applying in various fields. For some 

selected example, many researchers applied NSs in urban 

construction, decision making and supplier evaluation [31-

33]. Plus, similarity comparisons in NSs were also studied 

by scholars [34-36]. To deal with data with several 
attributes and uncertain items, Molodtsov [37] introduced 

theory of soft sets and a combined neutrosophic soft sets 

(NSSs) could take advantage of general mathematical tool 

proposed. NSSs have been extended to complex practical 

problems. For example, Peng et.al [38] presented single-

valued neutrosophic soft sets (SVNSSs) which can preserve 

more original information. 

In this paper, we present a stock market forecasting 

model based on NSSs and fuzzy time series. The novelty 

and advantage of the proposed model are given by: 1. Using 

NSSs to take different historical features of a stock market 

into consideration helps the model preserving inherent 
complexity. 2. With existing researches of NSSs, we 

employed Euclidean distance measurements to find optimal 

rules and overcame difficulty of incomplete rules due to 

imperfect sampling data. In order to illustrate the prediction 

steps, we firstly select relating parameters of the stock 

market, such as closing price, volume and amplitude, and 

convert their historical training data from the original time 

series to the fluctuation time series. Secondly, we used 

NSSs to show the possibility of three trends. Then, the 

historical training data are fuzzified to form a fuzzy logic 

relationship based on NSSs. Finally, finding the most 
suitable logic rules for predicting its future through using 

Euclidean distance measurement on the logic relationships 

and historical data of NSSs obtained before. 

The rest of the article is organized as follows: Section 2 

provides basic notions and backgrounds of time series, NSs, 

NSSs, and Euclidean distances of NSSs. Section 3 proposes 

the forecasting model based on NSSs and fuzzy time series. 

In Section 4, experimental results of the proposed method 

are compared with existing methods and we also use the 

proposed model to forecast TAIEX from 1998 to 2004 and 

several other influential indexes. The conclusions are 
discussed in Section 5. 
II. PRELIMINARIES 

2.1. Fuzzification 

Definition 1 (Fuzzy Time Series). Let   
             be a linguistic set in the universe of discourse 

 ; it can be defined by its membership function, 

             , where       denotes the grade of 

membership of   ,                   .  

Definition 2 (Fuzzy Fluctuation Time Series). The 

fluctuation trends of a stock market can be expressed by a 

linguistic set                   = {down, slightly down, 

equal, slightly up, up}. The element    and its subscript i is 

strictly increasing, so the function can be defined as 

follows:          .  
Let                   be a time series of real numbers, 

where T is the number of the time series.      is defined as 

a fluctuation time series, where                  . 

Each element of      can be represented by a fuzzy set  

                 as defined in Definition 1. Then we call 

time series      to be fuzzified into a fuzzy-fluctuation time 

series (FFTS)     . 
Definition 3 (Fuzzy Fluctuation Logical 

Relationship). Let                          be a 

FFTS. If      is determined by                       
  , then the fuzzy-fluctuation logical relationship is 
represented by: 

                              (1) 

In the same way, let                          
be a three-factor FFTS. If the next status of      is caused 

by the current status of        ,        and      , the three-

factor nth-order fuzzy-fluctuation is represented by: 

                                    
                         
      

(2) 

It is called the three-factor nth-order fuzzy-fluctuation 

logical relationship (FFLR) of the fuzzy-fluctuation time 

series, where                                      
is called the left-hand side (LHS) and       is called the 

right-hand side (RHS) of the FFLR. 

Example 1. Consider a three factor 2nd-order fuzzy 

fluctuation logical relationship where     , we may 
represent it as:  

                                          

      

(3) 

 
2.2 Neutrosophic Soft Set 

Definition 4 (Neutrosophic Set). . Let X be a space of 

objects with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-

membership function       , a indeterminacy-membership 

function       and a falsity-membership function      . If a 

neutrosophic set A consists of                   ， they 
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can be defined by its membership function, 

while                  are subsets of [0, 1], then A can be 

represent by: 

                            (4) 

Definition 5 (Neutrosophic Soft Set). Let   be a 

universe of discourse and E be a set of parameters. Let 

      denotes the set of all neutrosophic subsets of   

and    , A pair             is called a Neutrosophic 

Soft Set (NSS) over  , where      is a mapping given by 

           . 

Example 2. Consider a random example. Let   
              be the set of parameters that reflecting the 

fluctuation of the stock market and              be the 

set of parameters considered for forecasting problems. 

Assume: 

                          

                          

                          

Here                        expresses the upward, 

steady and downward trend of days with the parameter   . 

Parameter    expresses that the upward trend of these days 

using the degree of membership 0.6, indeterminacy 0.4 and 

falsity 0.8. Then the NSS             is given by 

                   
       

       
 

                                                      
2.3 Generating Neutrosophic Soft Set of Logical 

Relationship 

Definition 6 (Conversion of Fuzzy Fluctuation 

Logical Relationship). Let      
           be the truth-

membership, indeterminacy-membership and falsity-

membership of a neutrosophic set A(t), respectively. The 

LHS of a nth-order FFLR                          
can be generated by: 

     
  

                         

 
  

                            

(5) 

where        if S(t − j)   i and  , otherwise,      

represents the corresponding relationship between linguistic 

element   i   i      and the kth membership of a 

neutrosophic set A(t). Thus, the LHS of a nth-order FFLR 

                         can be converted into a 

neutrosophic set      
       

       
  . 

Definition 7 (Neutrosophic Soft Set of Logical 

Relationship). Let                          be a 
FFTS, A(t) be the LHS of a neutrosophic soft matrices 

logical relationship and                  be the set of 

parameters. The FFLRs with the similarity A(t) can be 

grouped into a FFLRG by putting all their RHSs together as 

on the RHS of the FFLRG. The RHSs of the FFRLG for 

A(t) can be represented by a Neutrosophic soft set of 

logical relationship(NSSLRs) as Definition 5.   

       
       

       
        

       
       

       
   

(6) 

where       
       

       
   represent the downward, steady, 

upward probabilities of the RHSs of the FFRLG for A(t).  

Example 3. With same data assumed in Example 2, 

let                           be a FFTS as 

definition 3. Then its NSSLR can be represent as: 

                                                     
                  

Here we assumed that the each pre-defined      
corresponds to the different NSs, such as {0, 0, 1}, {0, 0.5, 

0.5}, {0, 1, 0}, {0.5, 0.5, 0}, and {1, 0, 0}.  

2.4 Similarity Measurement 

     Definition 8 (Euclidean Distance). Let             ，
              be respectively NSSs, the Euclidean 

distance between A and B can be defined as: 

         
      

        
        

 

 

 

   

 (7) 

where                                    

                    
       

 

Through distance measurement, we define similarity 

between A and B as: 

       
 

        
 (8) 

Example 4. In this way, let A = 

                                    and B = 

                                    be two NSSs. Then 

the distance between them can be represented as : 

      

  
                                

 

  
                                

 
      

III. A NOVEL FORECASTING MODEL BASED ON 
NSSLRs 

In order to construct an nth-order fuzzy time series 

model, we represent the fuzzy relation by NSSs. The 

data from January to October in one year are used as 

training time series and the data from November to 

December are used as testing dataset. The steps of the 

method based on NSSs are given below. 
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Historical 
Training 

Data

· Establish the fuzzy-fluctuation logical 
relationships(FFLRs):

· Convert FFLRs to NSSLRs, such as:

· Use a NSS       to represent the historical statuses of 
current value Fi(t) .

· Find the similar sets A(k) in training data set based on 
similarity measures. According to the corresponding 
NSSLR, obtain the probabilities of down, equal and up 
trends from       .

· Forecast the fluctuation value of future:

Start

End

· Generate fluctuation time series:

                  Gi(t)=Fi(t)-Fi(t-1) (t=2,3,…, T,i=1,2,3),

· Define fuzzy sets: 

· Where l1,l2,l3:

· Fuzzify the FTS to FFTS:

1,2,3

T

Gi

t=2
i

(t)

l = i
T -1


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FIGURE 1.  Flow chart of neutrosophic soft sets forecasting model for multi-attribute time series. 

Step 1: Construct FFTS form the training data of 

two parameters. For each element         

                 in the historical time series of two 

parameters, its fluctuation trend is defined by       

                                .          

         can be fuzzified into a linguistic set {down, 

equal, up} depending on its range and orientation of 

the fluctuations. Thus, in the same way, we can also 

divide into 5 ranges such as {down, slightly down, 

equal, slightly up, up}       ∞  
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  ∞ . Similarly       and      can also be 

divided into five parts, where             are 

respectively defined as the whole mean of all 

elements in the fluctuation time series          

                .  

Step 2: According to definition 3, the time series 

of three-factor fuzzy fluctuation are determined. Each 

 
 
         can be represented by the fuzzy volatility 

of the previous n days, which can be used to establish 

the nth order FFLRs. 

Step 3: We use the NSS    to represent LHS of 

each FFLR, according to Definition 5 and 6. Each 

fuzzy number defined in step 1 represents a different 

magnitude of increase or decrease, so NSSs can be 

obtained by assigning weights to different states. 

Then, we can generate RHSs       for different LHSs 

described in definition 7. Thus, FFLRs of historical 

training data sets can be converted to NSSLRs. 

The nth-order fuzzy-fluctuation trends of each 

point      in the test dataset can be represented by a 

NSS       . For each       , compare        with        

respectively and find the similar sets by using the 

similarity measure described in Definition 8. 

Step 4: Choose the corresponding similar 

sets        as forecasting rule to forecast the fluctuation 

value         of next point. Finally, we get the 

forecasting value by                     . 

IV. EMPIRICAL ANALYSIS 

         To measure the efficiency of the proposed model, 

in this part, we used TAIEX as our primary example 

due to TAIEX has been widely studied by previous 

researches and thus it’s clear to compare our results 

with them. Also, to ensure the universality of our 

model, we employed Shanghai Stock Exchange 

Composite Index, NASDAQ Index and Shenzhen 

Index for comparisons with previous researches, 

respectively. 

A. Forecasting TAIEX 

The proposed method is applied to forecast the 

TAIEX1999, which is shown in Table2. These 

historical datasets of closing price, volume and 

amplitude are used as the training time series of three 

factors and the data from November to December are 

used as the testing dataset. Volume reflects the 

current capital trading situation and stock amplitude 

refers to the range between the lowest price and the 

highest price in a certain period of time, which reflects 

the current stock market activity. 

Step 1: First of all, we used the historical training 

data in TAIEX1999 to calculate the fluctuation trend. 

The intervals are determined by calculating the 

population means of the fluctuation numbers of the 

two training data sets. Then, the fluctuation time 

series of two factors can be converted into FFTS, 

respectively. For example, the whole means of the 

historical dataset of TAIEX1999 from January to 

October are 85 and 65. That is to say,   =85.40,   = 

19724.09 and    =65.87. For example,       = 6152.43 

and       = 6199.91,      =      -      =47.48,      = 

4, and      = 43900,      = 63500,      =             

=19600,        =4,      = 30.97,       = 

47.60,      =             =16.64,      =5. In this way, 

the three-factor fuzzified fluctuation dataset are 

shown in Appendix Table A1, Table A2 and Table A3 

respectively.  

Step2: Considering the impact of the previous 5 

days' historical data on future forecasting, we choose 

the previous 5 day to establish FFLRs. The 5-order 

FFLRs for the three-factor fuzzy fluctuation time 

series forecasting model are established based on the 

FFTS from 2nd January 1999 to 30th October 1999 shown 

in Table A1 ,Table A2and Table A3. 

Step 3: Convert the LHSs of the FFLRs in Table A1 

and Table A2 to NSSLRs. Due to different degrees of 

expression for each      , we assumed that each pre-

defined        in step 1 corresponds to different 

neutrosophic sets, such as {0, 0, 1}, {0, 0.5, 0.5}, {0, 1, 0}, 

{0.5, 0.5, 0}, and {1, 0, 0}. In this example, threshold 

similarity value is set to 0.90. Then, we can convert the 

RHSs of the corresponding FFLRs into neutrosophic sets. 

Details of conversion and grouping process are shown in 

Figure 2. We used a NSS to represent the RHSs group 

like Example 2 and Euclidean distances can be 

employed to obtain the most suitable NSSLRs. More 

detailed grouping and converting processes are shown 

in Fig2. The FFLRs of test dataset can be converted into 

NSSLRs as shown in Table 1. 
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data
Convert the LHS of FFLR to a 

NSS
Convert the grouped RHSs and 

generate the NSSLR

3,3,3,3,5;4,3,3,5,5;3,3,2,3,3 3

3,3,3,5,3;3,3,5,5,1;3,2,3,3,2 2

3,3,5,3,2;3,5,5,1,3;2,3,3,2,4 1

3,5,3,2,1;5,5,1,3,3;3,3,2,4,4 2

5,3,2,1,2;5,1,3,3,3;3,2,4,4,3 3

3,2,1,2,3;1,3,3,3,2;2,4,4,3,2 2

2,1,2,3,2;3,3,3,2,4;4,4,3,2,4 3

1,2,3,2,3;3,3,2,4,2;4,3,2,4,3 3

2,3,2,3,3;3,2,4,2,3;3,2,4,3,1 3

3,2,3,3,3;2,4,2,3,4;2,4,3,1,4 5

2,3,3,3,5;4,2,3,4,4;4,3,1,4,2 3

3,3,3,5,3;2,3,4,4,2;3,1,4,2,3 4

3,3,5,3,4;3,4,4,2,5;1,4,2,3,3 3

3,5,3,4,3;4,4,2,5,3;4,2,3,3,3 4

  

[(0.20,0.80,0.00) (0.50,0.50,0.00) (0.00,0.90,0.10)]
[(0.20,0.80,0.00) (0.40,0.40,0.20) (0.00,0.80,0.20)]
[(0.20,0.70,0.10) (0.40,0.40,0.20) (0.10,0.70,0.20)]
[(0.20,0.50,0.30) (0.40,0.40,0.20) (0.20,0.70,0.10)]
[(0.20,0.40,0.40) (0.20,0.60,0.20) (0.20,0.70,0.10)]
[(0.00,0.60,0.40) (0.00,0.70,0.30) (0.20,0.60,0.20)]
[(0.00,0.50,0.50) (0.10,0.80,0.10) (0.30,0.60,0.10)]
[(0.00,0.60,0.40) (0.10,0.70,0.20) (0.20,0.70,0.10)]
[(0.00,0.80,0.20) (0.10,0.70,0.20) (0.10,0.60,0.30)]
[(0.00,0.90,0.10) (0.20,0.60,0.20) (0.20,0.50,0.30)]
[(0.20,0.70,0.10) (0.30,0.60,0.10) (0.20,0.50,0.30)]
[(0.20,0.80,0.00) (0.20,0.60,0.20) (0.10,0.60,0.30)]
[(0.30,0.70,0.00) (0.40,0.50,0.10) (0.10,0.60,0.30)]
[(0.30,0.70,0.00) (0.40,0.50,0.10) (0.10,0.80,0.10)]

  

2,1,4,3,3,4,4,4,3,4,3,3,3,3
,3,3,3,3,4,5,4,3,3,3,4,5,3,

1,4,2,4,5

Group the RHSs of satisfied 
FFLRs

[(0.2,0.8,0)(0.5,0.5,0)(0,0.9,0.1)] (0.25,0.66,0.09)

    .

 

FIGURE 2.  Conversion and group process of fuzzy-fluctuation logical relationship (FFLRs)  

TABLE 1 

NSSLRS FROM 1 NOVEMBER1999 TO 28 DECEMBER 1999. 

Date 

(YYYY/MM/DD) 
NSSLRs 

1999/11/1 ((0.20,0.80,0.00),(0.50,0.50,0.00),(0.00,0.90,0.10))→(0.25,0.66,0.09) 

1999/11/2 ((0.20,0.80,0.00),(0.40,0.40,0.20),(0.00,0.80,0.20))→(0.26,0.65,0.09) 

1999/11/3 ((0.20,0.70,0.10),(0.40,0.40,0.20),(0.10,0.70,0.20))→(0.2,0.66,0.14) 

1999/11/4 ((0.20,0.50,0.30),(0.40,0.40,0.20),(0.20,0.70,0.10))→(0.17,0.63,0.20) 

1999/11/5 ((0.20,0.40,0.40),(0.20,0.60,0.20),(0.20,0.70,0.10))→(0.19,0.62,0.19) 

1999/11/6 ((0.00,0.60,0.40),(0.00,0.70,0.30),(0.20,0.60,0.20))→(0.18,0.53,0.29) 

1999/11/8 ((0.00,0.50,0.50),(0.10,0.80,0.10),(0.30,0.60,0.10))→(0.23,0.53,0.25) 

1999/11/9 ((0.00,0.60,0.40),(0.10,0.70,0.20),(0.20,0.70,0.10))→(0.16,0.53,0.32) 

1999/11/10 ((0.00,0.80,0.20),(0.10,0.70,0.20),(0.10,0.60,0.30))→(0.12,0.6,0.29) 

1999/11/11 ((0.00,0.90,0.10),(0.20,0.60,0.20),(0.20,0.50,0.30))→(0.15,0.65,0.21) 

1999/11/15 ((0.20,0.70,0.10),(0.30,0.60,0.10),(0.20,0.50,0.30))→(0.11,0.73,0.16) 

1999/11/16 ((0.20,0.80,0.00),(0.20,0.60,0.20),(0.10,0.60,0.30))→(0.15,0.63,0.21) 

1999/11/17 ((0.30,0.70,0.00),(0.40,0.50,0.10),(0.10,0.60,0.30))→(0.24,0.66,0.10) 

1999/11/18 ((0.30,0.70,0.00),(0.40,0.50,0.10),(0.10,0.80,0.10))→(0.3,0.64,0.05) 

1999/11/19 ((0.40,0.60,0.00),(0.50,0.40,0.10),(0.10,0.80,0.10))→(0.33,0.57,0.10) 

1999/11/20 ((0.30,0.70,0.00),(0.50,0.40,0.10),(0.10,0.90,0.00))→(0.35,0.59,0.06) 

1999/11/22 ((0.50,0.50,0.00),(0.50,0.50,0.00),(0.10,0.80,0.10))→(0.29,0.62,0.10) 

1999/11/23 ((0.60,0.40,0.00),(0.40,0.60,0.00),(0.20,0.70,0.10))→(0.29,0.57,0.14) 

1999/11/24 ((0.60,0.40,0.00),(0.40,0.50,0.10),(0.20,0.70,0.10))→(0.28,0.60,0.13) 

1999/11/25 ((0.50,0.40,0.10),(0.20,0.50,0.30),(0.10,0.80,0.10))→(0.24,0.54,0.22) 

1999/11/26 ((0.40,0.50,0.10),(0.10,0.60,0.30),(0.10,0.80,0.10))→(0.20,0.63,0.17) 

1999/11/29 ((0.20,0.50,0.30),(0.30,0.40,0.30),(0.30,0.70,0.00))→(0.17,0.63,0.21) 

1999/11/30 ((0.20,0.50,0.30),(0.20,0.30,0.50),(0.20,0.60,0.20))→(0.21,0.51,0.28) 

1999/12/1 ((0.20,0.40,0.40),(0.20,0.40,0.40),(0.20,0.60,0.20))→(0.19,0.56,0.25) 

1999/12/2 ((0.30,0.40,0.30),(0.20,0.40,0.40),(0.20,0.40,0.40))→(0.31,0.54,0.15) 

1999/12/3 ((0.30,0.40,0.30),(0.30,0.30,0.40),(0.20,0.40,0.40))→(0.21,0.59,0.20) 

1999/12/4 ((0.40,0.50,0.10),(0.30,0.30,0.40),(0.00,0.60,0.40))→(0.23,0.56,0.21) 

1999/12/6 ((0.20,0.70,0.10),(0.40,0.40,0.20),(0.10,0.70,0.20))→(0.20,0.66,0.14) 

1999/12/7 ((0.20,0.70,0.10),(0.40,0.30,0.30),(0.10,0.70,0.20))→(0.20,0.60,0.20) 

1999/12/8 ((0.10,0.70,0.20),(0.40,0.50,0.10),(0.10,0.90,0.00))→(0.22,0.62,0.16) 

1999/12/9 ((0.10,0.70,0.20),(0.40,0.50,0.10),(0.10,0.90,0.00))→(0.22,0.62,0.16) 

1999/12/10 ((0.00,0.70,0.30),(0.20,0.70,0.10),(0.10,0.90,0.00))→(0.14,0.56,0.31) 

1999/12/13 ((0.00,0.70,0.30),(0.10,0.70,0.20),(0.00,0.90,0.10))→(0.14,0.60,0.26) 

1999/12/14 ((0.20,0.60,0.20),(0.10,0.80,0.10),(0.00,0.90,0.10))→(0.12,0.67,0.21) 

1999/12/15 ((0.20,0.70,0.10),(0.20,0.70,0.10),(0.00,0.90,0.10))→(0.17,0.63,0.20) 

1999/12/16 ((0.20,0.70,0.10),(0.10,0.80,0.10),(0.00,0.90,0.10))→(0.13,0.61,0.26) 

1999/12/17 ((0.20,0.70,0.10),(0.20,0.70,0.10),(0.20,0.70,0.10))→(0.13,0.68,0.19) 

1999/12/18 ((0.20,0.70,0.10),(0.20,0.70,0.10),(0.20,0.70,0.10))→(0.13,0.68,0.19) 

1999/12/20 ((0.10,0.80,0.10),(0.20,0.60,0.20),(0.20,0.70,0.10))→(0.14,0.63,0.23) 
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1999/12/21 ((0.10,0.80,0.10),(0.10,0.60,0.30),(0.20,0.70,0.10))→(0.15,0.61,0.24) 

1999/12/22 ((0.30,0.60,0.10),(0.30,0.40,0.30),(0.30,0.60,0.10))→(0.23,0.60,0.18) 

1999/12/23 ((0.40,0.60,0.00),(0.30,0.40,0.30),(0.10,0.70,0.20))→(0.26,0.58,0.16) 

1999/12/24 ((0.50,0.50,0.00),(0.30,0.30,0.40),(0.10,0.80,0.10))→(0.26,0.57,0.17) 

1999/12/27 ((0.60,0.40,0.00),(0.50,0.20,0.30),(0.10,0.70,0.20))→(0.33,0.63,0.04) 

1999/12/28 ((0.80,0.20,0.00),(0.60,0.20,0.20),(0.30,0.50,0.20))→(0.38,0.54,0.08) 

 

Step 4: Based on the NSSLRs obtained in Step 3, 

we can forecast the test dataset from 1 November 1999 

to 28 December. For example, as in Table 1, the 

forecasting values of the TAIEX on 1 November 1999 

are calculated as follows.  

Locate the NSSLRs with the highest similarity 

based on similarity measure as Definition 9, then 

                                                     

                 can be obtained as the best rule to 

forecast its future. Respectively, we calculate the 

expected number of the NS (0.25, 0.66, 0.09), the 

expected number are: 

                       

The fluctuation from current value to next value 

can be obtained for forecasting by defuzzifying the 

fluctuation fuzzy number, shown as follows: 

                                    

Finally, the forecasted value can be obtained by 

current value and the fluctuation value: 

                                            

According to the above steps, the results of the 

forecasting model are shown in Table 2 and Fig 3. 

 

FIGURE 3.  Forecasting results from 1 November1999 to 28 December 1999.  

TABLE 2 

FORECASTING RESULTS FROM 1 NOVEMBER1999 TO 28 DECEMBER 1999. 

Date 

(YYYY/MM/DD) 
Actual Forecast (Forecast–Actual)2 

Date 

(YYYY/MM/DD) 
Actual Forecast (Forecast–Actual)2 

1999/11/1 7814.89 7868.51 2875.55 1999/12/1 7766.2 7715.75  2545.61 

1999/11/2 7721.59 7829.41 11624.76 1999/12/2 7806.26 7779.86  696.74 

1999/11/3 7580.09 7726.71 21498.61 1999/12/3 7933.17 7807.11  15890.11 

1999/11/4 7469.23 7577.53 11728.45 1999/12/4 7964.49 7934.88  876.87 

1999/11/5 7488.26 7469.23 362.14 1999/12/6 7894.46 7969.61  5648.13 

1999/11/6 7376.56 7478.87 10466.50 1999/12/7 7827.05 7894.46  4544.11 

1999/11/8 7401.49 7374.85 709.58 1999/12/8 7811.02 7832.17  447.49 

1999/11/9 7362.69 7387.83 631.81 1999/12/9 7738.84 7816.14  5975.92 

1999/11/10 7401.81 7348.17 2877.05 1999/12/10 7733.77 7724.32  89.27 

1999/11/11 7532.22 7396.69 18369.48 1999/12/13 7883.61 7723.52  25628.21 

1999/11/15 7545.03 7527.95 291.73 1999/12/14 7850.14 7875.92  664.81 

1999/11/16 7606.2 7539.91 4394.90 1999/12/15 7859.89 7847.58  151.59 

1999/11/17 7645.78 7618.16 763.08 1999/12/16 7739.76 7848.79  11887.08 

1999/11/18 7718.06 7667.13 2593.84 1999/12/17 7723.22 7734.64  130.32 

1999/11/19 7770.81 7737.70 1096.12 1999/12/18 7797.87 7718.10  6363.90 

1999/11/20 7900.34 7795.58 10975.43 1999/12/20 7782.94 7790.18  52.47 

1999/11/22 8052.31 7916.57 18426.38 1999/12/21 7934.26 7775.25  25282.94 

1999/11/23 8046.19 8065.12 358.35 1999/12/22 8002.76 7938.53  4125.49 

1999/11/24 7921.85 8059.00 18810.16 1999/12/23 8083.49 8011.30  5211.38 

1999/11/25 7904.53 7923.56 362.07 1999/12/24 8219.45 8091.18  16454.20 
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1999/11/26 7595.44 7907.09 97126.99 1999/12/27 8415.07 8244.22  29190.99 

1999/11/29 7823.9 7592.02 53766.50 1999/12/28 8448.84 8440.69  66.42 

1999/11/30 7720.87 7817.92 9419.08 RMSE 101.26 

 

In order to confirm the performance of the 

proposed method, we compare the difference between 

the forecasted values and the actual values. The 

performance can be evaluated using the mean 

squared error (MSE), root of the mean squared error 

(RMSE), mean absolute error (MAE) etc. These 

indicators are defined by Equations (9)–(11): 

    
                          

   

 
 (9) 

      
                          

   

 
 (10) 

    
                         

   

 
 (11) 

Where n denotes the number of values to be 

forecasted, forecast(t) and actual(t) denote the 

predicted value and actual value at time t, 

respectively. From Table 2, we can calculate the MSE, 

RMSE and MAE are 10253.59, 101.26, 78.25, 

respectively. 

To prove the validity of the proposed method, the 

TAIEX data from 1998 to 2006 are employed to 

forecast in the same way, which are shown in Fig 4. 

   
(1998) (1999) （2000） 

   
（2001） (2002) (2003) 

   
(2004) (2005) (2006) 

FIGURE 4.  The stock market fluctuation for TAIEX test dataset (1998–2006). 

Due to different similarity measures can affect the 

prediction effect, we compared our proposed model 

to predict TAIEX, Hang Seng Index and Nikkei index 

from 1998 to 2006 and select 4 typical models to 

compare with proposed model which are shown in 

Figure 5. Among these chosen models, Chen's model 

[17] and Yu's model [39] are both typical fuzzy time 

series models, Wan’s method [40] is a popular 

machine learning method and the last one [41] is 
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based on rough set to forecast stock price. Table 4 

shows the prediction errors of different prediction 

methods from 1999 to 2004. The validity of the model 

can be verified by comparing RMSEs of different 

methods and data sets of different years. The 

advantages of this method are NSSs effectively 

express the volatility degree of the previous n days of 

the stock market and convenient for computer 

calculation.  

TABLE 3 

 A COMPARISON OF RMSES AND AVERAGE RMSE FOR DIFFERENT MEASURES FOR FORECASTING THE TAIEX1997-2005. 

 1997 1998 1999 2000 2001 2002 2003 2004 2005 AVE. 

Hamming distance[1] 140.46 119.67 99.19 136.51 111.79 65.89 56.65 58.38 54.33 93.65 

Cosine distance[42] 142.14 115.20 101.98 129.70 113.75 66.05 53.82 54.88 53.33 92.32 

Euclidean distance[1] 140.41 114.70 101.24 128.71 112.19 66.13 55.82 54.74 54.11 92.00 

 

 
Figure 5. The results for average RMSE of different models for TAIEX, HIS, and Nikkei 1998-2006. 

 

TABLE 4 

 A COMPARISON OF RMSES FOR DIFFERENT METHODS FOR FORECASTING THE TAIEX1999-2004. 

Methods 1999 2000 2001 2002 2003 2004 Ave. 

Huarng et al.’s method[43] use NASDAQ N/A 158.7 136.49 95.15 65.51 73.57 105.88 

use Dow Jones N/A 165.80 138.25 93.73 72.95 73.49 108.84 

Chen and Chang’s model[44] 
use NASDAQ 123.64 131.10 115.08 73.06 66.36 60.48 94.95 

use Dow Jones 101.97 148.85 113.70 79.81 64.08 82.32 98.46 

Chen and Chen’s model[45] 
use NASDAQ 119.32 129.87 123.12 71.01 65.14 61.94 95.07 

use Dow Jones 115.47 127.51 121.98 74,56 66.02 58.89 94.09 

Chen’s Fuzzy Time Series Method[17] 120 176 148 101 74 84 102.83 

Yu and Huarng’s method[46] N/A 149.95 98.91 78.71 58.78 55.91 88.38 

Cheng and Yang ‘s model using rough set[41] 110.69 150.55 113.17 65.97 53.09 58.6 92.01 

The proposed method 

Five-Day forecasting 101.24 128.71 112.19 66.13 55.82 54.74 86.47 

Seven-Day forecasting 101.86 130.08 114.54 66.49 54.01 55.16 87.02 

Nine-Day forecasting 102.45 129.19 114.14 66.12 54.30 55.17 86.90 

B. Forecast other indexes 

In this section, the proposed method is used to 

predict the SHCECI, Shenzhen index and NASDAQ 

index which have important position in the financial 

industry. Daily closing price, volume and amplitude 

are selected as indicators to reflect the fluctuation of 

stock price. We use the three parameters data from 

January to October from 2004 to 2011 as the training 

data, establishing the NSSLRs and then predicted 
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these indexes from November to December. As is 

shown in Figure 6, we can see that forecasting of 

SHCECI, Shenzhen and NASDAQ stock market yields 

great results by using the proposed method. 

 
Figure 6. The RMSEs of proposed method for forecasting SHSECI, Shenzhen and NASDAQ. 

V. CONCLUSIONS 

In this paper, a new financial forecasting model 

based on NSSs is proposed. The main contribution is the 

use of NSSs, which can preserve inherent complexity of 

the dataset by enclosing relevant parameters. Regarding 

efficiency, we calculated Euclidean distances between 

NSSs to measure the similarity effectively. The empirical 

analysis shows that this model can predict the stock 

market of different years well. Regarding future 

researches, in this paper, we enclosed three other factors 

into the model. In fact, there are many other factors that 

may improve model performance. For example, other 

stock market fluctuations can be thought of as an 

influencing factor. We will also consider applying this 

model to predict other time series, such as college 

enrollment, electricity consumption, etc. In addition, we 

may consider using other methods to compare 

similarities of historical data, such as information 

entropy.  
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.Appendix A 

Table A1  Historical training data and fuzzified fluctuation data of TAIEX 1999 

Date 

(YYYY/MM/DD) 
TAIEX Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 
TAIEX Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 
TAIEX Fluctuation Fuzzified 

1999/1/5 6152.43   1999/2/1 5862.79 -135.53 1 1999/3/8 6431.96 10.23 3 

1999/1/6 6199.91 47.48 4 1999/2/2 5749.64 -113.15 2 1999/3/9 6493.43 61.47 4 

1999/1/7 6404.31 204.4 5 1999/2/3 5743.86 -5.78 3 1999/3/10 6486.61 -6.82 3 

1999/1/8 6421.75 17.44 3 1999/2/4 5514.89 -228.97 1 1999/3/11 6436.8 -49.81 2 

1999/1/11 6406.99 -14.76 3 1999/2/5 5474.79 -40.1 3 1999/3/12 6462.73 25.93 3 

1999/1/12 6363.89 -43.1 2 1999/2/6 5710.18 235.39 5 1999/3/15 6598.32 135.59 5 

1999/1/13 6319.34 -44.55 2 1999/2/8 5822.98 112.8 4 1999/3/16 6672.23 73.91 4 

1999/1/14 6241.32 -78.02 2 1999/2/9 5723.73 -99.25 2 1999/3/17 6757.07 84.84 4 

1999/1/15 6454.6 213.28 5 1999/2/10 5798 74.27 4 1999/3/18 6895.01 137.94 5 

1999/1/16 6483.3 28.7 3 1999/2/20 6072.33 274.33 5 1999/3/19 6997.29 102.28 4 

1999/1/18 6377.25 -106.05 2 1999/2/22 6313.63 241.3 5 1999/3/20 6993.38 -3.91 3 

1999/1/19 6343.36 -33.89 3 1999/2/23 6180.94 -132.69 1 1999/3/22 7043.23 49.85 4 

1999/1/20 6310.71 -32.65 3 1999/2/24 6238.87 57.93 4 1999/3/23 6945.48 -97.75 2 

1999/1/21 6332.2 21.49 3 1999/2/25 6275.53 36.66 3 1999/3/24 6889.42 -56.06 2 

1999/1/22 6228.95 -103.25 2 1999/2/26 6318.52 42.99 4 1999/3/25 6941.38 51.96 4 

1999/1/25 6033.21 -195.74 1 1999/3/1 6312.25 -6.27 3 1999/3/26 7033.25 91.87 4 

1999/1/26 6115.64 82.43 4 1999/3/2 6263.54 -48.71 2 1999/3/29 6901.68 -131.57 1 

1999/1/27 6138.87 23.23 3 1999/3/3 6403.14 139.6 5 1999/3/30 6898.66 -3.02 3 

1999/1/28 6063.41 -75.46 2 1999/3/4 6393.74 -9.4 3 1999/3/31 6881.72 -16.94 3 

1999/1/29 5984 -79.41 2 1999/3/5 6383.09 -10.65 3 1999/4/1 7018.68 136.96 5 

1999/1/30 5998.32 14.32 3 1999/3/6 6421.73 38.64 3 1999/4/2 7232.51 213.83 5 

1999/4/3 7182.2 -50.31 2 1999/5/6 7560.05 -12.11 3 1999/6/5 7639.3 48.86 4 

1999/4/6 7163.99 -18.21 3 1999/5/7 7469.33 -90.72 2 1999/6/7 7802.69 163.39 5 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2897719, IEEE Access

 

VOLUME XX, 2017 1 

1999/4/7 7135.89 -28.1 3 1999/5/10 7484.37 15.04 3 1999/6/8 7892.13 89.44 4 

1999/4/8 7273.41 137.52 5 1999/5/11 7474.45 -9.92 3 1999/6/9 7957.71 65.58 4 

1999/4/9 7265.7 -7.71 3 1999/5/12 7448.41 -26.04 3 1999/6/10 7996.76 39.05 3 

1999/4/12 7242.4 -23.3 3 1999/5/13 7416.2 -32.21 3 1999/6/11 7979.4 -17.36 3 

1999/4/13 7337.85 95.45 4 1999/5/14 7592.53 176.33 5 1999/6/14 7973.58 -5.82 3 

1999/4/14 7398.65 60.8 4 1999/5/15 7576.64 -15.89 3 1999/6/15 7960 -13.58 3 

1999/4/15 7498.17 99.52 4 1999/5/17 7599.76 23.12 3 1999/6/16 8059.02 99.02 4 

1999/4/16 7466.82 -31.35 3 1999/5/18 7585.51 -14.25 3 1999/6/17 8274.36 215.34 5 

1999/4/17 7581.5 114.68 4 1999/5/19 7614.6 29.09 3 1999/6/21 8413.48 139.12 5 

1999/4/19 7623.18 41.68 3 1999/5/20 7608.88 -5.72 3 1999/6/22 8608.91 195.43 5 

1999/4/20 7627.74 4.56 3 1999/5/21 7606.69 -2.19 3 1999/6/23 8492.32 -116.59 2 

1999/4/21 7474.16 -153.58 1 1999/5/24 7588.23 -18.46 3 1999/6/24 8589.31 96.99 4 

1999/4/22 7494.6 20.44 3 1999/5/25 7417.03 -171.2 1 1999/6/25 8265.96 -323.35 1 

1999/4/23 7612.8 118.2 4 1999/5/26 7426.63 9.6 3 1999/6/28 8281.45 15.49 3 

1999/4/26 7629.09 16.29 3 1999/5/27 7469.01 42.38 3 1999/6/29 8514.27 232.82 5 

1999/4/27 7550.13 -78.96 2 1999/5/28 7387.37 -81.64 2 1999/6/30 8467.37 -46.9 2 

1999/4/28 7496.61 -53.52 2 1999/5/29 7419.7 32.33 3 1999/7/2 8572.09 104.72 4 

1999/4/29 7289.62 -206.99 1 1999/5/31 7316.57 -103.13 2 1999/7/3 8563.55 -8.54 3 

1999/4/30 7371.17 81.55 4 1999/6/1 7397.62 81.05 4 1999/7/5 8593.35 29.8 3 

1999/5/3 7383.26 12.09 3 1999/6/2 7488.03 90.41 4 1999/7/6 8454.49 -138.86 1 

1999/5/4 7588.04 204.78 5 1999/6/3 7572.91 84.88 4 1999/7/7 8470.07 15.58 3 

1999/5/5 7572.16 -15.88 3 1999/6/4 7590.44 17.53 3 1999/7/8 8592.43 122.36 4 

1999/7/9 8550.27 -42.16 3 1999/8/9 7028.01 -21.73 3 1999/9/8 7973.3 27.54 3 

1999/7/12 8463.9 -86.37 2 1999/8/10 7269.6 241.59 5 1999/9/9 8025.02 51.72 4 

1999/7/13 8204.5 -259.4 1 1999/8/11 7228.68 -40.92 3 1999/9/10 8161.46 136.44 5 

1999/7/14 7888.66 -315.84 1 1999/8/12 7330.24 101.56 4 1999/9/13 8178.69 17.23 3 

1999/7/15 7918.04 29.38 3 1999/8/13 7626.05 295.81 5 1999/9/14 8092.02 -86.67 2 

1999/7/16 7411.58 -506.46 1 1999/8/16 8018.47 392.42 5 1999/9/15 7971.04 -120.98 2 

1999/7/17 7366.23 -45.35 2 1999/8/17 8083.43 64.96 4 1999/9/16 7968.9 -2.14 3 

1999/7/19 7386.89 20.66 3 1999/8/18 7993.71 -89.72 2 1999/9/17 7916.92 -51.98 2 
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1999/7/20 7806.85 419.96 5 1999/8/19 7964.67 -29.04 3 1999/9/18 8016.93 100.01 4 

1999/7/21 7786.65 -20.2 3 1999/8/20 8117.42 152.75 5 1999/9/20 7972.14 -44.79 2 

1999/7/22 7678.67 -107.98 2 1999/8/21 8153.57 36.15 3 1999/9/27 7759.93 -212.21 1 

1999/7/23 7724.52 45.85 4 1999/8/23 8119.98 -33.59 3 1999/9/28 7577.85 -182.08 1 

1999/7/26 7595.71 -128.81 1 1999/8/24 7984.39 -135.59 1 1999/9/29 7615.45 37.6 3 

1999/7/27 7367.97 -227.74 1 1999/8/25 8127.09 142.7 5 1999/9/30 7598.79 -16.66 3 

1999/7/28 7484.5 116.53 4 1999/8/26 8097.57 -29.52 3 1999/10/1 7694.99 96.2 4 

1999/7/29 7359.37 -125.13 2 1999/8/27 8053.97 -43.6 2 1999/10/2 7659.55 -35.44 3 

1999/7/30 7413.11 53.74 4 1999/8/30 8071.36 17.39 3 1999/10/4 7685.48 25.93 3 

1999/7/31 7326.75 -86.36 2 1999/8/31 8157.73 86.37 4 1999/10/5 7557.01 -128.47 1 

1999/8/2 7195.94 -130.81 1 1999/9/1 8273.33 115.6 4 1999/10/6 7501.63 -55.38 2 

1999/8/3 7175.19 -20.75 3 1999/9/2 8226.15 -47.18 2 1999/10/7 7612 110.37 4 

1999/8/4 7110.8 -64.39 2 1999/9/3 8073.97 -152.18 1 1999/10/8 7552.98 -59.02 2 

1999/8/5 6959.73 -151.07 1 1999/9/4 8065.11 -8.86 3 1999/10/11 7607.11 54.13 4 

1999/8/6 6823.52 -136.21 1 1999/9/6 8130.28 65.17 4 1999/10/12 7835.37 228.26 5 

1999/8/7 7049.74 226.22 5 1999/9/7 7945.76 -184.52 1 1999/10/13 7836.94 1.57 3 

1999/10/14 7879.91 42.97 4 1999/10/20 7666.64 -26.32 3 1999/10/27 7701.22 0.93 3 

1999/10/15 7819.09 -60.82 2 1999/10/21 7654.9 -11.74 3 1999/10/28 7681.85 -19.37 3 

1999/10/16 7829.39 10.3 3 1999/10/22 7559.63 -95.27 2 1999/10/29 7706.67 24.82 3 

1999/10/18 7745.26 -84.13 2 1999/10/25 7680.87 121.24 4 1999/10/30 7854.85 148.18 5 

1999/10/19 7692.96 -52.3 2 1999/10/26 7700.29 19.42 3     
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Table A2. Historical training data and fuzzified fluctuation data of TAIEX1999 

Date 

(YYYY/MM/DD) 

Stock 

Amplitude 
Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 

Stock 

Amplitude 
Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 

Stock 

Amplitude 
Fluctuation Fuzzified 

1999/1/5 3.10   1999/4/19 0.91 -0.50 2 1999/7/27 2.56  0.84  4 

1999/1/6 4.76 1.66 5 1999/4/20 1.74 0.82 4 1999/7/28 1.21  -1.36  1 

1999/1/7 3.68 -1.08 1 1999/4/21 3.25 1.51 5 1999/7/29 2.09  0.88  4 

1999/1/8 1.90 -1.78 1 1999/4/22 1.35 -1.90 1 1999/7/30 2.81  0.72  4 

1999/1/11 1.56 -0.33 2 1999/4/23 1.23 -0.12 3 1999/7/31 2.10  -0.72  2 

1999/1/12 1.32 -0.24 3 1999/4/26 1.23 0.01 3 1999/8/2 2.27  0.18  3 

1999/1/13 1.15 -0.17 3 1999/4/27 1.80 0.57 4 1999/8/3 2.89  0.61  4 

1999/1/14 1.72 0.57 4 1999/4/28 1.26 -0.54 2 1999/8/4 2.24  -0.65  2 

1999/1/15 4.46 2.74 5 1999/4/29 1.98 0.72 4 1999/8/5 1.92  -0.31  3 

1999/1/16 1.56 -2.91 1 1999/4/30 2.02 0.04 3 1999/8/6 2.95  1.02  5 

1999/1/18 1.55 -0.01 3 1999/5/3 1.02 -0.99 1 1999/8/7 4.24  1.30  5 

1999/1/19 1.53 -0.01 3 1999/5/4 1.69 0.67 4 1999/8/9 1.23  -3.02  1 

1999/1/20 1.08 -0.45 2 1999/5/5 1.11 -0.58 2 1999/8/10 3.27  2.04  5 

1999/1/21 1.49 0.41 4 1999/5/6 1.45 0.33 4 1999/8/11 1.58  -1.69  1 

1999/1/22 1.69 0.20 3 1999/5/7 1.50 0.05 3 1999/8/12 1.40  -0.17  3 

1999/1/25 2.29 0.60 4 1999/5/10 1.08 -0.42 2 1999/8/13 1.97  0.57  4 

1999/1/26 2.13 -0.17 3 1999/5/11 1.58 0.50 4 1999/8/16 2.74  0.76  4 

1999/1/27 1.23 -0.90 2 1999/5/12 1.33 -0.25 3 1999/8/17 2.05  -0.69  2 

1999/1/28 1.42 0.19 3 1999/5/13 1.07 -0.26 3 1999/8/18 1.94  -0.11  3 

1999/1/29 1.90 0.48 4 1999/5/14 1.07 0.00 3 1999/8/19 0.92  -1.02  1 

1999/1/30 2.12 0.23 3 1999/5/15 1.02 -0.05 3 1999/8/20 1.83  0.91  4 

1999/2/1 1.49 -0.63 2 1999/5/17 1.49 0.47 4 1999/8/21 1.50  -0.33  3 

1999/2/2 2.84 1.35 5 1999/5/18 2.23 0.74 4 1999/8/23 0.93  -0.58  2 

1999/2/3 3.07 0.22 3 1999/5/19 1.12 -1.11 1 1999/8/24 3.00  2.08  5 

1999/2/4 4.26 1.20 5 1999/5/20 1.28 0.15 3 1999/8/25 2.22  -0.79  2 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2897719, IEEE Access

 

VOLUME XX, 2017 1 

1999/2/5 3.68 -0.58 2 1999/5/21 1.28 0.00 3 1999/8/26 1.86  -0.36  2 

1999/2/6 3.55 -0.13 3 1999/5/24 1.33 0.05 3 1999/8/27 1.18  -0.68  2 

1999/2/8 1.95 -1.60 1 1999/5/25 1.88 0.54 4 1999/8/30 1.43  0.25  3 

1999/2/9 1.33 -0.62 2 1999/5/26 1.48 -0.40 2 1999/8/31 1.30  -0.13  3 

1999/2/10 2.48 1.15 5 1999/5/27 0.79 -0.68 2 1999/9/1 1.20  -0.10  3 

1999/2/20 1.89 -0.59 2 1999/5/28 1.16 0.37 4 1999/9/2 2.38  1.17  5 

1999/2/22 2.88 0.99 4 1999/5/29 1.02 -0.14 3 1999/9/3 1.78  -0.60  2 

1999/2/23 3.24 0.36 4 1999/5/31 1.66 0.64 4 1999/9/4 2.12  0.34  4 

1999/2/24 1.76 -1.48 1 1999/6/1 1.15 -0.51 2 1999/9/6 1.57  -0.55  2 

1999/2/25 1.95 0.19 3 1999/6/2 0.75 -0.41 2 1999/9/7 3.08  1.51  5 

1999/2/26 1.48 -0.47 2 1999/6/3 0.56 -0.19 3 1999/9/8 1.73  -1.35  1 

1999/3/1 1.10 -0.37 2 1999/6/4 0.46 -0.10 3 1999/9/9 1.08  -0.64  2 

1999/3/2 1.82 0.72 4 1999/6/5 0.86 0.39 4 1999/9/10 1.07  -0.02  3 

1999/3/3 2.53 0.71 4 1999/6/7 1.55 0.69 4 1999/9/13 1.07  0.00  3 

1999/3/4 1.28 -1.25 1 1999/6/8 0.80 -0.75 2 1999/9/14 1.65  0.58  4 

1999/3/5 1.84 0.57 4 1999/6/9 0.95 0.16 3 1999/9/15 1.82  0.17  3 

1999/3/6 1.28 -0.57 2 1999/6/10 0.91 -0.04 3 1999/9/16 1.11  -0.71  2 

1999/3/8 0.75 -0.52 2 1999/6/11 1.05 0.13 3 1999/9/17 1.64  0.54  4 

1999/3/9 1.30 0.54 4 1999/6/14 1.36 0.32 3 1999/9/18 0.90  -0.75  2 

1999/3/10 0.82 -0.48 2 1999/6/15 1.88 0.52 4 1999/9/20 0.87  -0.03  3 

1999/3/11 1.65 0.83 4 1999/6/16 1.64 -0.24 3 1999/9/27 0.07  -0.80  2 

1999/3/12 0.89 -0.75 2 1999/6/17 1.07 -0.57 2 1999/9/28 0.51  0.43  4 

1999/3/15 2.33 1.43 5 1999/6/21 1.87 0.80 4 1999/9/29 2.64  2.13  5 

1999/3/16 1.55 -0.78 2 1999/6/22 2.06 0.19 3 1999/9/30 1.45  -1.19  1 

1999/3/17 1.46 -0.09 3 1999/6/23 2.00 -0.06 3 1999/10/1 1.18  -0.27  3 

1999/3/18 1.53 0.07 3 1999/6/24 2.19 0.19 3 1999/10/2 1.92  0.74  4 

1999/3/19 1.55 0.02 3 1999/6/25 2.80 0.61 4 1999/10/4 1.58  -0.34  2 
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1999/3/20 1.32 -0.23 3 1999/6/28 1.09 -1.71 1 1999/10/5 2.73  1.15  5 

1999/3/22 1.08 -0.24 3 1999/6/29 1.24 0.15 3 1999/10/6 1.00  -1.74  1 

1999/3/23 2.77 1.69 5 1999/6/30 1.30 0.06 3 1999/10/7 1.25  0.25  3 

1999/3/24 1.24 -1.53 1 1999/7/2 1.31 0.01 3 1999/10/8 1.07  -0.17  3 

1999/3/25 1.32 0.08 3 1999/7/3 1.88 0.57 4 1999/10/11 0.96  -0.11  3 

1999/3/26 1.13 -0.19 3 1999/7/5 1.45 -0.43 2 1999/10/12 2.10  1.14  5 

1999/3/29 2.12 0.98 4 1999/7/6 2.48 1.03 5 1999/10/13 1.13  -0.97  2 

1999/3/30 1.92 -0.20 3 1999/7/7 1.28 -1.20 1 1999/10/14 1.20  0.07  3 

1999/3/31 1.40 -0.52 2 1999/7/8 0.98 -0.30 3 1999/10/15 1.64  0.44  4 

1999/4/1 2.06 0.66 4 1999/7/9 1.32 0.34 4 1999/10/16 1.51  -0.13  3 

1999/4/2 1.91 -0.15 3 1999/7/12 1.45 0.13 3 1999/10/18 1.09  -0.41  2 

1999/4/3 1.42 -0.50 2 1999/7/13 2.52 1.07 5 1999/10/19 1.41  0.32  3 

1999/4/6 0.98 -0.44 2 1999/7/14 5.33 2.80 5 1999/10/20 0.85  -0.56  2 

1999/4/7 1.12 0.14 3 1999/7/15 2.80 -2.52 1 1999/10/21 1.68  0.82  4 

1999/4/8 1.65 0.53 4 1999/7/16 7.75 4.94 5 1999/10/22 2.23  0.55  4 

1999/4/9 1.65 0.00 3 1999/7/17 3.95 -3.79 1 1999/10/25 1.38  -0.85  2 

1999/4/12 1.58 -0.07 3 1999/7/19 3.48 -0.47 2 1999/10/26 1.45  0.07  3 

1999/4/13 0.85 -0.72 2 1999/7/20 3.06 -0.42 2 1999/10/27 1.39  -0.06  3 

1999/4/14 0.84 -0.01 3 1999/7/21 2.43 -0.63 2 1999/10/28 0.85  -0.53  2 

1999/4/15 2.07 1.24 5 1999/7/22 1.59 -0.84 2 1999/10/29 1.12  0.26  3 

1999/4/16 2.35 0.28 3 1999/7/23 1.45 -0.14 3 1999/10/30 1.14  0.03  3 

1999/4/17 1.42 -0.93 2 1999/7/26 1.73 0.28 3     

            

 

  



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2897719, IEEE Access

 

VOLUME XX, 2017 1 

Table A3. Historical training data and fuzzified fluctuation data of TAIEX1999 

Date 

(YYYY/MM/DD) 
Volume Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 
Volume Fluctuation Fuzzified 

Date 

(YYYY/MM/DD) 
Volume Fluctuation Fuzzified 

1999/1/5 43900   1999/4/19 151900 14700 4 1999/7/27 79000 10300 4 

1999/1/6 63500 19600 4 1999/4/20 133100 -18800 2 1999/7/28 82800 3800 3 

1999/1/7 85100 21600 4 1999/4/21 149100 16000 4 1999/7/29 69100 -13700 2 

1999/1/8 98300 13200 4 1999/4/22 105800 -43300 1 1999/7/30 61100 -8000 3 

1999/1/11 87100 -11200 2 1999/4/23 149900 44100 5 1999/7/31 60000 -1100 3 

1999/1/12 85500 -1600 3 1999/4/26 134800 -15100 2 1999/8/2 53800 -6200 3 

1999/1/13 70600 -14900 2 1999/4/27 127300 -7500 3 1999/8/3 71300 17500 4 

1999/1/14 73900 3300 3 1999/4/28 114600 -12700 2 1999/8/4 63400 -7900 3 

1999/1/15 87200 13300 4 1999/4/29 111300 -3300 3 1999/8/5 58400 -5000 3 

1999/1/16 126400 39200 5 1999/4/30 102800 -8500 3 1999/8/6 67200 8800 3 

1999/1/18 57800 -68600 1 1999/5/3 106100 3300 3 1999/8/7 91800 24600 4 

1999/1/19 56900 -900 3 1999/5/4 138400 32300 5 1999/8/9 73900 -17900 2 

1999/1/20 50900 -6000 3 1999/5/5 140400 2000 3 1999/8/10 113700 39800 5 

1999/1/21 68300 17400 4 1999/5/6 146500 6100 3 1999/8/11 117300 3600 3 

1999/1/22 52700 -15600 2 1999/5/7 113800 -32700 1 1999/8/12 128200 10900 4 

1999/1/25 51100 -1600 3 1999/5/10 82700 -31100 1 1999/8/13 172500 44300 5 

1999/1/26 48700 -2400 3 1999/5/11 103300 20600 4 1999/8/16 168200 -4300 3 

1999/1/27 62300 13600 4 1999/5/12 69100 -34200 1 1999/8/17 164100 -4100 3 

1999/1/28 40700 -21600 2 1999/5/13 69500 400 3 1999/8/18 148300 -15800 2 

1999/1/29 51700 11000 4 1999/5/14 107500 38000 5 1999/8/19 101900 -46400 1 

1999/1/30 51700 0 3 1999/5/15 103800 -3700 3 1999/8/20 139300 37400 5 

1999/2/1 39700 -12000 2 1999/5/17 131000 27200 4 1999/8/21 164300 25000 4 

1999/2/2 44700 5000 3 1999/5/18 129300 -1700 3 1999/8/23 97300 -67000 1 

1999/2/3 57200 12500 4 1999/5/19 151500 22200 4 1999/8/24 104700 7400 3 
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1999/2/4 56600 -600 3 1999/5/20 138300 -13200 2 1999/8/25 125300 20600 4 

1999/2/5 60700 4100 3 1999/5/21 102300 -36000 1 1999/8/26 149800 24500 4 

1999/2/6 67500 6800 3 1999/5/24 110900 8600 3 1999/8/27 101400 -48400 1 

1999/2/8 74100 6600 3 1999/5/25 146300 35400 5 1999/8/30 130900 29500 4 

1999/2/9 47600 -26500 2 1999/5/26 108600 -37700 1 1999/8/31 151600 20700 4 

1999/2/10 55000 7400 3 1999/5/27 126700 18100 4 1999/9/1 192800 41200 5 

1999/2/20 57800 2800 3 1999/5/28 108900 -17800 2 1999/9/2 162400 -30400 1 

1999/2/22 87000 29200 4 1999/5/29 121500 12600 4 1999/9/3 116200 -46200 1 

1999/2/23 108600 21600 4 1999/5/31 111400 -10100 2 1999/9/4 144500 28300 4 

1999/2/24 78300 -30300 1 1999/6/1 83400 -28000 2 1999/9/6 127400 -17100 2 

1999/2/25 94700 16400 4 1999/6/2 118900 35500 5 1999/9/7 127700 300 3 

1999/2/26 61900 -32800 1 1999/6/3 155500 36600 5 1999/9/8 115400 -12300 2 

1999/3/1 69700 7800 3 1999/6/4 132800 -22700 2 1999/9/9 106300 -9100 3 

1999/3/2 62200 -7500 3 1999/6/5 151300 18500 4 1999/9/10 124700 18400 4 

1999/3/3 87100 24900 4 1999/6/7 175200 23900 4 1999/9/13 118600 -6100 3 

1999/3/4 99800 12700 4 1999/6/8 176000 800 3 1999/9/14 106200 -12400 2 

1999/3/5 72800 -27000 2 1999/6/9 186200 10200 4 1999/9/15 90300 -15900 2 

1999/3/6 79800 7000 3 1999/6/10 198000 11800 4 1999/9/16 68400 -21900 2 

1999/3/8 50300 -29500 2 1999/6/11 162400 -35600 1 1999/9/17 72500 4100 3 

1999/3/9 96100 45800 5 1999/6/14 114700 -47700 1 1999/9/18 70600 -1900 3 

1999/3/10 65700 -30400 1 1999/6/15 139400 24700 4 1999/9/20 50000 -20600 2 

1999/3/11 75500 9800 3 1999/6/16 156500 17100 4 1999/9/27 10500 -39500 1 

1999/3/12 59200 -16300 2 1999/6/17 226700 70200 5 1999/9/28 65300 54800 5 

1999/3/15 102500 43300 5 1999/6/21 223600 -3100 3 1999/9/29 128500 63200 5 

1999/3/16 141800 39300 5 1999/6/22 216100 -7500 3 1999/9/30 123700 -4800 3 

1999/3/17 137100 -4700 3 1999/6/23 229800 13700 4 1999/10/1 107200 -16500 2 

1999/3/18 145300 8200 3 1999/6/24 217000 -12800 2 1999/10/2 118200 11000 4 
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1999/3/19 158800 13500 4 1999/6/25 195300 -21700 2 1999/10/4 106100 -12100 2 

1999/3/20 135300 -23500 2 1999/6/28 123800 -71500 1 1999/10/5 93600 -12500 2 

1999/3/22 99700 -35600 1 1999/6/29 182500 58700 5 1999/10/6 69100 -24500 2 

1999/3/23 126400 26700 4 1999/6/30 194900 12400 4 1999/10/7 85800 16700 4 

1999/3/24 97000 -29400 2 1999/7/2 187300 -7600 3 1999/10/8 65800 -20000 2 

1999/3/25 93100 -3900 3 1999/7/3 196400 9100 3 1999/10/11 61000 -4800 3 

1999/3/26 116000 22900 4 1999/7/5 150100 -46300 1 1999/10/12 116800 55800 5 

1999/3/29 90500 -25500 2 1999/7/6 153400 3300 3 1999/10/13 125100 8300 3 

1999/3/30 76100 -14400 2 1999/7/7 142500 -10900 2 1999/10/14 103200 -21900 2 

1999/3/31 66900 -9200 3 1999/7/8 146700 4200 3 1999/10/15 106500 3300 3 

1999/4/1 103200 36300 5 1999/7/9 154100 7400 3 1999/10/16 74700 -31800 1 

1999/4/2 151300 48100 5 1999/7/12 121200 -32900 1 1999/10/18 75200 500 3 

1999/4/3 136900 -14400 2 1999/7/13 170900 49700 5 1999/10/19 65400 -9800 3 

1999/4/6 79500 -57400 1 1999/7/14 137500 -33400 1 1999/10/20 71800 6400 3 

1999/4/7 70700 -8800 3 1999/7/15 129100 -8400 3 1999/10/21 69200 -2600 3 

1999/4/8 131500 60800 5 1999/7/16 135500 6400 3 1999/10/22 72300 3100 3 

1999/4/9 142000 10500 4 1999/7/17 137700 2200 3 1999/10/25 54300 -18000 2 

1999/4/12 127800 -14200 2 1999/7/19 112800 -24900 2 1999/10/26 68700 14400 4 

1999/4/13 122000 -5800 3 1999/7/20 115900 3100 3 1999/10/27 61900 -6800 3 

1999/4/14 143500 21500 4 1999/7/21 148400 32500 5 1999/10/28 60900 -1000 3 

1999/4/15 139800 -3700 3 1999/7/22 106900 -41500 1 1999/10/29 92300 31400 5 

1999/4/16 165000 25200 4 1999/7/23 82400 -24500 2 1999/10/30 135200 42900 5 

1999/4/17 137200 -27800 2 1999/7/26 68700 -13700 2     
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