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Abstract. From the perspective of semigroup theory, the characterizations of a neutrosophic extended triplet group (NETG)
and AG-NET-loop (which is both an Abel-Grassmann groupoid and a neutrosophic extended triplet loop) are systematically
analyzed and some important results are obtained. In particular, the following conclusions are strictly proved: (1) an algebraic
system is neutrosophic extended triplet group if and only if it is a completely regular semigroup; (2) an algebraic system
is weak commutative neutrosophic extended triplet group if and only if it is a Clifford semigroup; (3) for any element in
an AG-NET-loop, its neutral element is unique and idempotent; (4) every AG-NET-loop is a completely regular and fully
regular Abel-Grassmann groupoid (AG-groupoid), but the inverse is not true. Moreover, the constructing methods of NETGs
(completely regular semigroups) are investigated, and the lists of some finite NETGs and AG-NET-loops are given.
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1. Introduction

Smarandache proposed the new concept of neu-
trosophic set, which is an extension of fuzzy set and
intuitionistic fuzzy set [1]. Until now, neutrosophic
sets have been applied to many fields [2–4], and some
new theoretical studies are developed [5, 6].

As an application of the basic idea of neutrosophic
sets (more general, neutrosophy), the new notion of
neutrosophic triplet group (NTG) is introduced by
Smarandache and Ali in [7, 8]. As a new algebraic
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structure, NTG is a generalization of classical group,
but it has different properties from classical group.
For NTG, the neutral element is relative and local,
that is, for a neutrosophic triplet group (N,∗),
every element a in N has its own neutral ele-
ment (denote by neut (a)) satisfying condition a ∗
neut (a) = neut (a)∗ a = a, and there exits at least
one opposite element (denote by anti (a)) in N relative
to neut (a) such condition a∗anti (a) = anti (a)∗ a =
neut (a). In the original definition of NTG in [8],
neut (a) is different from the traditional unit element.
Later, the concept of neutrosophic extended triplet
group (NETG) was introduced (see [7]), in which the
neutral element may be traditional unit element, it is
just a special case.
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For the structure of NETG, some exploratory
research papers are published and a series of results
are got [9–12]. Recently, we have analyzed these new
results and studied them from the perspective of semi-
group theory. Miraculously, we have obtained some
unexpected results: every NETG is a completely reg-
ular semigroup, and the inverse is true. In fact, the
research of completely regular semigroups originated
from the study of Clifford [13], and have been greatly
developed [14–16], and have been extended to a wide
range of algebraic systems [17–20]. This paper will
focus on the latest results of the authors, mainly dis-
cuss the relationships between neutrosophic extended
triplet groups and completely regular semigroups.

Moreover, this paper also investigates the relation-
ships between neutrosophic extended triplet loops
and Abel-Grassmann’s groupoids (AG-groupoids).
The concept of an Abel-Grassmann’s groupoid was
first given by Kazim and Naseeruddin [21] in 1972
and they have called it a left almost semigroup (LA-
semigroup). In [22], the same structure is called a
left invertive groupoid. In [23–29], some properties
and different classes of an AG-groupoid are inves-
tigated. In this paper, we combine the notions of
neutrosophic extended triplet loop and AG-groupoid,
introduce the new concept of Abel-Grassmann’s neu-
trosophic extended triplet loop (AG-NET-loop), that
is, AG-NET-loop is both AG-groupoid and neutro-
sophic extended triplet loop (NET-loop). We deeply
analyze the internal connecting link between AG-
NET-loop and completely regular AG-groupoid and
obtain some important and interesting results.

2. Preliminaries

Definition 1. [7, 8] Let N be a non-empty set together
with a binary operation∗. Then, N is called a neutro-
sophic extended triplet set if for anya ∈ N, there exist
a neutral of “a” (denote by neut (a)), and an opposite
of “a” (denote by anti (a)), such that neut (a) ∈ N,
anti (a) ∈ N and:

a ∗ neut (a) = neut (a)∗ a = a;

a∗anti (a) = anti (a)∗ a = neut (a) .

The triplet (a, neut (a), anti (a)) is called a neutro-
sophic extended triplet.

Note that, for a neutrosophic triplet set (N,∗), a ∈
N, neut (a) and anti (a) may not be unique. In order
not to cause ambiguity, we use the following notations
to distinguish:

neut (a): denote any certain one of neutral of a;
{neut (a)}: denote the set of all neutral of a.
anti (a): denote any certain one of opposite of a;
{anti (a)}: denote the set of all opposite of a.

Definition 2. [7, 8] Let (N,∗) be a neutrosophic
extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following con-
ditions are satisfied:

(1) (N,∗) is well-defined, i.e., for any a, b ∈ N,
one has a ∗ b ∈ N.

(2) (N,∗) is associative, i.e., (a ∗ b) ∗ c = a ∗
(b ∗ c) for all a, b, c ∈ N.

N is called a commutative neutrosophic extended
triplet group if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1. [11] Let (N,∗) be a NETG. Then

(1) neut (a) is unique for any a in N.
(2) neut (a) ∗ neut (a) = neut (a) for any a in N.
(3) neut (neut (a)) = neut (a) for any a in N.

Definition 3. [11] Let (N,∗) be a NETG. Then N is
called a weak commutative neutrosophic extended
triplet group (briefly, WCNETG) if a ∗ neut (b) =
neut (b) ∗ a for all a, b ∈ N.

Proposition 2. [11] Let (N,∗) be a NETG. Then (N,∗)
is weak commutative if and only if N satisfies the
following conditions:

(1) neut (a) ∗ neut (b) = neut (b) ∗
neut (a) for all a, b ∈ N.

(2) neut (a) ∗ neut (b)∗ a = a ∗
neut (b) for all a, b ∈ N.

Proposition 3. [11] Let (N,∗) be a weak commutative
NETG. Then (for all a, b ∈ N)

(1) neut (a) ∗ neut (b) = neut (b∗a);
(2) anti (a)∗ anti (b) ∈ {anti (b∗a)}.

Definition 4. [14] A semigroup (S, ∗) will be called
completely regular if there exists a unary operation
a �→ a−1 on S with the properties

(a−1)−1 = a, a∗a−1∗a = a, a∗a−1 = a−1∗a.

Proposition 4. [14] Let (S,∗) be a semigroup. Then
the following statements are equivalent:

(1) S is completely regular;
(2) every element of S lies in a subgroup of S;
(3) every H-class in S is a group.
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Here, recall some basic concepts in semigroup the-
ory. A non-empty subset A of a semigroup (S,∗) is
called a left ideal if SA ⊆ A, a right ideal if AS ⊆ A,
and an ideal if it both a left and a right ideal. Evi-
dently, every ideal (whether one- or two-sided) is
a subsemigroup. If a is an element of a semigroup
(S,∗), the smallest left ideal containing a is Sa ∪ {a},
which we may conveniently write as S1a, and which
we shall call the principle left ideal generated by
a.

An equivalent relation L on S is defined by the rule
that aLb if and only if S1a = S1b; an equivalent rela-
tion R on S is defined by the rule that aLb if and only if
aS1 = bS1; denote H = L ∧ R, D = L ∨ R, that is,
aHb if and only if S1a = S1b and aS1 = bS1; aDb if
and only if S1a = S1b or aS1 = bS1. An equivalent
relation J on S is defined by the rule that aJb if and
only if S1aS1 = S1bS1, where

S1aS1 = SaS ∪ aS ∪ Sa ∪ {a}
That is, aJb if and only if there exists x, y, u,

v ∈ S1 for which x∗a∗y = b, u∗b∗v = a. The L-class
(R-class, H-class, D-class, J-class) containing the ele-
ment a will be written La (Ra, Ha, Da, Ja).

Definition 5. [14] A semigroup (S,∗) will be called
Clifford semigroup, if it is completely regular and in
which, for all x, y in S,

(x∗x−1)∗(y∗y−1) = (y∗y−1)∗(x∗x−1).

In an arbitrary semigroup S, we say that an element
c is central if c∗s = s∗c for every s in S. The set of
central elements forms a subsemigroup of S, called
the center of S.

Proposition 5. [14] Let (S,∗) be a semigroup. Then
the following statements are equivalent:

(1) S is Clifford semigroup;
(2) S is a semilattice of groups;
(3) S is regular, and the idempotents of S are cen-

tral.

Abel-Grassmann’s groupoid (AG-groupoid) [21,
22], is a groupoid (S,∗) holding left invertive law, that
is, for all a, b, c ∈ S, (a∗b)∗ c = (c∗b)∗ a. In an AG-
groupoid the medial law holds, for all a, b, c, d ∈ S,
(a∗b)∗ (c∗d) = (a∗c)∗ (b∗d).

There can be a unique left identity in an
AG-groupoid. In an AG-groupoid S with left iden-
tity the paramedial laws hold for all a, b, c, d ∈
S, (a∗b)∗ (c∗d) = (d∗c)∗ (b∗a). Further if an AG-

groupoid contain a left identity, hen he following law
holds: for all a, b, c ∈ S, a∗ (b∗c) = b∗ (a∗c).

An AG-groupoid is a non-associative algebraic
structure midway between a groupoid and a commu-
tative semigroup, because if an AG-groupoid contains
right identity then it becomes a commutative semi-
group.

Definition 6. [25] (1) An element a of an AG-
groupoid (S,∗) is called a regular if there exists x ∈ S

such that a = (a∗x∗)∗a and S is called regular if all
elements of S are regular.

(2) An element a of an AG-groupoid (S,∗) is
called a weakly regular if there exists x, y ∈ S

such that a = (a ∗ x) ∗ (a ∗ y) and S is called
weakly regular if all elements of S are weakly
regular.

(3) An element a of an AG-groupoid (S,∗) is called
an intra-regular if there exists x, y ∈ S such
that a = (

x∗a2
) ∗ y and S is called an intra-

regular if all elements of S are intra-regular.
(4) An element a of an AG-groupoid (S,∗) is called

a right regular if there exists x ∈ S such that
a = a2 ∗ x = (a∗a) ∗ x and S is called a right
regular if all elements of S are right regular.

(5) An element a of an AG-groupoid (S,∗) is called
a left regular if there exists x ∈ S such that a =
x∗a2 = x ∗ (a∗a) and S is called left regular if
all elements of S are left regular.

(6) An element a of an AG-groupoid (S,∗) is called
a left quasi regular if there exists x, y ∈ S such
that a = (x∗a) ∗ (y∗a) and S is called left quasi
regular if all elements of S are left quasi regular.

(7) An element a of an AG-groupoid (S,∗) is called
a completely regular if a is regular and left
(right) regular. S is called completely regular
if it is regular, left and right regular.

Proposition 6. [25] If (S,∗) is regular (weakly regular,
intra-regular, right regular, left regular, left quasi reg-
ular, completely regular) AG-groupoid, then S = S2

Proposition 7. [25] In an AG-groupoid (S,∗) with left
identity, the following are equivalent:

(i) S is weakly regular.
(ii) S is an intra-regular.

(iii) S is right regular.
(iv) S is left regular.
(v) S is left quasi regular.

(vi) S is completely regular.
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Definition 7. [26] An element a of an AG-groupoid
(S,∗) is called a fully regular element of S if there
exist some p, q, r, s, t, u, v, w, x, y, z ∈ S (p, q,..., z
may be repeated) such that

a =
(
p∗a2

)
∗ q = (

r∗a
) ∗ (a ∗ s)

= (a ∗ t) ∗ (a ∗ u) = (
a∗a

) ∗ v

= w ∗ (
a∗a

) = (
x∗a

) ∗ (
y∗a

)

=
(
a2 ∗ z

)∗
a2.

An AG-groupoid (S,∗) is called fully regular if all
elements of S are fully regular.

A non-empty subset A of an AG-groupoid (S,∗)
called left (right) ideal of S if and only if SA ⊆
A(AS ⊆ A) and is called two-sided ideal or ideal of
S if and only if it is both left and right ideal of S.

Definition 8. [26] A non-empty subset A of an AG-
groupoid (S,∗) called semiprime if and only if

a2 ∈ A ⇒ a ∈ A.

Definition 9. [26] An AG-groupoid is called left
(right) simple if and only if it has no proper left (right)
ideal and is called simple if and only if it has no proper
two-sided ideal.

Proposition 8. [26] The following conditions are
equivalent for an AG-groupoid (S,∗) with left identity:

(i) aS = S, for some a ∈ S.
(ii) Sa = S, for some a ∈ S.

(iii) S is simple.
(iv) AS = S = SA, where A two-sided ideal of S.
(v) S is fully regular.

3. NETG and completely regular semigroup

Theorem 1. Let (N,∗) be a NETG. Then for all a ∈
N,

(1) p ∗ neut (a) ∈ {anti (a)}, for any p ∈
{anti (a)};

(2) p ∗ neut (a) = q ∗ neut (a) = neut (a) ∗
q, for any p, q ∈ {anti(a)};

(3) neut(p ∗ neut (a)) = neut (a) , for any p ∈
{anti (a)};

(4) a ∈ {anti(p ∗ neut (a))}, for any p ∈
{anti (a)};

(5) anti(p ∗ neut (a)) ∗ neut(p ∗ neut (a)) =
a, for any p ∈ {anti (a)}.

Proof. (1) Suppose p ∈ {anti (a)}, then p∗a = a ∗
p = neut (a).

From this, and applying Proposition 1, we
get(p ∗ neut (a))∗ a = p ∗ (

neut (a)∗ a
) = p∗a =

neut (a) , a ∗ (p ∗ neut (a)) = (a ∗ p) ∗ neut (a) =
neut (a) ∗ neut (a) = neut (a).

It follows that p ∗ neut (a) ∈ {anti (a)}.
(2) Suppose p, q ∈ {anti (a)}, then

p∗a = a ∗ p = neut (a) ; q∗a = a ∗ q =
neut (a).
Thus,
p ∗ neut (a) = p ∗ (a ∗ q) = (p∗a) ∗ q =
neut (a) ∗ q

= (q∗a) ∗ q = q ∗ (a ∗ q) = q ∗ neut (a).
That is, p ∗ neut (a) = neut (a) ∗ q =
q ∗ neut (a).

(3) For any p ∈ {anti (a)}, by Proposition 1 and
(2), we have
(p ∗ neut (a)) ∗ neut (a) = p ∗
(neut (a) ∗ neut (a)) = p ∗ neut (a),
neut (a) ∗ (p ∗ neut (a)) = (neut (a) ∗ p) ∗
neut (a) = (p ∗ neut (a)) ∗ neut (a)
= p ∗ (neut (a) ∗ neut (a)) = neut (a).
Moreover, using Proposition 1,
(p ∗ neut (a))∗ a = p ∗ (

neut (a)∗ a
)

= p∗a = neut (a), a ∗ (p ∗ neut (a)) =
(a ∗ p) ∗ neut (a) = neut (a) ∗ neut (a) =
neut (a).
Applying Definition 1, neut (a) = neut(p∗
neut (a)).

(4) For any p ∈ {anti (a)}, by Proposition 1, we
have
a ∗ (p ∗ neut (a)) = (a ∗ p) ∗ neut (a)
= neut (a) ∗ neut (a) = neut (a),
(p ∗ neut (a))∗ a = p ∗ (a ∗ neut (a))
= p∗a = neut (a).
By Definition 1 we know that a ∈ {anti

(p ∗ neut (a))}.
(5) Assume p ∈ {anti (a)}. For all anti(p ∗ neut

(a)) ∈ {anti(p ∗ neut (a))}, by (2) we know
that anti (p ∗ neut (a)) ∗ neut (p ∗ neut (a))
is unique. Applying (4), a ∈ {anti(p ∗ neut

(a))}, it follows that

anti (p ∗ neut (a)) ∗ neut (p ∗ neut (a))
= a ∗ neut (p ∗ neut (a)).

Using (3), neut (p ∗ neut (a)) = neut (a). There-
fore,

anti (p ∗ neut (a)) ∗ neut (p ∗ neut (a))

= a ∗ neut (p ∗ neut (a))

= a ∗ neut (a) = a. �
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Theorem 2. Let (N, ∗) be a groupoid. Then N is a
NETG if and only if it is a completely regular semi-
group.

Proof. Assume that N is a NETG. By Theorem 1, we
define a unary operation a � → a−1 on N as follows:

a−1 = anti (a) ∗ neut (a), for any a in N.
By Theorem 1 (2), a−1 is unique. Applying Theo-

rem 1 (5) we get

(a−1)−1 = anti(anti (a) ∗ neut (a))

∗neut(anti (a) ∗ neut (a)) = a.

Moreover, by Proposition 1,

a∗a−1∗a = a∗anti (a) ∗ neut (a)∗ a = a,

a∗a−1 = a∗anti (a) ∗ neut (a)

= neut (a)∗ anti (a) = neut (a)

= anti (a)∗ a = anti (a) ∗ neut (a)
∗a = a−1∗a.

Thus, by Definition 4, N is a completely regular
semigroup.

Conversely, suppose that N is a completely regular
semigroup. For any a in N, denote neut (a) = a∗a−1,
then

neut (a)∗ a = a∗a−1∗a = a,

a ∗ neut (a) = a∗a∗a−1 = a∗a−1∗a = a.

Moreover,

a−1∗a = a∗a−1 = neut (a) .

By Definition 1, we know that N is a NETG,
anda−1 ∈ {anti (a)}. �

Note that, in semigroup theory, a−1 is called
inverse element, it is unique; in NETG, anti (a) is
called opposite element, it may be not unique, please
see the following example.

Example 1. Let N = {a, b, c, d, e}, define operations
∗ on N as following Table 1. Then, (N,∗) is a NETG
and a completely regular semigroup. We can get that

a−1 = a; a−1∗a = a∗a−1 = a.

neut (a) = a, {anti (a)} = {a, c, d, e} .

Table 1
The operation * on N

* a b c d e

a a b a a a
b b a b b b
c a b d c a
d a b c d a
e a b a a e

4. Weak commutative NETG and Clifford
semigroup

Applying Theorem 2 and Definition 5, we can get
the following result (the proof is omitted).

Proposition 9. Let (N,∗) be a completely regular
semigroup. Then N is a Clifford semigroup, if and
only if it satisfies:

neut (a) ∗ neut (b) = neut (b) ∗ neut (a) ,

for all a, b ∈ N.

Theorem 3. Let (N,∗) be a groupoid. Then N is
a weak commutative neutrosophic extended triplet
group (NETG) if and only if it is a Clifford semigroup.

Proof. Suppose that N is a weak commutative NETG.
By Theorem 2, we know that N is a completely regu-
lar semigroup. Using Proposition 2, for any a, b ∈
N, neut (a) ∗ neut (b) = neut (b) ∗ neut (a). Then,
by Proposition 9 we know that N is a Clifford semi-
group.

Conversely, assume that N is a Clifford semigroup.
Applying Theorem 2 and Proposition 1, neut (a) ∗
neut (a) =, for any a in . That is, neut (a) is idem-
potent. Thus, by Proposition 3, neut (a) is central.
Therefore, for any b in N,

neut (a) ∗ b = b ∗ neut (a) .

This means that N is a weak commutative NETG,
by Definition 3. �

Applying Theorem 3 and Proposition 2, we can get
the following result (the proof is omitted).

Proposition 10. Let (N, ∗) be a NETG. Then N is
weak commutative, if and only if it satisfies:

neut (a) ∗ neut (b) = neut (b) ∗ neut (a) ,

for all a, b ∈ N.

In other words, in NETG, the following conditions
are equivalent:

(1) a ∗ neut (b) = neut (b)∗ a, for all a, b ∈ N;
(2) neut (a) ∗ neut (b) = neut (b) ∗

neut (a) , for all a, b ∈ N
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Now, we discuss the method of establishing Clif-
ford semigroup (that is, weak commutative NETG)
by two given groups.

Theorem 4. Let (G1, ∗1) and (G2, ∗2) be two groups,
e1 and e2 identity elements of (G1, ∗1) and (G2, ∗2),
G1 ∩ G2 = Ø. Denote N = G1 ∪ G2, and define the
operation ∗ in N as follows:

(1) if a, b ∈ G1, then a ∗ b = a ∗1 b;
(2) if a, b ∈ G2, then a ∗ b = a ∗2 b;
(3) if a ∈ G1, b ∈ G2, then a ∗ b = a;
(4) if a ∈ G2, b ∈ G1, then a ∗ b = b.

Then (N,∗) is a Clifford semigroup (weak commu-
tative NETG).

Proof. It is only necessary to prove that the associa-
tive law hold in (N,∗), that is, (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ N. We will discuss the following sit-
uations separately.
Case 1: a, b, c ∈ G1, or a, b, c ∈ G2. Since G1 and
G2 are groups, so (a ∗ b) ∗ c = ∗ (b ∗ c).
Case 2: a ∈ G1, b ∈ G2, and c ∈ G1. Then, by the
definition of ∗, we have (a ∗ b) ∗ c = a ∗ c = a ∗
(b ∗ c).
Case 3: a ∈ G1, b ∈ G2, and c ∈ G2. Then, by the
definition of ∗, we have(a ∗ b) ∗ c = a ∗ c = a = a ∗
(b ∗ c).
Case 4: a ∈ G2, b ∈ G1, and c ∈ G1. Then, (a ∗ b) ∗
c = b ∗ c = a ∗ (b ∗ c).
Case 5: a ∈ G2, b ∈ G1, and c ∈ G2. Then, (a ∗ b) ∗
c = b ∗ c = b = a ∗ b = a ∗ (b ∗ c).
Case 6: a ∈ G1, b ∈ G1, and c ∈ G2. From the def-
inition of operation ∗ we have (a ∗ b) ∗ c = a ∗ b =
a ∗ (b ∗ c).
Case 7: a ∈ G2, b ∈ G2, and c ∈ G1. From the def-
inition of operation ∗ we have (a ∗ b) ∗ c = c = a ∗
c = a ∗ (b ∗ c).

Therefore, (N,∗) is a semigroup. Moreover, for any
a ∈ N,

if a ∈ G1, then a ∗ e1 = e∗
1a = a, and a ∗ (a−1) =

(a−1)∗a = e1, where a−1 is the inverse of a in group
(G1, ∗1);

if a ∈ G2, then a ∗ e2 = e∗
2a = a, and a ∗ (a−1) =

(a−1)∗a = e2, where a−1 is the inverse of a in group
(G2, ∗2).

This means that (N,∗) is a NETG by Definition
1. Moreover, by the definition of operation *, we
have x ∗ e1 = e1 ∗ x, x ∗ e2 = e2 ∗ x, for any x in N.
Hence, (N,∗) is a weak commutative NETG by Def-
inition 3. Using Theorem 3 we know that (N,∗) is a
Clifford semigroup. �

Similarly, we can get the following result.

Theorem 5. Let (G1, ∗1) and (G2, ∗2) be two
groups, e1 and e2 identity elements of (G1, ∗1) and
(G2, ∗2),G1 ∩ G2 = Ø. Denote N = G1 ∪ G2, and
define the operation * in N as follows:

(1) if a, b ∈ G1, then a ∗ b = a ∗1 b;
(2) if a, b ∈ G2, then a ∗ b = a ∗2 b;
(3) if a ∈ G1, b ∈ G2, then a ∗ b = b;
(4) if a ∈ G2, b ∈ G1, then a ∗ b = a.

Then (N,∗) is a Clifford semigroup (weak commu-
tative NETG).

Example 2. Let G1 = {e, a, b, c} and G2 =
{1, 2, 3, 4, 5, 6}. efine operations ∗1 and ∗2 on G1,
G2 following Tables 2 and 3. Then, N = G1 ∪ G2 =
{e, a, b, c, 1, 2, 3, 4, 5, 6} is (N,∗) is a weak commu-
tative NETG with the operation * in Table 4.

Moreover, according the method in Theorem 5, we
can get another weak commutative NETG (Clifford
semigroup) (N,∗’), in which the peration∗ ’ is defined
as Table 5.

Table 2
Commutative group (G1, ∗1)

*1 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Table 3
Non-commutative group (G2, ∗2)

*2 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 1 6 5 4 3
3 3 5 1 6 2 4
4 4 6 5 1 3 2
5 5 3 4 2 6 1
6 6 4 2 3 1 5

Table 4
First weak commutative NETG (Clifford semigroup) (N,∗)

* e a b c 1 2 3 4 5 6

e e a b c e e e e e e
a a e c b a a a a a a
b b c e a b b b b b b
c c b a e c c c c c c
1 e a b c 1 2 3 4 5 6
2 e a b c 2 1 6 5 4 3
3 e a b c 3 5 1 6 2 4
4 e a b c 4 6 5 1 3 2
5 e a b c 5 3 4 2 6 1
6 e a b c 6 4 2 3 1 5
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Table 5
Second weak commutative NETG (Clifford semigroup) (N,∗ ’)

*’ e a b c 1 2 3 4 5 6

e e a b c 1 2 3 4 5 6
a a e c b 1 2 3 4 5 6
b b c e a 1 2 3 4 5 6
c c b a e 1 2 3 4 5 6
1 1 1 1 1 1 2 3 4 5 6
2 2 2 2 2 2 1 6 5 4 3
3 3 3 3 3 3 5 1 6 2 4
4 4 4 4 4 4 6 5 1 3 2
5 5 5 5 5 5 3 4 2 6 1
6 6 6 6 6 6 4 2 3 1 5

5. AG-NET-loops and completely regular
AG-groupoids

Definition 10. Let (N,∗) be a neutrosophic extended
triplet set. Then, N is called a neutrosophic extended
triplet loop (NET-loop), if (N,∗) is ell-defined, i.e.,
for anya, b ∈ N, one hasa ∗ b ∈ N.

Remark 1. In [10, 12], the name of neutrosophic
triplet loop is used. In order to be more rigorous
and echoed with neutrosophic extended triplet group
(NETG), the name of neutrosophic extended triplet
loop (NET-loop) is used in this paper.

Definition 11. Let (N,∗) be a neutrosophic extended
triplet loop (NET-loop). Then, N is called an AG-
NET-loop, if (N,∗) is an AG-groupoid.

Theorem 6. Assume that (N,∗) is an AG-NET-loop.
Then

(1) for all a in N, neut (a) is unique
(2) for all a in N, neut (a) ∗ neut (a) = neut (a).

Proof. Suppose that there exists x, y ∈ {neut (a)}. By
Definition 1 and 10, a ∗ x = x∗a = a, a ∗ y = y∗a =
a, and there exists u, v ∈ N which satisfy a ∗ u =
u∗a = x, a ∗ v = v∗a = y. Applying the invertive
law, we have

(i) y ∗ u = (v∗a) ∗ u = (u∗a) ∗ v = x ∗ v.
(ii) x ∗ y = (a ∗ u) ∗ y = (y ∗ u)∗a =

(x ∗ v)∗ a = (a ∗ v) ∗ x = y ∗ x. (by the
invertive law and (i))

(iii) x = a ∗ u = (y∗a) ∗ u = (u∗a) ∗ y = x ∗ y.
(iv) y = a ∗ v = (x∗a) ∗ v = (v∗a) ∗ x = y ∗ x.
(v) (x = x ∗ y = y ∗ x = y. (by iii), (ii) and (iv))

Therefore, neut (a) is unique. Moreover, by (v)
and (iii) we get that x = x ∗ x, that is, neut (a) ∗
neut (a) = neut (a). �

Theorem 7. Let (N,∗) be an AG-NET-loop. Then

(1) for any x, y ∈ {anti(a)}, neut(a) ∗ x =
neut(a) ∗y, that is, |neut(a) ∗ {anti(a)}| = 1;

(2) for all a in N neut(neut(a)) ∗ neut(a) =
neut(a) = neut(a) ∗ neut(neut(a));

(3) for all a in N neut(neut(a)) = neut(a);
(4) for any a in N and p ∈ anti(neut(a)), a ∗

p = a;
(5) for any a in N q ∈ {anti(a)}, neut(a) ∗

neut(q) = neut(a) and neut(a) ∗ q = q ∗
neut(a);

(6) for any a in N and any q ∈ {anti(a)},
neut(a)∗anti(q) = neut(q)∗a;

(7) for anya inN and for any q ∈ {anti(a)}, (q ∗
neut(a))∗a = (neut(a) ∗ q)∗a = neut(a);

(8) for any a in N and for any q ∈ {anti(a)}, a ∗
(q ∗ neut(a)) = a ∗ (neut(a) ∗ q) = neut(a);

(9) for any a in N and for any q ∈ {anti(a)}, q ∗
neut(a) ∈ {anti(a)} and neut(a) ∗ q ∈ {anti

(a)};
(10) for any a in N q ∈ {anti(a)}, neut(q) ∗

neut(a) = neut(a);
(11) for any a in N q ∈ {anti(a)}, a ∗ neut(q) =

a;
(12) for any a in N q ∈ {anti(a)}, q ∗ (a∗a) = a;
(13) for all a in N a ∗ neut(a∗a) = a.

Proof. (1) Assume x, y ∈ {anti (a)}, by Definition 1
and 10,

x∗a = a ∗ x = neut (a) , y∗a = a ∗ y = neut (a) .

Using the invertive law, we have
neut (a) ∗ x = (y∗a) ∗ x = (x∗a) ∗ y

= neut (a) ∗ y.

(2) Since neut(neut (a)) is the neutral element
ofneut (a), by Theorem 6 (1), Definition 1
and 10, we haveneut(neut (a)) ∗ neut (a) =
neut (a) = neut (a) ∗ neut (neut (a)).

(3) Let p ∈ {anti (neut (a))}, then
neut (a) ∗ p = neut (a)∗ anti (neut (a)) =
neut(neut (a)).
p ∗ neut (a) = anti (neut (a)) ∗ neut (a) =
neut(neut (a)).
By the invertive law,
(p ∗ x)∗a = (a ∗ x) ∗ p = neut (a) ∗ p =
neut(neut (a)).
On the other hand, by the medial law and (2)
we have
(p ∗ x)∗a = (p ∗ x) ∗ (neut (a)∗ a) =
(p ∗ neut (a)) ∗ (x∗a) = neut(neut (a)) ∗
neut (a) = neut (a).
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Therefore, neut(neut (a)) = (p ∗ x)∗a =
neut (a).

(4) Let p ∈ {anti (neut (a))}, applying the
invertive law and (3) we get
a ∗ p = (a ∗ neut (a)) ∗ p = (p ∗
neut (a))∗a
= (anti (neut (a)) ∗ neut (a))∗a =
neut(neut (a))∗a
= neut (a)∗ a = a.

(5) Assume q ∈ {anti (a)}, then a ∗ q = q∗a =
neut (a).
Applying the invertive law,
neut (a) ∗ neut (q) = (a ∗ q) ∗ neut (q)
= (neut (q) ∗ q)∗a = q∗a = neut (a).
Moreover,
neut (a) ∗ q = (neut (a) ∗ neut (q)) ∗ q

= (q ∗ neut (q)) ∗ neut (a) = q ∗ neut (a)
(6) Assume q ∈ {anti (a)}, then a ∗ q =

q∗a = neut (a) , q∗anti (q) = anti (q) ∗ q =
neut (q). Applying the invertive law and (5),
neut (q)∗ a = (anti (q) ∗ q)∗a
= (a ∗ q)∗anti (q) = neut (a)∗ anti (q).

(7) Suppose q ∈ {anti (a)}, then
(q ∗ neut (a))∗a = (a ∗ neut (a)) ∗ q =
a ∗ q = neut (a).
And, applying (5), (neut (a) ∗ q)∗a =
(q ∗ neut (a))∗a = neut (a).

(8) Suppose q ∈ {anti (a)}, using the invertive
law and (7) we have
a ∗ (q ∗ neut (a)) = (a ∗ neut (a)) ∗ (q ∗
neut (a))
= ((q ∗ neut (a)) ∗ neut (a))∗a
= ((neut (a) ∗ neut (a)) ∗ q)∗a
= (neut (a) ∗ q)∗a
= neut (a).
Also, applying (5), a ∗ (neut (a) ∗ q) =
a ∗ (q ∗ neut (a)) = neut (a).

(9) If q ∈ {anti (a)}, by (7) and (8), we get that
q ∗ neut (a) ∈ {anti (a)} and neut (a) ∗ q ∈
{anti (a)}.

(10) If q ∈ {anti (a)}, then
neut (q) ∗ neut (a) = (q∗anti (q)) ∗ neut (a)
= (neut (a)∗ anti (q)) ∗ q..........
= (neut (q)∗ a) ∗ q...................... (by (6))
= (q∗a) ∗ neut(q)
= neut (a) ∗ neut (q) ...........(by q ∈
{anti (a)})
= neut (a) .............. (using (5))

(11) Assume q ∈ {anti (a)}, then (applying (10))
a ∗ neut (q) = (a ∗ neut (a)) ∗ neut (q) =
(neut (q) ∗ neut (a))∗a = neut (a)∗ a = a.

Table 6
Non-Commutive AG-NET-loop

* a b c d e

a a a e c d
b a b e c d
c d d c e a
d e e a d c
e c c d a e

(12) Assume q ∈ {anti (a)}, then (applying (10))
q ∗ (a∗a) = (q ∗ neut (q)) ∗ (a∗a)
= (q∗a) ∗ (neut (q)∗ a) (applying the medial
law)
= (q∗a) ∗ (a ∗ neut (q)).......................... (by
(5))
= (q∗a) ∗ (neut (a)∗ anti (q))............... (by
(6))
= (q ∗ neut (a)) ∗ (a∗anti (q)).... (by the
medial law)
= (neut (a) ∗ q) ∗ (a∗anti (q))............... (by
(5))
= (neut (a)∗ a) ∗ (q∗anti (q)).... (by the
medial law)
= a ∗ neut (q))
= a................................. (by (11))

(13) For all a in N, there exists q ∈ {anti (a)},
then a ∗ neut(a∗a)
= (q ∗ (a∗a)) ∗ neut(a∗a)............ (using
(12))
= (neut(a∗a) ∗ (a∗a)) ∗ q... (by the invertive
law)
= (a∗a) ∗ q

= (q∗a)∗a......... (applying the invertive law)
= neut (a)∗ a

= a.

The proof complete. �
Example 3. Let N = {a, b, c, d, e}. Define operation
* on N as following Table 6. Then, (N,∗) is a non-
commutative AG-NET-loop. And,

neut (a) = a, {anti (a)} = {a, b} ;

neut (b) = b, {anti (b)} = {b} ;

neut (c) = c, {anti (c)} = {c} ; neut (d) = d,

{anti (d)} = {d} ; neut (e) = e, {anti (e)} = {e} .

Theorem 8. Let (N,∗) be an AG-NET-loop. Then N
is a completely regular AG-groupoid.
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Table 7
Non-commutative completely regular AG-groupoid

*1 1 2 3 4

1 1 1 1 1
2 1 2 3 4
3 1 4 2 3
4 1 3 4 2

Proof. For any a in N, by Definition 1 and 11 we have

(a∗anti (a))∗a = neut (a)∗ a = a.

From this and Definition 6 (1), we know that N is
a regular AG-groupoid.

Moreover, assumea ∈ N, we have

(a∗a) ∗anti (a) = (anti (a)∗ a)
∗a = neut (a)∗ a = a.

From this and Definition 6 (4), N is a right regular
AG-groupoid.

For all a ∈ N, there exists q ∈ {anti (a)} , a ∗ q =
q∗a = neut (a). Denote x = q ∗ neut (a), then (using
the medial law)

x ∗ (a∗a) = (q ∗ neut (a)) ∗ (a∗a)

= (q∗a) ∗ (neut (a)∗ a)

= (q∗a)∗a = neut (a)∗ a = a.

From this and Definition 6 (5), N is a left regular
AG-groupoid.

Therefore, by Definition 6 (7) we know that N is a
completely regular AG-groupoid. �

The following example shows that a completely
regular AG-groupoid may be not an AG- NET-loop.

Example 4. Let N = {1, 2, 3, 4}. Define operations
∗ on N as following Table 7. Then, (N,∗) is a non-
commutative completely regular AG-groupoid, but it
is not an AG-NET-loop, since there is no a ∈ N such
that a ∗ 4 = 4∗a = 4.

Theorem 9. Let (N,∗) be an AG-NET-loop. Then N
is a fully regular AG-groupoid.

Proof. Suppose a ∈ N. Then there exists
m ∈ {anti (a)}, a ∗ m = m∗a = neut (a). Denote
p = m ∗ neut (a), q = neut (a); r = m, s =
neut (a); t = m, u = neut (a); v = m; w =
m ∗ neut (a); x = m, y = neut (a). Then(

p∗a2
) ∗ q = ((m ∗ neut (a))∗a2)) ∗ neut (a)

= ((a2∗neut (a)) ∗ m)) ∗ neut (a)
= (((a∗a) ∗ neut (a)) ∗ m)) ∗ neut (a)
= (((neut (a)∗ a)∗a) ∗ m)) ∗ neut (a)
= ((a∗a) ∗ m)) ∗ neut (a)

= ((w∗a)∗a)) ∗ neut (a)
= (neut (a)∗ a)) ∗ neut (a)
= a ∗ neut (a) = a.
(r∗a) ∗ (a ∗ s) = (m∗a) ∗ (a ∗ neut (a)) =

neut (a)∗ a = a

(a ∗ t) ∗ (a ∗ u) = (a ∗ m) ∗ (a ∗ neut (a)) =
neut (a)∗ a = a

(a∗a) ∗ v = (a∗a) ∗ m = (m∗a)∗ a =
neut (a)∗ a = a

w ∗ (a∗a) = (m ∗ neut (a)) ∗ (a∗a)
= ((a∗a) ∗ neut (a)) ∗ (m ∗ neut (a))
= ((

neut (a)∗ a
)∗

a
) ∗ (m ∗ neut (a))

= (a∗a) ∗ (m ∗ neut (a))
= (

(m ∗ neut (a))∗ a
)∗

a

= ((a ∗ neut (a)) ∗ m)∗ a

= (a ∗ m)∗ a

= neut (a)∗ a = a

(x∗a) ∗ (y∗a) = (m∗a) ∗ (neut (a)∗ a) =
neut (a)∗ a = a.

Moreover, for a2 ∈ N, there exists n ∈ {anti(a2)}.
Denotez = n ∗ m, then(

a2 ∗ z
)∗

a2 = ((a∗a) ∗ z)∗ a2.
= (

(z∗a)∗ a
)∗

a2..... (applying the invertive law)
= (

a2∗a
) ∗ (z∗a)..... (applying the invertive law)

= (
a2∗a

) ∗ ((n ∗ m)∗a)
= (

a2∗a
) ∗ ((a ∗ m)∗n).......(by the invertive law)

= (
a2∗a

) ∗ (neut (a)∗ n)(by m ∈ {anti (a)})
= ((a∗a) ∗ (neut (a)∗ a)) ∗ (neut (a)∗ n)
= ((a ∗ neut (a)) ∗ (a∗a)) ∗

(neut (a)∗ n)...(applying the medial law)
= (

a∗a2
) ∗ (neut (a)∗ n)........(by the medial law)

= (a ∗ neut (a)) ∗ (
a2∗n

)
..(applying the medial

law)
= a ∗ neut(a2) (by the definition of

n ∈ {anti(a2)})
= a.......................... (by Theorem 7 (13))
Therefore, combing above results, by Definition 7,

we know that N is a fully regular AG- groupoid. �
The following example shows that a fully regular

AG-groupoid may be not an AG-NET-loop.

Example 5. Let N = {1, 2, 3, 4, 5, 6, 7}. Define
operations ∗ on N as following Table 8. Then, (N,∗) is
a non- commutative fully regular AG-groupoid (see
[26]), but it is not an AG-NET-loop, since there is no
x ∈ N such that x ∗ 3 = 3 ∗ x = 3.

6. On finite NETGs and finite AG-NET-loops

The instances with finite order and their construc-
tions are of great significance for exploring structural
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Table 8
Non-commutative fully regular AG-groupoid

* 1 2 3 4 5 6 7

1 2 4 6 1 3 5 7
2 5 7 2 4 6 1 3
3 1 3 5 7 2 4 6
4 4 6 1 3 5 7 2
5 7 2 4 6 1 3 5
6 3 5 7 2 4 6 1
7 6 1 3 5 7 2 4

features of abstract algebraic systems. By designing
the MATLAB program, we have found all NTEGs of
order 3, 4 and 5, which have 13, 67 and 353 respec-
tively and they are not isomorphic to each other.
Moreover, we obtained all AG-NET-loops of order
3, 4 and 5, which have 5, 17 and 54 respectively and
they are not isomorphic to each other. In this section,
we present our results in the form of theorems for the
sake of further study. For NETGs with order 5, we
only list all of commutative NETGs, a total of 51.

Theorem 10. Let (N, ∗) be a NETG with order 3 and
denote N = {1, 2, 3}. Then N must be isomorphic to
one of the NETGs represented by the following tables,
and these NETGs are not mutually isomorphic:

(1) T31 = {{1, 1, 1} , {2, 2, 2} , {3, 3, 3}};
(2) T32 = {{1, 2, 3} , {2, 2, 2} , {3, 3, 3}};
(3) T33 = {{1, 3, 3} , {2, 2, 2} , {3, 3, 3}};
(4) T34 = {{3, 2, 1} , {2, 2, 2} , {1, 2, 3}};
(5) T35 = {{1, 2, 3} , {1, 2, 3} , {1, 2, 3}};
(6) T36 = {{1, 2, 3} , {2, 2, 3} , {3, 2, 3}};
(7) T37 = {{1, 3, 3} , {3, 2, 3} , {3, 3, 3}};
(8) T38 = {{1, 2, 1} , {2, 2, 2} , {3, 2, 3}};
(9) T39 = {{1, 2, 3} , {2, 2, 3} , {3, 3, 3}};

(10) T310 = {{3, 1, 1} , {1, 2, 3} , {1, 3, 3}};
(11) T311 = {{1, 2, 3} , {2, 2, 2} , {1, 2, 3}};
(12) T312 = {{1, 3, 3} , {1, 2, 3} , {1, 3, 3}};
(13) T313 = {{3, 1, 2} , {1, 2, 3} , {2, 3, 1}}.

Theorem 11. Let (N, ∗) be a NETG with order 4 and
denote N = {1, 2, 3, 4}. Then N must be isomorphic
to one of the NETGs represented by the following 67
tables, and these NETGs are not mutually isomor-
phic: (the tables are omitted).
Theorem 12. Let (N, ∗) be a commutative NETG with
order 5 and denote N = {1, 2, 3, 4, 5}. Then N must
be isomorphic to one of the NETGs represented by
the following 51 tables, and these NETGs are not
mutually isomorphic: (the tables are omitted).

Theorem 13. Let (N, ∗) be an AG-NET-loop with
order 3 and denote N = {1, 2, 3}. Then N must be

Table 9
Finite NETGs and AG-NET-loops

Order NETGs AG-NET-loops

3 13 5
4 67 17
5 353 54

isomorphic to one of the AG-NET-loops represented
by the following tables, and these AG-NET-loops are
not mutually isomorphic:

(1) L31 = {{1, 1, 1} , {1, 2, 1} , {1, 1, 3}};
(2) L32 = {{1, 1, 1} , {1, 2, 2} , {1, 2, 3}};
(3) L33 = {{1, 1, 1} , {1, 2, 3} , {1, 3, 2}};
(4) L34 = {{1, 1, 3} , {1, 2, 3} , {3, 3, 1}};
(5) L35 = {{1, 2, 3} , {2, 3, 1} , {3, 1, 2}}.

Theorem 14. Let (N, ∗) be an AG-NET-loop order 4
and denote N = {1, 2, 3, 4}. Then N must be isomor-
phic to one of the AG-NET-loops represented by the
following 17 tables, and these AG-NET-loops are not
mutually isomorphic: (the tables are omitted).

Theorem 15. Let (N, ∗) be an AG-NET-loop order 5
and denote N = {1, 2, 3, 4, 5}. Then N must be iso-
morphic to one of the AG-NET-loops represented by
the following 54 tables, and these AG-NET-loops are
not mutually isomorphic: (the tables are omitted).

7. Conclusions

In the paper, from the perspective of semigroup the-
ory, we studied neutrosophic extended triplet group
(NETG) and AG-NET-loop which is both an AG-
groupoid and a neutrosophic extended triplet loop,
and obtained some important results. We proved that
the notion of NETG is equal to the notion of com-
pletely regular semi group, and the notion of weak
commutative NETG is equal to the notion of Clifford
semigroup. Moreover, we investigated the relation-
ships among AG-NET-loops, and completely regular
AG-groupoids and fully regular AG-groupoids, we
proved that every AG-NET-loop is a completely reg-
ular and fully regular AG-groupoid, but the inverse
is not true by constructing some counter examples.
We also give some construction methods and low
order instances of finite NETGs and AG-NET-loops
(the order ≤ 5), see Table 9. These results are inter-
esting for exploring the structure characterizations of
NETGs and AG-NET-loops.

As a direction of future research, we will discuss
the integration of the related topics, such as the com-
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bination of neutrosophic set, fuzzy set, soft set and
algebra systems (see [30–34]).
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