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Abstract—Interval neutrosophic linguistic sets (INLSs) take 

the advantages of interval neutrosophic sets (INSs) and 

linguistic variables (LVs), which can be better to handle the 

indeterminate and inconsistent information existing in the 

real world, and the power operator can consider all the decision 

arguments and their relationship. But the traditional power 

aggregation operator cannot handle interval neutrosophic 

linguistic sets. Motivated by these, firstly, the operations of 

interval neutrosophic linguistic numbers (INLNs) based on 

Einstein operations are defined, and the Hamming distance 

measure for INLNs is also explored in this paper. Secondly, 

some novel power aggregation operators based on Einstein 

operations are proposed, including the interval neutrosophic 

linguistic power weighted average (INLPWA) operator and the  

interval neutrosophic linguistic power weighted geometric 

(INLPWG) operator, and their properties are also studied. 

Thirdly, an illustrative example is illustrated to show the 

feasibility and practicality of the proposed method. 

 

Index Terms—interval neutrosophic linguistic Sets, Einstein, 

power aggregation operator. 

 

I. INTRODUCTION 

Smarandache firstly proposed Neutrosophic set (NS) [1] ，

which is an extension of fuzzy set (FS) [2], intuitionistic fuzzy 

set (IFS) [3], hesitant fuzzy set (HFS) [4]. In NS, the degrees of 

true-membership, indeterminacy-membership, and 
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false-membership are completely independent. In recent years, 

NS has been widely applied in handling multi-criteria 

decision-making (MCDM) problems. However, NS is defined 

from a philosophical perspective, and it is difficult to apply in 

real application from a scientific engineering point of view. 

Thus, wang [5, 6] proposed the concepts of single-valued 

neutrosophic sets (SVNSs) and interval neutrosophic sets 

(INSs). Ye [7, 8] defined simplified neutrosophic sets (SNSs) 

and single-valued neutrosophic hesitant fuzzy sets 

(SVNHFSs). Wang [9] described the concept of multi-valued 

neutrosophic sets (MVNSs). Liu [10] developed interval 

neutrosophic hesitant fuzzy sets (INHFSs). 

In some cases, decision-making problems are too complex to 

be expressed by quantitative values. Considering this 

situation, the linguistic variables (LVs) originally introduced 

by Zadeh [11] has become an effective tool to express 

quanlitative information. However, using LVs commonly 

implies the truth degree of a linguistic term is 1.To overcome 

the drawback of utilizing LVs concerned with FS and IFS, 

various neutrosophic linguistic sets have been developed, 

such as the single-valued neutrosophic linguistic sets 

(SVNLSs) [12], the simplified neutrosophic linguistic sets 

(SNLSs) [13], the interval neutrosophic linguistic sets (INLSs) 

[14], the interval neutrosophic uncertain linguistic sets 

(INULSs) [15] and the multi-valued neutrosophic linguistic 

sets (MVNLSs) [16]. 

Additionally, due to the significance of information fusion, 

some related aggregation operators have also been proposed 

for solving MCDM problems. Wang [17] extended a series of 

Maclaurin symmetric mean (MSM) aggregation operators 

under single-valued neutrosophic linguistic environments. 

Tian [13] applied normalized Bonferroni mean (NBM) operator 

to SNLSs, and tian [18] also developed the traditional PA 

operator under a simplified neutrosophic uncertain linguistic 

environment. Ye [14, 15] extended the traditional weighted 

arithmetic average (WAA) operator and weighted geometric 

average (WGA) operator to INLSs and INULSs, respectively, 

and the INLWAA operator, the INLWGA operator, the 

INULWAA operator, and the INULWGA operator were 

defined. Ma [19] studied a generalized interval neutrosophic 

linguistic prioritized weighted harmonic mean (GINLPWHM) 

operator and a generalized interval neutrosophic linguistic 

prioritized weighted hybrid harmonic mean (GINLPWHHM) 

operator. Li [16] investigated the normalized Weighted 

Bonferroni mean Hamacher (NWBMH) operator with 
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multi-valued neutrosophic linguistic sets.  

The power average operator was originally defined by 

Yager [20] which has the well-known advantage of 

considering the relationship among the multi-input arguments 

being fused. Related studies from different perspectives have 

been achieved. The power geometric operator [21], generalized 

power average operator [22], single-valued neutrosophic 

power operator [23], and interval neutrosophic power 

generalized operators [24] were also proposed. However, 

existing power operator fail to handle situations in which the 

input arguments are interval neutrosophic linguistic numbers 

(INLNs). Motivated by gap in these literatures, the purpose of 

this paper is to develop power operators under interval 

neutrosophic linguistic environment to solve MCDM 

problems. 

The paper is organized as follows. In Section Ⅱ, some 

concepts of INLSs and INLNs are briefly reviewed, novel 

operational rules based on Einstein operations and the 

Hamming distance measure are defined. In Section Ⅲ, the 

traditional power operators are extended to the interval 

neutrosophic linguistic environment, the INLPWA operator 

and the INLPWG operator based on the novel operations are 

proposed and some desirable properties are discussed. In 

Section Ⅳ, an illustrative example is performed based on the 

proposed method. In Section Ⅴ, some summary remarks are 

provided. 

II. PRELIMINARIES 

In this section, some basic concepts and definitions with 

respect to INLSs and INLNs are conducted, which will be 

utilized in the later analysis. 

Based on interval neutrosophic sets and linguistic variables, 

ye [14] defined the concept of interval neutrosophic linguistic 

sets, which is presented as follows: 

Definition 1   Let X be a set of points with generic elements 

in X denoted by x , an INLS A in X is defined as follows: 

  
   ( )

, , ( ), ( ), ( ) ,
x A A A

A x s T x I x F x x X  

Where ( )
,

x
s S


   
1 2
, , ,S s s s is an ordered and 

finite linguistic term set, in which j
s denotes a linguistic 

variable value and  is an odd value. 

       ( ) ( ), ( ) 0,1 ,L U
A A A
T x T x T x

       ( ) ( ), ( ) 0,1 ,L U
A A A

I x I x I x  and 

       ( ) ( ), ( ) 0,1 ,L U
A A A
F x F x F x  satisfying these 

conditions    0 ( ) ( ) ( ) 3U U U

A A A
T x I x F x  for any 

x in X . ( ), ( )
A A
T x I x , and ( )

A
F x denoting three degrees of 

x in X belonging to the linguistic variable of ( )x
s , that are 

true, indeterminacy and falsity. 

Definition 2[14] Suppose there is only one element in X , 

then the seven tuple 

 
     
     ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

x A A A A A A
s T x T x I x I x F x F x

 is depicted as an INLN.  

We know different aggregation operators  are all depended 

on different t-norms and t-conorms. Einstein t-norm and 

t-conorm consist of the following equations  [25],  

,
1 (1 )(1 )

ab
a b

a b
 

   1

a b
a b

ab


 


. 

Then the operational laws of INLNs based on Einstein 

operations are defined as follows. 

Definition3Let

 
           11 ( ) 1 1 1 1 1 1

, ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

a A A A A A A
a s T a T a I a I a F a F a and

 
           22 ( ) 2 2 2 2 2 2

, ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

a A A A A A A
a s T a T a I a I a F a F a

be two INLNs, and 0,  then the operations of INLNs can 

be defined based on Einstein operations. 

 


   
  
      

  
 

         



 



1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

1

1 2

1 2

( ) ( )
,

( ) ( ) ( ) ( )
, ,

1 ( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( )
, ,

1 (1 ( )) (1 ( )) 1 (1 ( )) (1 ( ))

( ) ( )

1 (1 ( ))

(1) 

L L U U

L L U U

L L U U

L L U U

L L

L

a a

T a T a T a T a

T a T a T a T a

I a I a I a I a

I a I a I a I a

F a F a

F a

a a

s

 
 
        

1 2

2 1 2

( ) ( )
, ;

(1 ( )) 1 (1 ( )) (1 ( ))

U U

L U U

F a F a

F a F a F a

 





   
  
          

  
 

     



 

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

1

1 2( ) ( )

(2) 

,

( ) ( ) ( ) ( )
, ,

1 (1 ( )) (1 ( )) 1 (1 ( )) (1 ( ))

( ) ( ) ( ) ( )
,

1 ( ) ( ) 1 ( ) ( )

( ) ( )

1 ( ) (

L L U U

L L U U

L L U U

L L U U

L L

L L

a a

a a

T a T a T a T a

T a T a T a T a

I a I a I a I a

I a I a I a I a

F a F a

F a F a

s

 
 
    

1 2

2 1 2

( ) ( )
, ;

) 1 ( ) ( )

U U

U U

F a F a

F a F a

   

   

 

   


 

       
  
        

  
 

     



1

1 1 1 1

1 1 1 1

1 1

1 1 1 1

1( )
(3) ,

(1 ( )) (1 ( )) (1 ( )) (1 ( ))
, ,

(1 ( )) (1 ( )) (1 ( )) (1 ( ))

2 ( ( )) 2 ( ( ))
, ,

(2 ( )) ( ( )) (2 ( )) ( ( ))

2 (

L L U U

L L U U

L U

L L U U

a
a

T a T a T a T a

T a T a T a T a

I a I a

I a I a I a I a

F

s

 

   

 
 
      

1 1

1 1 1 1

( )) 2 ( ( ))
, ;

(2 ( )) ( ( )) (2 ( )) ( ( ))

L U

L L U U

a F a

F a F a F a F a



 

   

   

   




   
  
      

      
 

       



1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1( )
(4) ,

2 ( ( )) 2 ( ( ))
, ,

(2 ( )) ( ( )) (2 ( )) ( ( ))

(1 ( )) (1 ( )) (1 ( )) (1 ( ))
, ,

(1 ( )) (1 ( )) (1 ( )) (1 ( ))

(1

L U

L L U U

L L U U

L L U U

a
a

T a T a

T a T a T a T a

I a I a I a I a

I a I a I a I a

F

s

   

   

     
 
        

1 1 1 1

1 1 1 1

( )) (1 ( )) (1 ( )) (1 ( ))
, .

(1 ( )) (1 ( )) (1 ( )) (1 ( ))

L L U U

L L U U

a F a F a F a

F a F a F a F a

Theorem 1 For any three INLNs 1
a , 2

a , 3
a , and any real 

numbers    
1 2

, , 0 ,then the following equations can be 

true. 

  
1 2 2 1

(1) ;a a a a  

  
1 2 2 1

(2) ;a a a a  
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     
1 2 1 2

(3) ;a a a a  

1 1 2 1 1 2 1
(4) ( ) ;a a a       

1 2 1 2

1 1 1
(5) ;a a a   

   

 1 2 1 2
(6) ;a a a a

     

   1 2 3 1 2 3
(7) ;a a a a a a      

   1 2 3 1 2 3
(8) .a a a a a a    

 

Theorem 1 can be easily proven based on Definition 3. 

Definition 4Let 1
a and 2

a be any two INLNs, then the Hamming 

distance between 1
a and 2

a can be defined as follows: 





 


 

 

 

 

 

   


   

   

   

   

   

1 2 1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1
( , ) ( ) ( ) ( ) ( )

2( 2)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L L

U U

L L

U U

L L

U U

d a a a T a a T a

a T a a T a

a I a a I a

a I a a I a

a F a a F a

a F a a F a

(1) 

Where  is the numbers of the values in S . 

The Hamming distance defined above can satisfy the 

following three conditions. 


1 1

(1) ( , ) 0,d a a  

 
1 2 2 1 1 2

(2) ( , ) ( , ), ( , ) [0,1],d a a d a a d a a  

 
1 2 2 3 1 3

(3) ( , ) ( , ) ( , ).d a a d a a d a a  

III. NOVEL POWER OPERATORS FOR INLNS 

Based on the operational rules in Definition 3, the INLPWA 

operator and INLPWG operator are defined, and some 

properties of two operators are also discussed in this section. 

A. INLPWA operator 

Definition 5Let ( 1,2, , )
i
a i n  be a collection of INLNs, 

and    
1 2

( , ,, , )
n  be the weighted vector of 

,
i
a     0,1

i and 
1

1.
n

i
i




 The INLPWA operator is 

defined as follows. 









 




1
1 2

1

(1 ( ))
( , , )

(1 ( ))

n

i i ii
n n

i i
i

S a a
INLPWA a a a

S a

        (2) 

Where 



 
1

( ) ( , ),
n

i j i j
j
j i

S a Supp a a and ( , )
i j

Supp a a is 

the support for i
a and ,

j
a which meets the following 

conditions: 

 (1) ( , ) 0,1 ,i jSupp a a   

(2) ( , ) ( , ),i j j iSupp a a Supp a a  

(3) ( , ) ( , ) ( , ) ( , ).i j p q i j p qSupp a a Supp a a iffd a a d a a   

Here ( , )i jd a a is the Hamming distance between 
i
a and 

j
a in Definition 4. 

Theorem 2 Let ( 1,2, , )
i
a i n be a collection of INLNs, 

and  1 2
, , ,

n
    be the weighted vector 

for , 0,1
i i
a      and 

1

1.
n

i
i




   Based on the operational 

rules in Definition 3 and Equation (2), we can derived the 

following result, and the aggregated result utilizing INLPWA 

operator is still an INLN. 






 

 

 







 



 








 

 







  

  




 



 



1

1

1 1

1

1 2

1 1

1

(1 ( ))
( )

(1 ( ))

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

(1 ( )) (1

(1 ( ))

( , , ) ,

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

n
i i

in
i

i i
i

i i i i
n n

i i i i
i i

i i i
n

i i
i

n

n n
L L

i i
i i

n
L L

i i
i

S a
a

S a

S a S a

S a S a

S a

S a

INLPWA a a a

T a T a

T a T a

s



 

 

 

 



 





 







 

 

 



 
 
 
 
 
 
 
 


  

  



 





 



1

1 1

1

1

1 1

1

( ))

(1 ( ))

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

(1 ( )) (1

,

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

i
n

i i
i

i i i i
n n

i i i i
i i

i i i i
n

i i i
i

n

i

n n
U U

i i
i i

n
U U

i i
i

S a

S a

S a S a

S a S a

S a S a

S a

T a T a

T a T a





























 








































 














 

1

1

1

1

1

1

1 1

1

(1 ( ))

(1 ( ))
1

( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

,

2 ( ( ))

,

(2 ( )) ( ( ))

2 ( ( ))

n

i
i

i i
n

i i
i

i i
n

i i
i

i i
n

i i
i

n

i

n
L

i
i

n n
L L

i i
i i

U

i
i

S ai i
n

S ai i
i

S a

S a

S a

S a

S a

S a

S a

I a

I a I a

I a

























 
































 


 







 





1

1

1 1

1

1

(1 ( ))

(1 ( ))
1

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))

(1 ( ))
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(1)  If n=2, based on the operations (1) and (3) in Definition 3. 
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If n=k+1, by the operations (1) and (3) in Definition 3. 
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Eq. (3) holds for n=k+1. Thus, Eq. (3) holds for all n. 

The INLPWA operator has the following properties. 

(1) Commutativity:  

Let  
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )
i

L U L U L U

i a i i i i i i
a s T a T a I a I a F a F a  

be a collection of INLNs, if  1,2, ,ia i n   is any permutation 

of  1, 2, ,ia i n , then 

1 2 1 2( , , , ) ( , , , )n nINLPWA a a a INLPWA a a a   . 

(2) Idempotency:  

Let  
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )
i

L U L U L U

i a i i i i i i
a s T a T a I a I a F a F a  

 1,2, ,i n be a collection of INLNs, and 

 
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

a
a s T a T a I a I a F a F a be a 

INLN, if    1,2, , ,
i
a a i n  then 

1 2( , , , ) .nINLPWA a a a a  

(3) Boundness:  

Let  
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )
i

L U L U L U

i a i i i i i i
a s T a T a I a I a F a F a  

 1,2, ,i n  and 

 
           *

* * * * * * *

( )
, ( ), ( ) , ( ), ( ) , ( ), ( )

i

L U L U L U
i i i i i i ia
a s T a T a I a I a F a F a  

 1,2, ,i n be two collections of INLNs. If 

    * * * *( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ),L L U U L L

i i i i i i i i
a a T a T a T a T a I a I a

 
  * * *( ) ( ), ( ) ( ), ( ) ( ),U U L L U U

i i i i i i
I a I a F a F a F a F a then 

* * *

1 2 1 2( , , , ) ( , , , ).n nINLPWA a a a INLPWA a a a
 

B. INLPWG operator 

Definition 6 Let ( 1,2, , )
i
a i n be a collection of INLNs, 

 
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )
i

L U L U L U

i a i i i i i i
a s T a T a I a I a F a F a

and  1 2
, , ,

n
    be the weighted vector 

for , 0,1
i i
a      and 

1

1.
n

i
i




 Then the operator of 

INLPWG can be achieved, and the aggregation result is still an 

INLN. 












  1

(1 ( ))

(1 ( ))

1 2 1
( , , ) ( )

i i
n

i i
i

S a

n S a

n ii
INLPWG a a a a           (4) 

Where 
 

 
1,

( ) ( , ),
n

i j i j
j j i

S a Supp a a satisfying the 

following conditions. 

(1)  
 1,0),( ji aaSupp

 

(2) ( , ) ( , )i j j iSupp a a Supp a a  

(3) ( , ) ( , ).i j p qSupp a a Supp a a If ( , ) ( , ),i j p qd a a d a a  

Here ),( ji aad  is the Hamming distance between 

ia and ja defined in Definition 4.  

Based on the operations in Definition 3 and Eq. (4), we can 

derive the following Theorem 3. 

Theorem 3 Let ( 1,2, , )
i
a i n be a collection of INLNs, 

 
           ( )

, ( ), ( ) , ( ), ( ) , ( ), ( )
i

L U L U L U

i a i i i i i i
a s T a T a I a I a F a F a

and  1 2
, , ,

n
    be the weighted vector 

for , 0,1
i i
a      and 

1

1.
n

i
i




 Then the aggregated result 

of INLPWG is also an INLN. 
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Where 
 

 
1,

( ) ( , ),
n

i j i j
j j i

S a Supp a a satisfying the 

conditions in Definition 6. 

Similarly, the INLPWG operator Eq. (5) can be proved using 

the mathematical induction, and the INLPWG operator also 

has the properties of commutativity, dempotency and 

boundness. 

Ⅳ.ILLUSTRATIVE EXAMPLE 

In this section, we will use the novel operators to deal 

with the multi-criteria decision-making problems under the 

interval neutrosophic linguistic environment, where the 

alternative values are in the form of INLNs and the criteria 

weights are in the form of crisp values. 

Next, we will consider the same decision-making problem 

adapted from Ye [14].  

An investment company wants to expand its business. 

Four alternatives will be chosen, 1
A represents an auto 

corporation, 2
A represents a food corporation, 3

A represents a 

computer company corporation, and 4
A represents a weapon 

corporation. Each alternative is evaluated under three criteria, 

1
C denotes risk, 2

C denotes growth, and 3
C denotes the 

environment impact. The corresponding weighted vector is 

 0.35,0.25,0.4 .    

The expert gives values for the satisfaction, 

indeterminacy and dissatisfaction regarding the alternative 

i
A corresponding to the criteria j

C under the linguistic term 

set S . Therefore, the assessment value is given in the form of   

the INLN, and the linguistic term set is employed as 

 

 extremely poor,very poor,poor,medium,good,very good,extremely good





1 2 3 4 5 6 7
, , , , , ,

.

S s s s s s s s

 

The interval neutrosophic linguistic decision matrix 


   4 3ij

B b is shown as follows. 

 

 

 

 


   

           


          
 

           

           

      

4 3

5

6

6

4

6

, 0.4,0.5 , 0.2,0.3 , 0.3,0.4

, 0.5,0.7 , 0.1,0.2 , 0.2,0.3

, 0.3,0.5 , 0.1,0.2 , 0.3,0.4

, 0.7,0.8 , 0.0,0.1 , 0.1,0.2

, 0.4,0.6 , 0.1,0.2

ij
B b

s

s

s

s

s  

 

 

 

 

  

          

          

          

          

        

5

5

4

5

5

, 0.2,0.4

, 0.6,0.7 , 0.1,0.2 , 0.2,0.3

, 0.5,0.6 , 0.1,0.3 , 0.3,0.4

, 0.5,0.7 , 0.1,0.2 , 0.2,0.3

, 0.2,0.3 , 0.1,0.2 , 0.5,0.6

, 0.5,0.7 , 0.2,0.2 , 0.1,0.2

s

s

s

s

s  

 

 





 


           

           

4

6

, 0.5,0.6 , 0.1,0.3 , 0.1,0.3

, 0.3,0.4 , 0.1,0.2 , 0.1,0.2

s

s  

Step1. Calculate the supports ( , ).
ij ip

Supp b b   

As an example, 
11 12

( , )Supp b b  can be obtained as 

follows: 

 

 

 

            

          



11 12 11 12

5

6

( , ) 1 ( , )

1 ( , 0.4,0.5 , 0.2,0.3 , 0.3,0.4 ,

, 0.4,0.6 , 0.1,0.2 , 0.2,0.4 )

0.8389

Supp b b d b b

d s

s

 

Where 
11 12

( , )d b b is the Hamming distance defined in 

equation (1). 

Then,   ( , )( 1,2,3,4; , 1,2,3; )
ij ip

Supp b b i j p j p can 

be calculated. 

 

 

 

11 12 12 11

11 13 13 11

12 13 13 12

( , ) ( , ) 0.8389;

( , ) ( , ) 0.7222;

( , ) ( , ) 0.6833;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

21 22 22 21

21 23 23 21

22 23 23 22

( , ) ( , ) 0.9167;

( , ) ( , ) 0.8167;

( , ) ( , ) 0.8889;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

31 32 32 31

31 33 33 31

32 33 33 32

( , ) ( , ) 0.9000;

( , ) ( , ) 0.8000;

( , ) ( , ) 0.8111;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

41 42 42 41

41 43 43 41

42 43 43 42

( , ) ( , ) 0.8444;

( , ) ( , ) 0.7889;

( , ) ( , ) 0.9222.

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

Step2. Calculate the weights of
ij
 . 

The weighted support ( )
ij

S b can be obtained using the 

weights ( 1, 2, 3)
j

j  of the criteria ( 1, 2, 3)
j

C j   


 

  
3

1,

( ) ( , )( 1,2,3,4; 1,2,3)
ij p ij ip

p p j

S b Supp b b i p

Then, the weights ( 1, 2, 3, 4; 1, 2, 3)
ij

i j   associated with the 

INLN ij
b can be calculated by the following formula: 

3

1

(1 ( ))

(1 ( ))

j ij

ij

j ij

j

S b

S b











 

As an example, 
11

( )S b  can be calculated as follows: 

    

   



11 2 11 12 3 11 13
( ) ( , ) ( , )

0.25 0.8389 0.4 0.7222

0.4986;

S b Supp b b Supp b b
 

Then, 



 
 
 
 
 
 

4 3

0.4986 0.5669 0.4236

0.5558 0.6764 0.5081
( ( ))

0.5450 0.6394 0.4828

0.5267 0.6644 0.5067

S b  

Therefore, as an example, 11
 can be calculated as follows:

 

1 11

311

1

1

(1 ( )) 0.5245
0.3530

1.4857
(1 ( ))j j

j

S b

S b








  



 

Then, 
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


 
 
 
 
 
 

4 3

0.3530 0.2637 0.3833

0.3475 0.2675 0.3850

0.3503 0.2655 0.3842

0.3440 0.2679 0.3880

 

Step3. Calculate the comprehensive evaluate value of each 

alternative. 

Utilize the INLPWA operator in Eq. (3) to aggregate all the 

values of each alternative. Then, the comprehensive value 

1
b of alternative 1

A can be obtained as follows: 

 

 

 



     

 

 

 

 





 
   

 
 

   


  



 

 

 

1 1

1 1

1 1

1

1 11 12 13

3 3

1 1
1 1

3 3

1 1
1 1

3 3

1 1
1 1

1

11 11 12 12 13 13( ) ( ) ( )

( , , )

,

(1 ( )) (1 ( ))

,

(1 ( )) (1 ( ))

(1 ( )) (1 ( ))

(1 ( ))

j j

j j

j j

j

L L

j j
j j

L L
j j

j j

U U

j j
j j

U
j

j

b b b

b INLPWA b b b

T b T b

T b T b

T b T b

T b

s



















 



 



 










  







 







  


 

 



 



 





1

1

1

1

1
1

1

1

3 3

1
1 1

3

1
1

3 3

1 1
1 1

3

1
1

3 3

1 1
1 1

3

1
1

3

1 1
1

1

,

(1 ( ))

2 ( ( ))

,

(2 ( )) ( ( ))

2 ( ( ))

,

(2 ( )) ( ( ))

2 ( ( ))

(2 ( )) ( (

j

j

j

j

j
j

j

j

U
j

j

L
j

j

L L
j j

j j

U
j

j

U U
j j

j j

L

j
j

L L
j j

j

j

T b

I b

I b I b

I b

I b I b

F b

F b F b

 













 













   
 



          





 

1

1

1

3

1

3

1
1

3 3

1 1
1 1

1

5.2637

,

))

2 ( ( ))

(2 ( )) ( ( ))

,

0.3266,0.4584 , 0.1283,0.2314 , 0.3324,0.4702

j

j

j

j

U
j

j

U U
j j

j j

j

F b

F b F b

s

Simi

larly, 

 





          

2 21 22 23

5.3475

( , , )

,

0.5283,0.7000 , 0.1311,0.2000 , 0.1538,0.2574

b INLPWA b b b

s  

 





          

3 31 32 33

4.9661

( , , )

,

0.4344,0.5668 , 0.1000,0.2610 , 0.1996,0.3589

b INLPWA b b b

s  

 





          

4 41 42 43

4.7761

( , , )

,

0.5122,0.6497 , 0.0000,0.1582 , 0.1208,0.2234

b INLPWA b b b

s  

Step4. Calculate the Hamming distance between an 

alternative j
A   and the ideal solution/negative ideal solution.

 

The ideal solution is given as 

 

            max ( )
, 1,1 , 0,0 , 0,0 ,

x
y s and the negative ideal 

solution is given as  

            min ( )
, 0,0 , 1,1 , 1,1

x
y s , the 

distance measure is given in the following. 
    ( , ), ( , ).

j j j j
d d b y d d b y

 

  
1 1

0.8881, 0.3833;d d
 

  
2 2

0.6334, 0.4161;d d
 

  
3 3

0.7552, 0.3646;d d
 

  
4 4

0.6028, 0.4046.d d
 

Step5. Get the relative closeness coefficient. 


 
 


1,2,3,4.j

j

j j

d
R j

d d

 

Thus, 

 

 

1 2

3 4

0.6985, 0.6035,

0.6744, 0.5984.

R R

R R

 

Step6. Rank the alternatives. 

According to the relative closeness coefficient, the final 

ranking order of the alternatives is 4 2 3 1
.A A A A The 

smaller j
R  is, the better the alternative j

A  is. Apparently, the 

best alternative is 4
A while the worst alternative is 1

A . 

The method proposed in this paper is compared with the 

method that was conducted in Ye [14]. For the same MCDM 

problem under interval neutrosophic linguistic environment, if 

the aggregation operators defined by Ye are applied, either the 

INLWAA operator or the INLWGA operator, the final ranking 

of four alternatives is always 2 4 3 1
.A A A A However, if 

the method in this paper is used, the final ranking is 

4 2 3 1
.A A A A Clearly, the worst alternative is the same, 

while the best alternative is different. There are two reasons. 

Firstly, different aggregation results are obtained due to 

different aggregation operators are used in the two methods. 

Secondly, to rank INLNs, the score function is defined and 

used in Ye [14], while the extended TOPSIS method is utilized 

in this paper. The main advantage of the method outlined in 

this paper is due to its ability to consider the relationship 

among the multi-input arguments being fused. Meanwhile, 

TOPSIS method had been proved to be an effective ranking 

method for MCDM problem. In this paper, we extend the 

traditional TOPSIS method only dealing with the real numbers 

to the interval neutrosophic linguistic environment. Therefore, 

these reasons lead to the final ranking result in this paper is 

different from the other method, and is more precise and 

reliable. 

Ⅴ.CONCLUSION 

In this paper, the interval neutrosophic linguistic sets 

combine the advantages of both the interval neutrosophic set 

and the linguistic variables, and it can easily express the 

indeterminate and inconsistent information in real decision 

making in real world. Therefore, it is meaningful to study 
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MCDM problems with INLSs. However, the conventional 

PWA operator and PWG operator fail in handling INLSs. Thus, 

the main contributions of the paper are: firstly, the novel 

operational rules of INLNs based on Einstein operations were 

proposed under interval neutrosophic linguistic environment. 

Then, the Hamming distance of INLNs were originally 

established. Secondly, the traditional power operators  were 

extended to INLNs environment and were more generation. 

Two novel operators, the INLPWA operator and INLPWG 

operator were proposed, and their properties were also 

investigated. Finally, an illustrative example was demonstrated 

to verify the effectiveness and practicality of the proposed 

method comparing with the other method, and the extended 

TOPSIS method was also conducted to rank the alternatives in 

MCDM problem.  

In future research, we shall extend the proposed method to 

other domains, such as medical diagnosis, pattern recognition 

and group decision making.  
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