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Abstract

Neutrosophic set, initiated by Smarandache, is a novel tool to deal with vagueness considering the truth, indeterminacy and falsity
memberships satisfying the condition that their sum is less than 3. This set can be used to characterize the information more accurately
than the intuitionistic fuzzy set. Under this set, the objective of this manuscript is to present some new operational laws called as log-
arithm operational laws with real number base k for the single-valued neutrosophic (SVN) numbers. Various desirable properties of the
proposed operational laws are contemplated. Further, based on these laws, different weighted averaging and geometric aggregation oper-
ators are developed. The properties such as idempotency, monotonicity, boundedness are provided to support the proposed operators.
Then, we utilized these operations and operators to present a multiattribute decision making method to solve the decision-making prob-
lems. A real numerical example is given to demonstrate the approach under SVN environment. The legitimacy of the proposed strategy is
exhibited with a numerical illustration and compared the results with the several existing approaches result.
� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Multiattribute decision making (MADM) methods is
one of the cognitive-based human activity to rank a finite
set of alternatives based on existing decision making infor-
mation. Traditionally, researchers are expressed the alter-
natives preference in terms of crisp numbers; however,
these properties have not been observed. Thus, to handle
the uncertainty in the data, the theory of fuzzy sets (FSs)
(Zadeh, 1965) and its extensions such as intuitionistic fuzzy
sets (IFSs) (Atanassov, 1986), interval-valued intuitionistic
fuzzy sets (IVIFSs) (Atanassov & Gargov, 1989) are widely
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used by the researchers to solve the MADM problems.
Over the last decades, several researchers have presented
different types of the operational laws under these theories.
For instances, Atanassov (1999) defined the basic opera-
tions such as ‘union’, ‘intersection’, ‘power’, and so on.
Xu and Yager (2006) defined some basic operational laws
such as ‘addition’, ‘subtraction’, ‘scalar multiplication’
for different intuitionistic fuzzy numbers (IFNs). Lei and
Xu (2015) defined the subtraction and division operations
for IFNs. Garg and Ansha (2018), Garg (2018b) developed
some basic arithmetic operations on generalized parabolic
and sigmoidal fuzzy numbers respectively. Li and Wei
(2017) presented some logarithm operational laws of IFSs.
Garg (2018c) presented logarithm operations laws to the
Pythagorean fuzzy sets. Based on these laws, researchers
have developed some aggregation operators (AOs) to solve
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MADM problems. For instance, Xu (2007) developed
some weighted averaging AOs under IFSs environment.
Garg (2017), Garg (2016) developed some generalized
interaction geometric AOs using Einstein norm operations.
Kaur and Garg (2018) presented cubic intuitionistic fuzzy
aggregation operators. Apart from these, other kinds of
AOs are developed by the authors and are summarized in
Wang and Triantaphyllou (2008), Kumar and Garg
(2018), De, Biswas, and Roy (2000), Garg and Singh
(2018), Abdel-Basset, Mohamed, and Smarandache
(2018), Abdel-Basset, Mohamed, Zhou, and Hezam
(2017), Abdel-Basset, Zhou, Mohamed, and Chang
(2018), Garg (2018a), and Rani and Garg (2018) to solve
MADM problems. But from these studies, it has been ana-
lyzed that they are unable to considered the indeterminate
and inconsistent data.

To resolve this, Smarandache (1998) presented a new
component named as ‘‘indeterminacy-membership func-
tion” along with ‘‘truth membership function” and ‘‘falsity
membership function”, all which are independent of each
other and lying in �0�; 1þ½, and the corresponding set is
known as a neutrosophic set (NS). Smarandache (1998),
Wang, Smarandache, Zhang, and Sunderraman (2010) pre-
sented the concept of a single-valued neutrosophic (SVN)
set (SVNS). Wang et al. (2010) introduced some basic oper-
ations of SVNSs. Smarandache (2016) defined the subtrac-
tion and division operators of SVN numbers (SVNNs).
Peng, Wang, Wang, Zhang, and Chen (2016) introduced
some basic operational laws such as ‘‘addition”, ‘‘multipli-
cation”, ‘‘scalar multiplication” and hence presented an
AO based on these laws. Nancy and Garg (2016a) pre-
sented some improved score function to rank the different
SVNSs. Later on, some different kinds of the AOs have
been proposed by the authors using algebraic norm (Ye,
2014), Hamacher norm (Liu, Chu, Li, & Chen, 2014),
Frank norm (Nancy & Garg, 2016b), hybrid operator
(Garg & Nancy, 2018a). Ye (2016) presented an exponen-
tial operational law and the aggregation operators. Garg
and Nancy (2018b) presented a TOPSIS method under
an interval NS environment to solve MADM problems.
Garg and Nancy (2018c) presented some prioritized aggre-
gation operators under the linguistic SVNS environment.
Aside from these, various authors incorporated the idea
of NS theory into the different fields (Biswas, Pramanik,
& Giri, 2016; Broumi & Smarandache, 2014; Garg &
Nancy, 2016, 2017, 2018d; Jha et al., 2018; Li, Liu, &
Chen, 2016; Liu & Wang, 2014; Peng & Liu, 2017; Peng
& Dai, 2018a, 2018b; Smarandache, 2018).

It is well known that during the aggregation process, the
most important process is to define the operational laws.
But from the existing literature, it is observed that most
of the existing aggregation operators are based on the
assumption that weight is a crisp number within [0,1].
However, Ye (2016) introduced the exponential opera-
tional laws as a supplement of operational laws of SVNSs,
where the bases are the real numbers and the exponents are
SVNSs. With the growing sound of the SVNS both in
depth and scope, different kinds of some new operational
laws and the aggregation methods are needed. As a kind
of important mathematical operation, the logarithmic
operational law of SVNSs is necessary to be developed in
the field of the aggregation process. By taking the advan-
tages of SVNS and in order to consummate the logarithmic
operational laws under the SVNS circumstances, we define
the logarithmic operational law (LOL) of SVNSs and
SVNNs, in which the logarithm base k is taken as a positive
real number. Also, some properties of LOL are discussed.
Furthermore, in the field of the aggregation process, to
aggregate the different value into a single one, the weighted
averaging and geometric operators are developed with the
help of LOLs under SVNS environment. These operators
are named as logarithm single-valued neutrosophic (L-
SVN) weighted average (L-SVNWA), L-SVN weighted
geometric (L-SVNWG), L-SVN ordered weighted average
(L-SVNOWA) and L-SVN ordered weighted geometric
(L-SVNOWG) which are in the general form and depends
on each k. For instance, the basic averaging and geometric
operators are the special case of the proposed operators.
Various prominent characteristics of these operators are
discussed in details. Then, we utilized these operations
and operators to develop multiattribute decision making
approach. At last, we influence the selection of the loga-
rithm base and the logarithm operations for SVNNs in
practice. Since proposed operators has different forms
through choosing different values of k. Therefore, the deci-
sion maker’s can obtain different decision results by using
proposed aggregation operators, which greatly enhances
the flexibility and agility of decision making method.

The remainder of this paper is set out as follows: Sec-
tion 2 gives some basic knowledge and operations on
SVNNs. Section 3 defined the LOL for SVNNs and the
aggregation operators based on these laws. Section 4 pro-
poses the decision making approach for solving the multi-
attribute decision making problems with SVNN
information. The applicability of the proposed work has
been demonstrated through an illustrated example in Sec-
tion 5. The paper ends with some conclusions in Section 6.

2. Basic concepts

In this section, some basic definitions related to NS,
SVNS on the universal set X are discussed.

Definition 2.1. (Smarandache, 1998) A neutrosophic set
(NS) b on X is defined as

b ¼ fhx; fbðxÞ; jbðxÞ;ubðxÞjx 2 X ig ð1Þ
where fbðxÞ; jbðxÞ;ubðxÞ 2�0�; 1þ½ such that

0� 6 fbðxÞ þ jbðxÞ þ ubðxÞ 6 3þ.

Definition 2.2. (Wang et al., 2010) A SVNS b in X is stated
as
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b ¼ fhx; fbðxÞ; jbðxÞ;ubðxÞjx 2 X ig ð2Þ
where fb; jb;ub : X ! ½0; 1� such that 0 6 fbðxÞ þ jbðxÞþ
ubðxÞ 6 3. We denote this pair as b ¼ hfb; jb;ubi, through-
out this article, and called as SVNN.

Definition 2.3. (Peng et al., 2016; Wang et al., 2010; Ye,
2016) Let b ¼ hf; j;ui; b1 ¼ hf1; j1;u1i and
b2 ¼ hf2; j2;u2i be three SVNNs, then

(i) bc ¼ hu; j; fi;
(ii) b1 6 b2 if f1 6 f2; j1 P j2 and u1 P u2;
(iii) b1 ¼ b2 if b1 6 b2 and b2 6 b1;
(iv) b1 \ b2 ¼ hminðf1; f2Þ;maxðj1; j2Þ;maxðu1;u2Þi;
(v) b1 [ b2 ¼ hmaxðf1; f2Þ;minðj1; j2Þ;minðu1;u2Þi;
(vi) b1 � b2 ¼ hf1 þ f2 � f1f2; j1j2;u1u2i;
(vii) b1 � b2 ¼ hf1f2; j1 þ j2 � j1j2;u1 þ u2 � u1u2i;
(viii) kb1 ¼ h1� ð1� f1Þk; jk

1;u
k
1i; k > 0;

(ix) bk
1 ¼ hfk1; 1� ð1� j1Þk; 1� ð1� u1Þki; k > 0;

(x) kb ¼ hk1�f;1� kj;1� kui if k 2 ð0;1Þ
hð1=kÞ1�f

;1� ð1=kÞj;1� ð1=kÞui if kP 1

�

Definition 2.4. (Wang et al., 2010) An order relation, based
on score function (S) and accuracy function (H), between
two SVNNs b and c is stated as, if SðbÞ > SðcÞ then
b > c and if SðbÞ ¼ SðcÞ and HðbÞ > HðcÞ then b > c, if
HðbÞ ¼ HðcÞ then b ¼ c, where SðbÞ ¼ fb � jb � ub and

HðbÞ ¼ fb þ jb þ ub.

Definition 2.5. (Peng et al., 2016) If bj ¼ hfj; jj;uji
ðj ¼ 1; 2; . . . ; nÞ be n SVNNs having weight vector

x ¼ ðx1;x2; . . . ;xnÞT such that xj > 0 and
Pn

j¼1xj ¼ 1,

then the weighted averaging and geometric aggregation
operators which are defined as

(a) SVNWA and SVNOWA operators

SVNWAðb1; b2; . . . ; bnÞ

¼ 1�
Yn
j¼1

ð1� fjÞxj ;
Yn
j¼1

ðjjÞxj ;
Yn
j¼1

ðujÞxj

* +
ð3Þ

SVNOWAðb1; b2; . . . ; bnÞ

¼ 1�
Yn
j¼1

ð1� frðjÞÞxj ;
Yn
j¼1

ðjrðjÞÞxj ;
Yn
j¼1

ðurðjÞÞxj

* +
ð4Þ
logkb
(b) SVNWG and SVNOWG operators

SVNWGðb1;b2; . . . ;bnÞ

¼
Yn
j¼1

ðfjÞxj ;1�
Yn
j¼1

ð1�jjÞxj ;1�
Yn
j¼1

ð1�ujÞxj

* +
ð5Þ
¼
1� logkf; logkð1� jÞ; logkð1� uÞh i; 0 < k 6 minf
1� log1

k
f; log1

k
ð1� jÞ; log1

k
ð1� uÞ

D E
; 0 < 1

k 6 minf

(

SVNOWGðb1;b2; . . . ;bnÞ

¼
Yn
j¼1

ðfrðjÞÞxj ;1�
Yn
j¼1

ð1�jrðjÞÞxj ;1�
Yn
j¼1

ð1�urðjÞÞxj

* +
ð6Þ
f; 1�
f; 1�
where r is a permutation of ð1; 2; . . . ; nÞ such that
brðj�1Þ P brðjÞ for j ¼ 2; . . . ; n.
3. Logarithmic operational laws and its based aggregation
operators of SVNSs

In this section, we have introduced some new logarith-
mic operational laws (LOL) for the SVNNs.

3.1. Logarithmic Operational laws

Let b be SVNNs and k > 0 be a real number. Since logk0
and log1x is not defined in real numbers, so we assume that
b – 0 where 0 is the zero SVNN, b – h0; 1; 1i and k – 1
throughout the study.

Definition 3.1. Let X be the non-empty fixed set and
A ¼ fhx; fAðxÞ; jAðxÞ;uAðxÞi j x 2 Xg be SVNS, then we can
define a logarithm operational laws of SVNS A as follows:

logkA ¼ hx; 1� logkfAðxÞ; logkð1� jAðxÞÞ;f
logkð1� uAðxÞÞi j x 2 Xg ð7Þ

where 0 < k 6 minffA; 1� jA; 1� uAg 6 1; k– 1. It is
clearly seen that the logkA is also SVNS. As it is clear from
the definition of SVNS, for all x 2 X , the functions fA; jA

and uA satisfy:

fA : X ! ð0; 1�; jA : X ! ½0; 1Þ;uA : X ! ½0; 1Þ
and 0 6 fAðxÞ þ jAðxÞ þ uAðxÞ 6 3. If
0 < k 6 minffA; 1� jA; 1� uAg 6 1 and k – 1, then the
membership function:

1� logkfA : X ! ½0; 1�; 8 x 2 X ! 1� logkfAðxÞ 2 ½0; 1�;
the indeterminacy function

logkð1�jAÞ :X !½0;1�; 8 x2X ! logkð1�jAðxÞÞ 2 ½0;1�;
and the non-membership function:

logkð1�uAÞ :X !½0;1�; 8 x2X ! logkð1�uAðxÞÞ 2 ½0;1�;
Therefore,

logkA ¼ hx; 1� logkfAðxÞ; logkð1� jAðxÞÞ;f
logkð1� uAðxÞÞi j x 2 Xg;

where 0 < k 6 minffA; 1� jA; 1� uAg 6 1; k – 1 is SVNS.

Definition 3.2. Let b ¼ hf; j;ui be SVNN. If
j; 1� ug < 1

j; 1� ug < 1; k – 1
ð8Þ
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then the function logkb is called a logarithmic operator,
and the value logkb is called Logarithmic SVNN (L-
SVNN). Here, we take logk0 ¼ 0; k > 0; k – 1.

Theorem 3.1. For SVNN b, the value of operator logkb is

SVNN.

Proof. Let SVNN b ¼ hf; j;ui satisfies 0 < f 6 1; 0 6 j <
1; 0 6 u < 1 and fþ jþ u 6 3. The, following two cases
happens.

Case 1: When 0 < k 6 minff; 1� j; 1� ug < 1; k – 1.
Thus, 0 6 logkf; logkð1� jÞ; logkð1� uÞ 6 1 and
hence 0 6 1� logkf 6 1; 0 6 logkð1� jÞ 6 1; 0
6 logkð1� uÞ 6 1 and 0 6 1� logkfþ
logkð1� jÞ þ logkð1� uÞ 6 3. Therefore, logkb is
SVNN.

Case 2: When k > 1 and 0 < 1
k < 1 and 1

k 6
minff; 1� j; 1� ug, so it is easy to obtain that
logkb is SVNN.

Hence, the operator logkb is SVNN. h

Example 3.1. Let b ¼ h0:6; 0:4; 0:5i be SVNN, k ¼ 0:3,
then

logkb ¼ h1� log0:3ð0:6Þ; log0:3ð0:6Þ; log0:3ð0:5Þi
¼ h0:5757; 0:4243; 0:5757i

If k ¼ 3 then,

log1
k
b ¼ log1

3
h0:6; 0:4; 0:5i

¼ h1� log1
3
ð0:6Þ; log1

3
ð0:6Þ; log1

3
ð0:5Þi

¼ h0:5350; 0:4650; 0:6309i
Next, we discuss some basic properties of L-SVNN

logkb based on LOL by taking k 2 ð0; 1Þ, while for k > 1
it can be obtained analogously.

Theorem 3.2. Let b ¼ hf; j;ui be SVNN. If 0 < k 6
minff; 1� j; 1� ug 6 1; k – 1 then

(i) klogkb ¼ b;
(ii) logkk

b ¼ b.
Proof.

(i) According to the Definitions 2.3 and 3.2, we have

klogkb ¼ hk1�ð1�logkfÞ; 1� klogkð1�jÞ; 1� klogkð1�uÞi
¼ hklogkf; 1� ð1� jÞ; 1� ð1� uÞi ¼ hf; j;ui ¼ b
From Definition 3.2, we have
(ii)

logkk
b ¼ logk k1�f;1�kj;1�ku

� �
¼h1� logkk

1�f; logkð1�ð1�kjÞÞ; logkð1�ð1�kuÞÞi
¼ hf;j;ui¼ b �
Theorem 3.3. Let bi ¼ hfi; ji;uiiði ¼ 1; 2Þ, be two SVNNs,

0 < k 6 miniffi; 1� ji; 1� uig 6 1 and k – 1. Then,

(i) logkb1 � logkb2 ¼ logkb2 � logkb1,
(ii) logkb1 � logkb2 ¼ logkb2 � logkb1.
Theorem 3.4. Let bi ¼ hfi; ji;uiiði ¼ 1; 2; 3Þ be three

SVNNs, 0 < k 6 minffi; 1� ji; 1� uig 6 1 and k – 1.
Then,

(i) ðlogkb1� logkb2Þ� logkb3 ¼ logkb1�ðlogkb2� logkb3Þ,
(ii) ðlogkb1� logkb2Þ� logkb3 ¼ logkb1�ðlogkb2� logkb3Þ.

Proof. The proof is trial. h

Theorem 3.5. Let bi ¼ hfi; ji;uiiði ¼ 1; 2Þ be two SVNNs,

0 < k 6 minffi; 1� ji; 1� uig 6 1; k – 1 and k; k1; k2 > 0
be three real numbers. Then,

(i) kðlogkb1 � logkb2Þ ¼ klogkb1 � klogkb2,

(ii) ðlogkb1 � logkb2Þk ¼ ðlogkb1Þk � ðlogkb2Þk,
(iii) k1logkb1 � k2logkb1 ¼ ðk1 þ k2Þlogkb1,

(iv) ðlogkb1Þk1 � ðlogkb1Þk2 ¼ ðlogkb1Þk1þk2 ,

(v) logkb1ð Þk1
� �k2 ¼ logkb1ð Þk1k2 .
Proof. For SVNNs b1; b2 and by Definition 3.2, we get

logkb1 ¼ 1� logkf1; logkð1� j1Þ; logkð1� u1Þh i
and

logkb2 ¼ 1� logkf2; logkð1� j2Þ; logkð1� u2Þh i
and hence by using the operations laws between two
SVNNs, we have

logkb1 � logkb2 ¼ 1� logkf1ð Þ logkf2ð Þ;h
logkð1� j1Þð Þðlogkð1� j2ÞÞ;
ðlogkð1� u1ÞÞ logkð1� u2Þð Þ
and

logkb1 � logkb2 ¼ 1� logkf1ð Þ 1� logkf2ð Þ;h
1� 1� logkð1� j1Þð Þ 1� logkð1� j2Þð Þ;
1� 1� logkð1� u1Þð Þ 1� logkð1� u2Þð Þi
(i) For a real number k > 0, we have

kðlogkb1 � logkb2Þ
¼ 1� logkf1logkf2ð Þk; logkð1� j1Þlogkð1� j2Þð Þk;

D
logkð1� u1Þlogkð1� u2Þð Þk

E
¼ 1� logkf1ð Þk logkf2ð Þk; logkð1� j1Þð Þk logkð1� j2Þð Þk;

D
logkð1� u1Þð Þk logkð1� u2Þð Þk

E
¼ 1� logkf1ð Þk; logkð1� j1Þð Þk; logkð1� u1Þð Þk

D E
� 1� logkf2ð Þk; logkð1� j2Þð Þk; logkð1� u2Þð Þk
D E

¼ klogkb1 � klogkb2
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(ii) For a real number k > 0, we have
ðlogkb1 � logkb2Þk

¼ ð1� logkf1Þð1� logkf2Þð Þk;
D
1� ð1� logkð1� j1ÞÞð1� logkð1� j2ÞÞð Þk;
1� ð1� logkð1� u1ÞÞð1� logkð1� u2ÞÞð Þk

E
¼ 1� logkf1ð Þk 1� logkf2ð Þk;

D
1� 1� logkð1� j1Þð Þk 1� logkð1� j2Þð Þk;
1� 1� logkð1� u1Þð Þk 1� logkð1� u2Þð Þk

E
¼ 1� logkf1ð Þk; 1� 1� logkð1� j1Þð Þk;

D
1� 1� logkð1� u1Þð Þk

E
� 1� logkf2ð Þk; 1� 1� logkð1� j2Þð Þk;
D
1� 1� logkð1� u2Þð Þk

E
¼ logkb1ð Þk � logkb2ð Þk
(iii) For real positive number k1 and k2, we have
k1logkb1 � k2logkb1

¼ 1� logkf1ð Þk1 ; logkð1�j1Þð Þk1 ; logkð1�u1Þð Þk1
D E
� 1� logkf1ð Þk2 ; logkð1�j1Þð Þk2 ; logkð1�u1Þð Þk2
D E

¼ 1� logkf1ð Þk1þk2 ; logkð1�j1Þð Þk1þk2 ; logkð1�u1Þð Þk1þk2
D E

¼ ðk1þ k2Þlogkb1
(iv) For real positive number k1 and k2. Since
logkb1ð Þk1 ¼ 1� logkf1ð Þk1 ; 1� 1� logkð1� j1Þð Þk1 ;
D
1� 1� logkð1� u1Þð Þk1

E

and
logkb1ð Þk2 ¼ 1� logkf1ð Þk2 ; 1� 1� logkð1� j1Þð Þk2 ;
D
1� 1� logkð1� u1Þð Þk2

E

and hence
logkb1ð Þk1 � logkb1ð Þk2

¼ 1� logkf1ð Þk1 ; 1� 1� logkð1� j1Þð Þk1 ;
D
1� 1� logkð1� u1Þð Þk1

E
� 1� logkf1ð Þk2 ; 1� 1� logkð1� j1Þð Þk2 ;
D
1� 1� logkð1� u1Þð Þk2

E
¼ 1� logkf1ð Þk1 1� logkf1ð Þk2 ;

D
1� 1� logkð1� j1Þð Þk1 1� logkð1� j1Þð Þk2 ;
1� 1� logkð1� u1Þð Þk1 1� logkð1� u1Þð Þk2

E
¼ 1� logkf1ð Þk1þk2 ; 1� 1� logkð1� j1Þð Þk1þk2 ;

D
1� 1� logkð1� u1Þð Þk1þk2

E
¼ logkb1ð Þk1þk2
(v) For positive real numbers k1 and k2, we have
logkb1ð Þk1
� �k2 ¼ 1� logkf1ð Þk1 ; 1� 1� logkð1� j1Þð Þk1 ;

D�

1� 1� logkð1� u1Þð Þk1
E�k2

¼ 1� logkf1ð Þk1k2 ; 1� 1� logkð1� j1Þð Þk1k2 ;
D
1� 1� logkð1� u1Þð Þk1k2

E
¼ logkb1ð Þk1k2

�

Theorem 3.6. Let b ¼ hf; j;ui be SVNN. If

0 < k1 6 k2 6 minff; 1� j; 1� ug 6 1; k1; k2 – 1, then

logk1b P logk2b and logk1b 6 logk2b for 0 < 1
k2
6 1

k1
6

minff; 1� j; 1� ug 6 1; k1; k2 – 1.

Proof. By Definition 3.2, we have

logk1b ¼ 1� logk1f; logk1ð1� jÞ; logk1ð1� uÞ� �
and

logk2b ¼ 1� logk2f; logk2ð1� jÞ; logk2ð1� uÞ� �
If 0 < k1 6 k2 6 minff; 1� j; 1� ug 6 1 and k1; k2 – 1,
then 1� logk1f P 1� logk2f; logk1ð1� jÞ 6 logk2ð1� jÞ
and logk1ð1� uÞ 6 logk2ð1� uÞ which implies that

logk1b P logk2b.
On the other hand, when k1; k2 > 1 and k1 6 k2, we get

0 < 1
k2
6 1

k1
6 minff; 1� j; 1� ug 6 1; k1; k2 – 1. There-

fore, as discussed above, we can also obtain
logk1b 6 logk2b. h

Theorem 3.7. Let b1 ¼ hf1; j1;u1i and b2 ¼ hf2; j2;u2i be

two SVNNs. If f1 6 f2;u1 P u2 and j1 P j2, i.e.,

b1 6 b2; 0 < k 6 minffi; 1� ji; 1� uig 6 1; k – 1, then

logkb1 6 logkb2.

Proof. Similar with Theorem 3.6. h
3.2. Aggregation operators

Based on the LOL of SVNNs, we define some weighted
aggregation operators as follows.

Definition 3.3. Let bi ¼ hfi;ji;uiiði ¼ 1; 2; . . . ; nÞ be a col-
lection of SVNNs, 0 < ki 6 minffi; 1� ji; 1� uig 6
1; ki – 1 and let L-SVNWA : Hn ! H. If

L-SVNWAðb1; b2; . . . ;bnÞ ¼ x1logk1b1 � x2logk2b2

� . . .� xnlogknbn ð9Þ

then the function L-SVNWA is called logarithmic SVN

weighted averaging operator, where x ¼ ðx1;x2; . . . ;xnÞT
is the weight vector of logkibi with xi > 0 and

Pn
i¼1xi ¼ 1.
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Theorem 3.8. Let bi ¼ hfi; ji;uiiði ¼ 1; 2; . . . ; nÞ be a collec-
tion of SVNNs. Then, the aggregated value by using L-

SVNWA operator is also SVNN and is given by
L-SVNWAðb1; b2; . . . ; bnÞ

¼

1�
Yn
i¼1

logkifi
� �xi

;
Yn
i¼1

logkið1� jiÞ
� �xi

;
Yn
i¼1

logkið1� uiÞ
� �xi

* +
; 0 < ki 6 min

fi;

1� ji;

1� ui

8><
>:

9>=
>; 6 1; ki – 1

1�
Yn
i¼1

log1
ki
fi

� �xi

;
Yn
i¼1

log1
ki
ð1� jiÞ

� �xi

;
Yn
i¼1

log1
ki
ð1� uiÞ

� �xi

* +
; 0 < 1

ki
6 min

fi;

1� ji;

1� ui

8><
>:

9>=
>; 6 1; ki – 1

8>>>>>>>>><
>>>>>>>>>:

ð10Þ
Proof. We prove the result given in Eq. (10) by employing
mathematical induction on n for 0 < ki 6
minffi; 1� ji; 1� uig 6 1; ki – 1. Since for each
i; bi ¼ hfi; ji;uii is SVNN which implies that
fi; ji;ui 2 ½0; 1� and fi þ ji þ ui 6 3. Then the following
steps of the mathematical induction are executed.

Step 1: For n ¼ 2, we get L-SVNWAðb1; b2Þ ¼
x1 logk1b1

� �� x2 logk2b2

� �
. Since by Definition

3.2, we can see that logk1b1 and logk2b2 are SVNNs

and hence x1logk1b1 � x2logk2b2 is also SVNN.

Further, for b1 and b2, we have

L-SVNWAðb1;b2Þ ¼x1logk1b1 �x2logk2b2

¼ 1� logk1f1
� �x1 ; logk1ð1�j1Þ

� �x1 ; logk1ð1�u1Þ
� �x1

� �
� 1� logk2f2

� �x2 ; logk2ð1�j2Þ
� �x2 ; logk2ð1�u2Þ

� �x2
� �

¼ 1�
Y2
i¼1

logkifi
� �xi

;
Y2
i¼1

logkið1�jiÞ
� �xi

;
Y2
i¼1

logkið1�uiÞ
� �xi

* +
Thus, result holds for n ¼ 2.

Step 2: Assume Eq. (10) holds for n ¼ k. Now, for

n ¼ k þ 1, we have

L-SVNWAðb1;b2; . . . ;bkþ1Þ ¼L-SVNWAðb1;b2; . . . ;bkÞ

�xkþ1logkkþ1
bkþ1 ¼ 1�

Yk
i¼1

logkifi
� �xi ;

Yk
i¼1

logkið1�jiÞ
� �xi ;

*

Yk
i¼1

logkið1�uiÞ
� �xi

+
� 1� logkkþ1

fkþ1

� �xkþ1

;
D

logkkþ1
ð1�jkþ1Þ

� �xkþ1

; logkkþ1
ð1�ukþ1Þ

� �xkþ1
E

¼ 1�
Ykþ1

i¼1

logkifi
� �xi ;

Ykþ1

i¼1

logkið1�jiÞ
� �xi ;

*

Ykþ1

i¼1

logkið1�uiÞ
� �xi

+

and the aggregated value is also SVNN. Therefore,
Eq. (10) holds for n ¼ k þ 1 also. Hence, result is true
for all positive integer n by the means of principle of
mathematical induction.
On the other hand, if ki P 1 and

0 < 1
ki
6 minffi; 1� ji; 1� uig 6 1; ki – 1, we can also get
L-SVNWAðb1; b2; . . . ; bnÞ

¼ 1�
Yn
i¼1

log1
ki
fi

� �xi

;
Yn
i¼1

log1
ki
ð1� jiÞ

� �xi

;

*

Yn
i¼1

log1
ki
ð1� uiÞ

� �xi

+

and aggregated value is SVNN. h

Remark 3.1. If k1 ¼ k2 ¼ . . . ¼ kn ¼ k; 0 < k 6
miniffi; 1� ji; 1� uig 6 1; k – 1, then L-SVNWA opera-
tor reduces to the following

L-SVNWAðb1;b2; . . . ;bnÞ

¼ 1�
Yn
i¼1

logkfið Þxi ;
Yn
i¼1

logkð1�jiÞð Þxi ;
Yn
i¼1

logkð1�uiÞð Þxi

* +

Example 3.2. Let b1 ¼ h0:5; 0:3; 0:2i; b2 ¼ h0:2; 0:4; 0:3i
and b3 ¼ h0:6; 0:3; 0:5i be three SVNNs and

x ¼ ð0:2; 0:5; 0:3ÞT is the weight vector of them. Consider-
ing k1 ¼ k2 ¼ k3 ¼ 0:1 and then

L-SVNWAðb1;b2;b3Þ

¼ 1�
Y3
i¼1

logkifi
� �xi

;
Y3
i¼1

logkið1�jiÞ
� �xi

;

*

Y3
i¼1

logkið1�uiÞ
� �xi

+

¼ 1� log0:1ð0:5Þð Þ0:2 � log0:1ð0:2Þð Þ0:5 � log0:1ð0:6Þð Þ0:3;
D

log0:1ð1� 0:3Þð Þ0:2 � log0:1ð1� 0:4Þð Þ0:5 � log0:1ð1� 0:3Þð Þ0:3;
log0:1ð1� 0:2Þð Þ0:2 � log0:1ð1� 0:3Þð Þ0:5 � log0:1ð1� 0:5Þð Þ0:3

E
¼ 0:5814;0:1854;0:1721h i
Next, we give some properties of the proposed L-

SVNWA operator for k1 ¼ k2 ¼ . . . ¼ kn ¼ k, and
0 < k 6 miniffi; 1� ji; 1� uig 6 1; ki – 1 and xi be the
weight vector of SVNN bi such that xi > 0 andPn

i¼1xi ¼ 1.
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Property 3.1. If all SVNNs bi ¼ bði ¼ 1; 2; . . . ; nÞ, then
L-SVNWAðb1; b2; . . . ; bnÞ ¼ logkb

Proof. Let b ¼ hf; j;ui is SVNN such that bi ¼ b for all i.
Then, by Theorem 3.8, we get

L-SVNWAðb1;b2; . . . ;bnÞ

¼ 1�
Yn
i¼1

logkfið Þxi ;
Yn
i¼1

logkð1� jiÞð Þxi ;
Yn
i¼1

logkð1�uiÞð Þxi

* +

¼ 1�
Yn
i¼1

logkfð Þxi ;
Yn
i¼1

logkð1� jÞð Þxi ;
Yn
i¼1

logkð1�uÞð Þxi

* +

¼ 1� logkfð Þ

Xn

i¼1

xi

; logkð1� jÞð Þ

Xn

i¼1

xi

; logkð1�uÞð Þ

Xn

i¼1

xi
* +

¼ 1� logkf; logkð1� jÞ; logkð1�uÞh i ¼ logkb �

Property 3.2. If bi ¼ hfi; ji;uiiði ¼ 1; 2; . . . ; nÞ with

b� ¼ hminiffig;maxifjig;maxifuigi and bþ ¼ hmaxiffig;
minifjig;minifuigi, then

logkb
� 6 L-SVNWAðb1; b2; . . . ; bnÞ 6 logkb

þ

Proof. Since, for any i;miniffig 6 fi 6 maxiffig;
minifjig 6 ji 6 maxifjig, and minifuig 6 ui 6 maxifuig.
This implies that b� 6 bi 6 bþ. Assume that
L-SVNWAðb1; . . . ;bnÞ ¼ logkb¼ hfb;jb;ubi; logkb� ¼ hfb� ;
jbþ ;ubþi; logkbþ ¼ hfbþ ;jb� ;ub�i. Then, based on the

monotonicity of logarithm function, we have

fb ¼ 1�
Yn
i¼1

logkfið Þxi P 1�
Yn
i¼1

logkmin
i
ffig

� �xi

¼ 1� logkðminffigÞ ¼ fb� ;

jb ¼
Yn
i¼1

logkð1� jiÞð Þxi P
Yn
i¼1

logkð1�min
i
fjigÞ

� �xi

¼ logkð1�minfjigÞ ¼ jb�

and ub ¼
Yn
i¼1

logkð1� uiÞð Þxi P
Yn
i¼1

logkð1�min
i
fuigÞ

� �xi

¼ logkð1�minfuigÞ ¼ ub�

Also

fb ¼ 1�
Yn
i¼1

logkfið Þxi 6 1�
Yn
i¼1

logkmax
i

ffig
	 
xi

¼ 1� logkðmaxffigÞ ¼ fbþ ;

jb ¼
Yn
i¼1

logkð1� jiÞð Þxi 6
Yn
i¼1

logkð1�max
i

fjigÞ
	 
xi

¼ logkð1�maxfjigÞ ¼ jbþ
and ub ¼
Yn
i¼1

logkð1� uiÞð Þxi 6
Yn
i¼1

logkð1�max
i

fuigÞ
	 
xi

¼ logkð1�maxfuigÞ ¼ ubþ

Based on score function, we get

SðlogkbÞ ¼ fb � jb � ub 6 fbþ � jb� � ub� ¼ SðlogkbþÞ
and

SðlogkbÞ ¼ fb � jb � ub P fb� � jbþ � ubþ ¼ Sðlogkb�Þ

Hence, Sðlogkb�Þ 6 SðlogkbÞ 6 SðlogkbþÞ. Now, we discuss
the three cases:

Case 1: If Sðlogkb�Þ < SðlogkbÞ < SðlogkbþÞ, then result
holds.

Case 2: If SðlogkbþÞ ¼ SðlogkbÞ then fb � jb � ub ¼ fbþ�
jb� � ub� which implies that fb ¼ fbþ ; jb ¼ jb�

and ub ¼ ub� and hence HðlogkbþÞ ¼ HðlogkbÞ.
Case 3: If Sðlogkb�Þ ¼ SðlogkbÞ then fb � jb � ub ¼ fb��

jbþ � ubþ which implies that fb ¼ fb� ; jb ¼ jbþ

and ub ¼ ubþ and hence Hðlogkb�Þ ¼ HðlogkbÞ.

Therefore, by combining all these cases, we get

logkb
� 6 L-SVNWAðb1; b2; . . . ; bnÞ 6 logkb

þ �

Property 3.3. Let bi ¼ hfi; ji;uii and b�
i ¼ hf�i ; j�

i ;u
�
i iði ¼

1; 2; . . . ; nÞ be two collections of SVNNs. If fi 6 f�i ;
ji P j�

i ;ui P u�
i , then

L-SVNWAðb1; b2; . . . ;bnÞ 6 L-SVNWAðb�
1; b

�
2; . . . ;b

�
nÞ

Proof. Follows from the above, so we omit here. h

Definition 3.4. A logarithmic SVN ordered weighted aver-
age (L-SVNOWA) operator is a mapping

L-SVNOWA : Hn ! H, such that x ¼ ðx1;x2; . . . ;xnÞT ,
with xi > 0 and

Pn
i¼1xi ¼ 1, and

L-SVNOWAðb1; b2; . . . ; bnÞ
¼ x1logkrð1Þbrð1Þ

� �
� x2logkrð2Þbrð2Þ
� �

� � � �

� xnlogkrðnÞbrðnÞ
� �

ð11Þ
where 0 < krðiÞ 6 minffrðiÞ; 1� jrðiÞ; 1� urðiÞg 6 1; krðiÞ – 1

and r is the permutation of ð1; 2; . . . ; nÞ such that
brði�1Þ P brðiÞ for i ¼ 2; 3; . . . ; n.

Theorem 3.9. For a collection of SVNNs
bi ¼ hfi; ji;uiiði ¼ 1; 2; . . . ; nÞ, the aggregated value by

using L-SVNOWA operator is still SVNN and given by



L-SVNOWAðb1;b2; . . . ;bnÞ

¼

1�
Yn
i¼1

logkrðiÞfrðiÞ
� �xi

;
Yn
i¼1

logkrðiÞ ð1�jrðiÞÞ
� �xi

;
Yn
i¼1

logkrðiÞ ð1�urðiÞÞ
� �xi

* +
; 0< krðiÞ 6min

i

frðiÞ
1�jrðiÞ
1�urðiÞ

8><
>:

9>=
>;6 1;krðiÞ– 1

1�
Yn
i¼1

log 1
krðiÞ

frðiÞ

	 
xi

;
Yn
i¼1

log 1
krðiÞ

ð1�jrðiÞÞ
	 
xi

;
Yn
i¼1

log 1
krðiÞ

ð1�urðiÞÞ
	 
xi

* +
; 0< 1

krðiÞ
6min

i

frðiÞ
1�jrðiÞ
1�urðiÞ

8><
>:

9>=
>;6 1;krðiÞ– 1

8>>>>>>>>><
>>>>>>>>>:

ð12Þ
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Proof. The proof follows from Theorem 3.8. h

Definition 3.5. Let bi ¼ hfi; ji;uiiði ¼ 1; 2; . . . ; nÞ be a col-
lection of SVNNs, 0 6 ki 6 min

i
ffi; 1� ji; 1� uig 6 1;

ki – 1 and let L-SVNWG : Hn ! H. If

L-SVNWGðb1; b2; . . . ; bnÞ ¼ logk1b1

� �x1

� logk2b2

� �x2 � . . .

� logknbn

� �xn ð13Þ

then the function L-SVNWG is called logarithmic SVN

weighted geometric operator, where x ¼ ðx1;x2; . . . ;xnÞT
is the weight vector of logkibi with xi > 0 and

Pn
i¼1xi ¼ 1.

Theorem 3.10. The aggregated value by L-SVNWG opera-
tor for SVNNs bi ¼ hfi; ji;uii is also SVNN and is given by
L-SVNWGðb1;b2; . . . ;bnÞ

¼

Yn
i¼1

1� logkifi
� �xi

;1�
Yn
i¼1

1� logkið1� jiÞ
� �xi

;1�
Yn
i¼1

1
�*

Yn
i¼1

1� log1
ki
fi

� �xi

;1�
Yn
i¼1

1� log1
ki
ð1� jiÞ

� �xi

;1�
Yn
i¼1

�*

8>>>>>>>>><
>>>>>>>>>:

L-SVNOWGðb1;b2; . . . ;bnÞ

¼

Yn
i¼1

1� logkrðiÞfrðiÞ
� �xi

;1�
Yn
i¼1

1� logkrðiÞ ð1�jrðiÞÞ
� �xi

;1�
Yn
i¼1

�*

Yn
i¼1

1� log 1
krðiÞ

frðiÞ

	 
xi

;1�
Yn
i¼1

1� log 1
krðiÞ

ð1�jrðiÞÞ
	 
xi

;1�
Yn
i¼1

	*

8>>>>>>>>><
>>>>>>>>>:
Definition 3.6. A logarithmic SVN ordered weighted geo-
metric (L-SVNOWG) operator is a mapping

L-SVNOWG : Hn ! H, such that x ¼ ðx1;x2; . . . ;xnÞT ,
with xi > 0 and

Pn
i¼1xi ¼ 1, and

L-SVNOWGðb1; b2; . . . ; bnÞ
¼ logkrð1Þbrð1Þ

� �x1 � logkrð2Þbrð2Þ
� �x2 � � � �

� logkrðnÞbrðnÞ
� �xn ð15Þ

where 0 < krðiÞ 6 minffrðiÞ; 1� jrðiÞ; 1� urðiÞg 6 1; krðiÞ – 1

and r is the permutation of ð1; 2; . . . ; nÞ such that
brði�1Þ P brðiÞ for i ¼ 2; 3; . . . ; n.

Theorem 3.11. For a collection of SVNNs

bi ¼ hfi; ji;uiiði ¼ 1; 2; . . . ; nÞ, the aggregated value by

using L-SVNOWG operator is still SVNN and given by
� logkið1�uiÞ
�xi

+
; 0< ki 6min

i

fi
1� ji

1�ui

8><
>:

9>=
>;6 1;ki – 1

1� log1
ki
ð1�uiÞ

�xi

+
; 0< 1

ki
6min

i

fi
1� ji

1�ui

8><
>:

9>=
>;6 1;ki – 1

ð14Þ

1� logkrðiÞ ð1�urðiÞÞ
�xi

+
; 0< krðiÞ 6min

i

frðiÞ
1�jrðiÞ
1�urðiÞ

8><
>:

9>=
>;6 1;ki – 1

1� log 1
krðiÞ

ð1�urðiÞÞ

xi

+
; 0< 1

krðiÞ
6min

i

frðiÞ
1�jrðiÞ
1�urðiÞ

8><
>:

9>=
>;6 1;ki – 1

ð16Þ
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Proof. Similar to Theorem 3.8. h

As similar to L-SVNWA operator, the L-SVNOWA, L-
SVNOWG and L-SVNWG operators also have the same
properties. Furthermore, if k1 ¼ k2 ¼ . . . ¼ kn ¼
k; 0 < k 6 min

i
ffrðiÞ; 1� jrðiÞ; 1� urðiÞg 6 1, then L-

SVNOWA, LSVNOWG operators becomes

L-SVNOWAðb1; b2; . . . ;bnÞ

¼ 1�
Yn
i¼1

logkfrðiÞ
� �xi

;
Yn
i¼1

logkð1� jrðiÞÞ
� �xi

;

*

Yn
i¼1

logkð1� urðiÞÞ
� �xi

+

and

L-SVNOWGðb1; b2; . . . ; bnÞ

¼
Yn
i¼1

1� logkfrðiÞ
� �xi

; 1�
Yn
i¼1

1� logkð1� jrðiÞÞ
� �xi

;

*

1�
Yn
i¼1

1� logkð1� urðiÞÞ
� �xi

+

4. Proposed MADM method

In this section, a decision making method present under
SVN information based on the proposed operators. For it,
consider a MADM problem with ‘m’ different alternatives
denoted by A1;A2; . . . ;Am and are evaluated under the set
of ‘n’ different attribute C1;C2; . . . ;Cn with weight vector

is x ¼ ðx1;x2; . . . ;xnÞT such that xj > 0 andPn
j¼1xj ¼ 1. An expert has evaluated these alternatives

and gives their preferences as SVNNs bij ¼ hfij; jij;uiji
such that 0 6 fij; jij;uij 6 1 and fij þ jij þ uij 6 3. The col-

lection information of all the alternatives are summarized
in decision-matrix D as

On the other hand, the logarithm base index for these
SVNNs are denoted by kij where
0 < kij 6 minffij; 1� jij; 1� uijg 6 1; kij – 1 for

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n and are summarized in the
matrix format K ¼ ðkijÞm�n as

K ¼

k11 k12 . . . k1n
k21 k22 . . . k2n

..

. ..
. . .

. ..
.

km1 km2 . . . kmn

0
BBBB@

1
CCCCA
By using the logarithm operation on each SVNN bij, we

convert the given decision matrix D into its equivalent log-
arithm score matrix S as

ð17Þ

where
SðlogkijbijÞ ¼ 1� logkijfij � logkijð1� jijÞ � logkijð1� uijÞ is
the score function of logkijbij.

The attribute weights plays a significant role during the
ranking order of the alternatives and hence in the decision
making process, a weighted sum of each alternative, called
as suitability function QðAiÞ, is obtained as

QðAiÞ ¼
Xn

j¼1

xjSij; i ¼ 1; 2; . . . ;m ð18Þ

Based on this function, a mathematical programming
model for determining the weight vector is formulated as
below.

max f ¼
Xm
i¼1

QðAiÞ

s:t:
Xn

j¼1

xj ¼ 1 ð19Þ

xj P 0; x 2 H

where QðAiÞ ¼
Xn

j¼1

xjSij

Here, QðAiÞ represents the overall score function for
each alternative Aiði ¼ 1; 2; . . . ;mÞ. After solving this

model, we get the weight vector x ¼ ðx1;x2; . . . ;xnÞT .
Now, based on these weight vectors, aggregate all the pref-
erence values either by using L-SVNWA or L-SVNWG or
L-SVNOWA or L-SVNOWG and get the collective one bi.
Finally, rank the alternative based on the score value of the
aggregated number bi and chose the best choice according
to the highest value.

In the nutshells, after combination all the above demon-
strations, our proposed decision making method under
SVNN environment has been summarized as follows.

Step 1: Formulate the neutrosophic decision matrix D of
rating values of the alternative Ai with respect to
attribute Gj denoted by bij ¼ hfij; jij;uiji and the

parameters kij for i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n.
Step 2: Convert the above matrix into the score matrix S

by using Eq. (17).
Step 3: Solve the optimization model (19) based on

the partial known weight information H about
the attribute and get weight vector x ¼
ðx1;x2; . . . ;xnÞT .
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Step 4: Utilize the appropriate aggregation operator
either L-SVNWA, or L-SVNOWA, or L-
SVNWG or L-SVNOWG to aggregate the differ-
ent preferences of the decision maker.

Step 5: Rank the alternative by using score function and
chose the best alternative(s).
5. Illustrative example

The proposed approach is illustrating with a practical
example which is stated as below.

5.1. Case study

Goods and Services Tax (GST) is an indirect tax which
is designed to make India an integrated common market.
While GST promises to user in an era of unified indirect
tax regime, integrating India into a single homogenous
market, it comes with certain complications inherited from
the legacy tax regime. With the government gearing up to
enforce the GST in Punjab from July 1, the issue of traders
having limited computer knowledge and poor connectivity.
In order to counter this, the state government has planned
to train more than 2000 youths as ‘GST Mitra’ to cater the
traders. Punjab GST Mitra Scheme, which has to be
started as pilot project from Patiala, proposes to assist
tax payers in furnishing the details of outward supplies,
inward supplies and returns, filing claims or refunds, filing
any other applications etc., in GST Regime. It aims to cre-
ate a group of Tax professionals available in the locality or
at the doorstep of tax payer, at affordable costs throughout
State of Punjab.

The poor internet connectivity in far-flung areas has
emerged as a big stumbling block in the success of ‘GST
Mitra’ scheme. In order to provide the online services to
run this scheme, state government is planning to give con-
tract combinedly to private mobile service provider along
with state-owned BSNL. For this, the Indian government
had been issued the global tender to select the contractor
for these projects in the newspaper and considered the five
attribute required for its namely, Technology Expertise
ðC1Þ, Service quality ðC2Þ, Bandwidth ðC3Þ, Internet speed
ðC4Þ and Customer Services ðC5Þ. The importance of these
attribute is taken as partially known. The five contractors
(i.e. alternatives) namely, ‘‘Jaihind Road Builders private
(Pvt.) limited (Ltd.)” ðA1Þ, ‘‘J.K. Construction” ðA2Þ,
‘‘Build quick Infrastructure Pvt. Ltd.” ðA3Þ, ‘‘Relcon Infra
projects Ltd.” ðA4Þ, and ‘‘Tata Infrastructure Ltd.” (A5) bid
for these projects. Then, the aim of the government is to
recognize the best internet service to their own citizens.
The procedure for selecting the best internet service provi-
der is summarized in the following steps.

Step 1: The rating values of the expert towards the five
alternatives Aiði ¼ 1; 2; 3; 4; 5Þ are listed as
In this matrix, corresponding to alternative A1

under criterion C1, when we ask the opinion of
an expert about the alternative A1 with respect
to the criterion C1, he or she may that the possi-
bility degree in which the statement is good is 0.5,
the statement is false is 0.4 and the degree in
which he or she is unsure is 0.3. The other values
in the matrix have similar meanings. Further-
more, the preferences of the logarithm base kij
are summarized as

Step 2: By using Eq. (17), the score matrix M is
3: Assume that the partial weight information
Step
about the attribute weights as given by decision
maker is H ¼ f0:15 6 x1 6 0:20; 0:2 6 x2 6
0:3; 0:2 6 x3 6 0:4; 0:22 6 x4 6 0:25; 0:15 6 x5

6 0:20g. Based on this information, an optimiza-
tion model has been formulated as

max f ¼ �0:7032x1 � 0:0573x2 � 0:1938x3 � 0:2041x4

� 0:2871x5 þ 0:1065x1 þ 0:4181x2 þ 0:0941x3

� 0:3585x4 þ 0:4309x5 � 0:2962x1 � 0:3585x2

þ 0:3029x3 þ 0:2822x4 � 0:5042x5 � 0:0220x1

þ 0:5011x2 � 0:5221x3 � 0:2435x4 þ 0:0792x5

� 0:1448x1 � 0:1150x2 � 0:0655x3 � 0:8184x4

� 0:2041x5
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i:e: f ¼� 1:0598x1 þ 0:3884x2 � 0:3844x3

� 1:3423x4 � 0:4854x5

s:t: 0:15 6 x1 6 0:20

0:20 6 x2 6 0:30

0:20 6 x3 6 0:40

0:22 6 x4 6 0:25

0:15 6 x5 6 0:20

x1 þ x2 þ x3 þ x4 þ x5 ¼ 1

x1;x2;x3;x4;x5 P 0

and hence after solving we get x ¼
ð0:15; 0:28; 0:20; 0:22; 0:15ÞT .
Step 4a: Utilize the L-SVNWA aggregation operator, as
given in Eq. (9), to aggregate all the preference
value bijðj ¼ 1; 2; 3; 4Þ corresponding to each

alternative Aiði ¼ 1; 2; 3; 4; 5Þ, we get the collec-
tive values bi as

b1 ¼L-SVNWAðb11;b12;b13;b14;b15Þ

¼ 1�
Y5
j¼1

logk1jf1j
� �xj

;
Y5
j¼1

logk1jð1�j1jÞ
� �xj

;

*

Y5
j¼1

logk1jð1�u1jÞ
� �xj

+

¼ 1� log0:4ð0:5Þð Þ0:15� log0:3ð0:5Þð Þ0:28
D

� log0:1ð0:2Þð Þ0:20� log0:2ð0:3Þð Þ0:22� log0:2ð0:3Þð Þ0:15;
log0:4ð0:7Þð Þ0:15� log0:3ð0:8Þð Þ0:28� log0:1ð0:8Þð Þ0:20
� log0:2ð0:8Þð Þ0:22� log0:2ð0:7Þð Þ0:15; log0:4ð0:6Þð Þ0:15
� log0:3ð0:7Þð Þ0:28� log0:1ð0:4Þð Þ0:20

� log0:2ð0:6Þð Þ0:22� log0:2ð0:6Þð Þ0:15
E

¼ 0:3130;0:1753;0:3544h i

b2 ¼L-SVNWAðb21;b22;b23;b24;b25Þ

¼ 1� log0:4ð0:7Þð Þ0:15� log0:2ð0:7Þð Þ0:28
D

� log0:3ð0:6Þð Þ0:20� log0:4ð0:6Þð Þ0:22� log0:3ð0:7Þð Þ0:15;
log0:4ð0:9Þð Þ0:15� log0:2ð0:8Þð Þ0:28� log0:3ð0:7Þð Þ0:20

� log0:4ð0:6Þð Þ0:22� log0:3ð0:9Þð Þ0:15; log0:4ð0:7Þð Þ0:15

� log0:2ð0:7Þð Þ0:28� log0:3ð0:8Þð Þ0:20� log0:4ð0:8Þð Þ0:22

� log0:3ð0:8Þð Þ0:15
E
¼ 0:6486;0:1989;0:2313h i

b3 ¼L-SVNWAðb31;b32;b33;b34;b35Þ
¼ 1� log0:3ð0:5Þð Þ0:15� log0:4ð0:6Þð Þ0:28
D

� log0:3ð0:6Þð Þ0:20� log0:2ð0:5Þð Þ0:22� log0:4ð0:6Þð Þ0:15;
log0:3ð0:7Þð Þ0:15� log0:4ð0:8Þð Þ0:28� log0:3ð0:9Þð Þ0:20

� log0:2ð0:9Þð Þ0:1� log0:4ð0:6Þð Þ0:15; log0:3ð0:6Þð Þ0:22

� log0:4ð0:6Þð Þ0:28� log0:3ð0:8Þð Þ0:20� log0:2ð0:7Þð Þ0:22

� log0:4ð0:7Þð Þ0:15
E
¼ 0:4989;0:1733;0:3321h i
b4 ¼L-SVNWAðb41;b42;b43;b44;b45Þ
¼ 1� log0:4ð0:7Þð Þ0:15� log0:2ð0:7Þð Þ0:28
D

� log0:3ð0:4Þð Þ0:20� log0:4ð0:5Þð Þ0:22� log0:1ð0:4Þð Þ0:15;
log0:4ð0:7Þð Þ0:15� log0:2ð0:8Þð Þ0:28� log0:3ð0:5Þð Þ0:20

� log0:4ð0:8Þð Þ0:22� log0:1ð0:5Þð Þ0:15; log0:4ð0:8Þð Þ0:15

� log0:2ð0:8Þð Þ0:28� log0:3ð0:8Þð Þ0:20� log0:4ð0:8Þð Þ0:22

� log0:1ð0:6Þð Þ0:15
E
¼ 0:5585;0:2736;0:1942h i

b5 ¼L-SVNWAðb51;b52;b53;b54;b55Þ
¼ 1� log0:3ð0:4Þð Þ0:15� log0:4ð0:5Þð Þ0:28
D

� log0:2ð0:4Þð Þ0:20� log0:3ð0:4Þð Þ0:22� log0:2ð0:3Þð Þ0:15;
log0:3ð0:9Þð Þ0:15� log0:4ð0:9Þð Þ0:28� log0:2ð0:9Þð Þ0:20

� log0:3ð0:7Þð Þ0:22� log0:2ð0:8Þð Þ0:15; log0:3ð0:7Þð Þ0:15

� log0:4ð0:8Þð Þ0:28� log0:2ð0:5Þð Þ0:20� log0:3ð0:4Þð Þ0:22

� log0:2ð0:6Þð Þ0:15
E
¼ 0:2849;0:1249;0:3758h i
Step 4b: On the other hand, if we utilize L-SVNWG
aggregation operator, given in Eq. (14) to aggre-
gate the decision information, then the values are

b1 ¼ L-SVNWGðb11; b12; b13; b14; b15Þ
¼ 1� log0:4ð0:5Þð Þ0:15 � 1� log0:3ð0:5Þð Þ0:28

D
� 1� log0:1ð0:2Þð Þ0:20 � 1� log0:2ð0:3Þð Þ0:22

� 1� log0:2ð0:3Þð Þ0:15; 1� 1� log0:4ð0:7Þð Þ0:15

� 1� log0:3ð0:8Þð Þ0:28 � 1� log0:1ð0:8Þð Þ0:20

� 1� log0:2ð0:8Þð Þ0:22 � 1� log0:2ð0:7Þð Þ0:15;
1� 1� log0:4ð0:6Þð Þ0:15 � 1� log0:3ð0:7Þð Þ0:28

� 1� log0:1ð0:4Þð Þ0:20 � 1� log0:2ð0:6Þð Þ0:22

� 1� log0:2ð0:6Þð Þ0:15
E
¼ 0:3006; 0:1992; 0:3709h i
Similarly, for other alternatives, we can obtain
b2 ¼ 0:6147; 0:2764; 0:2421h i; b3 ¼ 0:4899; 0:2490;h
0:3819i; b4 ¼ 0:4416; 0:3313; 0:2004h i, and b5 ¼
0:2724; 0:1488;h 0:4597i.
Step 5: The score values of the aggregated number
biði ¼ 1; 2; 3; 4; 5Þ corresponding to L-SVNWA
operator are Sðb1Þ ¼ �0:2168; Sðb2Þ ¼ 0:2185;
Sðb3Þ ¼ �0:0066; Sðb4Þ ¼ 0:0907 and Sðb5Þ ¼
�0:2158. Thus, the ranking order of the alterna-
tives is A2 	 A4 	 A3 	 A5 	 A1. On the other
hand, these score values of the aggregated
number corresponding to L-SVNWG operator
are Sðb1Þ ¼ �0:2695; Sðb2Þ ¼ 0:0962; Sðb3Þ ¼
�0:1410; Sðb4Þ ¼ �0:0900 and Sðb5Þ ¼ �0:3362.
Thus, the ranking order of the alternatives is
A2 	 A4 	 A3 	 A1 	 A5 in which 	 means
‘‘preferred to”.
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From these ranking order, we see that the best alterna-
tive remains A2 by both the operators while the alternative
A5 	 A1 for averaging and A1 	 A5 for geometric aggrega-
tion operator. Thus, according to the decision maker
behavior either as an optimistic or pessimistic, they can
select the alternatives accordingly and reach their desired
goals.

5.2. Validity test

Wang and Triantaphyllou (2008) established the follow-
ing testing criteria to evaluate the validity of MADM
methods.

Test criterion 1: ‘‘An effective MADM method does not
change the index of the best alternative by replacing a non-
optimal alternative with a worse alternative without shift-
ing the corresponding importance of every decision
attribute”.

Test criterion 2: ‘‘To an effective MADM method must
be satisfied transitive property”.

Test criterion 3: ‘‘If we decomposed a MADM problem
into the sub DM problems and same MADM method is
utilized on subproblems to rank alternatives, the collective
ranking of alternatives must be identical to ranking of un-
decomposed DM problem”.

5.2.1. Validity test by test criterion 1

Under the test criterion 1, we change the rating value for
non-optimal alternative A1 by an arbitrary worse alterna-
tive A0

1 as A0
1 ¼ fðC1; 0:4; 0:4; 0:6Þ; ðC2; 0:3; 0:4; 0:5Þ;

ðC3; 0:1; 0:5; 0:4Þ; ðC4; 0:2; 0:3; 0:5Þ; ðC5; 0:2; 0:4; 0:4Þg which
are summarized as
Then, by utilizing the proposed approach using
L-SVNWA operator to this transform data, we get the
score values of the alternatives Aiði ¼ 1; 2; 3; 4; 5Þ as
�0:7859; 0:2185;�0:0066; 0:0907 and �0:2158. Thus, rank-
ing order of the alternatives is A2 	 A4 	 A3 	 A5 	 A0

1 and
it validate the test criterion 1.

5.2.2. Validity test by criteria 2 and 3

Under these test, we have decomposed original DM
problem into three sub problems with alternatives
fA1;A2;A4;A5g; fA1;A3;A4;A5g and fA2;A3;A4;A5g. Now,
by applying proposed MADM approach on these alterna-
tives by using L-SVNWA approach then we get
H 2 	 A4 	 A5 	 A1;A4 	 A3 	 A5 	 A1 and A2 	 A4 	
A3 	 A5 respectively. Therefore, from these, we get the final
ranking order as A2 	 A4 	 A3 	 A5 	 A1 which is same as
the original ranking. Hence, it validates test criteria 2
and 3.

5.3. Influence of logarithm operation and k selection in

practice

Here, we have investigated the influence of the
logarithm operations for SVNNs and the selection of the
logarithm base parameter k in practice. From SVNN b,
the operation of logarithm is defined as logkb ¼
h1� logkf; logkð1� jÞ; logkð1� uÞi and 0 < k 6 minff;
1� j; 1� ug < 1. When 0 < k < 1; logkc increases as k
increases, however, the larger the value of a real number
c, the smaller the value of logkc is.

(P1) From the properties of the logarithm function of real
numbers, and from the definition of logkb, we observe
that
(a) There always exists a real number k1 ¼ f
1

1�f such
that

 if k ¼ k1, then 1� logkf ¼ f;

 if k > k1, then 1� logkf < f; and

 if k < k1, then 1� logkf > f.
(b) There always exists a real number k2 ¼ ð1� jÞ1j
such that

 If k ¼ k2, then logkð1� jÞ ¼ j;

 If k > k2, then logkð1� jÞ > j;

 If k < k2, then logkð1� jÞ < j.
(c) There exists a real number k3 ¼ ð1� uÞ1u such
that


 If k ¼ k3, then logkð1� uÞ ¼ u;

 If k > k3, then logkð1� uÞ > u;

 If k < k3, then logkð1� uÞ < u.
(P2) If we choose a relative small number k such that
k < k1 < k2 < k3 and k < f then by part (P1), we have
1� logkf > f; logkð1� jÞ < j and logkð1� uÞ < u.
From this, it implies that logkb > b, i.e., the value
of SVNN b will be increased after applying the loga-
rithmic operator. In other words, the logarithm oper-
ator will enhanced the values of SVNN.

(P3) If we choose the parameter k in such a way that
k1 < k < k2 < k3, then we get
1� logkf < f; logkð1� uÞ < u and logkð1� jÞ < j
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which suggests that the value of the truth, indetermi-
nacy and the falsity degrees are decreased after apply-
ing the logarithm operator.

(P4) If we choose the parameter k in such a way that
k1 < k2 < k < k3, then we get 1� logkf < f;
logkð1� jÞ > j and logkð1� uÞ < u which suggests
that the value of the truth and falsity degrees
decreases while indeterminacy degree increases after
applying the logarithm operator.

(P5) If we choose a relatively large number k such that
k1 < k2 < k3 < k then we get logkb < b. That is,
the logarithm operator will reduce the value of
SVNN.

Therefore, based on this comprehensive evaluation, the
decision maker can select the desired value of k for their
suitable task. For instance, if we want to enhance the
SVNN which is undervalued for poor information, then
we can choose the logarithm operator with a small number
k, and vice versa. This task has been illustrated with the fol-
lowing example.

Example 5.1. Consider b1 ¼ h0:3; 0:5; 0:3i; b2 ¼ h0:7; 0:2;
0:4i; b3 ¼ h0:2; 0:7; 0:1i and b4 ¼ h0:4; 0:2; 0:8i be
four SVNNs, which is the achievement of the employ
evaluated by the their senior administrator during their
promotion interview. In the following, we show the
different comprehensive evaluation based on the above
results.

(1) If we utilized traditional SVNWA operator with
senior administrator weight x ¼ ð0:25; 0:25; 0:25;
0:25ÞT towards the rating, then

S1 ¼ SVNWAðb1; b2; b3; b4Þ

¼ 1�
Y4
j¼1

ð1� fjÞxj ;
Y4
j¼1

ðjjÞxj ;
Y4
j¼1

ðujÞxj

* +

¼ 1� ð0:7� 0:3� 0:8� 0:6Þ0:25;
D
ð0:5� 0:2� 0:7� 0:2Þ0:25; ð0:3� 0:4� 0:1� 0:8Þ0:25

E
¼ 0:4365; 0:3440; 0:3130h i
(2) Assume that the values of bjðj ¼ 1; 2; 3; 4Þ are all

undervalued for evaluator’s preferences and have
re-evaluated according to (P1). In order to get more
reasonable results, expert will agree to adjust their
scores by using logarithm operator and then by
(P1), we get ðk11; k12; k13; k14Þ ¼ ð0:1791; 0:3046;
0:1337; 0:2172Þ; ðk21; k22; k23; k24Þ ¼ ð0:2500; 0:3277;
0:1791; 0:3277Þ and ðk31; k32; k33; k34Þ= ð0:3046;
0:2789; 0:3487; 0:1337Þ be the threshold values of
bjðj ¼ 1; 2; 3; 4Þ. Here, we assume that k1 ¼ k2 ¼
k3 ¼ k4 ¼ 0:15, then
S2 ¼L-SVNWAðb1;b2;b3;b4Þ

¼ 1�
Y4
j¼1

logkfj
� �xj

;
Y4
j¼1

logkð1�jjÞ
� �xj

;
Y4
j¼1

logkð1�ujÞ
� �xj

* +

¼ 1� log0:150:3ð Þ0:25� log0:150:7ð Þ0:25� log0:150:2ð Þ0:25
D

� log0:150:4ð Þ0:25; log0:150:5� log0:150:8� log0:150:3ð
�log0:150:8Þ0:25; log0:150:7� log0:150:6� log0:150:9ð
�log0:150:2Þ0:25

E
¼ 0:5298;0:2380;0:2210h i
(3) In order to induce the values of bjðj ¼ 1; 2; 3; 4Þ rea-
sonable and by taking the different weight of the
senior administrator during evaluating the achieve-
ment of the employ, we suppose that
k1 ¼ 0:2; k2 ¼ 0:4; k3 ¼ 0:1 and k4 ¼ 0:2 and

xj ¼ kjP5

j¼1
kj
, we get x1 ¼ 0:2222;x2 ¼ 0:4444;

x3 ¼ 0:1111 and x4 ¼ 0:2223. Thus, by using L-
SVNWA operator to aggregate the different prefer-
ence, we have

S3¼L-SVNWAðb1;b2;b3;b4Þ

¼ 1�
Y4
j¼1

logkjfj
� �xj

;
Y4
j¼1

logkj ð1�jjÞ
� �xj

;
Y4
j¼1

logkjð1�ujÞ
� �xj

* +

¼ 1� log0:20:3ð Þ0:2222� log0:40:7ð Þ0:4444� log0:10:2ð Þ0:1111
D

� log0:20:4ð Þ0:2223; log0:20:5ð Þ0:2222� log0:40:8ð Þ0:4444
� log0:10:3ð Þ0:1111� log0:20:8ð Þ0:2223; log0:20:7ð Þ0:2222

� log0:40:6ð Þ0:4444� log0:10:9ð Þ0:1111� log0:20:2ð Þ0:2223
E

¼ 0:4773;0:2655;0:3917h i

(4) Consider the weight of the senior administrator which

are going to evaluate the performance of the employs
are not equally distributed. For it, we assume that dur-
ing the evaluation, the weight of second administrator
is double than the third ones and half than the one
administrator. On the other hand, the importance of
the first administrator is double than the fourth admin-
istrator. Thus, it implies that x1 ¼ 4=9;x2 ¼ 2=9;
x3 ¼ 1=9 and x4 ¼ 2=9 for some acceptable reasons.
Further, for the undervalued SVNNs, assume that
k1 ¼ k2 ¼ k3 ¼ k4 ¼ 0:15, then

S4 ¼L-SVNWAðb1;b2;b3;b4Þ

¼ 1�
Y4
j¼1

logkfj
� �xj

;
Y4
j¼1

logkð1�jjÞ
� �xj

;
Y4
j¼1

logkð1�ujÞ
� �xj

* +

¼ 1� log0:150:3ð Þ4=9 � log0:150:7ð Þ2=9 � log0:150:2ð Þ1=9
D
� log0:150:4ð Þ2=9; log0:150:5ð Þ4=9 � log0:150:8ð Þ2=9
� log0:150:3ð Þ1=9 � log0:150:8ð Þ2=9; log0:150:7ð Þ4=9

� log0:150:6ð Þ2=9 � log0:150:9ð Þ1=9 � log0:150:2ð Þ2=9
E

¼ 0:5293;0:2347;0:2486h i
Hence, based on score function, we get
S2 > S4 > S1 > S3 which is in accordance with our
expectation.
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5.4. Comparison with other existing methods

In order to verify the validity of our method, we make a
comparison between our proposed operator with the
weighted averaging and geometric aggregation operators
as proposed by the authors in (Liu et al., 2014; Nancy &
Garg, 2016b; Peng et al., 2016; Ye, 2014, 2016) for multi
attribute decision making with SVN information. Under
this, if we utilize weighted averaging aggregation operators
Table 1
Neutrosophic aggregated results by averaging operators.

SVNWA (Peng et al., 2016) SVNOWA (Peng et al., 2016)

A1 h0:3779; 0:2259; 0:4002i h0:3820; 0:2449; 0:4071i
A2 h0:6615; 0:2052; 0:2381i h0:6663; 0:1801; 0:2430i
A3 h0:5656; 0:1763; 0:3131i h0:5597; 0:1838; 0:3122i
A4 h0:5722; 0:2929; 0:2219i h0:5706; 0:3145; 0:2219i
A5 h0:4165; 0:1413; 0:3607i h0:3960; 0:1373; 0:3696i

SVNHWA (Liu et al., 2014)

c ¼ 2 c ¼ 3

A1 h0:3725; 0:2264; 0:4033i h0:3693; 0:2266; 0:4048i
A2 h0:6608; 0:2086; 0:2388i h0:6604; 0:2099; 0:2390i
A3 h0:5648; 0:1790; 0:3149i h0:5645; 0:1800; 0:3157i
A4 h0:5663; 0:2978; 0:2230i h0:5635; 0:3000; 0:2234i
A5 h0:4151; 0:1427; 0:3680i h0:4143; 0:1432; 0:3714i

Table 2
Neutrosophic aggregated results by geometric operators.

SVNWG(Peng et al., 2016) SVNOWG(Peng et al., 2016)

A1 h0:3446; 0:2314; 0:4223i h0:3516; 0:2517; 0:4222i h0
A2 h0:6561; 0:2426; 0:2446i h0:6612; 0:2173; 0:2497i h0
A3 h0:5609; 0:2109; 0:3272i h0:5548; 0:2257; 0:3233i h0
A4 h0:5344; 0:3348; 0:2338i h0:5320; 0:3524; 0:2338i h0
A5 h0:4078; 0:1633; 0:4131i h0:3882; 0:1555; 0:4065i h0

SVNFWG (Nancy & Garg, 2016b) SNWEA (Ye, 2016)

A1 h0:3471; 0:2311; 0:4204i h0:0058; 0:8315; 0:9665i h0
A2 h0:6565; 0:2405; 0:2442i h0:1399; 0:7168; 0:7589i h0
A3 h0:5612; 0:2089; 0:3263i h0:0727; 0:6965; 0:8422i h0
A4 h0:5373; 0:3317; 0:2329i h0:0362; 0:9206; 0:8428i h0
A5 h0:4085; 0:1622; 0:4092i h0:0184; 0:6522; 0:9338i h0

Table 3
Ordering of the alternatives

Existing operators Ordering

NWA (Ye, 2014) A2 	 A3 	 A4 	 A5 	 A1

SVNWA (Peng et al., 2016) A2 	 A3 	 A4 	 A5 	 A1

SVNOWA (Peng et al., 2016) A2 	 A3 	 A4 	 A5 	 A1

SVNWG (Peng et al., 2016) A2 	 A3 	 A4 	 A5 	 A1

SVNOWG (Peng et al., 2016) A2 	 A3 	 A4 	 A5 	 A1

SVNFWA (Nancy & Garg, 2016b) A2 	 A3 	 A4 	 A5 	 A1

SVNHWA (Liu et al., 2014) ðc ¼ 2Þ A2 	 A3 	 A4 	 A5 	 A1

SVNHWA (Liu et al., 2014) ðc ¼ 3Þ A2 	 A3 	 A4 	 A5 	 A1

NWG (Ye, 2014) A2 	 A3 	 A4 	 A5 	 A1

SVNFWG (Nancy & Garg, 2016b) A2 	 A3 	 A4 	 A5 	 A1

SVNHWG (Liu et al., 2014) ðc ¼ 2Þ A2 	 A3 	 A4 	 A5 	 A1

SVNHWG (Liu et al., 2014) ðc ¼ 3Þ A2 	 A3 	 A4 	 A5 	 A1

SNWEA (Ye, 2016) A2 	 A3 	 A5 	 A4 	 A1
such as SVNWA (Peng et al., 2016), SVNOWA (Peng et al.,
2016), NWA (Ye, 2014), SVNHWA (Liu et al., 2014), and
SVNFWA (Nancy & Garg, 2016b) under SVN environ-
ment to aggregate the information of each alternative into
the collective one, then the aggregated values corresponding
to these operators are summarized in Table 1 along with the
proposed operators. On the other hand, the aggregated val-
ues by using some existing geometric aggregation operators
which include the NWG (Ye, 2014), SVNWG(Peng et al.,
NWA (Ye, 2014) SVNFWA (Nancy & Garg, 2016b)

h0:3779; 0:2314; 0:4223i h0:3755; 0:2262; 0:4018i
h0:6615; 0:2426; 0:2446i h0:6611; 0:2072; 0:2385i
h0:5656; 0:2109; 0:3272i h0:5652; 0:1779; 0:3141i
h0:5722; 0:3348; 0:2338i h0:5692; 0:2956; 0:2225i
h0:4165; 0:1633; 0:4131i h0:4159; 0:1422; 0:3646i

L-SVNWA L-SVNOWA

h0:3130; 0:1753; 0:3544i h0:3229; 0:1926; 0:3607i
h0:6486; 0:1989; 0:2313i h0:6549; 0:1719; 0:2368i
h0:4989; 0:1733; 0:3321i h0:4896; 0:1823; 0:3303i
h0:5585; 0:2736; 0:1942i h0:5561; 0:2975; 0:1942i
h0:2849; 0:1249; 0:3758i h0:2442; 0:1209; 0:3834i

NWG (Ye, 2014) SVNHWG (Liu et al., 2014)

c ¼ 2 c ¼ 3

:3446; 0:2259; 0:4002i h0:3491; 0:2305; 0:4183i h0:3511; 0:2300; 0:4162i
:6561; 0:2052; 0:2381i h0:6570; 0:2374; 0:2437i h0:6576; 0:2338; 0:2430i
:5609; 0:1763; 0:3131i h0:5617; 0:2059; 0:3250i h0:5621; 0:2025; 0:3237i
:5344; 0:2929; 0:2219i h0:5406; 0:3275; 0:2316i h0:5439; 0:3232; 0:2302i
:4078; 0:1413; 0:3607i h0:4091; 0:1603; 0:4046i h0:4097; 0:1582; 0:3997i

L-SVNOWG L-SVNWG

:2771; 0:2359; 0:4040i h0:3006; 0:1992; 0:3709i
:6159; 0:2422; 0:2635i h0:6147; 0:2764; 0:2421i
:4909; 0:2743; 0:3657i h0:4899; 0:2490; 0:3819i
:4278; 0:3678; 0:2126i h0:4416; 0:3313; 0:2004i
:2727; 0:1333; 0:4240i h0:2724; 0:1488; 0:4597i

Proposed operators Ordering

L-SVNWA A2 	 A4 	 A3 	 A5 	 A1

L-SVNOWA A2 	 A4 	 A3 	 A5 	 A1

L-SVNWG A2 	 A4 	 A3 	 A1 	 A5

L-SVNOWG A2 	 A3 	 A4 	 A5 	 A1
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2016), SVNOWG (Peng et al., 2016), SVNFWG (Nancy &
Garg, 2016b), SNWEA (Ye, 2016) and SVNHWG(Liu
et al., 2014) operators are summarized in Table 2 along with
the proposed geometric operators.

By using these collective values and the score functions,
the ranking order of the alternatives are summarized in
Table 3 inwhich	means ‘‘preferred to”. From these results,
it has been seen that the best alternative is A2 by all the oper-
ators while the different aggregation operators have different
ranking strategies which are slightly different. Thus, we can
conclude that decision maker reach different decisions based
on their preference in terms aggregation operators.

6. Conclusion

In this paper, we present a novel logarithm operational
laws (LOL) of SVNSs with the real base number k which
is a useful supplement to the existing operational laws. Also,
we have examined their properties and correlations. Based
on these LOLs, we developed the weighted averaging and
geometric aggregation operators named as L-SVNWA, L-
SVNOWA, L-SVNWG, and L-SVNOWG. Then, we uti-
lized these operators to develop a multiattribute decision
making approach for solving the practical problem with
single-valued neutrosophic fuzzy information. The pro-
posed approach has been verified by an illustrative example.
A comparative study with several of the existing approaches
is presented to show their superiority as well as the validity
of the approach. At last, the influence of the logarithm oper-
ations, as well as the selection of the logarithm base k, are
discussed. From the study, it is concluded that the proposed
operational laws and the aggregation operators can equiva-
lently solve the decision making problem in a more efficient
manner. Also, by assigning a different parameter to base k,
the decision maker can choose the best alternative accord-
ing to his or her preferences. In the future, the result of this
paper can be extended to some other fuzzy and uncertain
environment (Garg & Arora, 2018a, 2018b; Peng & Yang,
2017; Rani & Garg, 2017).
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