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Uncertainties play a dominant role during the aggregation process and hence their corresponding decisions are made
fuzzier. Single-value neutrosophic numbers (SVNNs) contain the three ranges: truth, indeterminacy, and falsity mem-
bership degrees, and are very useful for describing and handling the uncertainties in the day-to-day life situations. In
this study, some operations of SVNNs such as sum, product, and scalar multiplication are defined under Frank norm
operations and, based on it, some averaging and geometric aggregation operators have been developed. We further es-
tablish some of its properties. Moreover, a decision-making method based on the proposed operators is established and
illustrated with a numerical example.
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1. INTRODUCTION

Decision making (DM) is one of the most widely used phenomiaraur day-to-day life. Almost all decisions take
several steps to reach the final destination and some of thaynbe vague in nature. On the other hand, with the
growing complexities of the systems day-by-day, it is diffidor the decision maker to make a decision within
a reasonable time by using uncertain, imprecise, and vaguoamation. For handling this, researchers pay more
attention to the fuzzy set (FS) theory (Zadeh, 1965) andesponding extensions such as an intuitionistic fuzzy set
(IFS) theory (Attanassov, 1986), interval-valued IFS @8) (Atanassov and Gargov, 1989), neutrosophic set (NS)
(Smarandache, 1999), etc. To date, IFSs and IVIFSs haveviidety applied by the various researchers in different
decision-making problems. For instance, various reseasc{Ku and Yager, 2006; Garg, 2016a; Xu, 2007; Garg,
2016¢,d; Yager, 1988; Xu and Hu, 2010; Garg, 2016b; Xu anchCP@07; Garg et al., 2015; Wang and Liu, 2012;
Garg, 2015) proposed an aggregation operator for handimglifferent preferences of the decision makers towards
the alternatives under IFS or IVIFS environments. Xu andaZ(2016) presented a comprehensive analysis of the
various methods under IFSs and/or IVIFSs and their corredipg applications in DM problems. Although the FSs
or IFSs have been widely used by the researchers, but it tdeabwith indeterminate and inconsistent information.
For example, if an expert takes an opinion from a certainqreebout a certain object, then the person may say
that 0.5 is the possibility that the statement is true, Oy/tkat the statement is false, and 0.2 say that he or she is
not sure of it. This issue is not handled by the FSs or IFSse$olve this, Smarandache (1999) introduced a new
component called the “indeterminacy-membership funétemmd added into the “truth membership function” and
“falsity membership function,” all are independent comeots lying in]0+, 17[, and hence the corresponding sets
are known as neutrosophic sets (NSs), which is the genatializof IFS and FS. However, without specification,
NSs are difficult to apply in real-life problems. Thus, anesdion of the NS, called a single-valued NSs (SVNSSs)
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and interval-valued NSs (IVNSs) were proposed by Wang €805, 2010), respectively. Majumdar and Samant
(2014) and Ye (2014b) proposed an entropy and similaritysmess of SVNSs and IVNSs, respectively. Ye (2013)
and Broumi and Smarandache (2013) proposed a correlatagficient of SVNS and IVNSs. Ye (2014a) and Zhang
et al. (2014) proposed an aggregation operator for SVNS$\é8s. Later on, Peng et al. (2016) showed that some
operations in Ye (2014a) may be unrealistic and hence ddiimendvel operations and aggregation operators for
MCDM problems. Rather than ranking of the sets, the variatisas (Liu et al., 2014; Ye, 2015; Li et al., 2016; Liu
and Shi, 2015; Tian et al., 2016; Broumi and Smarandache})2tdve studied the aggregation operators in the NS
environment by using algebraic, Einstein, Hamacher, ettorm and t-conorm operations of SVNSs. Frank norms
are one of the most important compatibility norm. These roimuolve the parameter which provides the different
choices to the decision maker during the information fugicocess and hence make it more adequate to model the
decision-making problems than others.

Therefore, in this paper, we present a new method to dealfuatty DM problems based on SVNSs under Frank
norm operations. To do this, an operational law on diffeBviNSs and their corresponding averaging and geometric
aggregation operators has been proposed. Further, a mgitii the multicriteria decision analysis based on these
operators of SVNSs has been proposed for handling the amties in the collective information. The remainder of
the text has been summarized as follows. Section 2 desdtibdsasic concepts of NSs. Section 3 introduces some
averaging and geometric aggregation operators under Framk operations. In Section 4, an approach to DM, a
practical example to validate and demonstrate the approastbeen presented and compares it with the previous
work. Section 5 concludes the paper.

2. PRELIMINARIES
An overview of NS and SVNS has been addressed here on thersaligetX .

Definition 2.1. (Smarandache, 1999) A N3 in X is defined by its “truth membership functiofT'4(z)), an
“indeterminacy-membership functioi 4 (x)), and a “falsity membership functiof’'4 ()) where all are the subset
of |07, 1" [ such thab~ < sup T's(z) + sup I4(x) + sup F4(x) < 3* forall z € X.

Definition 2.2. (Ye, 2014a) A NSA is defined by
A={(z,Ta(z),Ia(z), Falx)) | x € X}

and is called SVNS wher&4(x), I4(x), Fa(z) € [0,1]. The pairs of these are called single-valued neutrosophic
numbers (SVNNs) denoted oy= {(Ta(x), Ia(z), Fa(z))} or o = {a, b, c).

To compare the different SVNNs, a comparison law has beeneateés follows (Ye, 2014a):

=

Definition 2.3. For a SVNNg, sc(ar) = a — b — c is called the score function af. For two SVNNs« and 3, i
sc(o) > sc(P) theno = B;

Definition 2.4. The t-norms¢ and t-conorms, defined by¢, & : [0,1]2 — [0,1], related by&(x,y) = 1 —
(1 — 2,1 —y),va,y € [0,1]. Based on these norms, a generalized union and intersfoticBVNNS o
<a1,b1,02> and Ko = <a2,b2702> are defined as ﬂi,f. Ko = <C(CL1,CL2),E,(bl,bQ),E,(Cl,CQ» and o1 U(,E, Ko =
(&(ar, a2), ¢(b1,b2), C(cr, c2)).

Definition 2.5. (Frank triangular norm:) Frank t-norms(-) and t-conorm@ ) are defined as (Frank,1979).

A=z (ALY — 1
r@py = 1—1og)\<1+( }\)_(1 )), A>1 Y(z,y) €0,1]?
AT —1)(AY =1
TQRpFyYy = logx(l—l—%), A>1 Y(x,y) €01

It has been easily verified that the Frank sum and producttiavllowing properties:
. (a: Sr 1/) + (:c QF 1/) =xz+y e (0(xzdry))/0x+ (O(zx®@ry))/0x=1.
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Remark 2.1. For some special cases &f we see that Frank operations reduces to algebraic and Liskasz sum
and product operations.

@O FA—1,thene ®ry =2+ y— 2y, x ®r y = xy, and hence it reduces to an algebraic sum and product
operations, respectively.

(i) If A — oo, thenz ®p y = min(z + y, 1), r ®p y = max(0,z + y — 1), which are the Lukasiewicz sum and
product operations, respectively.

3. AGGREGATION OPERATORS FOR SVNNs

Based on the Definition 2.5, we will establish the basic ofp@mdaws for SVNNs and their corresponding aggregation
operators in this section.

Definition 3.1. Let oy = (a1, b1, ¢1) andos = (as, ba, c2) be two SVNNs, then the operational rules based on Frank
norms are defined as follows:

Iy
b&(1+(NH_;¥Y2_1U>, A 1

X Qp 0ty = <1og)\ (1 + (Ao _7\1)_()\1112 — 1))’ 1 —log, (1 N (A=D1 _7\1)_(}\11_172 _ 1))7
1—b&(1+(ﬂ_ﬁ_;¥§_w_1»>, A

Theorem 3.1. The operations defined in Definition 3.1 for two SVNNsand o, are also SVNNs.

Proof. Since;’s are SVNNs and hende< a;,b;,¢; < 1fori=1,2s0

()\1—1 _ 1)(}\1—1 _ 1) (}\l—al _ 1)(}\1—112 _ 1) ()\1—0 _ 1)(}\1—0 _ 1)
< < :
log)\(l—i— P )_1og)\(1+ P )_log)\(l—i— P ),
ie., ) )
(Atme — (AT — 1)
< <
o_m&(y+ - )_1
Hence (7\1 )(7\1 )
e _(Ae — 1
<1-— <
0<1—log, (1+ - )<t
Similarly,
(Abr — 1)(Ab2 — 1)
< <
O_log)\(l—i— ] )_1
and (A 1)(A 1)
c1 __ Cc2 __
< <
O_log)\(l—i— P )_1
Further,

(Ao A 1) (A — A= — 1) (A — (2 ~ 1)
<1- <
0<1 logx(l—i— N1 )—i—log)\(l—i— N1 )—I—log)\(l—i- P )_3
which indicatesx; @ s is SVNN. Similarly, we can prove that; ® ¢ o is also SVNN. O
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Theorem 3.2. Letn be any positive integer ang, = (a, b, ¢) is a SVNN, then

- (Al—a _ 1)n (Ab _ 1)n (Ac _ 1)n
n-px= <1 —log)\ (1+ W),log)\ (1+ W),log)\ (1+ W) ,A > O (1)
is also SVNN, where -r x = « P p Py ... Pp .

Proof. We prove the results by induction en Forn = 2, we have by Definition 3.1

1—a _ 1)1 1—a _ 1)1 b 131 b 131
2po — <1—1og>\(1+((}\ 1&[“3 DY 1og, (1412 1(;)_(% D,

(A =DH((A =1
log, (1+ -1 )>

<1 — log,, (1 + %),logk (1+ (g\}\b_;l;)zl),lo& (1 + %)>

Thus, result holds fon = 2. Assume it holds fon = k. Now, forn = k + 1, we have to prove

l—a __ k+1 b _ k+1 c _ k+1
(k+1)pax = <1—log>\ (1—!— %),10& (1—!— %),10& (1—!— %)>

The left-hand side can be rewritten@s+ 1)oc = kx ©r «, and based on operations defined in Definition 3.1, we
have

l—a _ 1\k b_ 1)k
(k-Fpa) Bra = <1—10g)\(1+%),10g)\(1+%),
c _ 1\k
log, (1 + %)> & (a,b,c)

(Al—(l—logx(lﬂ(?\l“—1)’“/(%—1)"1])) _ 1) (e 1)

= <1—log)\(1—|— A=) ),

(MoBA (LHIA" =D /A=D*"1)) _ y(pb _ 1)
lOg)\ (1 + (A _ 1) )’

(Ao (HA =1 /A=D1 _ 1y(pe 1)
log (1 + A1) )

<1 — log, (1_|_ %),log)\ (l—i— %),log)\ (1—!— %)>

Therefore, the result holds far= & + 1. It can easily be verified that

0 = 1—log;\(1—|—((7;\1__071_)nl_):)Sl—log)\(l—i—(();\l__ail_)nl_)ln)Sl—log;\(l—l-((}\)\l__lil_)nl_)ln)—l,
0 = logy (1—1—((}\}\0__71)}1)711) < log, (1+((}\}\b__71)1n)711) < log, (1—1-((}\}\1__71)}1)711) =1,
0 = logy (1—1—((}\}\0__71)1)_711) <logy (1—1—%) <logy (1—1—%) =1
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Clearly,

01 —tom (1 () +lom (1 R+ lom (14 (1) <3

and hence: - « is SVNN. O

Theorem 3.3.1f n € Z* andx = (a, b, ¢) is SVNN, then operation™ defined as

is SVNN, where” = « @ & QF ... @F .

Proof. Follow from Theorem 3.2. O

Theorem 3.4. (Commutative law) Lek; = (a;, b;, ¢;) (i = 1,2) be two SVNNs, then
() 1 ©F g = 2 OF o1,
(i) o1 ®F X = X2 @p x1.
Theorem 3.5. (Associative law) Let; = (a;, b;, ¢;)(i = 1,2, 3) be two SVNNs, then
() (1 BF x2) B g =01 Bp (X2 BF a3),
(i) (1 ®F a2) ®F 3 = 0ot1 Ap (X2 QF A3).
Theorems 3.4 and 3.5 are straightforward and we omit thewfgr

Theorem 3.6. If «; = {a;, b;, ¢;)(i = 1,2) are two SVNNSs, ang > 0 is a real number, then
() N OF x2) =Ny BF N,

(i) (1 ®p x2)" = (01)" @F (02)",

(iii) Moy ©F M2 = (M1 +M2)a,

(V) (o)™ ®@p (1) = ((xl)ﬂl-ﬁ-ﬂz_

Proof. We prove parts (i) and (iii) and hence similarly for other.
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(i) For SVNNs«,, as and real numbert > 0, we have

Nl Br x2)
(AlogA(H[(Al*al—1)()&*@2—1)/0\—1)]) B 1)”
= <1—1og)\ <1+ ()\—1)“_1 ),
(s (15 {0 (= 0-0]) Y
log, < (7\_ 1)(71,1) )a
()\logx(lﬂ(?\cl*1)(7\°2*1)/(7\*1)]) _ 1)“
e )
{(A(lfal) _ 1)1] ()\(17112) _ 1)“/()\ _ 1)ﬂ:|
=(1-log,[1+ o 1)(n—1) ;
[()\bl _ 1)‘1 (Ab2 — 1)‘1/()\ _ 1)(71)}
logy | 1+ o 1)(n*1) ,
(e =1 (0 1Y/ (- )™
logy [ 1+ o 1)(]1_1)

B (}\(1—111) _ 1)“ (}\(1—112) _ 1)“
= <1 — logy <1 + o 1)(2n—1) ,

Al )T (Ab2 — 1)" At — 1) (A2 — )"

(?\ ’
by _ 1\" _1\(n-1) by _ (n 1)
logy (1+ [(7\ Rl 7\}—[? )
c1 _ 1\ _ 1y(n—-1) ca _ (n 1
o, ( (e =1 =1) )\U(l}\
{

(}\log)\(lJr{()\“al)n1)/(7\1)(" 1)D ) ( log)\ 1+ )\(1 ag)" _ /()\ 1= 1)]) _ 1)

I )0 )

Aloga (1+[(A" =1)" /(A=) =D]) _ 1) (;\logh( ez -y /a-n-V]) 1)
log,, <1 + )

)

A-1)

(}\log)\(l-i—[(?\cl—1)“/(?\—1)(“’1)]) _ 1) ()\logk(l-w-[()\c?—l)“/(?\—1)(“*1)]) _ 1)
log, | 1+
(A-1)

=mna1 Gr Nx2,
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(iii)y Forrealn;,n2 > 0, we have

Nix1 Br Na2cxq

()\logx(l-i-[(?\(l“1)—1)'”/(7\—1)(”11)]) _ 1)

_<1—1og>\<1+ -

" (Alogx(u[(x“a1>—1)“2/(>\—1)<“2”]) - 1))

(}\logk(lJr[(?\(b])1)“1/(?\1)(“11)]) 1 <Alog,\(l+[(7\(b1)1)"2/(7\1)("21)]) _ 1)
log; <1 + P ),

(}\logx(l-l—[(?\(cl)—l)“l/()\—1)(”11)]) 1 ()\log;\(l-l—[()\(cl)—l)“?/()\—1)(“21)]) _ 1)
log; (1 + - >

(A —1)(n14n2-1) (A —1)(n14n2-1)

Act — 1)(Mi4m2)
)

Al—a1r _ 1)y(M14m2) Abr — 1)(M14m2)
_<1—1og>\(1+( ) ),1og)\ (1—1-#),

(A — 1)(ni+nz2—1)
=M1 +M2)o.
O
Based on the Definition 3.1, we will discuss some averagingg@ometric aggregation operators for the set of all
SVNNs denoted by.
3.1 Weighted Averaging Operator

Definition 3.2. Let «; = {(ay, bs, ¢;) ben collections of SVNNs, theisVNFWAoperator is a mappinggVNFWA
Q" — Q, defined by

SVNFWAOQ, X2, ..., O(n) = (wl.Foq) DF (U)Q.FCXQ) Pr...DF (’LUn.FCXn), (2)
wherew = (wy,ws, ..., w,)T is the normalized weight factor of;’s.
Theorem 3.7. The aggregated value by using the SVNFWA operator is alsoNS\ is expressed as

SVNFWAXy, ota, ..., &) = <1 —logy (1+ [\~ = 1)), log, (1+ (A" = 1)),
1=1

1=1
logy (1+ JJ (A - 1)w?v)>. (3)
=1

Proof. In order to prove the above result, it is sufficient to prowet tq. (4) holds for any vectas.

'{1 }\lfai _ 1 w; 77' Abl _ 1 w;
SVNFWAX;, oo, ..., 0t,) = <1 — logy <1 + [ ) ),1ogA (1 + M)

(A — 1)2?:1 w;—1 (A — 1)21:1 wi—1
n e 1w
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We prove this by induction on. Now, forn = 2, we have

B ()\l—al _ 1)w1 ()\bl _ 1)w1 ()\01 _ 1)w1
wl.pa1—<1—10g)\<1+m ,logy, 1+m ,logy 1+m )

B ()\1—(12 _ 1)w2 ()\bz _ 1)w1 (}\02 _ 1)w2
wg.pag—<1—log)\<1+m ,logy, 1+m ,logy, 1+m )

and hence
SVNFW/{\(Xl, CXQ) = (wl.poq) Dr (wg.FCXQ)

Alog)\(lJr[()\lial71)“’1/()\71)“}171]) _ 1) (}\log)\(lJr[()\]fag71)1112/()\71)11/2*1]) -~ 1)
—<1—1og)\(1—|— - ),
(Alog)\(l‘i’[()\bl71)w1/()\71)w171]) _ 1) (AlogA(1+[()\b271)1“2/()\71)1172*1]) _ 1)

1og)\<1+ P ),

(Alog)\(lJr[(?\Cl71)“’1/(7\71)“’171]) _ 1) (}\log)\(1+[()\c271)1“2/()\71)1112*1]) _ 1) >>

logy [ 1+ -

_ [ (A =)™ [T, (A — 1) [T, (A — 1)
- <1 - 1Og7\ (1 + ()\ _ 1)w1+w2—1 ’log)\ L+ (}\ _ 1)w1+w2—1 ’1Og7\ L+ ()\ _ 1)w1+’w2—1 :
Thus the result is true for = 2. Assume the result holds far= &, then forn = k + 1, we have

SVNFWAx1, a2, ..., &g, 0tpr1) = SYNFWAX, o, . .., ak) ©F (Wkt1. 7 Xket1)

()\log)\ (1+ [H§:1(Al—ai _1)%-/()\_1)25:1 wi—l} _1) ()\log)\(1+[(}\1*ak+1 —1)Wk+1 /(A—l)warl*l])) ~ 1)
=(1-1 1
ogy 1+ A1 ’

(Alog}\ (1+ []‘[f:] (AP —1)®i J(A—1)Ti=1 wrl} ,1) ()\logA (1+ [()\Ik+1 —1)Wk+1 /(A—l)wkﬂﬂ} )) ~ 1)
log;, (1 +

)

(}\logA (1+[Hf:1 ()\ci_l)wi/()\_l)zgl wifl]_l) ()\log}\ (1+|:(7\Fk+l —1)"Wk+1 /(Afl)wkﬁ»l*l})) ~ 1)
log,, <1 +

)

_ i Vi [Tty (A — 1y [Li2 (A — 1y
B <1 e (1 RN T M ST T = ) M ST T E e D

Therefore, the result holds far= & + 1. O
Property 3.1. If all SVNNSs «;’s are equal tax then we have

SVNFWAx,, aa, ..., 00) = .
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Proof.

SVNFWA«, «, ..., &)

n

_ <1 — logy, (1 + ﬁ (Ao — 1)%)’10@ (1 + ﬁ (O - 1)%)’10& <1 wIoe- 1)““>>

i=1 =1 =1

= <1 — logy, (1 + (?\1_“ — 1)2?:1 wi’),log)\ (1 + (?\b — 1)2?:1 wi),log)\ (1 + (7\c — 1)Z?Iwi)>

- <1 ~ log, (1 + (N 1))a10gx (1 + (A" - 1)),10& (1 + (- 1)>>

= {(a,b,c)

= .
(]

Property 3.2. (Monotonicity) Leto; = {(a;, b;,¢;) ando, = (a},b;,¢}), (i = 1,2,...,n) be two collections of
SVNNs such thaty; < of, i.e.,a; < a, b, > b, ande; > ¢, for all 4, then SVNFWAwx, xa, ..., &) <
SVNFWA,, o, ..., o).

Proof. Let o; andod; are two SVNNs such that for all a; < a}, b; > b, ande; > ¢; and letA > 1 be a real number.
Therefore,

Al—ai > Al—a e 14 H(Alfai —1)%i > 14+ H(Alfag —1)wi

=1 =1

1+ [T (Ao — 1yw 1+ [ (AT — 1)ws
s0< i=1 <1elo ( i=1 )<o
R | e TR S | KT T VT

< 1 —log,y (1 + ﬁ(?\lf‘“ — 1)““) <1—log, (1 + ﬁ(?\lf‘l; — 1)““).
i=1

=1

Further,

n ‘ ‘ n , ‘ 1 + an (}\b7 _ 1)w1

b > b e 1+ [T — 1)@ > 14 T = 1) < 1o ( =110 )>0
= U; g( ) - g( ) g)\ 1 ¥ Hizl(Abi’ — 1)71)7. =
< logy, (1 + H(?\bi - 1)“”) > log, (1 + H(?\b; - 1)““)
i=1 i=1

Similarly,

logy (1 + H(?\Ci - 1)“”) > log, (1 + H(?\cé - 1)“”).

i=1 i=1

Therefore, by the score function of SVNN, we @INFWAx, oo, ..., &) < SYVNFWA, &), ..., &y, ). O
Property 3.3. For a collection of SVNNsx;'s, take ™ = (min a;, maxb;, max¢;) anda™ = (maxa;, min b;,
min ¢;), thena™ < SVNFWAx, oo, . .., 06) < o
Proof. Proof follows from the above property. O
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3.2 Weighted Geometric Operator

Definition 3.3. Let o; = {(a;, b;, ¢;) ben collections of SVNNs, thei$VNFWGoperator is a mappinggVNFWG
Q" — Q, defined by

SVNFWGx1, o2, ..., &) = )" @F 052 Qp ... Qp &, (5)
wherew = (wy,ws, ..., w,)T is the normalized weight factor of;’s.

Theorem 3.8. The aggregated value by using Definition 3.3 is SVNN and engdy

SUNFWGo, &a, .. ., 0t,) = <1ogA (1 + ] - 1)““) .1 —log, (1 + ] - 1)%),

i=1 i=1

1 —logy (1 + ﬁ(AHi - 1)“}1’) > (6)

=1
Proof. Follows from Theorem 3.7. O
Based on this theorem, some desirable properties of it hese pointed out for a collection of SVNNg's as
(P1) (Idempotency:) I&; = « for eachi thenSVNFWGo, o, . . ., &) = «.
(P2) (Monotonicity:) Ifo; < o, for eachi thenSVNFWGo, xa, . . ., &) < SVNFWG, o), ..., &),).

(P3) (Monotonicity:) Letx™ andoc™ be lower and upper limits af;'s, thena™ < SVNFWG, s, . . ., 0ty ) < o

4. DECISION-MAKING METHOD BASED ON PROPOSED OPERATORS

This section describes the decision-making method bas@daposed operators followed by an illustrative example
for demonstrating and effectiveness of it. A sensitivitalgsis of the decision parameter has also been given.

4.1 Proposed Approach

Consider a problem of DM in which a decision maker wants tect¢he best alternative outdf, A, ..., A,, which
are to be evaluated under the set of critefia Cs, . . ., C,, whose normalized weight vectoris = (w1, wo,...,
w,,)T. Assume that they are evaluated and give their preferemctess of SVNNsw;; = (aij, bij, c;j) where
ai;,bi; ande;; represent the degrees of “truth membership function,”éedminacy-membership function,” and a
“falsity membership function” such that< a;;, b;;, c;; < 1 anda;; + b;; + ¢;; < 3. Therefore, the overall collective
neutrosophic matrix i) = (o )mxn. Since the different criteria may be of different types, enbenefit or cost,
then there is a need to normalize it. For this, the value obtheefit type is converted into the cost type by using the
following equation (Xu and Hu, 2010):
. o
ry = {ocij, for beneflt.anena ’ )
«;;, forcost criteria

whereocfj is the complement of SVNNs&;; and hence the matrik is converted into matri¥? = (7;; )mxn- Then
we have the following methods for MCDM based on the proposedtion.

Step 1: Transform the matri® into matrix R by using Eq. (7).

Step 2: Aggregate the SVNNSs into the collective SVNN eitheusing
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(i) SVNFWAoperator:
ri = SYUNFWAri1, 72, . .., Tin)

or
(i) SVNFWCoperator:

r; = SYNFWGr;1, 732, ..., Tin ).

Step 3: Compare; (i = 1,2,...,m) by Definition 2.3 and hence select the best alternative(s).
Step 4: End.

4.2 lllustrative Example

A computer center in a certain university wants to improwewiork productivity. To do this they want to select a new
information system from the set of four different altermaiA;,i = 1,2, 3,4 which are evaluated by the decision
maker under the different criteria, namely, the “cost ofdweare/software’(C1 ), “contribution to organizational per-
formance”(Cy), and “effort to transform from current systert’;) whose weight vector isv = (0.4,0.2,0.4)T.
After evaluation, the rating values of these alternativessammarized in the form of SVNNSs as below.

Ch Ca C3
(0.265,0.350,0.385) 0.280,0.610,0.330)  (0.245,0.275, 0.480)
<0.345,0.245,0.410> 0.280,0.710,0.430> <0.245,0.375,0.380>

Az |(0.365,0.300,0.335)  (0.205,0.685,0.480)  (0.340,0.370,0.290) |
<0.430,0.300,0.270> 0.295,0.755,0.460> <0.310,0.520,0.170>

o~ o~~~

Then by utilizing the propose8VNFWAoperator, we obtain the most desirable alternative(s) lasifs.

Step 1: Sinc€’; & C5 are the cost criteria and, is the benefit criterion, hence the transform matrix by usigg(7)
becomes

0.265,0.350,0.385) (0.330,0.390, 0.280)
0.345,0.245,0.410) (0.430,0.290, 0.280)
0.365,0.300,0.335) (0.480,0.315,0.205)
0.430,0.300,0.270) (0.460, 0.245,0.295)

0.245,0.275, 0.480)
0.245,0.375, 0.380)
0.340,0.370, 0.290) | °
0.310,0.520, 0.170)

R =

o~ o~~~
o~ o~~~

Step 2: Aggregate these preferencgdnto collectiver; by Eq. (3) (here, without loss of generality, we Use- 2).

r1 = (0.2705,0.3955,0.3251), ro = (0.3249,0.3689, 0.3010),
rg = (0.3799,0.2871,0.3296), rqy = (0.3907,0.2289,0.3612).

Step 3: By Definition 2.3, score valuesfs aresc(r;) = —0.4501, sc(r2) = —0.3450, sc(r3) = —0.2368, and
sc(rq) = —0.1994 and hence ranking order i, - A3 = A2 > A;. Thus, the best one i4,.

Further, if we utilize theSVNFWGoperator for aggregating these SVNNS, then the resultssiialaws.

Step 1: Similar to that of above.

Step 2: Aggregate these values by Eq. (6) into the collective

r1 = (0.2685,0.3292, 0.4056), ro = (0.3152,0.3080,0.3734),
rg = (0.3752,0.3316, 0.2922), ry = (0.3831,0.3865,0.2364).
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Step 3: Score values of's aresc(r1) = —0.4664, sc(r2) = —0.3661, sc(rs) = —0.2486, andsc(ry) = —0.2399
and hence the best oneAs.

On the other hand, if we apply the various existing appros¢be et al., 2014; Ye, 2013, 2014c; Majumdar and
Samant, 2014; Broumi and Samarandache, 2013; Sahin, 2@120¥4b) from the field of decision making to the
considered problem, then their corresponding rating whsewell as ranking of the alternatives are summarized in
Table 1. These results, have been analyzed and it was foahththbest alternatives coincide with the proposed ones
and hence the proposed methods have a suitable tool fongdhvé decision-making problems under the uncertain
environment.

4.3 Sensitivity Analysis

In order to see the influence of the paramaten the decision making, an analysis has been conducted ahwitffer-

ent values oA (= 1,1.5,2,2.5,3,5, 10, 15) have been taken for the considered problem. Based on thema@@rs,

the proposed approach has been applied and their corrdeg@udre values as well as ranking of the alternatives are
summarized in Table 2. From this, it has been observed thhtkeé increase of, score values bVNFWAoperators

are decreasing while they are increasingSMNFWGoperators. Further, it has been concluded that the ranKitihgo
given alternative is symmetric and it was found that the rsagable alternative igly, andA; is the least suitable.

5. CONCLUSIONS

Aggregation operators play a crucial role during the deaishaking process as most of the data related to system
identification are uncertain in nature. For this, the nesdphic set theory has been utilized in the present mantiscrip
and hence the performance of each object has been measusrthsrof SVNNs. In order to aggregate all these
preferences, a Frank operator based an aggregation opsuatoasSVNFWAand SVNFWGhas been proposed in

TABLE 1: Comparative analysis

Method Calculated values of Ranking
Aq Asg Az Ay
Liu et al. (2014) Hamacher operator
y=1 0.2707 0.3257 0.3804 0.3913A4,; = A3 = Ay = Aq
Yy=2 —0.0445 0.0555 0.1544 0.1628A44 = A3 = As = A,
Y=25 —0.0804 0.0332 0.1429 0.1435A4, = A3 = Ay = Ay
Yy=3 —-0.0922 0.0303 0.1462 0.139843 = A4 = Ay = Ay
Yy=5 —-0.0661 0.0694 0.1900 0.1696A43 = A4 = Ay = Ay
Ye (2014c) Cross entropy 1.9099 1.7331 1.5431 1.5296A4, > Az > As = Ay
Ye (2013) Correlation coefficient | 0.4559 0.5471 0.6453 0.6387A43 = A4 = Ay = Aq
Majumdar and Similarity measure 0.5200 0.5600 0.5967 0.6000A4; = A3 = Ay = A;
Samant (2014)
Broumi and Distance measure 0.7300 0.6780 0.6220 0.61204, = A3 = Ay = Ay
Smarandache
(2013)
Sahin (2014) Score function 0.1133 0.1782 0.2174 0.2225A4 > Az = As = Ay
Ye (2014b) Hamming distance 0.4867 0.4520 0.4147 0.4080A4; - A3 = Ay = Ax
Euclidean distance 0.5196 0.4839 0.4424 0.4446A, - A3 = Ay = A;
Ye (2015) Cosine similarity measur¢ 0.4110 0.4815 0.5575 0.5695A4, = A3 = Ay = A
Cosine similarity measur¢ 0.7214 0.7563 0.7941 0.7997A, = A3 = Ay = A
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TABLE 2: Effect of the parametex on ranking of the alternatives

Score value of alternative Ranking

A Operator Aq Ao As Ay
1 SVNFWA| —0.4486 —0.3433 -0.2357 -0.196Q44 = A3 > Az > A4
SVNFWG| —0.4677 —0.3678 —0.2496 —0.24344, > A3 > As > A4
15 SVNFWA| -0.4495 -0.3443 -0.2363 -0.198Q4, = A3 = As = A3
SVNFWG| -0.4669 -0.3668 —0.2490 -0.24134, > A3 > As > A4
5 SVNFWA| -0.4501 -0.3450 -0.2368 —0.19944, - A3 = As = A3
SVNFWG| —0.4664 —0.3661 —0.2486 -0.239U, = A3 = As = A
55 SVNFWA| -0.4506 -0.3456 —0.2371 -0.20044, = A3 > As > A4
SVNFWG| —0.4660 —0.3656 —0.2484 -0.238%U, = A3 = As = A
3 SVNFWA| -0.4509 -0.3460 -0.2373 -0.20124, > A3 > As > A4
SVNFWG| —0.4657 -0.3652 -—0.2482 -0.23814, > A3 > Az > A4
5 SVNFWA| -0.4518 -0.3471 -0.2380 -0.20324, = A3 = As = A3
SVNFWG| —0.4649 -0.3642 -0.2476 —0.236Q44 = A3 > Az > A4
10 SVNFWA| —-0.4530 -0.3484 -0.2388 -—0.20744, = A3 = As = A3
SVNFWG| —0.4639 -0.3629 -0.2470 -0.233644 = A3 = As = A
15 SVNFWA| —0.4536 -0.3484 -0.2388 -0.206Q44 = A3 > Az > A4
SVNFWG| —0.4635 —0.3623 -0.2466 —0.23244, = A3 = As = A

the manuscript. Some of its desirable properties have @&sn imvestigated. Further, a decision-making approach has
been presented based on these operators and illustrated miimerical example in which each alternative is assessed
in terms of SVNNs. By comparison with the existing approaglitthas been concluded that the proposed operators
show a more stable, practical, and optimistic nature to &uoésibn makers during the aggregation process. Measuring
values corresponding to different valuesoWwill offer the various choices to the decision makers in asigy the
alternatives. Therefore, the present approach becomesconsistent and reliable to present the degree of fuzziness
In the future, we will extend it to different fields.
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