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Abstract
Neutrosophic Logic is a tool based on non-standard analysis to represent mathematical model of uncertainty, vagueness,
ambiguity, incompleteness, and inconsistency. In Neutrosophic set, indeterminacy is quantified explicitly whereas the truth
membership, indeterminacy membership, and falsity membership are independent. This plays a vital role in many situations
whenwehandle inconsistent and incomplete information. Inmodeling problems, differential equations havemajor applications
in thefield of science and engineering and the studyof differential equationwith uncertainty is one of emergingfield of research.
In this paper, the differential equations in neutrosophic environment are explored, also the solution of second-order linear
differential equation with trapezoidal neutrosophic numbers as boundary conditions is discussed. Furthermore, the numerical
example is given to demonstrate the solution with different values of (α, β, γ )-cut of trapezoidal neutrosophic number.

Keywords Neutrosophic set · Trapezoidal neutrosophic number · Neutrosophic differential equation

Mathematics Subject Classification 03E72

Introduction

Neutrosophic set is the generalization of classical set, fuzzy
set [1], intuitionistic fuzzy set [2,3], and so on which
highlights the origin and nature of neutralities in differ-
ent fields. This multifaceted logic was introduced by F.
Smarandache [4–6] which imports the term indeterminacy
and carries more information than fuzzy logic. This leads to
give the better performance than fuzzy logic. In neutrosophic
logic, a proposition has a degree of truth (T ), a degree of inde-
terminacy (I), and a degree of falsity (F), where T, I, and F
are standard or non-standard subsets of ] −0, 1+[. However
it is difficult to handle data with non-standard interval, and
hence, the [7] single-valued neutrosophic set was introduced
which takes the values in the standard interval [0, 1].
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The notion of neutrosophic measure, neutrosophic inte-
gral, and neutrosophic probability were introduced by
Smarandache [8]. Many practical examples are presented in
neutrosophic measure, and consequently, the neutrosophic
integral and neutrosophic probability are also defined in
many ways, because there are various types of indetermi-
nacies, depending on the problem. Many researchers have
applied the neutrosophic logic in various fields.

Single-valued neutrosophic numbers, triangular neutro-
sophic numbers and trapezoidal neutrosophic numbers, and
their application in decision-making are explored in [9–11].
The neutrosophic number from different view points are
introduced [12] and the different types of linear and non-
linear generalized triangular neutrosophic numbers which
are very important for uncertainty theory and de-neutroso-
phication concept for neutrosophic number for triangular
neutrosophic numbers are discussed that helps to convert
a neutrosophic number into a crisp number. This has been
applied in imprecise project evaluation review technique and
route selection problem. Abdel-Basset et al. [13] introduced
a advanced type of neutrosophic technique, called type 2
neutrosophic numbers(T2NN), and a real case dealing with
a decision-making problem based on T2NN-TOPSIS (Tech-
nique for order preference by similarity to ideal solution)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-019-00117-3&domain=pdf


Complex & Intelligent Systems

methodology to prove the efficiency and the applicability of
the type 2 neutrosophic number were illustrated. The trian-
gular neutrosophic numbers (TriNs) were used to present
the linguistic variables based on opinions of experts and
decision-makers. The problem of supplier selection in sus-
tainable supplier chain management (SSCM) is also incor-
porated in [14]. The multicriteria decision-making (MCDM)
methodology is one of the keys for solving complicated and
complex decision problems. In [15], bipolar neutrosophic
number was defined and Group Decision-Making based on
Neutrosophic TOPSIS approach has been applied for Smart
Medical Device Selection. Neutrosophic logic helps in pre-
venting the loss of data, and hence, it has been applied in
many decision-making problems [16–20].

The Internet of Things (IoT) is the network of physical
devices and the network connectivity enables these objects
to collect and exchange data. The IoT allows objects to be
sensed or controlled remotely across existing network infras-
tructure, creating opportunities for more direct integration of
the physical world into computer-based systems, and result-
ing in improved efficiency, accuracy, and economic benefit
in addition to reduced human intervention. The IoT has the
potential to add a new dimension by enabling communica-
tionswith and among smart objects, thus leading to the vision
of “anytime, anywhere, anymedia, anything” communica-
tions. IoT is one of the challenging and emerging fields of
research in science and engineering. Nabeeh et al. [21] pre-
sented a neutrosophic analytical hierarchy process (AHP) of
the IoT in enterprises to help decision-makers to estimate the
influential factors.

Differentiation plays an important role in the field of
science and engineering. Many problems arise with uncer-
tain or imprecise parameters. To model this uncertainty, we
develop the differential equation with imprecise parame-
ters. Fuzzy differential equation [22–30] has been introduced
to model this uncertainty. However, it considers only the
membership value. Later, intuitionistic fuzzy differential
equation [31–36] was emerged with degree of membership
and non-membership. However, these two logic does not
have the term indeterminacy. Hence, neutrosophic differ-
ential equation was developed to model the indeterminacy.
Smarandache [37] initiated the concept of neutrosophic func-
tion such as exponential function, neutrosophic logarithmic
function, and neutrosophic inverse function. Also he intro-
duced, neutrosophic calculus, which studies the neutrosophic
limits, neutrosophic derivatives, and neutrosophic integrals.
Differential equation with uncertainty in a growing area.The
differential equations with neutrosophic numbers is studied
in [38]. The multifaceted factors of neutrosophic numbers
have been exemplified in higher order differential equation.
The structure of the paper is organized as follows. In Pre-
liminary section, the pre-requisite concepts are given and
the conditions for strong solution are defined for solving the

second-order differential equations. Followed by preliminar-
ies, the solution of second-order differential equation with
trapezoidal neutrosophic number as boundary condition is
derived. Finally, the numerical example is illustrated and its
graphical interpretations are also shown. In the conclusion
part, the future research scope is discussed.

Preliminaries

Definition 1 [4] Let X be a universe set. A neutrosophic set
A on X is defined as A = {〈TA(x), IA(x), FA(x)〉 : x ∈ X},
where TA(x), IA(x), FA(x) : X →−]0, 1[+ represents the
degree of membership, degree of indeterministic, and degree
of non-membership respectively of the element x ∈ X, such
that −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2 [7] LetX be a universe set. A single-valued neu-
trosophic setAonX is defined as A = {〈TA(x), IA(x), FA(x)〉
: x ∈ X}, where TA(x), IA(x), FA(x) : X → [0, 1] repre-
sents the degree of membership, degree of indeterministic,
and degree of non-membership, respectively, of the element
x ∈ X, such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 3 (α, β, γ )-cut: The (α, β, γ )-cut neutrosophic
set is denoted by F(α,β,γ ), where α, β, γ ∈ [0, 1 and are
fixed numbers, such that α + β + γ ≤ 3 is defined as
Fα,β,γ = {〈TA(x), IA(x), FA(x)〉 : x ∈ X , TA(x) ≥
α, IA(x) ≤ β, FA(x) ≤ γ }.

Definition 4 A neutrosophic set A defined on the universal
set of real numbers R is said to be neutrosophic number if it
has the following properties.

(i) A is normal if there exist x0 ∈ R, such that TA(x0) =
1(IA(x0) = FA(x0) = 0).

(ii) A is convex set for the truth function TA(x), i.e.,
TA(μx1+(1−μ)x2) ≥ min(TA(x1), TA(x2))∀x1, x2 ∈
R, μ ∈ [0, 1].

(iii) A is concave set for the indeterministic function and
false function IA(x) and FA(x), i.e.,
IA(μx1+ (1−μ)x2) ≥ max(IA(x1), IA(x2))∀x1, x2 ∈
R, μ ∈ [0, 1].
FA(μx1+(1−μ)x2) ≥ max(FA(x1), FA(x2))∀x1, x2 ∈
R, μ ∈ [0, 1].

Definition 5 [37] A trapezoidal neutrosophic number A is a
subset of neutrosophic number in R with the following truth
function, indeterministic function, and falsity functionwhich
is given by the following:
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TA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
x − a

b − a

)

ϑA for a ≤ x ≤ b

ϑA for b ≤ x ≤ c
(
d − x

d − c

)

ϑA for c ≤ x ≤ d

0 otherwise

,

IA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
b − x

b − a

)

νA for a ≤ x ≤ b

νA for b ≤ x ≤ c
(
d − x

d − c

)

νA for c ≤ x ≤ d

1 otherwise

and

FA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
b − x

b − a

)

κA for a ≤ x ≤ b

κA for b ≤ x ≤ c
(
d − x

d − c

)

κA for c ≤ x ≤ d

1 otherwise ,

wherea ≤ b ≤ c ≤ d and a trapezoidal neutrosophic number
is denoted by AT RN = 〈(a, b, c, d);ϑA, νA, κA〉.
Note 1: Here, TA(x) increases with constant rate for x ∈
[a, b] and decreases for x ∈ [c, d], but IA(x) and FA(x)
decreases with constant rate for x ∈ [a, b] and increases for
x ∈ [c, d]
Definition 6 (α, β, γ )-cut of a trapezoidal neutrosophic num-
ber AT RN = 〈(a, b, c, d);ϑA, νA, κA〉 is defined as follows:
Aα,β,γ = [A1(α), A2(α)]; [A′

1(β), A′
2(β)]; [A′′

1(γ ), A′′
2(γ )],

0 ≤ α + β + γ ≤ 3, where

[A1(α), A2(α)] = [(a + α(b − a))ϑA, (d − α(d − c))ϑA]
[A′

1(β), A′
2(β)] = [(b − β(b − a))νA, (c + β(d − c))νA],

[A′′
1(γ ), A′′

2(γ )] = [(b − γ (b − a))κA, (c + γ (d − c))κA]

Definition 7 [28] The derivative of a fuzzy valued function
f : (a, b) → R at x0 is defined as follows:

f ′(x0) = limh→0
f (x0 + h) − f (x0)

h
and

f ′(x0) is D1-differentiable at x0 if

[ f ′(x0)]α = [ f ′
1(x0, α), f ′

2(x0, α)] and

f ′(x0) is D2-differentiable at x0 if

[ f ′(x0)]α = [ f ′
2(x0, α), f ′

1(x0, α)]

for all α ∈ [0, 1].

Definition 8 [27] The second-order derivative of a fuzzy val-
ued function f : (a, b) → R at x0 is defined as follows:
f ′′(x0) = limh→0

f ′(x0+h)− f ′(x0)
h and

f ′(x0) is D1-differentiable at x0 if

f ′′(x0, α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( f ′
1(x0, α), f ′

2(x0, α)) if f is

D1-differentiable on (a, b)

( f ′
2(x0, α), f ′

1(x0, α)) if f is

D2-differentiable on (a, b)

for all α ∈ [0, 1] and f ′(x0) is D2-differentiable at x0 if

f ′′(x0, α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( f ′
2(x0, α), f ′

1(x0, α)) if f is

D1-differentiable on (a, b)

( f ′
1(x0, α), f ′

2(x0, α)) if f is

D2-differentiable on (a, b)

for all α ∈ [0, 1].
Definition 9 Let the solution of the neutrosophic differ-
ential equation be y(x) and its (α, β, γ )-cut be [y(x, α,

β, γ ) = [(y1(x, α), y2(x, α), (y′
1(x, β), y′

2(x, β), (y′′
1 (x, γ ),

y′′
2 (x, γ )] The solution is a strong solution if

(i)
dy1(x, α)

dα
> 0,

dy2(x, α)

dα
< 0∀α ∈ [0, 1], y1(x, 1) ≤ y2(x, 1).

(ii)
dy′

1(x, β)

dβ
< 0,

dy′
2(x, β)

dβ
> 0∀β ∈ [0, 1], y′

1(x, 0) ≤ y′
2(x, 0).

(iii)
dy′′

1 (x, γ )

dγ
< 0,

dy′′
2 (x, γ )

dγ
> 0∀γ∈[0, 1], y′′

1 (x, 0) ≤ y′′
2 (x, 0).

Solution of second-order neutrosophic
differential equation

Consider the differential equation d2y(x)
dx2

= py(x) with the
boundary condition y(0) = ũ and y(l) = ṽ, where ũ, ṽ are
trapezoidal neutrosophic number.

Let ũ = {(u1, u2, u3, u4);ϑ1, ν1, κ1} and ṽ = {(v1, v2, v3,
v4);ϑ2, ν2, κ2}.

1. When p is positive constant, i.e., p > 0. then two cases
are possible.

Case 1: y(x) and dy(x)
dx areD1-differentiable orD2-differen

tiable, and then, we have the following:

d2y1(x,α)

dx2
= py1(x, α); d2y2(x,α)

dx2
= py2(x, α)

d2y′
1(x,β)

dx2
= py′

1(x, β); d2y′
2(x,β)

dx2
= py′

2(x, β)

d2y′′
1 (x,γ )

dx2
= py′′

1 (x, γ ); d2y′′
2 (x,γ )

dx2
= py′′

2 (x, γ )
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with the boundary conditions:

y1(0, α) = (u1 + α(u2 − u1))ϑ1,

y2(0, α) = (u4 − α(u4 − u3))ϑ1,

y′
1(0, β) = (u2 − β(u2 − u1))ν1,

y′
2(0, β) = (u3 + β(u4 − u3))ν1,

y′′
1 (0, γ ) = (u2 − γ (u2 − u1))κ1,

y′′
2 (0, γ ) = (u3 + γ (u4 − u3))κ1

y1(l, α) = (v1 + α(v2 − v1))ϑ2,

y2(l, α) = (v4 − α(v4 − v3))ϑ2,

y′
1(l, β) = (v2 − β(v2 − v1))ν2,

y′
2(l, β) = (v3 + β(v4 − v3))ν2,

y′′
1 (l, γ ) = (v2 − γ (v2 − v1))κ2,

y′′
2 (l, γ ) = (v3 + γ (v4 − v3))κ2. (1)

Solution
The general solution of the first equation is as follows:

y1(x, α) = k1e
√
px + k2e

−√
px .

Applying the boundary conditions, we get k1 + k2 = (u1 +
α(u2−u1))ϑ1 and k1e

√
pl +k2e−√

pl = (v1+α(v2−v1))ϑ2,
and solving the above, we have the following:

k1 = 1

e
√
pl − e−√

pl
{[(v1 + α(v2 − v1))ϑ2]

− [(u1 + α(u2 − u1))ϑ1] e
−√

pl}

and

k2 = − 1

e
√
pl − e−√

pl
{[(v1 + α(v2 − v1))ϑ2]

− [(u1 + α(u2 − u1))ϑ1] e
√
pl}.

Therefore, the general solution is as follows:

y1(x, α) = 1

e
√
pl − e−√

pl
{([(v1 + α(v2 − v1))ϑ2]

− [(u1 + α(u2 − u1))ϑ1]e−√
pl)e

√
px

− ([(v1 + α(v2 − v1))ϑ2]
− [(u1 + α(u2 − u1))ϑ1]e

√
pl)e−√

px }.

Similarly

y2(x, α) = 1

e
√
pl − e−√

pl
{([(v4 − α(v4 − v3))ϑ2]

− [(u4 − α(u4 − u3))ϑ1]e−√
pl)e

√
px

− ([(v4 − α(v4 − v3))ϑ2]
− [(u4 − α(u4 − u3))ϑ1]e

√
pl)e−√

px }

y′
1(x, β) = 1

e
√
pl − e−√

pl
{([(v2 − β(v2 − v1))ν2]

− [(u2 − β(u2 − u1))ν1]e−√
pl)e

√
px

− ([(v2 − β(v2 − v1))ν2]
− [(u2 − β(u2 − u1))ν1]e

√
pl)e−√

px }
y′
2(x, β) = 1

e
√
pl − e−√

pl
{([(v3 + β(v4 − v3))ν2]

− [(u3 + β(u4 − u3))ν1]e−√
pl)e

√
px

− ([(v3 + β(v4 − v3))ν2]
− [(u3 + β(u4 − u3))ν1]e

√
pl)e−√

px }
y′′
1 (x, γ ) = 1

e
√
pl − e−√

pl
{([(v2 − γ (v2 − v1))κ2]

− [(u2 − γ (u2 − u1))κ1]e−√
pl)e

√
px

− ([(v2 − γ (v2 − v1))κ2]
− [(u2 − γ (u2 − u1))κ1]e

√
pl)e−√

px }
y′′
2 (x, γ ) = 1

e
√
pl − e−√

pl
{([(v3 + γ (v4 − v3))κ2]

− [(u3 + γ (u4 − u3))κ1]e−√
pl)e

√
px

− ([(v3 + γ (v4 − v3))κ2]
− [(u3 + γ (u4 − u3))κ1]e

√
pl)e−√

px }.

Case 2: y(x) is D2-differentiable and dy(x)
dx is D1-differen-

tiable or y(x) is D1-differentiable and dy(x)
dx is D1-differen-

tiable, and then, we have the following:

d2y1(x,α)

dx2
= py2(x, α); d2y2(x,α)

dx2
= py1(x, α)

d2y′
1(x,β)

dx2
= py′

2(x, β); d2 y′
2(x,β)

dx2
= py′

1(x, α)

d2y′′
1 (x,γ )

dx2
= py′′

2 (x, γ ); d2y′′
2 (x,γ )

dx2
= py′′

1 (x, γ )

with the boundary conditions (1).
The general solution is as follows:

y1(x, α) = k1e
√
px + k2e

−√
px + k3 cos

√
px + k4 sin

√
px

y2(x, α) = k1e
√
px + k2e

−√
px − k3 cos

√
px − k4 sin

√
px

y′
1(x, β) = k5e

√
px + k6e

−√
px + k7 cos

√
px + k8 sin

√
px

y′
2(x, β) = k5e

√
px + k6e

−√
px − k7 cos

√
px − k8 sin

√
px

y′′
1 (x, γ ) = k9e

√
px+k10e

−√
px+k11 cos

√
px+k12 sin

√
px

y′′
2 (x, γ ) = k9e

√
px+k10e

−√
px−k11 cos

√
px−k12 sin

√
px,

where

k1 = 1

e
√
pl − e−√

pl

{[(
(v1 + v4) + α((v2 − v1) − (v4 − v3))

2

)

ϑ2

]

−
[(

(u1 + u4) + α((u2 − u1) − (u4 − u3))

2

)

ϑ1

]

e−√
pl

}

k2 = −1

e
√
pl − e−√

pl

{[(
(v1 + v4) + α((v2 − v1) − (v4 − v3))

2

)

ϑ2

]
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−
[(

(u1 + u4) + α((u2 − u1) − (u4 − u3))

2

)

ϑ1

]

e
√
pl

}

k3 =
[

(u1 − u4)

2
+

(
α((v2 − v1) + (v4 − v3))

2

)

ϑ2

]

k4 = 1

sin
√
pl

{[(
(v1 + v4) + α((v2 − v1) − (v4 − v3))

2

)

ϑ2

]

−
[(

(u1 + u4) + α((u2 − u1) − (u4 − u3))

2

)

ϑ1

]

cos
√
pl

}

k5 = 1

e
√
pl − e−√

pl

{[(
(v2 + v3) − β((v2 − v1) − (v4 − v3))

2

)

ν2

]

−
[(

(u2 + u3) − β((u2 − u1) − (u4 − u3))

2

)

ν1

]

e−√
pl

}

k6 = −1

e
√
pl − e−√

pl

{[(
(v2 + v3) − β((v2 − v1) − (v4 − v3))

2

)

ν2

]

−
[(

(u2 + u3) − β((u2 − u1) − (u4 − u3))

2

)

ν1

]

e
√
pl

}

k7 =
[

(u2 − u3)

2
−

(
β((v2 − v1) + (v4 − v3))

2

)

ν2

]

k8 = 1

sin
√
pl

{[(
(v2 − v3) − β((v2 − v1) − (v4 − v3))

2

)

ν2

]

−
[(

(u2 − u3) − β((u2 − u1) + (u4 − u3))

2

)

ν1

]

cos
√
pl

}

k9 = 1

e
√
pl − e−√

pl

{[(
(v2 + v3) − γ ((v2 − v1) − (v4 − v3))

2

)

κ2

]

−
[(

(u2 + u3) − γ ((u2 − u1) − (u4 − u3))

2

)

κ1

]

e−√
pl

}

k10 = −1

e
√
pl − e−√

pl

{[(
(v2 + v3) − γ ((v2 − v1) − (v4 − v3))

2

)

κ2

]

−
[(

(u2 + u3) − γ ((u2 − u1) − (u4 − u3))

2

)

κ1

]

e
√
pl

}

k11 =
[

(u2 − u3)

2
−

(
γ ((v2 − v1) + (v4 − v3))

2

)

κ2

]

k12 = 1

sin
√
pl

{[(
(v2 − v3) − γ ((v2 − v1) − (v4 − v3))

2

)

κ2

]

−
[(

(u2 − u3) − γ ((u2 − u1) + (u4 − u3))

2

)

κ1

]

cos
√
pl

}

.

2. When p is negative constant, i.e., p < 0 , let p = −q
and q > 0, then two cases are possible.

Case 1: y(x) and dy(x)
dx areD1-differentiable orD2-differen

tiable, and then, we have the following:

d2y1(x,α)

dx2
= −qy1(x, α); d2y2(x,α)

dx2
= −qy2(x, α)

d2y′
1(x,β)

dx2
= −qy′

1(x, β); d2y′
2(x,β)

dx2
= −qy′

2(x, β)

d2y′′
1 (x,γ )

dx2
= −qy′′

1 (x, γ ); d2y′′
2 (x,γ )

dx2
= −qy′′

2 (x, γ )

with the boundary conditions (1).

The general solution of the above equations are as follows:

y1(x, α) = k1e
√
qx + k2e

−√
qx + k3 cos

√
qx + k4 sin

√
qx

y2(x, α) = −k1e
√
qx − k2e

−√
qx+k3 cos

√
qx+k4 sin

√
qx

y′
1(x, β) = k5e

√
qx + k6e

−√
qx + k7 cos

√
qx + k8 sin

√
qx

y′
2(x, β) = −k5e

√
qx−k6e

−√
qx+k7 cos

√
qx+k8 sin

√
qx

y′′
1 (x, γ ) = k9e

√
qx+k10e

−√
qx+k11 cos

√
qx + k12 sin

√
qx

y′′
2 (x, γ ) = −k9e

√
qx−k10e

−√
qx+k11 cos

√
qx+k12 sin

√
qx,

where

k1 = 1

e
√
ql − e−√

ql

{[(
(v1 − v4) + α((v2 − v1) + (v4 − v3))

2

)

ϑ2

]

−
[(

(u1 − u4) + α((u2 − u1) + (u4 − u3))

2

)

ϑ1

]

e−√
ql

}

k2 = −1

e
√
ql − e−√

ql

{[(
(v1 − v4) + α((v2 − v1) + (v4 − v3))

2

)

ϑ2

]

−
[(

(u1 − u4) + α((u2 − u1) + (u4 − u3))

2

)

ϑ1

]

e
√
ql

}

k3 =
[

(u1 + u4)

2
+

(
α((v2 − v1) − (v4 − v3))

2

)

ϑ2

]

k4 = 1

sin
√
ql

{[(
(v1 + v4) + α((v2 − v1) − (v4 − v3))

2

)

ϑ2

]

−
[(

(u1 + u4) + α((u2 − u1) − (u4 − u3))

2

)

ϑ1

]

cos
√
ql

}

k5 = 1

e
√
ql − e−√

ql

{[(
(v2 − v3) − β((v2 − v1) + (v4 − v3))

2

)

ν2

]

−
[(

(u2 − u3) − β((u2 − u1) + (u4 − u3))

2

)

ν1

]

e−√
ql

}

k6 = −1

e
√
ql − e−√

ql

{[(
(v2 − v3) − β((v2 − v1) + (v4 − v3))

2

)

ν2

]

−
[(

(u2 − u3) − β((u2 − u1) + (u4 − u3))

2

)

ν1

]

e
√
ql

}

k7 =
[

(u2 + u3)

2
−

(
β((v2 − v1) − (v4 − v3))

2

)

ν2

]

k8 = 1

sin
√
ql

{[(
(v2 + v3) − β((v2 − v1) − (v4 − v3))

2

)

ν2

]

−
[(

(u2 + u3) − β((u2 − u1) − (u4 − u3))

2

)

ν1

]

cos
√
ql

}

k9 = 1

e
√
ql − e−√

ql

{[(
(v2 − v3) − γ ((v2 − v1) + (v4 − v3))

2

)

κ2

]

−
[(

(u2 − u3) − γ ((u2 − u1) + (u4 − u3))

2

)

κ1

]

e−√
ql

}

k10 = −1

e
√
ql − e−√

ql

{[(
(v2 − v3) − γ ((v2 − v1) + (v4 − v3))

2

)

κ2

]

−
[(

(u2 − u3) − γ ((u2 − u1) + (u4 − u3))

2

)

κ1

]

e
√
ql

}

k11 =[ (u2 + u3)

2
−

(
γ ((v2 − v1) − (v4 − v3))

2

)

κ2]

k12 = 1

sin
√
ql

{[(
(v2 + v3) − γ ((v2 − v1) − (v4 − v3))

2

)

κ2

]

−
[(

(u2 + u3) − γ ((u2 − u1) − (u4 − u3))

2

)

κ1

]

cos
√
ql

}

.
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Case 2: y(x) is D1-differentiable and dy(x)
dx is D2-differen-

tiable or y(x) is D2-differentiable and dy(x)
dx is D1-differen-

tiable

d2y1(x,α)

dx2
= −qy2(x, α); d2y2(x,α)

dx2
= −qy1(x, α)

d2y′
1(x,β)

dx2
= −qy′

2(x, β); d2y′
2(x,β)

dx2
= −qy′

1(x, β)

d2y′′
1 (x,γ )

dx2
= −qy′′

2 (x, γ ); d2y′′
2 (x,γ )

dx2
= −qy′′

1 (x, γ )

with the boundary conditions (1), and then, the solution is as
follows:

y1(x, α) = [(u1 + α(u2 − u1))ϑ1] cos√
ql

+ 1

sin
√
ql

{[(v1 + α(v2 − v1))ϑ2]
− [(u1 + α(u2 − u1))ϑ1] cos√

ql} sin√
qx

y2(x, α) = [(u4 − α(u4 − u3))ϑ1] cos√
ql

+ 1

sin
√
ql

{[(v4 − α(v4 − v3))ϑ2]
− [(u4 − α(u4 − u3))ϑ1] cos√

ql} sin√
qx

y′
1(x, β) = [(u3 + β(u4 − u3))ν1] cos√

ql

+ 1

sin
√
ql

{[(v2 − β(v2 − v1))ν2]
− [(u3 + β(u4 − u3))ν1] cos√

ql} sin√
qx

y′
2(x, β) = [(u2 − β(u2 − u1))ν1] cos√

ql

+ 1

sin
√
ql

{[(v3 + β(v4 − v3))ν2]
− [(u2 − β(u2 − u1))ν1] cos√

ql} sin√
qx

y′′
1 (x, γ ) = [(u3 + γ (u4 − u3))κ1] cos√

ql

+ 1

sin
√
ql

{[(v2 − γ (v2 − v1))κ2]
− [(u3 + γ (u4 − u3))κ1] cos√

ql} sin√
qx

y′′
2 (x, γ ) = [(u2 − γ (u2 − u1))κ1] cos√

ql

+ 1

sin
√
ql

{[(v3 + γ (v4 − v3))κ2]
− [(u2 − γ (u2 − u1))κ1] cos√

ql} sin√
qx .

Analytic example

Let us consider the differential equation d2y(x)
dx2

= y(x) with
the boundary conditions y(0) = ((3, 4, 5, 6); 0.7, 0.6, 0.4)
and y(2) = ((7, 8, 9, 10); 0.4, 0.5, 0.6), and let y(x) and
dy(x)
dx is D1-differentiable.

Solution

y1(x, α) = 1

e2 − e−2 {[(7 + 0.4α) − (3 + 0.7α)e−2]e
− [(7 + 0.4α) − (3 + 0.7α)e2]e−1}

y2(x, α) = 1

e2 − e−2 {[(10 − 0.4α) − (6 − 0.7α)e−2]e
− [(10 − 0.4α) − (6 − 0.7α)e2]e−1}

y′
1(x, β) = 1

e2 − e−2 {[(8 − 0.5β) − (4 − 0.6β)e−2]e
− [(8 − 0.5β) − (4 − 0.6β)e2]e−1}

y′
2(x, β) = 1

e2 − e−2 {[(9 + 0.5β) − (5 + 0.6β)e−2]e
− [(9 + 0.5β) − (5 + 0.6β)e2]e−1}

y′′
1 (x, γ ) = 1

e2 − e−2 {[(8 − 0.6γ ) − (4 − 0.4γ )e−2]e
− [(8 − 0.6γ ) − (4 − 0.4γ )e2]e−1}

y′′
2 (x, γ ) = 1

e2 − e−2 {[(9 + 0.6γ ) − (5 + 0.4γ )e−2]e
− [(9 + 0.6γ ) − (5 + 0.4γ )e2]e−1}.

Table 1 Solution for x = 1
α y1(x, α) y2(x, α) β y′

1(x, β) y′
2(x, β) γ y′′

1 (x, γ ) y′′
2 (x, γ )

0 3.2403 6.4805 0 3.8883 4.5364 0 3.8883 4.5364

0.1 3.2759 6.4449 0.1 3.8527 4.572 0.1 3.8559 4.5688

0.2 3.3116 6.4093 0.2 3.817 4.6077 0.2 3.8235 4.6012

0.3 3.3472 6.3736 0.3 3.7814 4.6433 0.3 3.7911 4.6336

0.4 3.3828 6.338 0.4 3.7458 4.679 0.4 3.7587 4.666

0.5 3.4185 6.3023 0.5 3.7101 4.7146 0.5 3.7263 4.6984

0.6 3.4541 6.2667 0.6 3.6745 4.7502 0.6 3.6939 4.7308

0.7 3.4898 6.231 0.7 3.6388 4.7859 0.7 3.6615 4.7632

0.8 3.5254 6.1954 0.8 3.6032 4.8215 0.8 3.6291 4.7956

0.9 3.5611 6.1598 0.9 3.5675 4.8572 0.9 3.5967 4.828

1 3.5967 6.1241 1 3.5319 4.8928 1 3.5643 4.8604
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When we take x = 1 and for different values of α, β, γ ,
the solution is given in Table 1.

The graphical interpretation of the above table is shown
in the following.

From the table values and graph, we see that y1(x, α)

is increasing function and y2(x, α) decreasing function,
whereas y′

1(x, β) and y′′
1 (x, γ ) are decreasing function and

y′
2(x, β) and y′′

2 (x, γ ) are increasing function. Hence, the
solution is strong solution.

Conclusion

In this paper, we have derived the solution of second-order
differential equation in neutrosophic environment. An exam-
ple is given to demonstrate the strong solution of the same.
For future researchwork,weuse this approach to solve higher
order differential equations and we can explore this method
to solve linear and non-linear differential equations, simul-
taneous differential equations, and so on. Also the numerical
techniques can be applied to solve the neutrosophic differen-
tial equations. Neutrosophic integration can be developed to
solve the problems involving neutrosophic numbers in real-
world applications. Internet of things is one of the developing
areas in recent times. In [21], neutrosophic AHP (Analytical
hierarchy process) of the IoT in enterprises has been effec-
tively presented in decision-making criteria. Neutrosophic
logic in IoT may be employed to handle inconsistent data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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