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Uncertainties play a dominant role during the aggregation process and hence their corresponding decisions are made

fuzzier. Single-value neutrosophic numbers (SVNNs) contain the three ranges: truth, indeterminacy, and falsity mem-

bership degrees, and are very useful for describing and handling the uncertainties in the day-to-day life situations. In

this study, some operations of SVNNs such as sum, product, and scalar multiplication are defined under Frank norm

operations and, based on it, some averaging and geometric aggregation operators have been developed. We further es-

tablish some of its properties. Moreover, a decision-making method based on the proposed operators is established and

illustrated with a numerical example.
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1. INTRODUCTION

Decision making (DM) is one of the most widely used phenomenain our day-to-day life. Almost all decisions take
several steps to reach the final destination and some of them may be vague in nature. On the other hand, with the
growing complexities of the systems day-by-day, it is difficult for the decision maker to make a decision within
a reasonable time by using uncertain, imprecise, and vague information. For handling this, researchers pay more
attention to the fuzzy set (FS) theory (Zadeh, 1965) and corresponding extensions such as an intuitionistic fuzzy set
(IFS) theory (Attanassov, 1986), interval-valued IFS (IVIFS) (Atanassov and Gargov, 1989), neutrosophic set (NS)
(Smarandache, 1999), etc. To date, IFSs and IVIFSs have beenwidely applied by the various researchers in different
decision-making problems. For instance, various researchers (Xu and Yager, 2006; Garg, 2016a; Xu, 2007; Garg,
2016c,d; Yager, 1988; Xu and Hu, 2010; Garg, 2016b; Xu and Chen, 2007; Garg et al., 2015; Wang and Liu, 2012;
Garg, 2015) proposed an aggregation operator for handling the different preferences of the decision makers towards
the alternatives under IFS or IVIFS environments. Xu and Zhao (2016) presented a comprehensive analysis of the
various methods under IFSs and/or IVIFSs and their corresponding applications in DM problems. Although the FSs
or IFSs have been widely used by the researchers, but it cannot deal with indeterminate and inconsistent information.
For example, if an expert takes an opinion from a certain person about a certain object, then the person may say
that 0.5 is the possibility that the statement is true, 0.7 say that the statement is false, and 0.2 say that he or she is
not sure of it. This issue is not handled by the FSs or IFSs. To resolve this, Smarandache (1999) introduced a new
component called the “indeterminacy-membership function” and added into the “truth membership function” and
“falsity membership function,” all are independent components lying in]0+, 1+[, and hence the corresponding sets
are known as neutrosophic sets (NSs), which is the generalization of IFS and FS. However, without specification,
NSs are difficult to apply in real-life problems. Thus, an extension of the NS, called a single-valued NSs (SVNSs)
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and interval-valued NSs (IVNSs) were proposed by Wang et al.(2005, 2010), respectively. Majumdar and Samant
(2014) and Ye (2014b) proposed an entropy and similarity measures of SVNSs and IVNSs, respectively. Ye (2013)
and Broumi and Smarandache (2013) proposed a correlation coefficient of SVNS and IVNSs. Ye (2014a) and Zhang
et al. (2014) proposed an aggregation operator for SVNSs andIVNSs. Later on, Peng et al. (2016) showed that some
operations in Ye (2014a) may be unrealistic and hence define the novel operations and aggregation operators for
MCDM problems. Rather than ranking of the sets, the various authors (Liu et al., 2014; Ye, 2015; Li et al., 2016; Liu
and Shi, 2015; Tian et al., 2016; Broumi and Smarandache, 2014) have studied the aggregation operators in the NS
environment by using algebraic, Einstein, Hamacher, etc.,t-norm and t-conorm operations of SVNSs. Frank norms
are one of the most important compatibility norm. These norms involve the parameter which provides the different
choices to the decision maker during the information fusionprocess and hence make it more adequate to model the
decision-making problems than others.

Therefore, in this paper, we present a new method to deal withfuzzy DM problems based on SVNSs under Frank
norm operations. To do this, an operational law on differentSVNSs and their corresponding averaging and geometric
aggregation operators has been proposed. Further, a methodwithin the multicriteria decision analysis based on these
operators of SVNSs has been proposed for handling the uncertainties in the collective information. The remainder of
the text has been summarized as follows. Section 2 describesthe basic concepts of NSs. Section 3 introduces some
averaging and geometric aggregation operators under Franknorm operations. In Section 4, an approach to DM, a
practical example to validate and demonstrate the approachhas been presented and compares it with the previous
work. Section 5 concludes the paper.

2. PRELIMINARIES

An overview of NS and SVNS has been addressed here on the universal setX .

Definition 2.1. (Smarandache, 1999) A NSA in X is defined by its “truth membership function”(TA(x)), an
“indeterminacy-membership function”(IA(x)), and a “falsity membership function”(FA(x)) where all are the subset
of ]0−, 1+[ such that0− ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+ for all x ∈ X .

Definition 2.2. (Ye, 2014a) A NSA is defined by

A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X}

and is called SVNS whereTA(x), IA(x), FA(x) ∈ [0, 1]. The pairs of these are called single-valued neutrosophic
numbers (SVNNs) denoted byα = {〈TA(x), IA(x), FA(x)〉} orα = 〈a, b, c〉.

To compare the different SVNNs, a comparison law has been defined as follows (Ye, 2014a):

Definition 2.3. For a SVNNα, sc(α) = a − b − c is called the score function ofα. For two SVNNsα andβ, if
sc(α) > sc(β) thenα ≻ β;

Definition 2.4. The t-normsζ and t-conormsξ defined byζ, ξ : [0, 1]2 −→ [0, 1], related byξ(x, y) = 1 −
ζ(1 − x, 1 − y), ∀x, y ∈ [0, 1]. Based on these norms, a generalized union and intersectionfor SVNNs α1 =
〈a1, b1, c2〉 andα2 = 〈a2, b2, c2〉 are defined asα1

⋂

ζ,ξ α2 = 〈ζ(a1, a2), ξ(b1, b2), ξ(c1, c2)〉 andα1

⋃

ζ,ξ α2 =
〈ξ(a1, a2), ζ(b1, b2), ζ(c1, c2)〉.

Definition 2.5. (Frank triangular norm:) Frank t-norm (⊕F ) and t-conorm (⊗F ) are defined as (Frank,1979).

x⊕F y = 1− logλ

(

1 +
(λ1−x − 1)(λ1−y − 1)

λ− 1

)

, λ > 1 ∀(x, y) ∈ [0, 1]2,

x⊗F y = logλ

(

1 +
(λx − 1)(λy − 1)

λ− 1

)

, λ > 1 ∀(x, y) ∈ [0, 1]2.

It has been easily verified that the Frank sum and product havethe following properties:
•
(

x⊕F y
)

+
(

x⊗F y
)

= x+ y • (∂(x⊕F y))/∂x+ (∂(x ⊗F y))/∂x = 1.

International Journal for Uncertainty Quantification



Novel Single-Valued Neutrosophic Aggregated Operators 363

Remark 2.1. For some special cases ofλ, we see that Frank operations reduces to algebraic and Lukasiewicz sum
and product operations.

(i) If λ → 1, thenx ⊕F y ≡ x + y − xy, x ⊗F y ≡ xy, and hence it reduces to an algebraic sum and product
operations, respectively.

(ii) If λ → ∞, thenx ⊕F y ≡ min(x + y, 1), x ⊗F y ≡ max(0, x + y − 1), which are the Lukasiewicz sum and
product operations, respectively.

3. AGGREGATION OPERATORS FOR SVNNs

Based on the Definition 2.5, we will establish the basic operation laws for SVNNs and their corresponding aggregation
operators in this section.

Definition 3.1. Letα1 = 〈a1, b1, c1〉 andα2 = 〈a2, b2, c2〉 be two SVNNs, then the operational rules based on Frank
norms are defined as follows:

α1 ⊕F α2 =

〈

1− logλ

(

1 +
(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)

, logλ

(

1 +
(λb1 − 1)(λb2 − 1)

λ− 1

)

,

logλ

(

1 +
(λc1 − 1)(λc2 − 1)

λ− 1

)

〉

, λ > 1;

α1 ⊗F α2 =

〈

logλ

(

1 +
(λa1 − 1)(λa2 − 1)

λ− 1

)

, 1− logλ

(

1 +
(λ1−b1 − 1)(λ1−b2 − 1)

λ− 1

)

,

1− logλ

(

1 +
(λ1−c1 − 1)(λ1−c2 − 1)

λ− 1

)

〉

, λ > 1.

Theorem 3.1. The operations defined in Definition 3.1 for two SVNNsα1 andα2 are also SVNNs.

Proof. Sinceαi’s are SVNNs and hence0 ≤ ai, bi, ci ≤ 1 for i = 1, 2 so

logλ

(

1 +
(λ1−1 − 1)(λ1−1 − 1)

λ− 1

)

≤ logλ

(

1 +
(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)

≤ logλ

(

1 +
(λ1−0 − 1)(λ1−0 − 1)

λ− 1

)

;

i.e.,

0 ≤ logλ

(

1 +
(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)

≤ 1.

Hence

0 ≤ 1− logλ

(

1 +
(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)

≤ 1.

Similarly,

0 ≤ logλ

(

1 +
(λb1 − 1)(λb2 − 1)

λ− 1

)

≤ 1

and

0 ≤ logλ

(

1 +
(λc1 − 1)(λc2 − 1)

λ− 1

)

≤ 1.

Further,

0 ≤ 1− logλ

(

1+
(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)

+logλ

(

1+
(λb1 − 1)(λb2 − 1)

λ− 1

)

+logλ

(

1+
(λc1 − 1)(λc2 − 1)

λ− 1

)

≤ 3

which indicatesα1 ⊕F α2 is SVNN. Similarly, we can prove thatα1 ⊗F α2 is also SVNN.
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Theorem 3.2. Letn be any positive integer andα1 = 〈a, b, c〉 is a SVNN, then

n ·F α =

〈

1− logλ

(

1 +
(λ1−a − 1)n

(λ− 1)n−1

)

, logλ

(

1 +
(λb − 1)n

(λ− 1)n−1

)

, logλ

(

1 +
(λc − 1)n

(λ− 1)n−1

)

〉

, λ > 0 (1)

is also SVNN, wheren ·F α = α
⊕

F α
⊕

F . . .
⊕

F α.

Proof. We prove the results by induction onn. Forn = 2, we have by Definition 3.1

2 ·F α =

〈

1− logλ

(

1 +
((λ1−a − 1)1)((λ1−a − 1)1)

(λ− 1)

)

, logλ

(

1 +
((λb − 1)1)((λb − 1)1)

(λ− 1)

)

,

logλ

(

1 +
((λc − 1)1)((λc − 1)1)

(λ− 1)

)

〉

=

〈

1− logλ

(

1 +
(λ1−a − 1)2

(λ− 1)2−1

)

, logλ

(

1 +
(λb − 1)2

(λ− 1)2−1

)

, logλ

(

1 +
(λc − 1)2

(λ− 1)2−1

)

〉

.

Thus, result holds forn = 2. Assume it holds forn = k. Now, forn = k + 1, we have to prove

(k + 1) ·F α =

〈

1− logλ

(

1 +
(λ1−a − 1)k+1

(λ− 1)k

)

, logλ

(

1 +
(λb − 1)k+1

(λ− 1)k

)

, logλ

(

1 +
(λc − 1)k+1

(λ− 1)k

)

〉

.

The left-hand side can be rewritten as(k + 1)α = kα ⊕F α, and based on operations defined in Definition 3.1, we
have

(k ·F α)⊕F α =

〈

1− logλ

(

1 +
(λ1−a − 1)k

(λ− 1)k−1

)

, logλ

(

1 +
(λb − 1)k

(λ− 1)k−1

)

,

logλ

(

1 +
(λc − 1)k

(λ− 1)k−1

)

〉

⊕F (a, b, c)

=

〈

1− logλ

(

1 +

(

λ
1−
(

1−logλ(1+[(λ1−a
−1)k/(λ−1)k−1])

)

− 1

)

(λ1−a − 1)

(λ− 1)

)

,

logλ

(

1 +
(λlogλ(1+[(λb

−1)k/(λ−1)k−1]) − 1)(λb − 1)

(λ− 1)

)

,

logλ

(

1 +
(λlogλ(1+[(λc

−1)k/(λ−1)k−1]) − 1)(λc − 1)

(λ− 1)

)

〉

=

〈

1− logλ

(

1 +
(λ1−a − 1)k+1

(λ− 1)k

)

, logλ

(

1 +
(λb − 1)k+1

(λ− 1)k

)

, logλ

(

1 +
(λc − 1)k+1

(λ− 1)k

)

〉

.

Therefore, the result holds forn = k + 1. It can easily be verified that

0 = 1− logλ

(

1 +
(λ1−0 − 1)n

(λ− 1)n−1

)

≤ 1− logλ

(

1 +
(λ1−a − 1)n

(λ− 1)n−1

)

≤ 1− logλ

(

1 +
(λ1−1 − 1)n

(λ− 1)n−1

)

= 1,

0 = logλ

(

1 +
(λ0 − 1)n

(λ− 1)n−1

)

≤ logλ

(

1 +
(λb − 1)n

(λ− 1)n−1

)

≤ logλ

(

1 +
(λ1 − 1)n

(λ− 1)n−1

)

= 1,

0 = logλ

(

1 +
(λ0 − 1)n

(λ− 1)n−1

)

≤ logλ

(

1 +
(λc − 1)n

(λ− 1)n−1

)

≤ logλ

(

1 +
(λ1 − 1)n

(λ− 1)n−1

)

= 1.
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Clearly,

0 ≤ 1− logλ

(

1 +
(λ1−a − 1)n

(λ− 1)n−1

)

+ logλ

(

1 +
(λb − 1)n

(λ− 1)n−1

)

+ logλ

(

1 +
(λc − 1)n

(λ− 1)n−1

)

≤ 3

and hencen ·F α is SVNN.

Theorem 3.3. If n ∈ Z+ andα = 〈a, b, c〉 is SVNN, then operationαn defined as

αn =

〈

logλ

(

1 +
(λa − 1)n

(λ− 1)n−1

)

, 1− logλ

(

1 +
(λ1−b − 1)n

(λ− 1)n−1

)

, 1− logλ

(

1 +
(λ1−c − 1)n

(λ− 1)n−1

)

〉

is SVNN, whereαn = α⊗F α⊗F ...⊗F α.

Proof. Follow from Theorem 3.2.

Theorem 3.4. (Commutative law) Letαi = 〈ai, bi, ci〉(i = 1, 2) be two SVNNs, then

(i) α1 ⊕F α2 = α2 ⊕F α1,

(ii) α1 ⊗F α2 = α2 ⊗F α1.

Theorem 3.5. (Associative law) Letαi = 〈ai, bi, ci〉(i = 1, 2, 3) be two SVNNs, then

(i) (α1 ⊕F α2)⊕F α3 = α1 ⊕F (α2 ⊕F α3),

(ii) (α1 ⊗F α2)⊗F α3 = α1 ⊗F (α2 ⊗F α3).

Theorems 3.4 and 3.5 are straightforward and we omit their proofs.

Theorem 3.6. If αi = 〈ai, bi, ci〉(i = 1, 2) are two SVNNs, andη > 0 is a real number, then

(i) η(α1 ⊕F α2) = ηα1 ⊕F ηα2,

(ii) (α1 ⊗F α2)
η = (α1)

η ⊗F (α2)
η,

(iii) η1α1 ⊕F η2α1 = (η1 + η2)α1,

(iv) (α1)
η1 ⊗F (α1)

η2 = (α1)
η1+η2 .

Proof. We prove parts (i) and (iii) and hence similarly for other.
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(i) For SVNNsα1,α2 and real numberη > 0, we have

η(α1 ⊕F α2)

=

〈

1− logλ

(

1 +

(

λlogλ(1+[(λ1−a1−1)(λ1−a2−1)/(λ−1)]) − 1
)η

(λ− 1)
η−1

)

,

logλ

(

1 +

(

λlogλ(1+[(λb1−1)(λb2−1)/(λ−1)]) − 1
)η

(λ− 1)
(η−1)

)

,

logλ

(

1 +

(

λlogλ(1+[(λc1−1)(λc2−1)/(λ−1)]) − 1
)η

(λ− 1)
(η−1)

)〉

=

〈

1− logλ

(

1 +

[

(

λ(1−a1) − 1
)η (

λ(1−a2) − 1
)η
/(λ− 1)

η
]

(λ− 1)
(η−1)

)

,

logλ

(

1 +

[

(

λb1 − 1
)η (

λb2 − 1
)η
/(λ− 1)(η)

]

(λ− 1)
(η−1)

)

,

logλ

(

1 +

[

(λc1 − 1)
η
(λc2 − 1)

η
/(λ− 1)

(η)
]

(λ− 1)
(η−1)

)〉

=

〈

1− logλ

(

1 +

(

λ(1−a1) − 1
)η (

λ(1−a2) − 1
)η

(λ− 1)
(2η−1)

)

,

logλ

(

1 +

(

λb1 − 1
)η (

λb2 − 1
)η

(λ− 1)
(2η−1)

)

, logλ

(

1 +
(λc1 − 1)

η
(λc2 − 1)

η

(λ− 1)
(2η−1)

)〉

=

〈

1− logλ

(

1 +

[

(

λ(1−a1) − 1
)η
/(λ− 1)(η−1)

] [

(

λ(1−a2) − 1
)η
/(λ− 1)(η−1)

]

(λ− 1)

)

,

logλ



1 +

[

(

λb1 − 1
)η
/(λ− 1)(η−1)

] [

(

λb2 − 1
)η
/(λ− 1)(η−1)

]

λ− 1



 ,

logλ



1 +

[

(λc1 − 1)
η
/(λ− 1)

(η−1)
] [

(λc2 − 1)
η
/(λ− 1)

(η−1)
]

λ− 1





〉

=

〈

1− logλ

(

(

λ
logλ

(

1+
[(

λ(1−a1)η
−1
)

/(λ−1)(η−1)
])

− 1

)(

λ
logλ

(

1+
[(

λ(1−a2)η
−1
)

/(λ−1)(η−1)
])

− 1

)

(λ− 1)

)

,

logλ

(

1 +

(

λlogλ(1+[(λb1−1)η/(λ−1)(η−1)]) − 1
)(

λlogλ(1+[(λa2−1)η/(λ−1)(η−1)]) − 1
)

(λ− 1)

)

,

logλ

(

1 +

(

λlogλ(1+[(λc1−1)η/(λ−1)(η−1)]) − 1
)(

λlogλ(1+[(λc2−1)η/(λ−1)(η−1)]) − 1
)

(λ− 1)

)〉

= ηα1 ⊕F ηα2,
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(iii) For realη1, η2 > 0, we have

η1α1 ⊕F η2α1

=

〈

1− logλ

(

1 +

(

λlogλ(1+[(λ(1−a1)
−1)η1/(λ−1)(η1−1)]) − 1

)

λ− 1

×

(

λlogλ(1+[(λ(1−a1)
−1)η2/(λ−1)(η2−1)]) − 1

)

)

,

logλ

(

1 +

(

λlogλ(1+[(λ(b1)
−1)η1/(λ−1)(η1−1)]) − 1

)(

λlogλ(1+[(λ(b1)
−1)η2/(λ−1)(η2−1)]) − 1

)

λ− 1

)

,

logλ

(

1 +

(

λlogλ(1+[(λ(c1)
−1)η1/(λ−1)(η1−1)]) − 1

)(

λlogλ(1+[(λ(c1)
−1)η2/(λ−1)(η2−1)]) − 1

)

λ− 1

)〉

=

〈

1− logλ

(

1 +
(λ1−a1 − 1)(η1+η2)

(λ− 1)(η1+η2−1)

)

, logλ

(

1 +
(λb1 − 1)(η1+η2)

(λ− 1)(η1+η2−1)

)

,

logλ

(

1 +
(λc1 − 1)(η1+η2)

(λ− 1)(η1+η2−1)

)

〉

= (η1 + η2)α1.

Based on the Definition 3.1, we will discuss some averaging and geometric aggregation operators for the set of all
SVNNs denoted byΩ.

3.1 Weighted Averaging Operator

Definition 3.2. Let αi = 〈ai, bi, ci〉 ben collections of SVNNs, thenSVNFWAoperator is a mapping,SVNFWA:
Ωn → Ω, defined by

SVNFWA(α1,α2, . . . ,αn) = (w1.Fα1)⊕F (w2.Fα2)⊕F . . .⊕F (wn.Fαn), (2)

wherew = (w1, w2, ..., wn)
T is the normalized weight factor ofαi’s.

Theorem 3.7. The aggregated value by using the SVNFWA operator is also SVNN and is expressed as

SVNFWA(α1,α2, . . . ,αn) =

〈

1− logλ
(

1 +

n
∏

i=1

(λ1−ai − 1)wi
)

, logλ
(

1 +

n
∏

i=1

(λbi − 1)wi
)

,

logλ
(

1 +

n
∏

i=1

(λci − 1)wi
)

〉

. (3)

Proof. In order to prove the above result, it is sufficient to prove that Eq. (4) holds for any vectorw.

SVNFWA(α1,α2, ...,αn) =

〈

1− logλ

(

1 +

∏n
i=1(λ

1−ai − 1)wi

(λ− 1)
∑n

i=1 wi−1

)

, logλ

(

1 +

∏n
i=1(λ

bi − 1)wi

(λ− 1)
∑n

i=1 wi−1

)

,

logλ

(

1 +

∏n
i=1(λ

ci − 1)wi

(λ− 1)
∑n

i=1 wi−1

)

〉

. (4)
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We prove this by induction onn. Now, forn = 2, we have

w1.Fa1 =

〈

1− logλ

(

1 +
(λ1−a1 − 1)w1

(λ− 1)w1−1

)

, logλ

(

1 +
(λb1 − 1)w1

(λ− 1)w1−1

)

, logλ

(

1 +
(λc1 − 1)w1

(λ− 1)w1−1

)

〉

,

w2.Fa2 =

〈

1− logλ

(

1 +
(λ1−a2 − 1)w2

(λ− 1)w2−1

)

, logλ

(

1 +
(λb2 − 1)w1

(λ− 1)w2−1

)

, logλ

(

1 +
(λc2 − 1)w2

(λ− 1)w2−1

)

〉

,

and hence

SVNFWA(α1,α2) = (w1.Fα1)⊕F (w2.Fα2)

=

〈

1− logλ

(

1 +

(

λlogλ(1+[(λ1−a1−1)w1/(λ−1)w1−1]) − 1
)(

λlogλ(1+[(λ1−a2−1)w2/(λ−1)w2−1]) − 1)

λ− 1

)

,

logλ

(

1 +

(

λlogλ(1+[(λb1−1)w1/(λ−1)w1−1]) − 1
)(

λlogλ(1+[(λb2−1)w2/(λ−1)w2−1]) − 1
)

λ− 1

)

,

logλ

(

1 +

(

λlogλ(1+[(λc1−1)w1/(λ−1)w1−1]) − 1
)(

λlogλ(1+[(λc2−1)w2/(λ−1)w2−1]) − 1
)

λ− 1

)

〉

=

〈

1− logλ

(

1 +

∏2
i=1(λ

1−ai − 1)wi

(λ− 1)w1+w2−1

)

, logλ

(

1 +

∏2
i=1(λ

bi − 1)wi

(λ− 1)w1+w2−1

)

, logλ

(

1 +

∏2
i=1(λ

ci − 1)wi

(λ− 1)w1+w2−1

)

〉

.

Thus the result is true forn = 2. Assume the result holds forn = k, then forn = k + 1, we have

SVNFWA(α1,α2, . . . ,αk,αk+1) = SVNFWA(α1,α2, . . . ,αk)⊕F (wk+1.Fαk+1)

=

〈

1−logλ

(

1+

(

λ
logλ

(

1+
[

∏k
i=1(λ

1−ai−1)wi/(λ−1)
∑k

i=1 wi−1
]

−1
)(

λ
logλ(1+[(λ1−ak+1−1)

wk+1/(λ−1)
wk+1−1]))

− 1
)

λ− 1

)

,

logλ

(

1 +

(

λ
logλ

(

1+
[

∏k
i=1(λ

bi−1)wi/(λ−1)
∑k

i=1 wi−1
]

−1
)(

λ
logλ

(

1+

[

(λ
Ik+1−1)

wk+1/(λ−1)
wk+1−1

])

)

− 1
)

λ− 1

)

,

logλ

(

1 +

(

λ
logλ

(

1+
[

∏k
i=1

(

λci−1
)wi

/(λ−1)
∑k

i=1 wi−1
]

−1
)(

λ
logλ

(

1+

[

(λ
Fk+1−1)

wk+1/(λ−1)
wk+1−1

])

)

− 1
)

λ− 1

)〉

=

〈

1− logλ

(

1 +

∏k+1
i=1 (λ

1−ai − 1)wi

(λ− 1)
∑k+1

i=1 wi−1

)

, logλ

(

1 +

∏k+1
i=1 (λ

bi − 1)wi

(λ− 1)
∑k+1

i=1 wi−1

)

, logλ

(

1 +

∏k+1
i=1 (λ

bi − 1)wi

(λ− 1)
∑k+1

i=1 wi−1

)

〉

.

Therefore, the result holds forn = k + 1.

Property 3.1. If all SVNNs αi’s are equal toα then we have

SVNFWA(α1,α2, . . . ,αn) = α.
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Proof.

SVNFWA(α,α, ...,α)

=

〈

1− logλ

(

1 +

n
∏

i=1

(

λ1−ai − 1
)wi

)

, logλ

(

1 +

n
∏

i=1

(

λbi − 1
)wi

)

, logλ

(

1 +

n
∏

i=1

(

λci − 1
)wi

)

〉

=

〈

1− logλ

(

1 +
(

λ1−a − 1
)

∑n
i=1 wi

)

, logλ

(

1 +
(

λb − 1
)

∑n
i=1 wi

)

, logλ

(

1 +
(

λc − 1
)

∑n
i=1 wi

)

〉

=

〈

1− logλ

(

1 +
(

λ1−a − 1
)

)

, logλ

(

1 +
(

λb − 1
)

)

, logλ

(

1 +
(

λc − 1
)

)

〉

= 〈a, b, c〉

= α.

Property 3.2. (Monotonicity) Letαi = 〈ai, bi, ci〉 andα′

i = 〈a′i, b
′

i, c
′

i〉, (i = 1, 2, ..., n) be two collections of
SVNNs such thatαi ≤ α′

i, i.e., ai ≤ a′i, bi ≥ b′i and ci ≥ c′i, for all i, then SVNFWA(α1,α2, . . . ,αn) ≤
SVNFWA(α′

1,α
′

2, . . . ,α
′

n).

Proof. Letαi andα′

i are two SVNNs such that for alli, ai ≤ a′i, bi ≥ b′i, andci ≥ c′i and letλ ≥ 1 be a real number.
Therefore,

λ1−ai ≥ λ1−a′

i ⇔ 1 +
n
∏

i=1

(λ1−ai − 1)wi ≥ 1 +
n
∏

i=1

(λ1−a′

i − 1)wi

⇔ 0 ≤
1 +

∏n
i=1(λ

1−ai′ − 1)wi

1 +
∏n

i=1(λ
1−ai − 1)wi

≤ 1 ⇔ logλ

(1 +
∏n

i=1(λ
1−a′

i − 1)wi

1 +
∏n

i=1(λ
1−ai − 1)wi

)

≤ 0

⇔ 1− logλ

(

1 +

n
∏

i=1

(λ1−ai − 1)wi

)

≤ 1− logλ

(

1 +

n
∏

i=1

(λ1−a′

i − 1)wi

)

.

Further,

bi ≥ b′i ⇔ 1 +

n
∏

i=1

(λbi − 1)wi ≥ 1 +

n
∏

i=1

(λb
′

i − 1)wi ⇔ logλ

(1 +
∏n

i=1(λ
bi − 1)wi

1 +
∏n

i=1(λ
b′i − 1)wi

)

≥ 0

⇔ logλ

(

1 +

n
∏

i=1

(λbi − 1)wi

)

≥ logλ

(

1 +

n
∏

i=1

(λb
′

i − 1)wi

)

.

Similarly,

logλ

(

1 +

n
∏

i=1

(λci − 1)wi

)

≥ logλ

(

1 +

n
∏

i=1

(λc
′

i − 1)wi

)

.

Therefore, by the score function of SVNN, we getSVNFWA(α1,α2, ...,αn) ≤ SVNFWA(α′

1,α
′

2, ...,αn).

Property 3.3. For a collection of SVNNsαi’s, takeα− = 〈min
i

ai,max
i

bi,max
i

ci〉 andα+ = 〈max
i

ai,min
i

bi,

min
i

ci〉, thenα− ≤ SVNFWA(α1,α2, . . . ,αn) ≤ α+

Proof. Proof follows from the above property.
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3.2 Weighted Geometric Operator

Definition 3.3. Let αi = 〈ai, bi, ci〉 ben collections of SVNNs, thenSVNFWGoperator is a mapping,SVNFWG:
Ωn → Ω, defined by

SVNFWG(α1,α2, . . . ,αn) = αw1
1 ⊗F αw2

2 ⊗F . . .⊗F αwn
n , (5)

wherew = (w1, w2, . . . , wn)
T is the normalized weight factor ofαi’s.

Theorem 3.8. The aggregated value by using Definition 3.3 is SVNN and is given by

SVNFWG(α1,α2, . . . ,αn) =

〈

logλ

(

1 +
n
∏

i=1

(λai − 1)wi

)

, 1− logλ

(

1 +
n
∏

i=1

(λ1−bi − 1)wi

)

,

1− logλ

(

1 +

n
∏

i=1

(λ1−ci − 1)wi

)

〉

. (6)

Proof. Follows from Theorem 3.7.

Based on this theorem, some desirable properties of it have been pointed out for a collection of SVNNsαi’s as

(P1) (Idempotency:) Ifαi = α for eachi thenSVNFWG(α1,α2, . . . ,αn) = α.

(P2) (Monotonicity:) Ifαi ≤ α′

i for eachi thenSVNFWG(α1,α2, . . . ,αn) ≤ SVNFWG(α′

1,α
′

2, . . . ,α
′

n).

(P3) (Monotonicity:) Letα− andα+ be lower and upper limits ofαi’s, thenα− ≤ SVNFWG(α1,α2, . . . ,αn)≤ α+.

4. DECISION-MAKING METHOD BASED ON PROPOSED OPERATORS

This section describes the decision-making method based onproposed operators followed by an illustrative example
for demonstrating and effectiveness of it. A sensitivity analysis of the decision parameter has also been given.

4.1 Proposed Approach

Consider a problem of DM in which a decision maker wants to select the best alternative out ofA1, A2, . . . , Am which
are to be evaluated under the set of criteriaC1, C2, . . . , Cn whose normalized weight vector isω = (ω1,ω2, . . . ,
ωn)

T . Assume that they are evaluated and give their preferences in terms of SVNNsαij = 〈aij , bij , cij〉 where
aij , bij andcij represent the degrees of “truth membership function,” “indeterminacy-membership function,” and a
“falsity membership function” such that0 ≤ aij , bij , cij ≤ 1 andaij + bij + cij ≤ 3. Therefore, the overall collective
neutrosophic matrix isD = (αij)m×n. Since the different criteria may be of different types, namely benefit or cost,
then there is a need to normalize it. For this, the value of thebenefit type is converted into the cost type by using the
following equation (Xu and Hu, 2010):

rij =

{

αc
ij , for benefit criteria

αij , for cost criteria
, (7)

whereαc
ij is the complement of SVNNsαij and hence the matrixD is converted into matrixR = (rij)m×n. Then

we have the following methods for MCDM based on the proposed function.

Step 1: Transform the matrixD into matrixR by using Eq. (7).

Step 2: Aggregate the SVNNs into the collective SVNN either by using
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(i) SVNFWAoperator:

ri = SVNFWA(ri1, ri2, . . . , rin)

or

(ii) SVNFWGoperator:

ri = SVNFWG(ri1, ri2, . . . , rin).

Step 3: Compareri(i = 1, 2, . . . ,m) by Definition 2.3 and hence select the best alternative(s).

Step 4: End.

4.2 Illustrative Example

A computer center in a certain university wants to improve the work productivity. To do this they want to select a new
information system from the set of four different alternativesAi, i = 1, 2, 3, 4 which are evaluated by the decision
maker under the different criteria, namely, the “cost of hardware/software”(C1), “contribution to organizational per-
formance”(C2), and “effort to transform from current system”(C3) whose weight vector isω = (0.4, 0.2, 0.4)T .
After evaluation, the rating values of these alternatives are summarized in the form of SVNNs as below.

D =

C1 C2 C3












A1 〈0.265, 0.350, 0.385〉 〈0.280, 0.610, 0.330〉 〈0.245, 0.275, 0.480〉
A2 〈0.345, 0.245, 0.410〉 〈0.280, 0.710, 0.430〉 〈0.245, 0.375, 0.380〉
A3 〈0.365, 0.300, 0.335〉 〈0.205, 0.685, 0.480〉 〈0.340, 0.370, 0.290〉
A4 〈0.430, 0.300, 0.270〉 〈0.295, 0.755, 0.460〉 〈0.310, 0.520, 0.170〉

.

Then by utilizing the proposedSVNFWAoperator, we obtain the most desirable alternative(s) as follows.

Step 1: SinceC1 & C3 are the cost criteria andC2 is the benefit criterion, hence the transform matrix by usingEq. (7)
becomes

R =









〈0.265, 0.350, 0.385〉 〈0.330, 0.390, 0.280〉 〈0.245, 0.275, 0.480〉
〈0.345, 0.245, 0.410〉 〈0.430, 0.290, 0.280〉 〈0.245, 0.375, 0.380〉
〈0.365, 0.300, 0.335〉 〈0.480, 0.315, 0.205〉 〈0.340, 0.370, 0.290〉
〈0.430, 0.300, 0.270〉 〈0.460, 0.245, 0.295〉 〈0.310, 0.520, 0.170〉









.

Step 2: Aggregate these preferencesrij into collectiveri by Eq. (3) (here, without loss of generality, we useλ = 2).

r1 = 〈0.2705, 0.3955, 0.3251〉, r2 = 〈0.3249, 0.3689, 0.3010〉,
r3 = 〈0.3799, 0.2871, 0.3296〉, r4 = 〈0.3907, 0.2289, 0.3612〉.

Step 3: By Definition 2.3, score values ofri’s aresc(r1) = −0.4501, sc(r2) = −0.3450, sc(r3) = −0.2368, and
sc(r4) = −0.1994 and hence ranking order isA4 ≻ A3 ≻ A2 ≻ A1. Thus, the best one isA4.

Further, if we utilize theSVNFWGoperator for aggregating these SVNNs, then the results are as follows.

Step 1: Similar to that of above.

Step 2: Aggregate these values by Eq. (6) into the collectiveri.

r1 = (0.2685, 0.3292, 0.4056), r2 = (0.3152, 0.3080, 0.3734),
r3 = (0.3752, 0.3316, 0.2922), r4 = (0.3831, 0.3865, 0.2364).
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Step 3: Score values ofri’s aresc(r1) = −0.4664, sc(r2) = −0.3661, sc(r3) = −0.2486, andsc(r4) = −0.2399
and hence the best one isA4.

On the other hand, if we apply the various existing approaches (Liu et al., 2014; Ye, 2013, 2014c; Majumdar and
Samant, 2014; Broumi and Samarandache, 2013; Sahin, 2014; Ye, 2014b) from the field of decision making to the
considered problem, then their corresponding rating values as well as ranking of the alternatives are summarized in
Table 1. These results, have been analyzed and it was found that the best alternatives coincide with the proposed ones
and hence the proposed methods have a suitable tool for solving the decision-making problems under the uncertain
environment.

4.3 Sensitivity Analysis

In order to see the influence of the parameterλ on the decision making, an analysis has been conducted in which differ-
ent values ofλ(= 1, 1.5, 2, 2.5, 3, 5, 10, 15) have been taken for the considered problem. Based on these parameters,
the proposed approach has been applied and their corresponding score values as well as ranking of the alternatives are
summarized in Table 2. From this, it has been observed that with the increase ofλ, score values bySVNFWAoperators
are decreasing while they are increasing forSVNFWGoperators. Further, it has been concluded that the ranking of the
given alternative is symmetric and it was found that the mostsuitable alternative isA4, andA1 is the least suitable.

5. CONCLUSIONS

Aggregation operators play a crucial role during the decision-making process as most of the data related to system
identification are uncertain in nature. For this, the neutrosophic set theory has been utilized in the present manuscript
and hence the performance of each object has been measured interms of SVNNs. In order to aggregate all these
preferences, a Frank operator based an aggregation operator such asSVNFWAandSVNFWGhas been proposed in

TABLE 1: Comparative analysis

Method Calculated values of Ranking
A1 A2 A3 A4

Liu et al. (2014) Hamacher operator
γ = 1 0.2707 0.3257 0.3804 0.3913A4 ≻ A3 ≻ A2 ≻ A1

γ = 2 –0.0445 0.0555 0.1544 0.1628A4 ≻ A3 ≻ A2 ≻ A1

γ = 2.5 –0.0804 0.0332 0.1429 0.1435A4 ≻ A3 ≻ A2 ≻ A1

γ = 3 –0.0922 0.0303 0.1462 0.1398A3 ≻ A4 ≻ A2 ≻ A1

γ = 5 –0.0661 0.0694 0.1900 0.1656A3 ≻ A4 ≻ A2 ≻ A1

Ye (2014c) Cross entropy 1.9099 1.7331 1.5431 1.5296A4 ≻ A3 ≻ A2 ≻ A1

Ye (2013) Correlation coefficient 0.4559 0.5471 0.6453 0.6387A3 ≻ A4 ≻ A2 ≻ A1

Majumdar and
Samant (2014)

Similarity measure 0.5200 0.5600 0.5967 0.6000A4 ≻ A3 ≻ A2 ≻ A1

Broumi and
Smarandache

(2013)

Distance measure 0.7300 0.6780 0.6220 0.6120A4 ≻ A3 ≻ A2 ≻ A1

Sahin (2014) Score function 0.1133 0.1782 0.2174 0.2225A4 ≻ A3 ≻ A2 ≻ A1

Ye (2014b)
Hamming distance 0.4867 0.4520 0.4147 0.4080A4 ≻ A3 ≻ A2 ≻ A1

Euclidean distance 0.5196 0.4839 0.4424 0.4446A4 ≻ A3 ≻ A2 ≻ A1

Ye (2015)
Cosine similarity measure 0.4110 0.4815 0.5575 0.5695A4 ≻ A3 ≻ A2 ≻ A1

Cosine similarity measure 0.7214 0.7563 0.7941 0.7997A4 ≻ A3 ≻ A2 ≻ A1
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TABLE 2: Effect of the parameterλ on ranking of the alternatives

Score value of alternative Ranking
λ Operator A1 A2 A3 A4

→ 1
SVNFWA –0.4486 –0.3433 –0.2357 –0.1960A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4677 –0.3678 –0.2496 –0.2434A4 ≻ A3 ≻ A2 ≻ A1

1.5
SVNFWA –0.4495 –0.3443 –0.2363 –0.1980A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4669 –0.3668 –0.2490 –0.2413A4 ≻ A3 ≻ A2 ≻ A1

2
SVNFWA –0.4501 –0.3450 –0.2368 –0.1994A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4664 –0.3661 –0.2486 –0.2399A4 ≻ A3 ≻ A2 ≻ A1

2.5
SVNFWA –0.4506 –0.3456 –0.2371 –0.2004A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4660 –0.3656 –0.2484 –0.2389A4 ≻ A3 ≻ A2 ≻ A1

3
SVNFWA –0.4509 –0.3460 –0.2373 –0.2012A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4657 –0.3652 –0.2482 –0.2381A4 ≻ A3 ≻ A2 ≻ A1

5
SVNFWA –0.4518 –0.3471 –0.2380 –0.2033A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4649 –0.3642 –0.2476 –0.2360A4 ≻ A3 ≻ A2 ≻ A1

10
SVNFWA –0.4530 –0.3484 –0.2388 –0.2074A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4639 –0.3629 –0.2470 –0.2336A4 ≻ A3 ≻ A2 ≻ A1

15
SVNFWA –0.4536 –0.3484 –0.2388 –0.2060A4 ≻ A3 ≻ A2 ≻ A1

SVNFWG –0.4635 –0.3623 –0.2466 –0.2324A4 ≻ A3 ≻ A2 ≻ A1

the manuscript. Some of its desirable properties have also been investigated. Further, a decision-making approach has
been presented based on these operators and illustrated with a numerical example in which each alternative is assessed
in terms of SVNNs. By comparison with the existing approaches, it has been concluded that the proposed operators
show a more stable, practical, and optimistic nature to the decision makers during the aggregation process. Measuring
values corresponding to different values ofλ will offer the various choices to the decision makers in assessing the
alternatives. Therefore, the present approach becomes more consistent and reliable to present the degree of fuzziness.
In the future, we will extend it to different fields.
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