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ABSTRACT In the epoch of Internet of Things (IoT), we are confronted five challenges (Connectivity,
Value, Security, Telepresence and Intelligence) with complex structures. IoT industry decision making
is critically important for countries or societies to enhance the effectiveness and validity of leadership,
which can greatly accelerate industrialized and large-scale development. In the case of IoT industry
decision evaluation, the essential problem arises serious incompleteness, impreciseness, subjectivity and
incertitude. Interval neutrosophic set (INS), disposing the indeterminacy portrayed by truth membership T ,
indeterminacy membership I , and falsity membership F with interval form, is a more viable and effective
means to seize indeterminacy. The main purpose of this paper is to investigate the multiparametric distance
measure and similarity measure. Meanwhile, some interesting properties of distance measure and similarity
measure are proved. Then, the objective weights of diverse attributes are ascertained by deviation-based
method. Also, we explore the combination weight, which reveal both the objective preference and the
subjective preference. The validity of algorithm is illustrated by an IoT industry decision making issue,
along with the effect of diverse parameters on the ranking. Finally, a comparison of the developed with
the existing interval neutrosophic decision making methods has been executed in the light of the counter-
intuitive phenomena and unauthentic issue for displaying their effectiveness.

INDEX TERMS Interval neutrosophic set, Similarity measure, Combination weight, Decision making

I. INTRODUCTION

THE Internet of Things (IoT) is deemed to an economic
and technology wave of global information industry

after the Computer and Internet. It refers to the intelligent
wireless network which connects all things to the Internet for
the goal of information communicating and data exchanging
by sensing devices in keeping with data authentication, and
has branched out into the scope of technological capability
to data collection, monitoring, automation, sharing, control
and collaboration. IoT has revolutionized scientific develop-
ments, affected our daily performances, even influenced the
planning and policies of the countries. Nevertheless, the in-
fluential factors of “IoT” centers on not only the connectivity
and intelligence but also on their telepresence and security

[1]. In addition, other trait, such as value, is also continually
considered [2, 3]. A brief description of these traits is shown
in Figure 1.

Presently, IoT has already been applied to numerous fields,
such as smart cities [4, 5], healthcare [6, 7], energy [8, 9],
agriculture [10, 11], building automation [12, 13], industry
[14, 15], transportation [16, 17], military [18, 19] and so
on. The Microsoft founder Bill Gates once said, IoT is
the future of technology. The tech behemoths want to seek
their own business opportunities in the blue sea of the IoT
market. Whereas, if they want their business opportunities
become market monopoly share, it is not enough to depend
on themselves alone. Hence, they had better select a befitting
leading company to collaborate with. As the top of the
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FIGURE 1: The five traits at IoT.

pyramid of the IoT market, Amazon Web Services, ARM,
Huawei, Cisco, IBM, Microsoft and Intel are certainly good
partners to be considered. Therefore, the idea that regards the
process to select the applicable company to collaborate with
to the dominating multiple attribute decision making (MAD-
M) problem comes to my mind. However, the increasingly
complex decision-making environments and willy-nilly deci-
sion makers (DMs) have made it difficult to express decision
information with uncertainty in the process of solving the
above MADM problems [20–22].

Neutrosophic set (NS), initiatively introduced by Smaran-
dache [23], has regarded as a more efficient tool to describe
incongruous and uncertain information in a philosophical
point compared with the intuitionistic fuzzy set (IFS) [24].
From scientific point, the neutrosophic set and set-theoretic
operators should be prescriptive, or it will have difficult in
employing real environments. As a consequence, Wang et
al. [25] presented the concept of single valued neutrosophic
set (SVNS) as well as some interesting and ground-breaking
properties of SVNSs. Up to now, SVNS has drawn much
attention and achieved some influential achievements [26–
30].

As a matter of fact, the truth membership T , indetermi-
nacy membership I , and falsity membership F of a sure
statement cannot be denoted precisely in real environment
but are defined by the possible interval form. Therefore,
Wang et al. [31] presented the significant theory of interval
neutrosophic sets (INSs) and defined the set-theoretic oper-
ators of INSs. Pramanik and Mondal [32] stated the inter-
val neutrosophic MADM method based on grey relational
analysis (GRA). Peng and Dai [33] presented three MADM
methods based on MABAC, similarity measure and EDAS.
Broumi and Smarandache [34] investigated the correlation
coefficient for INS. Broumi et al. [35] solved the shortest path
problem under interval valued neutrosophic setting. Yang
et al. [36] introduced the novel MADM method based on
linear assignment method under interval neutrosophic envi-
ronment. Karaşan and Kahraman [37] initiated the interval-
valued neutrosophic EDAS method for the prioritization of
the UN national sustainable development goals. Bolturk and
Kahraman [38] developed the interval-valued neutrosophic

method based on AHP with cosine similarity measure. Wang
et al. [39] presented the fuzzy stochastic MADM methods
with interval neutrosophic probability based on regret theory.
Ye [40] presented the subtraction and division operations
for INS. Moreover, some applications [41] are focused on
the aggregation operators [42–53] and information measures
[54–67].

Due to the counterintuitive phenomena [42, 44, 47, 49,
51, 67] and unauthentic issue [62] of the existing interval
neutrosophic decision making methods, they may be hard
for DMs to choose convincible or optimal alternatives. As
a consequence, the goal of this paper is to deal the above
issue by proposing a new similarity measure method for INS,
which can have without above problems.

For counting the distance measure and similarity measure
of two INSs, we introduce a novel way to build the distance
measure and similarity measure which depend on three pa-
rameters, namely, t1, t2 and p, where p is the Lp norm, t1, t2
identify the level of uncertainty. Meanwhile, their relation
with the similarity measures for INSs are discussed in de-
tail. Moreover, the effect of the different parameters on the
ordering of the alternatives are presented.

Considering that diverse attributes’ weights would possess
influence in ordering results of given alternatives, enlight-
ened by Peng and Dai [33] and Zhang et al. [59], we al-
so propose a fire-new approach to calculate the attributes’
weight by uniting the subjective ones with the objective ones.
The proposed model is different from the existing interval
neutrosophic weight determining approaches, which can be
classed as two sides: (1) subjective weighting determine
approaches and (2) the objective weighting determining ap-
proaches, which can be calculated by bran-new deviation-
based method. Some subjective weighting approaches place
emphasis on the preference of the decision makers [42, 44–
52], but they neglect the objective evaluation information.
Meanwhile, the objective weighting determining approaches
don’t take the information of experts into account, that is
to say, these approaches cannot take the preference of the
experts into consideration [68]. The characteristic of the
proposed weighting model can reveal the subjective prefer-
ence information and the objective preference information
simultaneously. For this reason, uniting objective weight
and subjective weight, a combination model for achieving
attributes’ weights is developed.

To obtain these goals, the major research contributions are
listed in the following:

(i) The novel similarity measure and distance measure
for INSs is presented. The effect of the three parameters
(t1, t2, p) on the ordering of the alternatives are presented.

(ii) A comparison between the initiated and the existing
similarity measures [54, 55, 57, 58, 60–66]. has been execut-
ed in the light of counter-intuitive examples for showing its
viability and effectiveness.

(iii) The novel weight model is presented for averting
effect of objective aspect and subjective aspect.
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(iv) The proposed algorithm with some existing decision
making algorithms [42, 44, 47, 49, 51, 62, 67] are compared
by some examples.

The rest of this paper is listed as follows: In Section 2, the
basic notions of NS, SVNS and INSs are briefly retrospected,
which will be employed in the analysis throughout this paper.
In Section 3, some new distance measures and similarity
measures are proposed and proved. Meanwhile, a comparison
between the initiated and the existing measures is executed
in the light of counter-intuitive examples. In Section 4, an
algorithm for INS based decision making are shown and
the effect of the different parameters on the ordering of the
objects are discussed in detail. In Section 5, a comparison
with some existing algorithms are examined. The paper is
concluded in Section 6.

II. PRELIMINARIES
In this section, we first recall some basic ideas of NS, SVNS,
INS and their properties.

A. NEUTROSOPHIC SET AND SINGLE-VALUED
NEUTROSOPHIC SET
Definition 1: [23] Let X be the universe of discourse, with a
mass of elements in X presented by x. A neutrosophic set B
in X is summarized as a truth membership function TB(x),
an indeterminacy membership function IB(x), and a falsity
membership function FB(x). The functions TB(x), IB(x),
and FB(x) are real standard or non-standard subsets of
]0−, 1+[ . That is TB(x) : X →]0−, 1+[ , IB(x) : X →
]0−, 1+[ , and FB(x) : X →]0−, 1+[.

There is limiting condition on the sum of TB(x), IB(x),
and FB(x), so 0− ≤ sup TB(x)+ sup IB(x)+ sup FB(x) ≤
3+.

Definition 2: [25] Let X be the universe of discourse, with
a mass of elements in X presented by x. A SVNS N in
X is summarized as a truth-membership function TN (x),
an indeterminacy-membership function IN (x), and a falsity-
membership function FN (x). Then, the SVNS N can be
presented as follows:

N = {< x, TN (x), IN (x), FN (x) >| x ∈ X}, (1)

where TN (x), IN (x), FN (x) ∈ [0, 1] for ∀x ∈ X . Mean-
while, the sum of TN (x), IN (x), and FN (x) fulfills the con-
dition 0 ≤ TN (x) + IN (x) + FN (x) ≤ 3. For a SVNS N in
X , the triplet (TN (x), IN (x), FN (x)) is called single-valued
neutrosophic number (SVNN). As a matter of convenience,
we can simply use x = (Tx, Ix, Fx) to denote a SVNN as an
element in the SVNS N .

B. INTERVAL NEUTROSOPHIC SET
Interval neutrosophic set (INS), initiatively introduced by
Wang et al. [31], has regarded as a more efficient tool to
describe incongruous information in a philosophical point
compared with the interval-valued intuitionistic fuzzy set

(IVIFS) and SVNS. Wang et al. [31] introduced the definition
of INS as follows:

Definition 3: [31] Let X be a universe of discourse, with
a class of elements in X denoted by x. An INS A in X
is summarized by a truth-membership function TA(x), an
indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). Then an INS A can be denoted
as follows:

A = {< x, TA(x), IA(x), FA(x) >| x ∈ X}. (2)

For each point x in X , TA(x) = [TLA (x), T
U
A (x)], IA(x) =

[ILA(x), I
U
A (x)], FA(x) = [FLA (x), F

U
A (x)] ⊆ [0, 1], and 0 ≤

TUA (x) + IUA (x) + FUA (x) ≤ 3. For convenience, Peng and
Dai [33] can simply use x = ([TL, TU ], [IL, IU ], [FL, FU ])
to represent an INN as an element in the INS A.

Definition 4: [31] An INS N is contained in other INS
M , N ⊆ M if and only if TLN (x) ≤ TLM (x), TUN (x) ≤
TUM (x), ILN (x) ≥ ILM (x), IUN (x) ≥ IUM (x), FLN (x) ≥
FLM (x), FUN (x) ≥ FUM (x) for ∀x.

Definition 5: [40, 42] Let x1 = ([TL1 , T
U
1 ], [IL1 , I

U
1 ], [FL1 , F

U
1 ])

and x2 = ([TL2 , T
U
2 ], [IL2 , I

U
2 ], [FL2 , F

U
2 ]) be two INNs, and

λ > 0, then the operations for the INNs are defined as
follows:

(1) λx1 = ([1−(1−TL1 )λ, 1−(1−TU1 )λ], [(IL1 )
λ, (IU1 )λ],

[(FL1 )λ, (FU1 )λ]);
(2) xλ1 = ([(TL1 )λ, (TU1 )λ], [1 − (1 − IL1 )

λ, 1 − (1 −
IU1 )λ], [1− (1− FL1 )λ, 1− (1− FU1 )λ]);
(3) x1

⊕
x2 = ([TL1 + TL2 − TL1 T

L
2 , T

U
1 + TU2 −

TU1 T
U
2 ], [IL1 ∗ IL2 , IU1 ∗ IU2 ], [FL1 ∗ FL2 , FU1 ∗ FU2 ]);

(4) x1
⊗
x2 = ([TL1 ∗TL2 , TU1 ∗TU2 ], [IL1 +I

L
2 −IL1 IL2 , IU1 +

IU2 − IU1 IU2 ], [FL1 + FL2 − FL1 FL2 , FU1 + FU2 − FU1 FU2 ]);
(5) xc1 = ([FL1 , F

U
1 ], [1− IU1 , 1− IL1 ], [TL1 , TU1 ]).

Theorem 1: [42] Let x1 = ([TL1 , T
U
1 ], [IL1 , I

U
1 ], [FL1 , F

U
1 ])

and x2 = ([TL2 , T
U
2 ], [IL2 , I

U
2 ], [FL2 , F

U
2 ]) be two INNs, and

λ, λ1, λ2 > 0, then we have
(1) x1

⊕
x2 = x2

⊕
x1;

(2) x1
⊗
x2 = x2

⊗
x1;

(3) λ(x1
⊕
x2) = λx1

⊕
λx2;

(4) (x1
⊗
x2)

λ = xλ1
⊗
xλ2 ;

(5) λ1x1
⊕
λ2x1 = (λ1 + λ2)x1;

(6) xλ1
1

⊗
xλ2
1 = xλ1+λ2

1 .

Definition 6: [57] Let x1 = ([TL1 , T
U
1 ], [IL1 , I

U
1 ], [FL1 , F

U
1 ])

and x2 = ([TL2 , T
U
2 ], [IL2 , I

U
2 ], [FL2 , F

U
2 ]) be two INNs, then

the Hamming distance between x1 and x2 can be defined as
follows:

dh(x1, x2) =
1

6

 | T
L
1 − TL2 | + | TU1 − TU2 | +
| IL1 − IL2 | + | IU1 − IU2 | +
| FL1 − FL2 | + | FU1 − FU2 |

 . (3)
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Definition 7: [33] Let x = ([TL, TU ], [IL, IU ], [FL, FU ]) be
an INN, then the proposed score function s(x) is defined as
follows:

s(x) =
2

3
+
TL + TU

6
− IL + IU

6
− FL + FU

6
. (4)

It measures the Hamming similarity (1 − dh(x, x
∗))

between x = ([TL, TU ], [IL, IU ], [FL, FU ]) and the ideal
solution x∗ = ([1, 1], [0, 0], [0, 0]) for the comparison of
INNs.

Example 1: Suppose that x1 = ([0, 0], [0, 0], [1, 1]) and x2 =
([0, 0], [1, 1], [0, 0]). If we utilize the score function of Peng
and Dai [33] to compare, we can have s(x1) = s(x2) = 1

3 .
As a matter of fact, x1 6= x2.

Notice the deficiencies of the score function s of Peng and
Dai [33], we add an accuracy function in the following.

Definition 8: Let x = ([TL, TU ], [IL, IU ], [FL, FU ]) be an
INN, then the accuracy function a(x) is defined as follows:

a(x) = TL + TU − FL − FU . (5)

For any two INNs x, y,
(1) if s(x) > s(y), then x � y;
(2) if s(x) = s(y) and a(x) > a(y), then x � y.

Definition 9: [55] Let M,N and O be three INSs on X . A
distance measure D(M,N) is a mapping D : INS(X) ×
INS(X)→ [0, 1], possessing the following properties:

(D1) 0 ≤ D(M,N) ≤ 1;
(D2) D(M,N) = 0, iff M = N ;
(D3) D(M,N) = D(N,M);
(D4) If M ⊆ N ⊆ O, then D(M,N) ≤ D(M,O) and

D(N,O) ≤ D(M,O).

Definition 10: [55] Let M,N and O be three INSs on X . A
similarity measure S(M,N) is a mapping S : INS(X) ×
INS(X)→ [0, 1], possessing the following properties:

(S1) 0 ≤ S(M,N) ≤ 1;
(S2) S(M,N) = 1, iff M = N ;
(S3) S(M,N) = S(N,M);
(S4) If M ⊆ N ⊆ O, then S(M,N) ≥ S(M,O) and

S(N,O) ≥ S(M,O).

III. SOME NEW TYPES OF INFORMATION MEASURE
BETWEEN INSS
Theorem 2: Let M and N be two INSs in X where X =
{x1, x2, · · · , xn}, then D(M,N) is the distance measure
between two INSs M and N in X .

D(M,N) = p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6n(t1 + 2)p

n∑
i=1



| − t1(T
L
M (xi) − T

L
N (xi))+

(I
L
M (xi) − I

L
N (xi))+

(F
L
M (xi) − F

L
N (xi))|

p
+

| − t1(T
U
M (xi) − T

U
N (xi))+

(I
U
M (xi) − I

U
N (xi))+

(F
U
M (xi) − F

U
N (xi))|

p


+

1

6n(t2 + 2)p

n∑
i=1



| − t2(I
L
M (xi) − I

L
N (xi))−

(F
L
M (xi) − F

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(I
U
M (xi) − I

U
N (xi))−

(F
U
M (xi) − F

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
+

| − t2(F
L
M (xi) − F

L
N (xi))−

(I
L
M (xi) − I

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(F
U
M (xi) − F

U
N (xi))−

(I
U
M (xi) − I

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
)



(6)

where p is the Lp norm, and t1 and t2 denote the level of
uncertainty with the condition t1, t2 ≥ 0.

Proof:
(D1) For two INSs M and N , we have
0 ≤ TLM (xi), T

L
N (xi), I

L
M (xi), I

L
N (xi), F

L
M (xi), F

L
N (xi),

TUM (xi), T
U
N (xi), I

U
M (xi), IUN (xi), F

U
M (xi), F

U
N (xi) ≤ 1.

Therefore, |TLM (xi)− TLN (xi)| ≤ 1, |ILM (xi)− ILN (xi)| ≤
1, |FLM (xi) − FLN (xi)| ≤ 1, |TUM (xi) − TUN (xi)| ≤
1, |IUM (xi) − IUN (xi)| ≤ 1, |FUM (xi) − FUN (xi)| ≤ 1 and
|t1(TLM (xi) − TLN (xi))| ≤ t1, |t2(ILM (xi) − ILN (xi))| ≤
t2, |t2(FLM (xi)− FLN (xi))| ≤ t2, |t1(TUM (xi)− TUN (xi))| ≤
t1, |t2(IUM (xi) − IUN (xi))| ≤ t2, |t2(FUM (xi) − FUN (xi))| ≤
t2.

Thus, we can achieve
−(t1 + 2) ≤ −t1(TLM (xi) − TLN (xi)) + (ILM (xi) −

ILN (xi)) + (FLM (xi)− FLN (xi)) ≤ t1 + 2,
−(t1 + 2) ≤ −t1(TUM (xi) − TUN (xi)) + (IUM (xi) −

IUN (xi)) + (FUM (xi)− FUN (xi)) ≤ t1 + 2,
−(t2 + 2) ≤ −t2(ILM (xi) − ILN (xi)) − (FLM (xi) −

FLN (xi)) + (TLM (xi)− TLN (xi)) ≤ t2 + 2,
−(t2 + 2) ≤ −t2(IUM (xi) − IUN (xi)) − (FUM (xi) −

FUN (xi)) + (TUM (xi)− TUN (xi)) ≤ t2 + 2,
−(t2 + 2) ≤ −t2(FLM (xi) − FLN (xi)) − (ILM (xi) −

ILN (xi)) + (TLM (xi)− TLN (xi)) ≤ t2 + 2,
−(t2 + 2) ≤ −t2(FUM (xi) − FUN (xi)) − (IUM (xi) −

IUN (xi)) + (TUM (xi)− TUN (xi)) ≤ t2 + 2.
It means that
0 ≤ | − t1(TLM (xi) − TLN (xi)) + (ILM (xi) − ILN (xi)) +

(FLM (xi)− FLN (xi))|p ≤ (t1 + 2)p,
0 ≤ | − t1(TUM (xi) − TUN (xi)) + (IUM (xi) − IUN (xi)) +

(FUM (xi)− FUN (xi))|p ≤ (t1 + 2)p,
0 ≤ | − (t2 + 2) ≤ −t2(ILM (xi)− ILN (xi))− (FLM (xi)−

FLN (xi)) + (TLM (xi)− TLN (xi))|p ≤ (t2 + 2)p,
0 ≤ | − (t2 + 2) ≤ −t2(IUM (xi)− IUN (xi))− (FUM (xi)−

FUN (xi)) + (TUM (xi)− TUN (xi))|p ≤ (t2 + 2)p,
0 ≤ | − (t2 + 2) ≤ −t2(ILM (xi)− ILN (xi))− (FLM (xi)−

FLN (xi)) + (TLM (xi)− TLN (xi))|p ≤ (t2 + 2)p,
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0 ≤ | − (t2 + 2) ≤ −t2(IUM (xi)− IUN (xi))− (FUM (xi)−
FUN (xi)) + (TUM (xi)− TUN (xi))|p ≤ (t2 + 2)p.

Consequently, by adding above inequalities, we can
achieve 0 ≤ D(M,N) ≤ 1.

(D2) Let M and N be two INSs. If M = N ,
then TLM (xi) = TLN (xi), T

U
M (xi) = TUN (xi), I

L
M (xi) =

ILN (xi), I
U
M (xi) = IUN (xi), F

L
M (xi) = FLN (xi), F

U
M (xi) =

FUN (xi).
Thus, the distance measure D(M,N) = 0.
Conversely, if D(M,N) = 0, then
|−t1(TLM (xi)−TLN (xi))+(ILM (xi)−ILN (xi))+(FLM (xi)−

FLN (xi))| = 0,
|−t1(TUM (xi)−TUN (xi))+(IUM (xi)−IUN (xi))+(FUM (xi)−

FUN (xi))| = 0,
|−t2(ILM (xi)−ILN (xi))−(FLM (xi)−FLN (xi))+(TLM (xi)−

TLN (xi))| = 0,

|−t2(IUM (xi)−IUN (xi))−(FUM (xi)−FUN (xi))+(TUM (xi)−
TUN (xi))| = 0,

|−t2(FLM (xi)−FLN (xi))−(ILM (xi)−ILN (xi))+(TLM (xi)−
TLN (xi))| = 0,

|−t2(FUM (xi)−FUN (xi))−(IUM (xi)−IUN (xi))+(TUM (xi)−
TUN (xi))| = 0.

Hence, after solving, we can have TLM (xi) =
TLN (xi), T

U
M (xi) = TUN (xi),

ILM (xi) = ILN (xi), I
U
M (xi) = IUN (xi), F

L
M (xi) =

FLN (xi), F
U
M (xi) = FUN (xi).

Consequently, M = N .

(D3) Let M and N be two INSs. We can rewrite the
following equations:
|−t1(TLM (xi)−TLN (xi))+(ILM (xi)−ILN (xi))+(FLM (xi)−

FLN (xi))|p
= |(−1){−t1(TLN (xi) − TLM (xi)) + (ILN (xi) − ILM (xi)) +
(FLN (xi)− FLM (xi))}|p
= |−t1(TLN (xi)−TLM (xi))+(ILN (xi)−ILM (xi))+(FLN (xi)−
FLM (xi))|p,
|−t1(TUM (xi)−TUN (xi))+(IUM (xi)−IUN (xi))+(FUM (xi)−

FUN (xi))|p
= |(−1){−t1(TUN (xi) − TUM (xi)) + (IUN (xi) − IUM (xi)) +
(FUN (xi)− FUM (xi))}|p
= |−t1(TUN (xi)−TUM (xi))+(IUN (xi)−IUM (xi))+(FUN (xi)−
FUM (xi))|p,
|−t2(ILM (xi)−ILN (xi))−(FLM (xi)−FLN (xi))+(TLM (xi)−

TLN (xi))|p
= |(−1){−t2(ILM (xi) − ILN (xi)) − (FLM (xi) − FLN (xi)) +
(TLM (xi)− TLN (xi))}|p
= |−t2(ILN (xi)−ILM (xi))−(FLN (xi)−FLM (xi))+(TLN (xi)−
TLM (xi))|p,
|−t2(IUM (xi)−IUN (xi))−(FUM (xi)−FUN (xi))+(TUM (xi)−

TUN (xi))|p
= |(−1){−t2(IUM (xi) − IUN (xi)) − (FUM (xi) − FUN (xi)) +
(TUM (xi)− TUN (xi))}|p
= |−t2(IUN (xi)−IUM (xi))−(FUN (xi)−FUM (xi))+(TUN (xi)−
TUM (xi))|p,

|−t2(FLM (xi)−FLN (xi))−(ILM (xi)−ILN (xi))+(TLM (xi)−
TLN (xi))|p
= |(−1){−t2(FLM (xi) − FLN (xi)) − (ILM (xi) − ILN (xi)) +
(TLM (xi)− TLN (xi))}|p
= |−t2(FLN (xi)−FLM (xi))−(ILN (xi)−ILM (xi))+(TLN (xi)−
TLM (xi))|p,
|−t2(FUM (xi)−FUN (xi))−(IUM (xi)−IUN (xi))+(TUM (xi)−

TUN (xi))|p
= |(−1){−t2(FUM (xi) − FUN (xi)) − (IUM (xi) − IUN (xi)) +
(TUM (xi)− TUN (xi))}|p
= |−t2(FUN (xi)−FUM (xi))−(IUN (xi)−IUM (xi))+(TUN (xi)−
TUM (xi))|p.

There, D(M,N) = D(N,M).

(D4) Let M,N , and O be three INSs. The distance mea-
sures between M and N , and M and O are the followings:

D(M,N) = p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6n(t1 + 2)p

n∑
i=1



| − t1(T
L
M (xi) − T

L
N (xi))+

(I
L
M (xi) − I

L
N (xi))+

(F
L
M (xi) − F

L
N (xi))|

p
+

| − t1(T
U
M (xi) − T

U
N (xi))+

(I
U
M (xi) − I

U
N (xi))+

(F
U
M (xi) − F

U
N (xi))|

p


+

1

6n(t2 + 2)p

n∑
i=1



| − t2(I
L
M (xi) − I

L
N (xi))−

(F
L
M (xi) − F

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(I
U
M (xi) − I

U
N (xi))−

(F
U
M (xi) − F

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
+

| − t2(F
L
M (xi) − F

L
N (xi))−

(I
L
M (xi) − I

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(F
U
M (xi) − F

U
N (xi))−

(I
U
M (xi) − I

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
)



D(M,O) = p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6n(t1 + 2)p

n∑
i=1



| − t1(T
L
M (xi) − T

L
O (xi))+

(I
L
M (xi) − I

L
O(xi))+

(F
L
M (xi) − F

L
O (xi))|

p
+

| − t1(T
U
M (xi) − T

U
O (xi))+

(I
U
M (xi) − I

U
O (xi))+

(F
U
M (xi) − F

U
O (xi))|

p


+

1

6n(t2 + 2)p

n∑
i=1



| − t2(I
L
M (xi) − I

L
O(xi))−

(F
L
M (xi) − F

L
O (xi))+

(T
L
M (xi) − T

L
O (xi))|

p
+

| − t2(I
U
M (xi) − I

U
O (xi))−

(F
U
M (xi) − F

U
O (xi))+

(T
U
M (xi) − T

U
O (xi))|

p
+

| − t2(F
L
M (xi) − F

L
O (xi))−

(I
L
M (xi) − I

L
O(xi))+

(T
L
M (xi) − T

L
O (xi))|

p
+

| − t2(F
U
M (xi) − F

U
O (xi))−

(I
U
M (xi) − I

U
O (xi))+

(T
U
M (xi) − T

U
O (xi))|

p
)



If M ⊆ N ⊆ O, then TLM (xi) ≤ TLN (xi) ≤
TLO (xi), I

L
M (xi) ≥ ILN (xi) ≥ ILO(xi), T

U
M (xi) ≤ TUN (xi) ≤

TUO (xi), I
U
M (xi) ≥ IUN (xi) ≥ IUO (xi), F

L
M (xi) ≥ FLN (xi) ≥

FLO (xi), and FUM (xi) ≥ FUN (xi) ≥ FUO (xi).
Therefore,
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TLM (xi) − TLN (xi) ≥ TLM (xi) − TLO (xi), T
U
M (xi) −

TUN (xi) ≥ TUM (xi)− TUO (xi),
ILM (xi)−ILN (xi) ≤ ILM (xi)−ILO(xi), IUM (xi)−IUN (xi) ≤

IUM (xi)− IUO (xi),
FLM (xi) − FLN (xi) ≤ FLM (xi) − FLO (xi), F

U
M (xi) −

FUN (xi) ≤ FUM (xi)− FUO (xi).
Further, we can obtain
|−t1(TLM (xi)−TLN (xi))+(ILM (xi)−ILN (xi))+(FLM (xi)−

FLN (xi))|p ≤ |−t1(TLM (xi)−TLO (xi))+(ILM (xi)−ILO(xi))+
(FLM (xi)− FLO (xi))|p,
|−t1(TUM (xi)−TUN (xi))+(IUM (xi)−IUN (xi))+(FUM (xi)−

FUN (xi))|p ≤ |−t1(TUM (xi)−TUO (xi))+(IUM (xi)−IUO (xi))+
(FUM (xi)− FUO (xi))|p,
|−t2(ILM (xi)−ILN (xi))−(FLM (xi)−FLN (xi))+(TLM (xi)−

TLN (xi))|p ≤ |−t2(ILM (xi)−ILO(xi))−(FLM (xi)−FLO (xi))+
(TLM (xi)− TLO (xi))|p,
|−t2(IUM (xi)−IUN (xi))−(FUM (xi)−FUN (xi))+(TUM (xi)−

TUN (xi))|p ≤ | − t2(I
U
M (xi) − IUO (xi)) − (FUM (xi) −

FUO (xi)) + (TUM (xi)− TUO (xi))|p,
|−t2(FLM (xi)−FLN (xi))−(ILM (xi)−ILN (xi))+(TLM (xi)−

TLN (xi))|p ≤ |−t2(FLM (xi)−FLO (xi))−(ILM (xi)−ILO(xi))+
(TLM (xi)− TLO (xi))|p,
|−t2(FUM (xi)−FUN (xi))−(IUM (xi)−IUN (xi))+(TUM (xi)−

TUN (xi))|p ≤ | − t2(F
U
M (xi) − FUO (xi)) − (IUM (xi) −

IUO (xi)) + (TUM (xi)− TUO (xi))|p.
Thus, we can achieve D(M,N) ≤ D(M,O).
Similarly, D(N,O) ≤ D(M,O).

However, in most real environment, the diverse sets may
possess diverse weights. Therefore, the weight wi(i =
1, 2, · · · , n) of the element xi ∈ X should be taken into
account. We present a weighted distance measureDw(M,N)
between INSs in the following.

D
w

(M,N) = p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6n(t1 + 2)p

n∑
i=1

wi



| − t1(T
L
M (xi) − T

L
N (xi))+

(I
L
M (xi) − I

L
N (xi))+

(F
L
M (xi) − F

L
N (xi))|

p
+

| − t1(T
U
M (xi) − T

U
N (xi))+

(I
U
M (xi) − I

U
N (xi))+

(F
U
M (xi) − F

U
N (xi))|

p


+

1

6n(t2 + 2)p

n∑
i=1

wi



| − t2(I
L
M (xi) − I

L
N (xi))−

(F
L
M (xi) − F

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(I
U
M (xi) − I

U
N (xi))−

(F
U
M (xi) − F

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
+

| − t2(F
L
M (xi) − F

L
N (xi))−

(I
L
M (xi) − I

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(F
U
M (xi) − F

U
N (xi))−

(I
U
M (xi) − I

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
)



(7)

where p > 0, t1, t2 ≥ 0, and wi is the weights of the
element xi with

∑n
i=1 wi = 1.

Theorem 3: Let M and N be two INSs in X where X =
{x1, x2, · · · , xn}, then Dw(M,N) is the distance measure
between two INSs M and N in X .

Proof:
(D1) If we product the inequality defined above with wi,

then we can easily have
0 ≤ wi| − t1(TLM (xi)− TLN (xi)) + (ILM (xi)− ILN (xi)) +

(FLM (xi)− FLN (xi))|p ≤ wi(t1 + 2)p,
0 ≤ wi| − t1(TUM (xi)− TUN (xi)) + (IUM (xi)− IUN (xi)) +

(FUM (xi)− FUN (xi))|p ≤ wi(t1 + 2)p,
0 ≤ wi| − t2(ILM (xi)− ILN (xi))− (FLM (xi)−FLN (xi)) +

(TLM (xi)− TLN (xi))|p ≤ wi(t2 + 2)p,
0 ≤ wi| − t2(IUM (xi)− IUN (xi))− (FUM (xi)−FUN (xi)) +

(TUM (xi)− TUN (xi))|p ≤ wi(t2 + 2)p,
0 ≤ wi| − t2(FLM (xi)−FLN (xi))− (ILM (xi)− ILN (xi)) +

(TLM (xi)− TLN (xi))|p ≤ wi(t2 + 2)p,
0 ≤ wi| − t2(FUM (xi)−FUN (xi))− (IUM (xi)− IUN (xi)) +

(TUM (xi)− TUN (xi))|p ≤ wi(t2 + 2)p.
Furthermore, we can write the following inequality

0 ≤
n∑
i=1

wi|−t1(TLM (xi)−TLN (xi))+(ILM (xi)−ILN (xi))+

(FLM (xi)− FLN (xi))|p ≤ (t1 + 2)p,

0 ≤
n∑
i=1

wi|−t1(TUM (xi)−TUN (xi))+(IUM (xi)−IUN (xi))+

(FUM (xi)− FUN (xi))|p ≤ (t1 + 2)p,

0 ≤
n∑
i=1

wi|−t2(ILM (xi)−ILN (xi))−(FLM (xi)−FLN (xi))+

(TLM (xi)− TLN (xi))|p ≤ (t2 + 2)p,

0 ≤
n∑
i=1

wi|−t2(IUM (xi)−IUN (xi))−(FUM (xi)−FUN (xi))+

(TUM (xi)− TUN (xi))|p ≤ (t2 + 2)p,

0 ≤
n∑
i=1

wi|−t2(FLM (xi)−FLN (xi))−(ILM (xi)−ILN (xi))+

(TLM (xi)− TLN (xi))|p ≤ (t2 + 2)p.

0 ≤
n∑
i=1

wi|−t2(FUM (xi)−FUN (xi))−(IUM (xi)−IUN (xi))+

(TUM (xi)− TUN (xi))|p ≤ (t2 + 2)p.

It is easy to know that
n∑
i=1

wi(t1 + 2)p or
n∑
i=1

wi(t2 + 2)p

is equal to (t1 + 2)p or (t2 + 2)p since
n∑
i=1

wi = 1.

Hence,
0 ≤

n∑
i=1

wi|−t1(TLM (xi)−TLN (xi))+(ILM (xi)−ILN (xi))+

(FLM (xi)−FLN (xi))|p ≤ (t1+2)p, 0 ≤
n∑
i=1

wi|−t1(TUM (xi)−

TUN (xi)) + (IUM (xi) − IUN (xi)) + (FUM (xi) − FUN (xi))|p ≤
(t1 +2)p, 0 ≤

n∑
i=1

wi| − t2(ILM (xi)− ILN (xi))− (FLM (xi)−

FLN (xi))+(TLM (xi)−TLN (xi))|p ≤ (t2+2)p, 0 ≤
n∑
i=1

wi|−

t2(I
U
M (xi) − IUN (xi)) − (FUM (xi) − FUN (xi)) + (TUM (xi) −

TUN (xi))|p ≤ (t2+2)p, 0 ≤
n∑
i=1

wi|−t2(FLM (xi)−FLN (xi))−

(ILM (xi) − ILN (xi)) + (TLM (xi) − TLN (xi))|p ≤ (t2 + 2)p,

0 ≤
n∑
i=1

wi|− t2(FUM (xi)−FUN (xi))− (IUM (xi)−IUN (xi))+

(TUM (xi)− TUN (xi))|p ≤ (t2 + 2)p.
Consequently, by the above Eq (7), we can obtain 0 ≤

Dw(M,N) ≤ 1.
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(D2)− (D4) It is straightforward.

Theorem 4: If D(M,N) and Dw(M,N) are distance mea-
sures between INSs M and N , then S(M,N) = 1 −
D(M,N) and Sw(M,N) = 1 − Dw(M,N) are similarity
measures between M and N , respectively.

S(M,N) = 1 − p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6n(t1 + 2)p

n∑
i=1



| − t1(T
L
M (xi) − T

L
N (xi))+

(I
L
M (xi) − I

L
N (xi))+

(F
L
M (xi) − F

L
N (xi))|

p
+

| − t1(T
U
M (xi) − T

U
N (xi))+

(I
U
M (xi) − I

U
N (xi))+

(F
U
M (xi) − F

U
N (xi))|

p


+

1

6n(t2 + 2)p

n∑
i=1



| − t2(I
L
M (xi) − I

L
N (xi))−

(F
L
M (xi) − F

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(I
U
M (xi) − I

U
N (xi))−

(F
U
M (xi) − F

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
+

| − t2(F
L
M (xi) − F

L
N (xi))−

(I
L
M (xi) − I

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(F
U
M (xi) − F

U
N (xi))−

(I
U
M (xi) − I

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
)



(8)

S
w

(M,N) = 1 − p

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1

6(t1 + 2)p

n∑
i=1

wi



| − t1(T
L
M (xi) − T

L
N (xi))+

(I
L
M (xi) − I

L
N (xi))+

(F
L
M (xi) − F

L
N (xi))|

p
+

| − t1(T
U
M (xi) − T

U
N (xi))+

(I
U
M (xi) − I

U
N (xi))+

(F
U
M (xi) − F

U
N (xi))|

p


+

1

6(t2 + 2)p

n∑
i=1

wi



| − t2(I
L
M (xi) − I

L
N (xi))−

(F
L
M (xi) − F

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(I
U
M (xi) − I

U
N (xi))−

(F
U
M (xi) − F

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
+

| − t2(F
L
M (xi) − F

L
N (xi))−

(I
L
M (xi) − I

L
N (xi))+

(T
L
M (xi) − T

L
N (xi))|

p
+

| − t2(F
U
M (xi) − F

U
N (xi))−

(I
U
M (xi) − I

U
N (xi))+

(T
U
M (xi) − T

U
N (xi))|

p
)



(9)

Theorem 5: Let M and N be two INSs, then we have
(1) D(M,M ⊗N) = D(N,M ⊕N);
(2) D(M,M ⊕N) = D(N,M ⊗N);
(3) S(M,M ⊗N) = S(N,M ⊕N);
(4) S(M,M ⊕N) = S(N,M ⊗N).
Proof: We only prove the (1), and the (2)-(4) can be proved

in the similar way.
(1) According to Definition 5 and Eq. (6), and for

D(M,M
⊗
N) with ∀xi ∈ X , we can have

|− t1(TLM (xi)−TLM (xi)T
L
N (xi))+ (ILM (xi)− (ILM (xi)+

ILN (xi)−ILM (xi)I
L
N (xi)))+(FLM (xi)−(FLM (xi)+F

L
N (xi)−

FLM (xi)F
L
N (xi)))|p

= | − t1(T
L
M (xi) − TLM (xi)T

L
N (xi)) + (−ILN (xi) +

ILM (xi)I
L
N (xi)) + (−FLN (xi) + FLM (xi)F

L
N (xi))|p,

|− t1(TUM (xi)−TUM (xi)T
U
N (xi))+ (IUM (xi)− (IUM (xi)+

IUN (xi)−IUM (xi)I
U
N (xi)))+(FUM (xi)−(FUM (xi)+F

U
N (xi)−

FUM (xi)F
U
N (xi)))|p

= | − t1(T
U
M (xi) − TUM (xi)T

U
N (xi)) + (−IUN (xi) +

IUM (xi)I
U
N (xi)) + (−FUN (xi) + FUM (xi)F

U
N (xi))|p,

| − t2(ILM (xi)− (ILM (xi) + ILN (xi)− ILM (xi)I
L
N (xi)))−

(FLM (xi) − (FLM (xi) + FLN (xi) − FLM (xi)F
L
N (xi))) +

(TLM (xi)− TLM (xi)T
L
N (xi))|p

= | − t2(−ILN (xi) + ILM (xi)I
L
N (xi)) − (−FLN (xi) +

FLM (xi)F
L
N (xi)) + (TLM (xi)− TLM (xi)T

L
N (xi))|p,

| − t2(IUM (xi)− (IUM (xi) + IUN (xi)− IUM (xi)I
U
N (xi)))−

(FUM (xi) − (FUM (xi) + FUN (xi) − FUM (xi)F
U
N (xi))) +

(TUM (xi)− TUM (xi)T
U
N (xi))|p

= | − t2(−IUN (xi) + IUM (xi)I
U
N (xi)) − (−FUN (xi) +

FUM (xi)F
U
N (xi)) + (TUM (xi)− TUM (xi)T

U
N (xi))|p,

|−t2(FLM (xi)−(FLM (xi)+F
L
N (xi)−FLM (xi)F

L
N (xi)))−

(ILM (xi)−(ILM (xi)+I
L
N (xi)−ILM (xi)I

L
N (xi)))+(TLM (xi)−

TLM (xi)T
L
N (xi))|p

= | − t2(−FLN (xi) + FLM (xi)F
L
N (xi)) − (−ILN (xi) +

ILM (xi)I
L
N (xi)) + (TLM (xi)− TLM (xi)T

L
N (xi))|p,

|−t2(FUM (xi)−(FUM (xi)+F
U
N (xi)−FUM (xi)F

U
N (xi)))−

(IUM (xi)−(IUM (xi)+I
U
N (xi)−IUM (xi)I

U
N (xi)))+(TUM (xi)−

TUM (xi)T
U
N (xi))|p

= | − t2(−FUN (xi) + FUM (xi)F
U
N (xi)) − (−IUN (xi) +

IUM (xi)I
U
N (xi)) + (TUM (xi)− TUM (xi)T

U
N (xi))|p.

For D(N,M
⊕
N) with ∀xi ∈ X , we can have

|− t1(TLN (xi)− (TLM (xi)+T
L
N (xi)−TLM (xi)T

L
N (xi)))+

(ILN (xi)− ILM (xi)I
L
N (xi)) + (FLN (xi)− FLM (xi)F

L
N (xi))|p

= | − t1(T
L
M (xi) − TLM (xi)T

L
N (xi)) + (−ILN (xi) +

ILM (xi)I
L
N (xi)) + (−FLN (xi) + FLM (xi)F

L
N (xi))|p,

|− t1(TUN (xi)− (TUM (xi)+T
U
N (xi)−TUM (xi)T

U
N (xi)))+

(IUN (xi)− IUM (xi)I
U
N (xi)) + (FUN (xi)− FUM (xi)F

U
N (xi))|p

= | − t1(T
U
M (xi) − TUM (xi)T

U
N (xi)) + (−IUN (xi) +

IUM (xi)I
U
N (xi)) + (−FUN (xi) + FUM (xi)F

U
N (xi))|p,

|−t2(ILN (xi)−ILM (xi)I
L
N (xi))−(FLN (xi)−FLM (xi)F

L
N (xi))+

(TLN (xi)− (TLM (xi) + TLN (xi)− TLM (xi)T
L
N (xi)))|p

= | − t2(−ILN (xi) + ILM (xi)I
L
N (xi)) − (−FLN (xi) +

FLM (xi)F
L
N (xi)) + (TLM (xi)− TLM (xi)T

L
N (xi))|p,

|−t2(IUN (xi)−IUM (xi)I
U
N (xi))−(FUN (xi)−FUM (xi)F

U
N (xi))+

(TUN (xi)− (TUM (xi) + TUN (xi)− TUM (xi)T
U
N (xi)))|p

= | − t2(−IUN (xi) + IUM (xi)I
U
N (xi)) − (−FUN (xi) +

FUM (xi)F
U
N (xi)) + (TUM (xi)− TUM (xi)T

U
N (xi))|p,

| − t2(F
L
N (xi) − FLM (xi)F

L
N (xi)) − (ILN (xi) −

ILM (xi)I
L
N (xi)) + (TLN (xi) − (TLM (xi) + TLN (xi) −

TLM (xi)T
L
N (xi)))|p

= | − t2(−FLN (xi) + FLM (xi)F
L
N (xi)) − (−ILN (xi) +

ILM (xi)I
L
N (xi)) + (TLM (xi)− TLM (xi)T

L
N (xi))|p,

| − t2(F
U
N (xi) − FUM (xi)F

U
N (xi)) − (IUN (xi) −

IUM (xi)I
U
N (xi)) + (TUN (xi) − (TUM (xi) + TUN (xi) −

TUM (xi)T
U
N (xi)))|p

= | − t2(−FUN (xi) + FUM (xi)F
U
N (xi)) − (−IUN (xi) +

IUM (xi)I
U
N (xi)) + (TUM (xi)− TUM (xi)T

U
N (xi))|p.

Consequently, we can obtainD(M,M⊗N) = D(N,M⊕
N).
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For stating the advantage of the explored similarity mea-
sure S, a comparison between the initiated similarity measure
and the existing similarity measures is established. Some
existing similarity measures are presented in Table 1.

In the following, we utilize seven sets of INSs to compare
the experimental results of the initiated similarity measure S
with the existing similarity measures [54, 55, 57, 58, 60–66]
, as shown in Table 2. From Table 2, it is clear that the pro-
posed similarity measure S can overcome the shortcomings
of getting the unreasonable results of the existing similarity
measures [54, 55, 57, 58, 60–66]. We will state the four major
drawbacks in detail as follows:

(1) It is easily seen that the first axiom of similarity
measure (S1) is not satisfied by SA since SA(M,N) =
−0.05 when M = ([0.3, 0.4], [0.2, 0.3], [0.4, 0.5]) and
N = ([0.6, 0.8], [0.4, 0.6], [0.8, 1.0]) (Case 2) which are
indeed 0 ≤ SA(M,N) ≤ 1. The similar cases are
shown in Cases 3, 4, 6 and 7. Moreover, the second ax-
iom of similarity measure (S2) is not satisfied by SB4

and SY 4 when M = ([0.3, 0.4], [0.2, 0.3], [0.4, 0.5]), N =
([0.6, 0.8], [0.4, 0.6], [0.8, 1.0]) (Case 2). In fact, they are
indeed not equal to each other. In addition, we can see
that SB1(M,N) = SB2(M,N) = SB3(M,N) =
SY 2(M,N) = SY 3(M,N) = SY 5(M,N) = SJ(M,N)
= SY 7(M,N) = SL(M,N) = SA(M,N) = 0 when
M = ([1, 1], [0, 0], [0, 0]), N = ([0, 0], [0, 0], [0, 0]) (Case
1), SY 5(M,N) = SJ(M,N) = SL(M,N) = 0 when
M = ([1, 1], [0, 1], [1, 1]), N = ([0.6, 0.7], [0.5, 0.5], [0, 0])
(Case 6) and M = ([1, 1], [0, 1], [1, 1]), N =
([0.8, 0.9], [0.5, 0.5], [0, 0]) (Case 7). Actually, they are in-
deed not opposite to each other.

(2) Some similarity measures (SY 1, SB1, SB2, SY 2,
SY 3, SY 5, SY 6, SJ , SY 7, SF , SM , SL) have no capa-
bilities to distinguish positive difference from negative d-
ifference. For example, SY 1(M,N) = SY 1(M1, N1) =
0.65 when M = ([0.3, 0.4], [0.2, 0.3], [0.4, 0.5]), N =
([0.6, 0.8], [0.4, 0.6], [0.8, 1.0]) (Case 2), M1 = ([0.3, 0.4],
[0.2, 0.3], [0.8, 1.0]) andN1 = ([0.6, 0.8], [0.4, 0.6], [0.4, 0.5])
(Case 3). The same counter-intuitive example exists for SB1,
SB2, SY 2, SY 3, SY 5, SY 6, SJ , SY 7, SF , SM , SL.

(3) Some similarity measures have no capabilities to deal
the division by zero problem. For example, SB4 and SY 4

when M = ([1, 1], [0, 0], [0, 0]), N = ([0, 0], [0, 0], [0, 0])
(Case 1). Another example exists for SB1, SB2, SB3,
SB4, SY 2, SY 3, SY 4, SY 7 and SY 4 when M =
([0, 0], [0, 0], [0, 0]), N = ([0, 0], [0, 0], [0, 0]) (Case 5).

(4) Another charming counter-intuitive case occurs when
M1 = ([1, 1], [0, 1], [1, 1]), N1 = ([0.6, 0.7], [0.5, 0.5], [0, 0])
(Case 6) and M1 = ([1, 1], [0, 1], [1, 1]), N2 =
([0.8, 0.9], [0.5, 0.5], [0, 0]) (Case 7). In this case, it is expect-
ed that the similarity degree between M1 and N1 is equal or
greater than the similarity degree between M1 and N2 since
they are ordered as M1 ≺ N1 ≺ N2 by means of compar-
ison method shown in Definition 7 . However, the similarity
degree between M1 and N2 is greater than the similarity
degree betweenM1 andN1 when SY 1, SB1, SB2, SB3, SB4,

SY 2, SY 3, SY 4, SY 6, SY 7, SF , SM are used, which does not
seem to be reasonable (It violates the last axiom of similarity
measure (S4)). On the other hand, our proposed similarity
measure S(M1, N1) = 0.67 and S(M1, N2) = 0.6483.
Therefore, the developed similarity measure is in agreement
with real case. The presented similarity measure S is the
similarity measure that have no the counter-intuitive cases
as illustrated in Table 2.

IV. AN INTERVAL NEUTROSOPHIC DECISION MAKING
ALGORITHM BASED SIMILARITY MEASURE
A. THE DESCRIPTION OF INTERVAL NEUTROSOPHIC
MADM PROBLEM
The core of the MADM issue with interval neutrosophic
information is to verify the ideal choice from a series of
alternatives which are assessed by a set of attributes, where
assessed values are INNs presented by the experts. After-
wards, this kind of issue can be depicted by mathematical
symbols in the following.

Let A = {A1, A2, · · · , Am} be a discrete set of alterna-
tives, C = {C1, C2, · · · , Cn} be a series of n attributes, and
W = {w1, w2, · · · , wn} be weight vector assigned for the at-

tributes by the decision makers with wj ∈ [0, 1],
n∑
j=1

wj = 1.

Assume that the evaluation of the alternative Ai with respect
to attribute Cj is represented by interval neutrosophic matrix
P = (pij)m×n = ([TLij , T

U
ij ], [I

L
ij , I

U
ij ], [F

L
ij , F

U
ij ])m×n(i =

1, 2, · · · ,m; j = 1, 2, · · · , n). The values united with the
alternatives for MADM problems can be shown in Table 3.

B. THE METHOD OF DETERMINING THE COMBINED
WEIGHTS
DMs or experts frequently give the attribute weights in a
subjective manner. This subjective evaluation of attribute
weights from diverse DMs or experts often result in diverse
weights for one attribute. To achieve more realistic attribute
weights of the issue, a decision procedure is proposed by
combining the subjective weights given by DMs or experts
and objective weights computed based on the deviation-based
method. The use of a combination of subjective and objective
weights can help us reduce the sensitivity of the decision
process and thus changing the weights of the DMs or experts.
The framework for using the proposed method is shown in
Fig. 2.

1) Determining the objective weights: deviation-based
method

The deviation-based method is a resultful means for the
calculation of objective weight, which is used in management
decision practices [69]. It can be employed in calculating
the attribute weight by means of decision matrix and it is
responsible for specifically detail data. The attribute weight
can be revealed and decided by intrinsic willingness and
specific information. The objective weight achieved through
deviation-based method is shown in Eq. (10)-(14).
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TABLE 1: Existing similarity measures.

Authors Similarity measure

Ye [57] SY 1(M,N) = 1 − 1
6n

n∑
i=1

 |T
L
M (xi) − T

L
N (xi)| + |T

U
M (xi) − T

U
N (xi)| + |I

L
M (xi) − I

L
N (xi)|+

|IUM (xi) − I
U
N (xi)| + |F

L
M (xi) − F

L
N (xi)| + |F

U
M (xi) − F

U
N (xi)|



Broumi and Smarandache [55] SB1(M,N) = 1 − p

√√√√√√√√√√√√

n∑
i=1

 |T
L
M (xi) − T

L
N (xi)|

p
+ |TUM (xi) − T

U
N (xi)|

p
+ |ILM (xi) − I

L
N (xi)|

p
+

|IUM (xi) − I
U
N (xi)|

p
+ |FLM (xi) − F

L
N (xi)|

p
+ |FUM (xi) − F

U
N (xi)|

p


n∑
i=1

 |T
L
M (xi) + T

L
N (xi)|

p
+ |TUM (xi) + T

U
N (xi)|

p
+ |ILM (xi) + I

L
N (xi)|

p
+

|IUM (xi) + I
U
N (xi)|

p
+ |FLM (xi) + F

L
N (xi)|

p
+ |FUM (xi) + F

U
N (xi)|

p



Broumi and Smarandache [55] SB2(M,N) =

n∑
i=1

 min{TLM (xi), T
L
N (xi)} + min{TUM (xi), T

U
N (xi)} + min{ILM (xi), I

L
N (xi)}+

min{IUM (xi), I
U
N (xi)} + min{FLM (xi), F

L
N (xi)} + min{FUM (xi), F

U
N (xi)}


n∑
i=1

 max{TLM (xi), T
L
N (xi)} + max{TUM (xi), T

U
N (xi)} + max{ILM (xi), I

L
N (xi)}

+max{IUM (xi), I
U
N (xi)} + max{FLM (xi), F

L
N (xi)} + max{FUM (xi), F

U
N (xi)}



Broumi and Smarandache [55] SB3(M,N) =

n∑
i=1

T
L
M (xi)T

L
N (xi) + T

U
M (xi)T

U
N (xi) + I

L
M (xi)I

L
N (xi)+

I
U
M (xi)I

U
N (xi) + F

L
M (xi)F

L
N (xi) + F

U
M (xi)F

U
N (xi)



max



n∑
i=1

{TLM (xi)
2

+ T
U
M (xi)

2
+ I

L
M (xi)

2
+ I

U
M (xi)

2
+ F

L
M (xi)

2
+ F

U
M (xi)

2},

n∑
i=1

{TLN (xi)
2

+ T
U
N (xi)

2
+ I

L
N (xi)

2
+ I

U
N (xi)

2
+ F

L
N (xi)

2
+ F

U
N (xi)

2}



Broumi and Smarandache [54, 55] SB4(M,N) = 1
n

n∑
i=1

 (T
L
M (xi) + T

U
M (xi))(T

L
N (xi) + T

U
N (xi)) + (I

L
M (xi) + I

U
M (xi))(I

L
N (xi) + I

U
N (xi))+

(F
L
M (xi) + F

U
M (xi))(F

L
N (xi) + F

U
N (xi))


√

(TL
M

(xi) + TU
M

(xi))
2 + (IL

M
(xi) + IU

M
(xi))

2 + (FL
M

(xi) + FU
M

(xi))
2

×
√

(TL
N

(xi) + TU
N

(xi))
2 + (IL

N
(xi) + IU

N
(xi))

2 + (FL
N

(xi) + FU
N

(xi))
2



Ye [58] SY 2(M,N) = 1
n

n∑
i=1

T
L
M (xi)T

L
N (xi) + T

U
M (xi)T

U
N (xi) + I

L
M (xi)I

L
N (xi)+

I
U
M (xi)I

U
N (xi) + F

L
M (xi)F

L
N (xi) + F

U
M (xi)F

U
N (xi)



T
L
M (xi)

2
+ T

U
M (xi)

2
+ I

L
M (xi)

2
+ I

U
M (xi)

2
+ F

L
M (xi)

2
+ F

U
M (xi)

2
+

T
L
N (xi)

2
+ T

U
N (xi)

2
+ I

L
N (xi)

2
+ I

U
N (xi)

2
+ F

L
N (xi)

2
+ F

U
N (xi)

2−

(T
L
M (xi)T

L
N (xi) + I

L
M (xi)I

L
N (xi) + F

L
M (xi)F

L
N (xi))

−(T
U
M (xi)T

U
N (xi) + I

U
M (xi)I

U
N (xi) + F

U
M (xi)F

U
N (xi))



Ye [58] SY 3(M,N) = 1
n

n∑
i=1

 2(T
L
M (xi)T

L
N (xi) + T

U
M (xi)T

U
N (xi) + I

L
M (xi)I

L
N (xi)

+I
U
M (xi)I

U
N (xi) + F

L
M (xi)F

L
N (xi) + F

U
M (xi)F

U
N (xi))

T
L
M (xi)

2
+ T

U
M (xi)

2
+ I

L
M (xi)

2
+ I

U
M (xi)

2
+ F

L
M (xi)

2
+ F

U
M (xi)

2
+

T
L
N (xi)

2
+ T

U
N (xi)

2
+ I

L
N (xi)

2
+ I

U
N (xi)

2
+ F

L
N (xi)

2
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
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Fu and Ye [63] SF (M,N) = 1
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
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
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TABLE 2: The comparison of similarity measures.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
M {< x, [1, 1], [0, 0], [0, 0] >} {< x, [0.3, 0.4], [0.2, 0.3], [0.4, 0.5] >} {< x, [0.3, 0.4], [0.2, 0.3], [0.8, 1.0] >} {< x, [1, 1], [0, 0], [0, 0] >} {< x, [0, 0], [0, 0], [0, 0] >} {< x, [1, 1], [0, 1], [1, 1] >} {< x, [1, 1], [0, 1], [1, 1] >}
N {< x, [0, 0], [0, 0], [0, 0] >} {< x, [0.6, 0.8], [0.4, 0.6], [0.8, 1.0] >} {< x, [0.6, 0.8], [0.4, 0.6], [0.4, 0.5] >} {< x, [0, 0], [1, 1], [1, 1] >} {< x, [0, 0], [0, 0], [0, 0] >} {< x, [0.6, 0.7], [0.5, 0.5], [0, 0] >} {< x, [0.8, 0.9], [0.5, 0.5], [0, 0] >}

SY 1 [57] 0.6667 0.6500 0.6500 0.0000 1.0000 0.3833 0.4500
SB1 [55] 0.0000 0.6667 0.6667 0.0000 N/A 0.5005 0.6056
SB2 [55] 0.0000 0.5000 0.5000 0.0000 N/A 0.3273 0.4000
SB3 [55] 0.0000 0.5000 0.7822 0.0000 N/A 0.3600 0.4400

SB4 [54, 55] N/A 1.0000 0.8003 0.0000 N/A 0.7317 0.7436
SY 2 [58] 0.0000 0.6667 0.6667 0.0000 N/A 0.3956 0.4632
SY 3 [58] 0.0000 0.8000 0.8000 0.0000 N/A 0.5669 0.6331
SY 4 [58] N/A 1.0000 0.8002 0.0000 N/A 0.6928 0.7046
SY 5 [60] 0.0000 0.7604 0.7604 0.0000 1.0000 0.0000 0.0000
SY 6 [60] 0.8660 0.8526 0.8526 0.0000 1.0000 0.5664 0.6494
SJ [61] 0.0000 0.5500 0.5500 0.0000 1.0000 0.0000 0.0000
SY 7 [62] 0.0000 0.8000 0.8000 0.0000 N/A 0.5669 0.6331
SF [63] 0.6667 0.6500 0.6500 0.0000 1.0000 0.3833 0.4500
SM [64] 0.7321 0.7180 0.7180 0.0000 1.0000 0.6311 0.6895
SL [65] 0.0000 0.4142 0.4142 0.0000 1.0000 0.0000 0.0000
SA [66] 0.0000 -0.0500 -0.0500 -2.0000 1.0000 -0.8500 -0.6500

S(proposed) 0.7000 0.8600 0.8250 0.0000 1.0000 0.6700 0.6483

The red background color denotes that it cannot make a decision due to the same results;
The pink background color denotes results do not satisfy similarity measure definition (S1);
The green background color denotes results do not satisfy similarity measure definition (S2);
The yellow background color denotes results do not satisfy similarity measure definition (S4);
The blue background color denotes the counterintuitive phenomena;
“N/A” denotes it cannot compute the degree of similarity due to “the division by zero problem”.
Note: (p = 1 in SB1, λ = 0.5 in SM , and t1 = 2, t2 = 3, p = 1 in S.)

TABLE 3: The interval neutrosophic MADM matrix.

C1 C2 · · · Cn
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U
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U
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U
1n])
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U
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U
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U
21]) ([TL22, T

U
22], [IL22, I

U
22], [FL22, F

U
22]) · · · ([TL2n, T

U
2n], [IL2n, I

U
2n], [FL2n, F

U
2n])

.

.

.

.

.

.

.

.

.
. . .

.

.

.
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U
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U
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U
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U
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U
m2], [FLm2, F

U
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U
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U
mn], [FLmn, F

U
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FIGURE 2: The framework for using the proposed method.

At first, we think in normalizing information since there
exists some benefit attributes and cost attributes in decision
making matrix. These two classes of attributes react opposite-
ly. In other words, the bigger value means the better behavior
of a benefit attribute but reveals the worse behavior of a
cost attribute. As a consequence, for ensuring all attributes
are simultaneous, we proceed to shift the cost attributes into
benefit attributes by means of the following equation.

p
′
ij = ([(T

L
ij)
′
, (T

U
ij )
′
], [(I

L
ij)
′
, (I

U
ij)
′
], [(F

L
ij)
′
, (F

U
ij )
′
]) ={

([TLij , T
U
ij ], [I

L
ij , I

U
ij ], [F

L
ij , F

U
ij ]), Cj is benefit attribute,

([FLij , F
U
ij ], [1− I

U
ij , 1− I

L
ij ], [T

L
ij , T

U
ij ]), Cj is cost attribute.

(10)

According to this equation, we can achieve the normalized
interval neutrosophic matrix P ′ = (p′ij)m×n.

Next, we calculate the score function sij(i =
1, 2, · · · ,m; j = 1, 2, · · · , n) of p′ij by Definition 7.

sij =
2

3
+
(TLij )

′ + (TUij )
′

6
−
(ILij)

′ + (IUij )
′

6
−
(FLij )

′ + (FUij )
′

6
(11)

Later, normalize the score decision matrixN = (Nij)m×n
as follow:

Nij =
sij∑m
i=1 sij

. (12)

Calculate the average score decision matrixN = (Nj)n×1
of each attribute as follows:

Nj =

m∑
i=1

Nij/m. (13)

Finally, calculate an objective weight (ωj) for each at-
tribute using a deviation-based method as follows:
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δj =

√√√√ 1

m

m∑
i=1

(Nij −Nj)2. (14)

ωj =
δj∑n
j=1 δj

. (15)

2) Determining the combined weights: the linear weighted
comprehensive method
Assume that the subjective weight, provided by the experts

directly, is w = {w1, w2, · · · , wn}, where
n∑
j=1

wj = 1, 0 ≤

wj ≤ 1. The vector of the objective weight, calculated by

Eq.(15) directly, is ω = {ω1, ω2, · · · , ωn}, where
n∑
j=1

ωj =

1, 0 ≤ ωj ≤ 1.
Consequently, the vector of the combined weight $ =
{$1, $2, · · · , $n} can be denoted as follows:

$j =
wj ∗ ωj
n∑
j=1

wj ∗ ωj
, (16)

where
n∑
j=1

$j = 1, 0 ≤ $j ≤ 1.

Subjective weights and objective weights are combined
using a nonlinear weighted synthesis approach. According to
the multiplier effect, the bigger the value of subjective weight
information and objective weight information, the bigger the
combination weight, and vice versa. In addition, It is easily
seen that Eq. (16) pushes the limitations of considering only
objective or subjective influences. The advantage of Eq. (16)
lies in that the rank and attribute weights of alternatives can
simultaneously display subjective information and objective
information.

C. THE INTERVAL NEUTROSOPHIC SIMILARITY
MEASURE METHOD
For this subsection, we present an algorithm for MADM
issue by means of the explored similarity measure Sw among
INSs. The notion of ideal point has been successfully applied
to settle the optimal alternative in MADM problem. Although
ideal alternative doesn’t exist in real world, it does provide
a priceless theoretical framework against which to evaluate
alternatives. Therefore, we denote the ideal alternative A∗ as
the INN Aj = ([1, 1], [0, 0], [0, 0]) for ∀j.

As a consequence, based on Eq. (17), the developed sim-
ilarity measure Sw between alternative Ai and ideal alterna-
tive A∗ denoted by the INSs is shown in the following.

S
w

(Ai,A
∗
) =

1 − p

√√√√√√√√√√√√√√√√√√√√√√

1

6(t1 + 2)p

n∑
i=1

wi

 | − t1(T
L
ij − 1) + I

L
ij + F

L
ij |
p
+

| − t1(T
U
ij − 1) + I

U
ij + F

U
ij |
p

+

1

6(t2 + 2)p

n∑
i=1

wi



| − t2I
L
ij − F

L
ij + (T

L
ij − 1)|p+

| − t2I
U
ij − F

U
ij + (T

U
ij − 1)|p+

| − t2F
L
ij − I

L
ij + (T

L
ij − 1)|p+

| − t2F
U
ij − I

U
ij + (T

U
ij − 1)|p



(17)

Generally speaking, interval neutrosophic similarity mea-
sure method involves the following steps:

Algorithm 1 :Similarity measure

1: Input the interval neutrosophic decision matrix P =
(Pij)m×n(i = 1, 2, · · · ,m; j = 1, 2, · · · , n).

2: Transform the matrix P = (Pij)m×n into a normalized
matrix P ′ = (P ′ij)m×n by Eq.(10).

3: Compute the score matrix S = (sij)m×n of P ′ =
(P ′ij)m×n by Eq. (11).

4: Normalize the score decision matrix N = (Nij)m×n by
Eq. (12).

5: Calculate the objective weight ω = (ωj)n×1 by Eq. (15).
6: Compute combined weight $ = ($j)n×1 by Eq. (16).
7: Compute the similarity measure Sw(Ai, A

∗)(i =
1, 2, · · · ,m) by Eq. (17)

8: Rank the alternatives according to the decreasing values
of similarity measure Sw(Ai, A∗).

D. A CASE STUDY IN IOT INDUSTRY EVALUATION
The IoT is the next communications industry dividend after
4G. The inter-library connection exceeded the interpersonal
connection in 2017, and the connection scale is expected to
reach 100 billion in 2025. Communication companies such
as Huawei are paying close attention to the IoT, mainly due
to the rapid growth of their connectivity and the business
opportunities behind massive connections. Connections are
only part of the IoT industry’s ecosystem and can support a
market scale of up to trillions. Machina divides the industrial
ecology of the IoT into five parts: module, connection,
equipment, service and application. From the perspective of
market value, the market value of the connection is only
about 10%, and the market value of the application is the
highest, up to 35%. It is believed that the total investment of
China’s operators in the construction of the IoT network will
exceed 100 billion yuan in 2017-2018. From this calculation,
only the scale of China’s IoT industry will exceed 100 billion
yuan. Ly et al. [3] analyzed the five crucial factors (Con-
nectivity, Value, Security, Telepresence and Intelligence) in
building triumphant IoT systems for IoT-related companies
which is shown in Figure 1.

Example 2: Assume that there are five companies A =
{A1, A2, A3, A4, A5} to be considered for the assessment
of IoT industry. The expert chooses the decision attribute
set C = {C1, C2, C3, C4, C5} to be C1 (denoted as Con-
nectivity), C2 (denoted as Value), C3 (denoted as Security),
C4 (denoted as Telepresence) and C5 (denoted as Intelli-
gence). Based on the general evolving principle and the
characteristics of the IoT industry, we can determine that
all attributes are benefit attributes. Suppose that the expert
has the following prior weight set given by his/her prior
experience or preference: w = (w1, w2, w3, w4, w5) =
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(0.3, 0.2, 0.14, 0.16, 0.2). The assessments for teachers aris-
ing from questionnaire investigation to the expert and con-
structing an interval neutrosophic matrix with its tabular form
given by Table 4.

In what follows, we utilize the algorithm (p = 1, t1 =
2, t2 = 3) proposed above to select excellent IoT company
under interval neutrosophic information.

Step 1: Input the interval neutrosophic decision matrix
P = (Pij)5×5 shown in Table 4.

Step 2: Because all attributes are benefit attributes, hence
there is no need to transform.

Step 3: Compute the score matrix S = (sij)5×5 of P ′ =
(P ′ij)5×5 by Eq. (11) as follows:

S =


0.8500 0.8167 0.8167 0.8500 0.8167
0.8333 0.7667 0.7667 0.8167 0.7833
0.8167 0.7167 0.7500 0.7500 0.7167
0.7000 0.6833 0.7333 0.7167 0.6833
0.6167 0.5833 0.6000 0.6667 0.5500


Step 4: Normalize the score decision matrix N =

(Nij)5×5 by Eq. (12) as follows:

N =


0.2227 0.2290 0.2227 0.2237 0.2300
0.2183 0.2150 0.2091 0.2149 0.2207
0.2140 0.2009 0.2045 0.1974 0.2019
0.1834 0.1916 0.2000 0.1886 0.1925
0.1616 0.1636 0.1636 0.1754 0.1549


Step 5: Calculate the objective weight ω = (ωj)5×1 by

Eq. (15) as follows:
ω1 = 0.2167, ω2 = 0.2033, ω3 = 0.1805,
ω4 = 0.1599, ω5 = 0.2396.
Step 6: Compute combined weight $ = ($j)5×1 by Eq.

(16).
$1 = 0.3180, $2 = 0.1989, $3 = 0.1236,
$4 = 0.1251, $5 = 0.2344.
Step 7: Compute the similarity measure Sw by Eq. (17) as

follows:
Sw(A1, A

∗) = 0.8317, Sw(A2, A
∗) = 0.7980,

Sw(A3, A
∗) = 0.7580, Sw(A4, A

∗) = 0.7033,
Sw(A5, A

∗) = 0.6039.
Step 8: Rank the companies according to the similarity

measure, the ranking order is A1 � A2 � A3 � A4 � A5.
In Figure 3, we can know that the presented weight model

can efficaciously reveal the objective preference information
and subjective preference information. However, the combi-
nation weight developed by Peng and Dai [33] can’t reflect
the discrepancy compared with weight given by experts. In
other words, the proposed weight determining model can
state the laws between the data given by decision maker but
not limit to the given subjective weight. Meanwhile, Zhang
et al.’s [59] weight determining model also can deliver the
objective and subjective information.

E. EFFECT OF THE PARAMETERS P, T1 AND T2 ON THE
ORDERING IN PROPOSED ALGORITHM
However, in order to analyze the effect of the parameters p, t1
and t2 on the measure values, an experiment (Example 2) was

FIGURE 3: The comparison of the combined weight infor-
mation.

performed by taking different values of p(p = 1, 2, · · · 9) cor-
responding to a different value of the uncertainty parameters
t1(t1 = 1, 2, · · · , 9) and t2(t2 = 1, 2, · · · , 9).

On the basis of these different pairs of parameters, similari-
ty measure Sw was computed, and its results are summarized
in Figs. 4-6. From these, the important points have been
concluded in the following.

(1) For a fixed value of t1 and t2, it has been observed
that the decision values corresponding to each alternative
decrease with the increase in the value of p (Fig. 7). The
decision values of five alternatives have a clear distinction
from (a) to (i). From (a) to (i), the final results all keep as
A1 � A2 � A3 � A4 � A5.

(2) For a fixed value of p and t2, as t1 increases, the
decision values corresponding to most of alternatives mono-
tonically decreases (Fig. 8). Moreover, it can be easily seen
that the decision values of all alternatives become decreasing
slowly when t1 is increasing. From (a) to (i), the five alter-
natives have a gradually increasing gap from [0.5731,0.8314]
to [0.5193,0.8203]. For alternative A1, it monotonically de-
creases when (a) to (d) while it first monotonically increases
to t1 = 2 and monotonically decreases when (e) to (i). For
alternative A2, it first monotonically increases to t1 = 2
and keep stationary to t1 = 3, later monotonically decreases
when (a) to (c). Meanwhile, it first monotonically increases
to t1 = 2 and monotonically decreases when (d) to (i). For
alternativesA3, A4 andA5, they all keep an decreasing trend.
The final results all keep as A1 � A2 � A3 � A4 � A5.

(3) For a fixed value of p and t1, as t2 increases, the deci-
sion values corresponding to each alternative most monoton-
ically decreases (Fig. 9). Moreover, it can be easily seen that
the decision values of all alternatives become decreasing or
increasing slowly when t2 is increasing. It can be easily seen
that the decision values of five alternatives are monotonically
increases when (a) to (b). For alternative A1, it monoton-
ically increases when (a) while it monotonically decreases
when (b) to (i). For alternative A2, it first keep stationary to
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(a) p=1

(b) p=2

(c) p=3

FIGURE 4: The total changing trend of parameters t1 and t2 in proposed algorithm when p=1,2,3.
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(a) p=4

(b) p=5

(c) p=6

FIGURE 5: The total changing trend of parameters t1 and t2 in proposed algorithm when p=4,5,6.
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(a) p=7

(b) p=8

(c) p=9

FIGURE 6: The total changing trend of parameters t1 and t2 in proposed algorithm when p=7,8,9.
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TABLE 4: The interval neutrosophic matrix in Example 2.

C1 C2 C3

A1 ([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.8, 0.9], [0.1, 0.2], [0.2, 0.3]) ([0.8, 0.9], [0.2, 0.3], [0.1, 0.2])
A2 ([0.8, 0.8], [0.1, 0.2], [0.1, 0.2]) ([0.8, 0.9], [0.2, 0.3], [0.3, 0.3]) ([0.7, 0.8], [0.2, 0.3], [0.1, 0.3])
A3 ([0.7, 0.8], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4]) ([0.6, 0.8], [0.2, 0.3], [0.1, 0.3])
A4 ([0.5, 0.6], [0.1, 0.3], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3], [0.3, 0.4]) ([0.6, 0.8], [0.2, 0.3], [0.2, 0.3])
A5 ([0.3, 0.4], [0.2, 0.3], [0.2, 0.3]) ([0.5, 0.6], [0.3, 0.4], [0.4, 0.5]) ([0.5, 0.7], [0.4, 0.5], [0.3, 0.4])

C4 C5

A1 ([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.1, 0.2])
A2 ([0.8, 0.9], [0.2, 0.2], [0.2, 0.2]) ([0.7, 0.8], [0.2, 0.3], [0.1, 0.2])
A3 ([0.8, 0.9], [0.2, 0.3], [0.3, 0.4]) ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3])
A4 ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.2, 0.3])
A5 ([0.6, 0.7], [0.2, 0.3], [0.4, 0.4]) ([0.4, 0.6], [0.5, 0.6], [0.2, 0.4])

t2 = 4 and drop to t2 = 5, later keep stationary to t2 = 9
when (a) and monotonically decreases when (b) to (i). For
alternative A3, it monotonically increases when (a) while it
monotonically decreases when (d) to (i). Meanwhile, it first
keep stationary to t2 = 2 and monotonically decreases when
(c). For alternativeA4, most of them keep an increasing trend
when (a) to (e). For alternativeA5, it monotonically increas-
es when (a) to (c) while it first monotonically increases and
monotonically decreases when (e) to (i). The final results all
keep as A1 � A2 � A3 � A4 � A5.

F. EFFECTIVENESS TEST
For stating the availability of the developed algorithm, the
algorithm has been tested on certain test criteria which has
proposed by Wang and Triantaphyllou [70] in the following.

Test criterion 1: If we instead of the decision values
of non-optimal alternative with worse alternative, then the
optimal alternative should not alter.

Test criterion 2: MADM method should comply with
transitive property.

Test criterion 3: When a appointed issue is disassembled
into smaller ones and the same MADM method has been em-
ployed, then the assorted ordering of the alternatives should
be same as the ranking of original one.

In the following, we have affirmed these test criteria on our
developed MADM method based on interval neutrosophic
similarity measure.

1) Effectiveness test by criterion 1
For this test, if we exchange the truth degrees and falsity
degrees with opposite indeterminacy degrees of alternatives
A2, A3, A4 (non-optimal) and A5 (worse) in the matrix P ,
then the switched decision matrix turns into P ′ which is
shown in Table 5.

According to above information, the presented similarity
measure Sw has been applied, the optimal alternatives is A1

which is same as that of the original ranking. Therefore, the
proposed algorithm is feasible under the test criterion 1.

2) Effectiveness test by criteria 2 and 3
According to these tests, if we resolved the appointed
problem into the sub-issues {A1, A2, A3}, {A2, A3, A4} ,

{A3, A4, A5} and {A1, A4, A5} and the procedure steps of
the algorithm has been employed, then we obtain the ranking
of these smaller issues is A1 � A2 � A3, A2 � A3 � A4,
A3 � A4 � A5 and A1 � A4 � A5, respectively. Hence, by
uniting above criteria 2 and 3, we obtain the overall ranking
order of the alternatives is A1 � A2 � A3 � A4 � A5

which is equal that of the original ranking order. Therefore,
the developed algorithm is feasible under the test criteria 2
and 3.

V. COMPARATIVE ANALYSIS AND DISCUSSION
In the following, some existing decision making methods
[42, 44, 47, 49, 51, 62, 67] and their limitations are discussed
in detail. Two examples are given to show the advantages of
our proposed algorithm. For better comparisons, we take the
unified weight (proposed combined weight) in this paper.

Example 3: Continue to Example 2. Suppose that the as-
sessments for IoT companies arising from another group of
experts are presented which is shown in Table 6.

Remark 1: From the Table 7, we can see that the red
background color denote some unreasonable results due
to the counterintuitive phenomena which is discussed in
Peng and Dai [33]. For GWINN3 and GWINN4 in [62],
it would cause the unauthentic situation due to the the
selection of λ. In Ye’s definition [62], the preference value of
current alternative and preference value of ideal alternative
in corresponding attribute are assigned the λ and 1 − λ,
respectively. As a matter of fact, it will cause unexpected
change unless the λ = 0. That is to say, the λ = 0 will
make the current preference value not influence the final
decision value in the whole decision process under the ideal
environment. It is easily known that the optimal alternative
and corresponding the ordering are same as the results of
INNWG [42], INNEWG [42], IVNSGWA (λ → 0) [44],
INPGWA (λ → 0) [49], INDWMMP(1,0,0,0,0) [51], Cross-
Entropy [67], GWINN3, GWINN4 (λ = 0).

Example 4: Continue to Example 2. Suppose that the as-
sessments for IoT companies arising from another group of
experts are presented which is shown in Table 8.
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TABLE 5: The switched interval neutrosophic matrix P ′ in Example 2.

C1 C2 C3

A1 ([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.8, 0.9], [0.1, 0.2], [0.2, 0.3]) ([0.8, 0.9], [0.2, 0.3], [0.1, 0.2])
A2 ([0.1, 0.2], [0.8, 0.9], [0.8, 0.8]) ([0.3, 0.3], [0.7, 0.8], [0.8, 0.9]) ([0.1, 0.3], [0.7, 0.8], [0.7, 0.8])
A3 ([0.1, 0.2], [0.8, 0.9], [0.7, 0.8]) ([0.3, 0.4], [0.7, 0.8], [0.7, 0.8]) ([0.1, 0.3], [0.7, 0.8], [0.6, 0.8])
A4 ([0.2, 0.3], [0.7, 0.9], [0.5, 0.6]) ([0.3, 0.4], [0.7, 0.8], [0.6, 0.7]) ([0.2, 0.3], [0.7, 0.8], [0.6, 0.8])
A5 ([0.2, 0.3], [0.7, 0.8], [0.3, 0.4]) ([0.4, 0.5], [0.6, 0.7], [0.5, 0.6]) ([0.3, 0.4], [0.5, 0.6], [0.5, 0.7])

C4 C5

A1 ([0.8, 0.9], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2], [0.1, 0.2])
A2 ([0.2, 0.2], [0.8, 0.8], [0.8, 0.9]) ([0.1, 0.2], [0.7, 0.8], [0.7, 0.8])
A3 ([0.3, 0.4], [0.7, 0.8], [0.8, 0.9]) ([0.2, 0.3], [0.7, 0.8], [0.6, 0.7])
A4 ([0.3, 0.4], [0.7, 0.8], [0.7, 0.8]) ([0.2, 0.3], [0.7, 0.8], [0.5, 0.6])
A5 ([0.4, 0.4], [0.7, 0.8], [0.6, 0.7]) ([0.2, 0.4], [0.4, 0.5], [0.4, 0.6])

TABLE 6: The interval neutrosophic matrix in Example 3.

C1 C2 C3

A1 ([1, 1], [0.1, 0.1], [0.1, 0.1]) ([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]) ([0.1, 0.3], [0.3, 0.4], [0.2, 0.3])
A2 ([0.8, 0.9], [0.1, 0.2], [0.1, 0.1]) ([0.8, 0.9], [0.2, 0.3], [0.3, 0.4]) ([0.7, 0.8], [0.3, 0.4], [0.2, 0.3])
A3 ([0.7, 0.8], [0.1, 0.2], [0.1, 0.1]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4]) ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3])
A4 ([0.6, 0.7], [0.1, 0.2], [0.1, 0.1]) ([0.6, 0.7], [0.2, 0.3], [0.3, 0.4]) ([0.6, 0.7], [0.3, 0.4], [0.2, 0.3])
A5 ([0.6, 0.7], [0.1, 0.2], [0.1, 0.1]) ([0.6, 0.7], [0.2, 0.3], [0.3, 0.4]) ([0.5, 0.6], [0.3, 0.4], [0.2, 0.3])

C4 C5

A1 ([0.1, 0.3], [0.2, 0.3], [0.2, 0.3]) ([0.2, 0.3], [0.2, 0.3], [0.3, 0.4])
A2 ([0.8, 0.9], [0.2, 0.3], [0.2, 0.3]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4])
A3 ([0.8, 0.9], [0.2, 0.3], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3], [0.3, 0.4])
A4 ([0.7, 0.8], [0.2, 0.3], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.3], [0.3, 0.4])
A5 ([0.6, 0.8], [0.2, 0.3], [0.2, 0.3]) ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])

TABLE 7: A comparison study with some existing methods in Example 3.

Algorithms Ranking Optimal alternative

Algorithm 1: Similarity measure A2 � A3 � A4 � A5 � A1 A2

Zhang et al. [42]: INNWA A1 � A2 � A3 � A4 � A5 A1

Zhang et al. [42]: INNWG A2 � A3 � A4 � A5 � A1 A2

Zhang et al. [42]: INNEWG A2 � A3 � A4 � A5 � A1 A2

Zhao et al. [44]: IVNSGWA (λ = 1) A1 � A2 � A3 � A4 � A5 A1

Zhao et al. [44]: IVNSGWA (λ→ 0) A2 � A3 � A4 � A5 � A1 A2

Ye [47]: CIINWAA A1 � A2 � A3 � A4 � A5 A1

Ye [47]: CIINWGA A2 � A3 � A4 � A5 � A1 A2

Liu and Tang [49]: INPGWA (λ = 1) A1 � A2 � A3 � A4 � A5 A1

Liu and Tang [49]: INPGWA (λ→ 0) A2 � A3 � A4 � A5 � A1 A2

Liu and You [51]: INWMMP(1,0,0,0,0) A1 � A2 � A3 � A4 � A5 A1

Liu and You [51]: INDWMMP(1,0,0,0,0) A2 � A3 � A4 � A5 � A1 A2

Ye [67]: Cross-Entropy A2 � A3 � A4 � A5 � A1 A2

Ye [62]:Dice measure GWINN3 (λ = 0) A2 � A3 � A4 � A5 � A1 A2

Ye [62]:Dice measure GWINN3 (λ = 1) A1 � A5 � A4 � A3 � A2 A1

Ye [62]:Dice measure GWINN4 (λ = 0) A2 � A3 � A1 � A4 � A5 A2

Ye [62]:Dice measure GWINN4 (λ = 1) A1 � A5 � A4 � A3 � A2 A1

p = 1, t1 = 2, t2 = 3 in Algorithm 1;
The red background color denotes the counterintuitive phenomena;
The green background color denotes the unauthentic results.
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(a) t1 = 9, t2 = 1 (b) t1 = 9, t2 = 2 (c) t1 = 9, t2 = 3

(d) t1 = 9, t2 = 4 (e) t1 = 9, t2 = 5 (f) t1 = 9, t2 = 6

(g) t1 = 9, t2 = 7 (h) t1 = 9, t2 = 8 (i) t1 = 9, t2 = 9

FIGURE 7: The changing trend of parameter p.

Remark 2: From the Table 9, we can see that the red back-
ground color denote some unreasonable results due to the
counterintuitive phenomena which is discussed in Peng and
Dai [33]. For GWINN3 and GWINN4 in [62], it would cause
the unauthentic situation due to the the selection of λ. In
other words, it will not obtain a convincing result. It is easily
known that the optimal alternative and corresponding the
ordering are same as the results of INNWA [42], IVNSGWA
(λ = 1) [44], INPGWA (λ = 1) [49], INDWMMP(1,0,0,0,0)

[51], Cross-Entropy [67], GWINN3, GWINN4 (λ = 0).

VI. CONCLUSION
The main contributions can be illustrated and reviewed in the
following.

(1) The formulae of interval neutrosophic similarity mea-
sures and distance measures are proposed, and their prop-
erties are proved. Meanwhile, the diverse desirable relation-
s between the developed similarity measures and distance
measures have also been elicited. Especially, a comparison
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(a) t2=1,p=1 (b) t2=1,p=2 (c) t2=1,p=3

(d) t2=1,p=4 (e) t2=1,p=5 (f) t2=1,p=6

(g) t2=1,p=7 (h) t2=1,p=8 (i) t2=1,p=9

FIGURE 8: The changing trend of parameter t1.

with some existing literature [54, 55, 57, 58, 60–66] are
constructed in Table 2 to state the effectiveness of proposed
similarity measure. Compared with the existing similarity
measure [74], it possesses more application scenarios of
interval form.

(2) Deviation-based method for achieving objective weight
is given, later, the combination weights are introduced, which
can effectually reveal the subjective weight and objective
weight, whereas the combination weight presented in Peng

and Dai [33] can’t reflect the discrepancy by comparing with
the known weight (Fig. 3).

(3) An algorithm for solving interval neutrosophic deci-
sion making issue by multiparametric similarity measure is
presented. The effect of the parameters p, t1 and t2 on the
ranking in Algorithm 1 is discussed in detailed (Figs. 4, 5,
6, 7, 8, 9). Compared with the existing interval neutrosophic
decision making algorithms (Table 7 and Table 9), are (i) it
can achieve the best alternative out of counter-intuitive issues
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(a) t1=9,p=1 (b) t1=9,p=2 (c) t1=9,p=3

(d) t1=9,p=4 (e) t1=9,p=5 (f) t1=9,p=6

(g) t1=9,p=7 (h) t1=9,p=8 (i) t1=9,p=9

FIGURE 9: The changing trend of parameter t2.

[42, 44, 47, 49, 51, 67]; (ii) it has no unauthentic issues [62].

In the future, we will employ the similarity measures in
other ways, such as gene selection [71]. Besides, as this
paper is just an applied research focusing on the similarity
measures of INSs, we shall attempt to design some softwares
to preferably realize the initiated information measure in
daily life. Meanwhile, we also will take them into and diverse
fuzzy environment [72, 73, 75–79].
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TABLE 8: The interval neutrosophic matrix in Example 4.

C1 C2 C3

A1 ([0.8, 0.9], [0.1, 0.2], [0.2, 0.3]) ([0.8, 0.9], [0.1, 0.3], [0.1, 0.2]) ([0, 0], [0.1, 0.2], [0.1, 0.2])
A2 ([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]) ([0.3, 0.4], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
A3 ([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]) ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
A4 ([0.2, 0.3], [0.1, 0.2], [0.2, 0.3]) ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])
A5 ([0.1, 0.2], [0.1, 0.2], [0.2, 0.3]) ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.2], [0.1, 0.2])

C4 C5

A1 ([0.8, 0.9], [0.1, 0.3], [0.1, 0.2]) ([0.9, 0.9], [0.1, 0.3], [0.1, 0.2])
A2 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.2]) ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2])
A3 ([0.3, 0.4], [0.1, 0.3], [0.1, 0.2]) ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2])
A4 ([0.2, 0.3], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.3], [0.1, 0.2])
A5 ([0.1, 0.2], [0.1, 0.3], [0.1, 0.2]) ([0.1, 0.2], [0.1, 0.3], [0.1, 0.2])

TABLE 9: A comparison study with some existing methods in Example 4.

Algorithms Ranking Optimal alternative

Algorithm 1: Similarity measure A1 � A2 � A3 � A4 � A5 A1

Zhang et al. [42]: INNWA A1 � A2 � A3 � A4 � A5 A1

Zhang et al. [42]: INNWG A2 � A3 � A4 � A5 � A1 A2

Zhang et al. [42]: INNEWG A2 � A3 � A4 � A5 � A1 A2

Zhao et al. [44]: IVNSGWA (λ = 1) A1 � A2 � A3 � A4 � A5 A1

Zhao et al. [44]: IVNSGWA (λ→ 0) A2 � A3 � A4 � A5 � A1 A2

Ye [47]: CIINWAA A1 � A2 � A3 � A4 � A5 A1

Ye [47]: CIINWGA A2 � A3 � A4 � A5 � A1 A2

Liu and Tang [49]: INPGWA (λ = 1) A1 � A2 � A3 � A4 � A5 A1

Liu and Tang [49]: INPGWA (λ→ 0) A2 � A3 � A4 � A5 � A1 A2

Liu and You [51]: INWMMP (1,0,0,0,0) A1 � A2 � A3 � A4 � A5 A1

Liu and You [51]: INDWMMP (1,0,0,0,0) A2 � A3 � A4 � A5 � A1 A2

Ye [67]: Cross-Entropy A1 � A2 � A3 � A4 � A5 A1

Ye [62]:Dice measure GWINN3 (λ = 0) A1 � A2 � A3 � A4 � A5 A1
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