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Abstract: Uninorms comprise an important kind of operator in fuzzy theory. They are obtained
from the generalization of the t-norm and t-conorm axiomatic. Uninorms are theoretically
remarkable, and furthermore, they have a wide range of applications. For that reason, when fuzzy
sets have been generalized to others—e.g., intuitionistic fuzzy sets, interval-valued fuzzy sets,
interval-valued intuitionistic fuzzy sets, or neutrosophic sets—then uninorm generalizations have
emerged in those novel frameworks. Neutrosophic sets contain the notion of indeterminacy—which
is caused by unknown, contradictory, and paradoxical information—and thus, it includes,
aside from the membership and non-membership functions, an indeterminate-membership function.
Also, the relationship among them does not satisfy any restriction. Along this line of generalizations,
this paper aims to extend uninorms to the framework of neutrosophic offsets, which are called
neutrosophic offuninorms. Offsets are neutrosophic sets such that their domains exceed the scope of
the interval [0,1]. In the present paper, the definition, properties, and application areas of this new
concept are provided. It is necessary to emphasize that the neutrosophic offuninorms are feasible for
application in several fields, as we illustrate in this paper.

Keywords: neutrosophic offset; uninorm; neutrosophic offuninorm; neutrosophic offnorm;
neutrosophic offconorm; implicator; prospector; n-person cooperative game

1. Introduction

Uninorms extend the t-norm and t-conorm axiomatic in fuzzy theory. They retain the axioms of
commutativity, associativity, and monotony. Alternatively, they generalize the boundary condition,
where the neutral element is any number lying in [0,1]. Thus, t-norm and t-conorm are special cases of
uninorms, t-norms have 1 as their neutral element and the neutral element of t-conorms is 0, see [1–3].

Uninorms are theoretically important, and moreover they have also been used as operators in
several areas of application; for example, in image processing, to aggregate group decision criteria,
among others, see [4–8]. An exhaustive search on uninorm applications made by the authors of this
paper yielded more than six hundred scientific articles that have been written in the last five years
devoted to this subject.

Rudas et al. in [9] report that uninorms have been applied in diverse applications ranging,
e.g., from defining Gross Domestic Product index in economics, to fusing sequences of DNA and
RNA or combining information on taxonomies or dendograms in biology, and in the fusion of
data provided by sensors of robotics in data mining, and in knowledge-based and intelligent
systems. Particularly, they offer many examples in Decision Making, Utility Theory, Fuzzy Inference
Systems, Multisensor Data Fusion, network aggregation in sensor networks, image approximation,
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hardware implementation of parametric operations, in Fuzzy Systems, and as software tools for
aggregation problems.

Depaire et al. in [10] proposed a new approach to apply uninorms in Importance Performance
Analysis, which is a useful technique to evaluate elements in marketing programs. They proved
that their approach was superior when compared with regression and that it matched well with the
customer satisfaction theory.

A very recent paper written by Modley et al. in [11] applied uninorms in the market basket
analysis. Also, Appel et al. proposed a method based on cross-ratio uninorms as a mechanism to
aggregate in the Sentiment Analysis; see [12].

Kamiset al. in [13] implement a geo-uninorm operator in a consensus model. They utilized
them to derive a consistently based preference relation from a given reciprocal preference relation.
Whereas, Wu et al. in [14] and Ureña et al. in [15] applied uninorms in trust propagation and
aggregation methods for group decision making in a social network.

Bordignon and Gomide in [16], introduce a learning approach to train uninorm-based hybrid
neural networks using extreme learning concepts. According to them, uninorms bring flexibility and
generality to fuzzy neuron models. Wang in [17] and Yang in [18] applied uninorms as a basis to
define logics.

Other areas of application can be consulted in González-Hidalgo et al. [19] where uninorms were
utilized in edge detection of image processing, in fuzzy morphological associative memories (see [20]),
and was also applied in time series prediction.

It is well-known that the minimum is the biggest t-norm and the maximum is the lowest t-conorm,
thus they are not compensatory operators; whereas uninorms compensate when the truth values are
situated on both sides of the neutral element. The compensation property could be the key factor in
the wide range of uninorm applicability, mainly in decision making. Zimmermann experimentally
proved in [21], many years before the introduction of uninorms, that often human beings do not make
decisions interpreting AND like a t-norm and OR like a t-conorm, but that compensatory operators are
more adequate to model human aggregations to signify AND and OR in some situations. The use
of means as aggregators to define membership functions can be seen in [22]. However, when the
aggregated values are situated on one side with respect to the neutral element, then uninorms operate
either like a t-norm or a t-conorm.

Uninorms have been extended to other theories more general than fuzzy logic, due to their
applicability. Let us mention intuitionistic fuzzy sets, interval-valued fuzzy sets, and interval-valued
intuitionistic fuzzy sets; where the generalizations consist of the inclusion of an independent
non-membership function or an interval-valued membership function, or both [23]. They have
also been generalized as multi-polar aggregators in [24].

Following this trend, the authors of this paper defined the neutrosophic uninorms, such that
the uninorms were extended to the neutrosophy framework [25]. Neutrosophy is the philosophical
discipline that studies theories, entities, objects, phenomena, among others, related to neutrality [26].
In particular, neutrosophic sets contain three independent functions, namely, a membership function,
a non-membership function, and additionally, an indeterminate-membership function. The last
one represents what is unknown, contradictory, and paradoxical. Furthermore, these elements can
be intervals.

In addition, the relationship among these three functions has no restriction, contrary to the
intuitionist fuzzy sets, which must fulfill the constraint that the sum of the membership truth value
with the non-membership truth value of an element to the set does not exceed the unit.

Neutrosophy theory has been used in a wide spectrum of applications such as in image processing,
decision making, clustering, among others [27–30]. Therefore, it is not difficult to appreciate the
applicability of neutrosophic uninorms.

More recently, other concepts have been defined within the neutrosophy framework, which further
generalizes the traditional membership functions, including the axiomatic in probability theory.
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They are the undersets, oversets, and offsets, where the basic idea is that negative truth values or truth
values greater than 1 are permitted in the calculus [31].

A recurring example in literature is that concerning employment, where the truth value of a
worker’s effectiveness is measured in working hours. Those workers who have met all of their working
hours established for the week will be an effectiveness truth value of 1, those workers who have only
partially met their working hours have a truth value between 0 and 1, and other workers who have not
attended work throughout the week have the truth value of 0. In addition, those who have performed
voluntary overtime after meeting their established hours have a truth value greater than 1, and finally,
the workers who have not attended work throughout the week and, moreover, have caused losses to
the company, must have a negative truth value.

Other examples take into consideration the relationship between two variables or more, where a
negative value represents that they are inversely related, whereas a direct relationship is represented
by positive values [31].

The aim of this paper is to extend for the first time the theory of uninorms to the offsets
framework—we call them neutrosophic offuninorms—in such a way that they are a generalization
of both n-offnorms and n-offconorms equivalently, as fuzzy uninorms generalize both t-norms
and t-conorms.

In this paper, definitions and also properties of neutrosophic offuninorms will be given.
Additionally, we will emphasize the relationship between these new operators and the aggregation
functions used in the well-known medical expert system MYCIN [32], as well as define logical
implicators in offset fields and solve voting cooperative games.

In particular, the association of the proposed theory with the aggregation functions used in
MYCIN supports the hypothesis that neutrosophic offuninorms are more than an interesting theoretical
approach. Historically, within the fuzzy logic framework, some authors have accepted the idea
of extending the uninorms domain to [a, b], in order to include the aggregation functions used in
MYCIN, [33,34]. This proposal is an important precedent for this investigation because uninorms
were there adapted to offsets in the fuzzy theory context. The relationship between uninorms and the
PROSPECTOR operator, as well as their application, can be consulted in [35], where they were used
in e-arning.

Authors in [33,34] also emphasize that this generalization has important practical advantages
because it allows us to naturally apply uninorms in fields like Artificial Neural Networks and Cognitive
Maps. These elements certainly suggest that the proposed theory can be applied in fields like Artificial
Neural Networks based on neutrosophic sets and in neutrosophic cognitive maps, [36,37].

Let us observe that when uninorms have been extended to other domains they have preserved the
property of compensation. Further, we shall prove that offuninorms are not the exception; consequently,
the applicability of offuninorms is practically guaranteed. In the discussion section, we insist on this
aspect and the advantages that offuninorms have over other generalizations.

This paper is divided as follows. It begins with a preliminary section where concepts such
as neutrosophic sets, neutrosophic offsets, neutrosophic uninorms, among other useful aspects,
are discussed in order to develop the content of this article. The section on neutrosophic offuninorms is
devoted to exposing definitions and properties of these novel operators. Next, the applications section
is where the three possible areas of application of this theory are explained. We then finish with the
sections of discussion and conclusions.

2. Preliminaries

This section contains the main definitions necessary to develop the theory proposed in this
paper. We begin with Definitions 1 and 2, which introduce the neutrosophic sets. These sets are
characterized by an independent indeterminacy-membership function that models the unknown,
contradictions, inconsistencies in information and so on. Additionally, we have the classic membership
and non-membership functions, which are not necessarily dependent on each other.
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Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A Neutrosophic Set
A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function IA(x),
and a falsity-membership function FA(x). TA(x), IA(x), and FA(x) are real standard or nonstandard subsets of
]–0, 1+[. There is no restriction on the sum of TA(x), IA(x), and FA(x), thus, –0≤ inf TA(x)+ inf IA(x) + inf
FA(x) ≤ sup TA(x)+ sup IA(x) + sup FA(x)≤ 3+ (see [26]).

The neutrosophic sets are useful in their nonstandard form only in philosophy, in order to make a
distinction between absolute truth (truth in all possible worlds—according to Leibniz) and relative
truth (truth in at least one world), but not in technical applications, thus the Single-Valued Neutrosophic
Sets are defined, see Definition 2.

Definition 2. Let X be a space of points (objects), with a generic element in X denoted by x. A Single-Valued
Neutrosophic Set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). TA(x), IA(x), and FA(x) are elements of [0,1]. There is
no restriction on the sum of TA(x), IA(x), and FA(x), thus, 0 ≤TA(x)+IA(x) + FA(x) ≤ 3 (see [38]).

The domain of the single-valued neutrosophic sets does not surpass the limits of the interval [0,1].
This is a classical condition imposed in previous theories such as probability and fuzzy sets. Despite the
past, Smarandache in 2007 proposed the membership >1 and <0 and illustrated this proposal; see [39]
(pp. 92–93) and the example given in the introduction of this paper. In the following, the Single-Valued
Neutrosophic Oversets, Single-Valued Neutrosophic Undersets, and Single-Valued Neutrosophic Offsets are
formally defined.

Definition 3. Let X be a universe of discourse and the neutrosophic set A1⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element x∈X, with respect to the neutrosophic set A1:

T, I, F: X→[0, Ω], where Ω> 1 is called overlimit, T(x), I(x), F(x)∈[0, Ω]. A Single-Valued Neutrosophic
Overset A1 is defined as A1 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such that there exists at least one element in A1

that has at least one neutrosophic component that is bigger than 1, and no element has neutrosophic components
that are smaller than 0 (see [31]).

Definition 4. Let X be a universe of discourse and the neutrosophic set A2⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership, respectively,
of a generic element x∈X, with respect to the neutrosophic set A2:

T, I, F: X→[Ψ, 1], where Ψ< 0 is called underlimit, T(x), I(x), F(x)∈[Ψ, 1]. A Single-Valued Neutrosophic
Underset A2 is defined as A2 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such that there exists at least one element in A2

that has at least one neutrosophic component that is smaller than 0, and no element has neutrosophic components
that are bigger than 1 (see [31]).

Definition 5. Let X be a universe of discourse and the neutrosophic set A3⊂X. Let T(x), I(x), F(x) be the
functions that describe the degree of membership, indeterminate-membership, and non-membership respectively,
of a generic element x∈X, with respect to the neutrosophic set A3:

T, I, F: X→[Ψ, Ω], where Ψ< 0 < 1 <Ω, Ψ is called underlimit, while Ω is called overlimit, T(x), I(x),
F(x)∈[Ψ, Ω]. A Single-Valued Neutrosophic Offset A3 is defined as A3 =

{
(x, T(x), I(x), F(x)), x ∈ X

}
, such

that there exists at least one element in A3 that has at least one neutrosophic component that is bigger than 1,
and at least another neutrosophic component that is smaller than 0 (see [31]).

Let us note that the oversets, undersets, and offsets cover the three possible cases to characterize.
Now, the logical operations over these kinds of sets have to be redefined, in view that the classical ones
cannot always be straightforwardly extended to these domains. This is the case of complement given
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by Smarandache in [31], whereas the union and intersection definitions do not change with respect to
those of single-valued neutrosophic sets. This is summarized below:

Let X be a universe of discourse, A =
{
(x, 〈TA(x), IA(x), FA(x)〉), x ∈ X

}
and B ={

(x, 〈TB(x), IB(x), FB(x)〉), x ∈ X
}

be two single-valued neutrosophic oversets/undersets/offsets.
TA, IA, FA, TB, IB, FB: X→[Ψ, Ω], where Ψ≤ 0< 1 ≤Ω, Ψ is the underlimit, whilst Ω is the overlimit,

TA(x), IA(x), FA(x),TB(x), IB(x), FB(x)∈[Ψ, Ω]. Let us remark that the three cases are here comprised,
viz., overset when Ψ = 0 and Ω>1, underset when Ψ< 0 and Ω = 1, and offset when Ψ< 0 and Ω> 1.

Then, the main operators are defined as follows:
A∪ B =

{
(x, 〈max(TA(x), TB(x)), min(IA(x), IB(x)), min(FA(x), FB(x))〉), x ∈ X

}
is the union.

A ∩ B =
{
(x, 〈min(TA(x), TB(x)), max(IA(x), IB(x)), max(FA(x), FB(x))〉), x ∈ X

}
is

the intersection,
C(A) =

{
(x, 〈FA(x), Ψ + Ω − IA(x), TA(x)〉), x ∈ X

}
is the neutrosophic complement of the

neutrosophic set.
Let us remark that when Ψ = 0 and Ω = 1, the precedent operators convert in the classical

ones. With regard to logical operators, e.g., n-norms and n-conorms, their redefinitions in the offsets
framework are not so evident. Below, definitions of offnegation, neutrosophic component n-offnorm,
and neutrosophic component n-offconorm are provided.

One offnegation can be defined as in Equation (1).

¬

O〈T, I, F〉 = 〈 F, ΨI + ΩI − I, T〉 (1)

Definition 6. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.
The neutrosophic component n-offnorm Nn

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. Nn
O(c(x), Ψ) = Ψ, Nn

O(c(x), Ω) = c(x) (Overbounding Conditions),

ii. Nn
O(c(x), c(y)) = Nn

O(c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nn
O(c(x), c(z)) ≤ Nn

O(c(y), c(z)) (Monotonicity),

iv. Nn
O

(
Nn

O(c(x), c(y)), c(z)
)
= Nn

O

(
c(x), Nn

O(c(y), c(z))
)

(Associativity).

To simplify the notation, sometimes we use 〈T1, I1, F1〉
∧

O
〈T2, I2, F2〉 =

〈T1
∧

O
T2, I1

∨

O
I2, F1

∨

O
F2〉 instead of Nn

O(·, ·).

Let us remark that the definition of the neutrosophic component n-offnorm is valid for every one
of the components, thus, we have to apply it three times. Also, Definition 6 contains the definition of
n-norm when Ψ = 0 and Ω = 1.

Proposition 1. Let Nn
O(·, ·) be a neutrosophic component n-offnorm, then, for any elements x, y ∈MO we have

Nn
O(c(x), c(y)) ≤ min(c(x), c(y)).

Proof. Because of the monotonicity of the neutrosophic component n-offnorm and one of the
overbounding conditions, we have Nn

O(c(x), c(y)) ≤ Nn
O(c(x), Ω) = c(x), hence Nn

O(c(x), c(y)) ≤ c(x)
and similarly Nn

O(c(x), c(y)) ≤ c(y) can be proved, therefore, Nn
O(c(x), c(y)) ≤ min(c(x), c(y)). �

See that Proposition 1 maintains this property of the n-norms. Likewise to the definition of
the neutrosophic component n-offnorm, in Definition 7 it is described the neutrosophic component
n-offconorm.
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Definition 7. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω ≥1.
The neutrosophic component n-offconorm Nco

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. Nco
O (c(x), Ω) = Ω, Nco

O (c(x), Ψ) = c(x) (Overbounding Conditions),

ii. Nco
O (c(x), c(y)) = Nco

O (c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nco
O (c(x), c(z)) ≤ Nco

O (c(y), c(z)) (Monotonicity),

iv. Nco
O

(
Nco

O (c(x), c(y)), c(z)
)
= Nco

O

(
c(x), Nco

O (c(y), c(z))
)

(Associativity).

To simplify the notation sometimes we use 〈T1, I1, F1〉
∨

O
〈T2, I2, F2〉 =

〈T1
∨

O
T2, I1

∧

O
I2, F1

∧

O
F2〉 instead of Nco

O (·, ·).

Proposition 2. Let Nco
O (·, ·) be a neutrosophic component n-offconorm, then, for any elements x, y∈MO we have

Nco
O (c(x), c(y)) ≥ max(c(x), c(y)).

Proof. The proof is equivalent to the proof of Proposition 1. �

In this paper, we use the notion of lattice, based on the poset denoted by ≤O, where 〈T1, I1, F1〉 ≤O

〈T2, I2, F2〉 if and only if T2 ≥ T1, I2 ≤ I1 and F2 ≤ F1, where the infimum and the supremum of the set
are 〈Ψ, Ω, Ω〉 and 〈Ω, Ψ, Ψ〉, respectively.

One property that is preserved of n-norms is that the minimum is the biggest neutrosophic
component n-offnorm for TO, as it is demonstrated in Proposition 1. Proposition 2 proved that the
maximum is the smallest neutrosophic component n-offconorm for IO and FO when we consider ≤O.

Evidently, the minimum is a neutrosophic component n-offnorm and the maximum is a
neutrosophic component n-offconorm; see Example 1.

Example 1. An example of a pair offAND/offOR is, c(x)
∧

ZO
c(y) = min(c(x), c(y)) and c(x)

∨

ZO
c(y) =

max(c(x), c(y)), respectively.

Example 2. A pair of offAND/offOR is, c(x)
∧

LO
c(y) = max(Ψ, c(x) + c(y) −Ω) and c(x)

∨

LO
c(y) =

min(Ω, c(x) + c(y)), respectively.

Example 2 extends the Łukasiewicz t-norm and t-conorm to the neutrosophic offsets. Let us
remark that the simple product t-norm and its dual t-conorm cannot be extended to this new domain.

Finally, we recall the definition of neutrosophic uninorms that appeared in [25], see Definition 8.

Definition 8. A neutrosophic uninorm UN is a commutative, increasing, and associative
mapping, UN : (]−0, 1+[×]−0, 1+[×]−0, 1+[)2

→ ]−0, 1+[×]−0, 1+[×]−0, 1+[ , such that
UN

(
x〈Tx, Ix, Fx〉, y〈Ty, Iy, Fy〉

)
= 〈UNT(x, y), UNI(x, y), UNF(x, y)〉, where UNT means the degree of

membership, UNI the degree of indeterminacy, and UNF the degree of non-membership of both x and y. Additionally, there
exists a neutral element e ∈ ]−0, 1+[×]−0, 1+[×]−0, 1+[, where ∀x ∈ ]−0, 1+[×]−0, 1+[×]−0, 1+[, UN(e, x) = x.

Let us observe that this definition can be restricted to single-valued neutrosophic sets. Neutrosophic
uninorms generalize n-norms, n-conorms, uninorms in L*-fuzzy set theory, and fuzzy uninorms.
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3. On Neutrosophic Offuninorms

This section contains the core of the present paper. It is devoted to exposing the definitions and
properties of the neutrosophic offuninorms.

Definition 9. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.
The neutrosophic component n-offuninorm Nu

O : [Ψ, Ω]2 → [Ψ, Ω] satisfies the following conditions for any
elements x, y, and z ∈MO:

i. There exists c(e)∈MO, such that Nu
O(c(x), c(e)) = c(x) (Identity),

ii. Nu
O(c(x), c(y)) = Nu

O(c(y), c(x)) (Commutativity),

iii. If c(x) ≤ c(y) then Nu
O(c(x), c(z)) ≤ Nu

O(c(y), c(z)) (Monotonicity),

iv. Nu
O

(
Nu

O(c(x), c(y)), c(z)
)
= Nu

O

(
c(x), Nu

O(c(y), c(z))
)

(Associativity).

The definition of a neutrosophic uninorm is an especial case of neutrosophic offuninorm when
Ψ = 0 and Ω = 1 (see Definition 8) and, additionally, we are dealing with single-valued neutrosophic sets.

It is easy to prove that the neutral element e is unique.
Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1. Let us define

four useful functions, ϕ1 : [Ψ, c(e)]→ [Ψ, Ω] , ϕ−1
1 : [Ψ, Ω]→ [Ψ, c(e)] , ϕ2 : [c(e), Ω]→ [Ψ, Ω] ,

and ϕ−1
2 : [Ψ, Ω]→ [c(e), Ω], defined in Equations (2)–(5), respectively.

ϕ1(c(x)) =
(

Ω −Ψ
c(e) −Ψ

)
(c(x) −Ψ) + Ψ (2)

ϕ−1
1 (c(x)) =

(
c(e) −Ψ
Ω −Ψ

)
(c(x) −Ψ) + Ψ (3)

ϕ2(c(x)) =
(

Ω −Ψ
Ω − c(e)

)
(c(x) − c(e)) + Ψ (4)

ϕ−1
2 (c(x)) =

(
Ω − c(e)
Ω −Ψ

)
(c(x) −Ψ) + c(e) (5)

where, the superscript –1 means it is an inverse mapping. If the condition c(e) ∈ (Ψ, Ω) is fulfilled,
then the degenerate cases Ω = Ψ, c(e) = Ψ and c(e) = Ω are excluded. Therefore,ϕ1(c(x)) andϕ2(c(x)) are
well-defined non-constant linear functions. Thus, they are bijective and have inverse mappings defined
in Equations (3) and (5), respectively, in the sense that for c(x) ∈ [Ψ, Ω], then ϕ1

(
ϕ−1

1 (c(x))
)
= c(x)

and ϕ2
(
ϕ−1

2 (c(x))
)
= c(x). Whereas, for c(x) ∈ [Ψ, c(e)], we have ϕ−1

1 (ϕ1(c(x))) = c(x) and for
c(x) ∈ [c(e), Ω], ϕ−1

2 (ϕ2(c(x))) = c(x). These properties can be easily verified. Also, it is trivial that
they are non-decreasing mappings.

Additionally, let UC, UD : [Ψ, Ω]2 → [Ψ, Ω] be two operators defined by Equations (6) and
(7), respectively,

UC(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

O
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

O
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

(6)
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UD(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

O
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

O
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

(7)

where,
∧

O
denotes a neutrosophic component n-offnorm and

∨

O
denotes a neutrosophic component

n-offconorm.

Lemma 1. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1. Given
∧

O
a neutrosophic component n-offnorm and

∨

O
a neutrosophic component n-offconorm, let us consider

UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations (6) and (7) for c(e) ∈ (Ψ, Ω). They are
commutative, non-decreasing, and c(e) is the neutral element.

Proof.

i. Commutativity is evidently satisfied due to the commutativity of
∧

O
,
∨

O
, min, and max.

ii. ϕ1(·), ϕ−1
1 (·), ϕ2(·), ϕ−1

2 (·),
∧

O
,
∨

O
, min and max are non-decreasing mappings, thus both

UC(·, ·) and UD(·, ·) satisfy monotonicity.
iii. To prove c(e) is the neutral element, we have two cases, which are the following:

• If c(x) ∈ [Ψ, c(e)] , then, UC(c(e), c(x)) = UD(c(e), c(x)) = ϕ−1
1

(
ϕ1(c(e))

∧

O
ϕ1(c(x))

)
=

ϕ−1
1

(
Ω
∧

O
ϕ1(c(x))

)
= ϕ−1

1 (ϕ1(c(x))) = c(x).

• If c(x) ∈ [c(e), Ω] , then UC(c(e), c(x)) = UD(c(e), c(x)) =

ϕ−1
2

(
ϕ2(c(e))

∨

O
ϕ2(c(x))

)
ϕ−1

2

(
Ψ
∨

O
ϕ2(c(x))

)
= ϕ−1

2 (ϕ2(c(x))) = c(x).

Therefore, identity is satisfied. �

Lemma 2. Let c be a neutrosophic component (TO, IO, or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and Ω≥1.

Given
∧

O
a neutrosophic component n-offnorm and

∨

O
a neutrosophic component n-offconorm, let us

consider UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations (6) and (7) for c(e) ∈ (Ψ, Ω).
They are associative.

Proof. Four cases are possible:

i. Let c(x), c(y), c(z) ∈ [Ψ, c(e)] , then UC(UC(c(x), c(y)), c(z)) =

ϕ−1
1

(
ϕ1

(
ϕ−1

1

(
ϕ1(c(x))

∧

O
ϕ1(c(y))

))
∧

O
ϕ1(c(z))

)
= ϕ−1

1

([
ϕ1(c(x))

∧

O
ϕ1(c(y))

]
∧

O
ϕ1(c(z))

)
= ϕ−1

1

(
ϕ1(c(x))

∧

O

[
ϕ1(c(y))

∧

O
ϕ1(c(z))

])
= ϕ−1

1

(
ϕ1(c(x))

∧

O

[
ϕ1

(
ϕ−1

1

[
ϕ1(c(y))

∧

O
ϕ1(c(z))

])])
=

ϕ−1
1

(
ϕ1(c(x))

∧

O
ϕ1(UC(c(y), c(z)))

)
= UC(c(x), UC(c(y), c(z))).

ii. Let c(x), c(y), c(z) ∈ [c(e), Ω] , UC(UC(c(x), c(y)), c(z)) =

ϕ−1
2

(
ϕ2

(
ϕ−1

2

(
ϕ2(c(x))

∨

O
ϕ2(c(y))

))
∨

O
ϕ2(c(z))

)
= ϕ−1

2

([
ϕ2(c(x))

∨

O
ϕ2(c(y))

]
∨

O
ϕ2(c(z))

)
=
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ϕ−1
2

(
ϕ2(c(x))

∨

O

[
ϕ2(c(y))

∨

O
ϕ2(c(z))

])
= ϕ−1

2

(
ϕ2(c(x))

∨

O

[
ϕ2

(
ϕ−1

2

[
ϕ2(c(y))

∨

O
ϕ2(c(z))

])])
=

ϕ−1
2

(
ϕ2(c(x))

∨

O
ϕ2(UC(c(y), c(z)))

)
= UC(c(x), UC(c(y), c(z))). These proofs are also valid for UD.

iii. Let c(x), c(y) ∈ [Ψ, c(e)] and c(z) ∈ [c(e), Ω] , UC(UC(c(x), c(y)), c(z)) = min(UC(c(x), c(y)), c(z)) =

UC(c(x), c(y)). Also, we have UC(c(x), UC(c(y), c(z))) = UC(c(x), min(c(y), c(z))) = UC(c(x), c(y)),
then, it is associative.

iv. Let c(x), c(y) ∈ [c(e), Ω] and c(z) ∈ [Ψ, c(e)] , then UC(UC(c(x), c(y)), c(z)) =

min(UC(c(x), c(y)), c(z)) = c(z). In addition, UC(c(x), (UC(c(y), c(z)))) =

UC(c(x), min(c(y), c(z))) = UC(c(x), c(z)) = min(c(x), c(z)) = c(z).

Thus, UC satisfies the associativity.
Similarly, associativity of UD can be proved.

Let us remark that we applied the properties, c(x)
∧

O
c(y) ≤ min(c(x), c(y)) and c(x)

∨

O
c(y) ≥

max(c(x), c(y)), as well as UC(c(x), c(y)) ≤ c(e) if c(x), c(y) ∈ [Ψ, c(e)] and UC(c(x), c(y)) ≥ c(e) if
c(x), c(y) ∈ [c(e), Ω] . �

Proposition 3. Let c be a neutrosophic component (TO, IO, or FO). c: MO→[Ψ, Ω], where Ψ≤ 0 and

Ω≥1. Given
∧

O
a neutrosophic component n-offnorm and

∨

O
a neutrosophic component n-offconorm, let us

consider UC(c(x), c(y)) and UD(c(x), c(y)) the operators defined in Equations 6 and 7 for c(e) ∈ (Ψ, Ω).
Then, UC(c(x), c(y)) and UD(c(x), c(y)) are neutrosophic component n-offuninorms and they satisfy the
conditions UC(Ψ, Ω) = Ψ and UD(Ψ, Ω) = Ω, i.e., UC is a conjunctive neutrosophic component
n-offuninorm, and UD is a disjunctive neutrosophic component n-offuninorm.

Proof. Since Lemma 1, they are commutative, non-decreasing operators, and c(e) is the neutral element.
Since Lemma 2, they are associative operators. Moreover, it is easy to verify that UC(Ψ, Ω) = Ψ and
UD(Ψ, Ω) = Ω. �

Example 3. Two neutrosophic component n-offuninorms can be defined as:

UZC(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

ZO
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

ZO
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

UZD(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

ZO
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

ZO
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

where
∧

ZO
and

∨

ZO
were defined in the Example 1; c(e)∈(Ψ, Ω).

Then two examples of n-offuninorms are:U1(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈UZC(T1, T2), UZD(I1, I2), UZD(F1, F2)〉 and U2(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈UZD(T1, T2), UZC(I1, I2), UZC(F1, F2)〉.
They satisfy U1(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ψ, Ω, Ω〉 and U2(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ω, Ψ, Ψ〉.
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Example 4. Two neutrosophic component n-offuninorms can be defined as

ULC(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

LO
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

LO
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

min(c(x), c(y)), otherwise

ULD(c(x), c(y)) =


ϕ−1

1

(
ϕ1(c(x))

∧

LO
ϕ1(c(y))

)
, if c(x), c(y) ∈ [Ψ, c(e)]

ϕ−1
2

(
ϕ2(c(x))

∨

LO
ϕ2(c(y))

)
, if c(x), c(y) ∈ [c(e), Ω]

max(c(x), c(y)), otherwise

where
∧

LO
and

∨

LO
were defined in the Example 2; c(e)∈(Ψ, Ω).

Now, two examples of n-offuninorms are:U3(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈ULC(T1, T2), ULD(I1, I2), ULD(F1, F2)〉 and U4(〈T1, I1, F1〉, 〈T2, I2, F2〉) =

〈ULD(T1, T2), ULC(I1, I2), ULC(F1, F2)〉.
They satisfy, U3(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ψ, Ω, Ω〉 and U4(〈Ψ, Ω, Ω〉, 〈Ω, Ψ, Ψ〉) = 〈Ω, Ψ, Ψ〉.

Remark 1. The neutrosophic components n-offuninorms defined by Equations (6) and (7) are idempotent, i.e.,
Nn

O(c(x), c(x)) = c(x), if and only if they are defined from idempotent neutrosophic component n-offnorms
and n-offconorms. Moreover, they are Archimedean, i.e., they satisfy both, Nu

O(c(x), c(x)) <O c(x) when
Ψ < c(x) < c(e) and c(x) <O Nu

O(c(x), c(x)) when c(e) < c(x) < Ω, if and only if the neutrosophic component
n-offnorm and n-offconorm are Archimedean. Let us observe that <O is the order < defined in the real line when
c(x) is TO(x) and it is > when c(x) is IO(x) or FO(x).

Proposition 4. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ, Ω], where Ψ< 0 and Ω> 1, and let
a neutrosophic component n-offuninormNu

O : [Ψ, Ω]2 → [Ψ, Ω] . Then, for every x, y ∈MO, a neutrosophic
component n-offnorm and a neutrosophic component n-offconorm are defined by Equations (8) and (9).

c(x)
∧

UO
c(y) = ϕ1

(
Nu

O

(
ϕ−1

1 (c (x)),ϕ−1
1 (c(y))

))
(8)

c(x)
∨

UO
c(y) = ϕ2

(
Nu

O

(
ϕ−1

2 (c(x)),ϕ−1
2 (c(y))

))
(9)

Proof. Evidently, both operators are commutative, since Nu
O is. Also, it is non-decreasing since Nu

O and
the functions in Equations (2)–(5) are. They are associative because of the associativity of Nu

O.

It is easy to verify that the overbounding conditions Ω
∧

UO
c(y) = c(y) and Ψ

∨

UO
c(y) = c(y)

are also satisfied.

Additionally, we have Ψ
∧

UO
c(y) = ϕ1

(
Nu

O

(
ϕ−1

1 (Ψ),ϕ−1
1 (c(y))

))
= ϕ1

(
Nu

O

(
Ψ,ϕ−1

1 (c(y))
))
≤

ϕ1
(
Nu

O(Ψ, c(e))
)

= ϕ1(Ψ) = Ψ, then, Ψ
∧

UO
c(y) = Ψ; also, Ω

∨

UO
c(y) =

ϕ2
(
Nu

O

(
ϕ−1

2 (Ω),ϕ−1
2 (c(y))

))
= ϕ2

(
Nu

O

(
Ω,ϕ−1

2 (c(y))
))
≥ ϕ2

(
Nu

O

(
Ω,ϕ−1

2 (Ψ)
))

= ϕ2
(
Nu

O(Ω, c(e))
)
=

ϕ2(Ω) = Ω, then, Ω
∨

UO
c(y) = Ω. �
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Proposition 5. Let (TO, IO, or FO), cO: MO→[Ψ, Ω] and (T, I, or F), cN: MN→[0,1] be a neutrosophic
component n-offset and a neutrosophic component, respectively. There exists a bijective mapping such that every
neutrosophic component n-offuninormis transformed into a neutrosophic component uninorm and vice versa.

Proof. Let us define the function ϕ3 : [Ψ, Ω]→ [0, 1] and its inverse ϕ−1
3 : [0, 1]→ [Ψ, Ω] , expressed

in Equations (10) and (11), respectively.

ϕ3(c(x)) =
c(x) −Ψ
Ω −Ψ

(10)

ϕ−1
3 (c(x)) = (Ω −Ψ)c(x) + Ψ (11)

Evidently, they are increasing bijective mappings.
If ÛN(·, ·) is a neutrosophic uninorm, then we can define the neutrosophic component n-offuninorm

N̂
u
O(·, ·) as follows:

N̂
u
O(cO(x), cO(y)) = ϕ−1

3

(
ÛN(ϕ3(cO(x)),ϕ3(cO(y)))

)
Conversely, if we have N̂

u
O(·, ·), we can define ÛN(·, ·) as follows:

ÛN(cN(x), cN(y)) = ϕ3
(

N̂
u
O

(
ϕ−1

3 (cN(x)),ϕ−1
3 (cN(y))

))
Then, it is easy to prove that N̂

u
O(cO(x), cO(y)) is a neutrosophic component n-offuninorm

and ÛN(cN(x), cN(y)) is a neutrosophic component uninorm. Moreover, the relationship between
the components of their neutral elements cO(eO) and cN(eN) is cN(eN) = ϕ3(cO(eO)) and thus
cO(eO) = ϕ−1

3 (cN(eN)). �

Let us remark that we maintain the definition of inverse mapping that we explained in Equations (3)
and (5).

In agreement with Proposition 5, many predefined neutrosophic uninorms can be used to define
n-offuninorms. In turn, fuzzy uninorms can be used to define neutrosophic uninorms, thus, it is simply
necessary to find examples in the field of fuzzy uninorms; see further Section 4.1. First, let us make
reference to some properties of n-offuninorms.

Proposition 6. Let c be a neutrosophic component (TO, IO or FO). c: MO→[Ψ,
Ω], where Ψ≤ 0 and Ω≥1. Given the neutrosophic component n-offuninorm
Nu

O : [Ψ, Ω]2 → [Ψ, Ω] and the offuninorm UO : [Ψ, Ω]3 × [Ψ, Ω]3 → [Ψ, Ω]3

defined from Nu
O(·, ·), UO(〈TO(x), IO(x), FO(x)〉, 〈TO(y), IO(y), FO(y)〉) =

〈Nu
O(TO(x), TO(y)), Nu

O(IO(x), IO(y)), Nu
O(FO(x), FO(y))〉, satisfies the following properties for

any x = 〈TO(x), IO(x), FO(x)〉, denoting ΨO = 〈Ψ, Ω, Ω〉 and ΩO = 〈Ω, Ψ, Ψ〉:

1. UO(ΨO, ΨO) = ΨO and UO(ΩO, ΩO) = ΩO.
2. If c(e),Ψ, Ω, then, UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x)
3. If c(e),Ψ,Ω, then either UO(ΨO, ΩO) = ΨO or UO(ΨO, ΩO) = ΩO or UO(ΨO, ΩO) is≤O-incomparable

respect to e = 〈TO(e), IO(e), FO(e)〉.
4. If there exists y = 〈TO(y), IO(y), FO(y)〉, such that either x ≤O e ≤O y or y ≤O e ≤O x, then,

min(x, y) ≤O UO(x, y) ≤O max(x, y).

Proof.

1. Since Nu
O(Ψ, c(e)) = Ψ and Nu

O(Ω, c(e)) = Ω and considering that Nu
O(Ψ, ·) and Nu

O(Ω, ·) are
non-decreasing, the result is trivial. Then, UO(ΨO, ΨO) = ΨO and UO(ΩO, ΩO) = ΩO.

2. First suppose c(x) ≤ c(e), then Nu
O(Ψ, c(x)) ≤ Nu

O(Ψ, c(e)) = Ψ, therefore Nu
O(Ψ, c(x)) =

Ψ, thus Nu
O(Ψ, Ω) = Nu

O

(
Nu

O(Ψ, c(x)), Ω
)
= Nu

O

(
Ω, Nu

O(Ψ, c(x))
)
= Nu

O

(
Nu

O(Ω, Ψ), c(x)
)
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= Nu
O

(
Nu

O(Ψ, Ω), c(x)
)
. See that we applied the commutativity and associativity of

Nu
O(·, ·). Now, suppose c(e) ≤ c(x), then Nu

O(c(x), Ω) ≥ Nu
O(c(x), Ω) = Ω, therefore,

Nu
O(c(x), Ω) = Ω, and Nu

O(Ψ, Ω) = Nu
O

(
Ψ, Nu

O(c(x), Ω)
)

= Nu
O

(
Nu

O(Ω, Ψ), c(x)
)
.

Suppose x and e = TO(e), IO(e), FO(e) are ≤O-incomparable, i.e., x �O e and

e �O x. Then,
x
∧

O
e = min(TO(x), TO(e)), max(IO(x), IO(e)), max(FO(x), FO(e)) ≤O x

≤O max(TO(x), TO(e)), min(IO(x), IO(e)), min(FO(x), FO(e)) = x
∨

O
e

Then,

according to the previous results we have UO(ΨO, ΩO) = UO

(
UO(ΨO, ΩO), x

∧

O
e
)

=

UO

(
UO(ΨO, ΩO), x

∨

O
e
)
, thus, for the increasing condition of UO(·, ·) it is satisfied

UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x). Then, we proved UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), x).
3. Suppose UO(ΨO, ΩO) is ≤O-comparable respect to e, then, if UO(ΨO, ΩO) ≤O e since the previous

proof UO(ΨO, ΩO) = UO(UO(ΨO, ΩO), ΨO) = ΨO. If e ≤O UO(ΨO, ΩO) then UO(ΨO, ΩO) =

UO(UO(ΨO, ΩO), ΩO) = ΩO.
4. Let us assume without loss of generality that x ≤O e ≤O y, then, x = UO(x, e) ≤O UO(x, y) ≤O

UO(e, y) = y. �

When c1: MO→[Ψ1, Ω1] and c2: MO→[Ψ2, Ω2] are two neutrosophic components, such that
Ψ1,Ψ2 or Ω1,Ω2, satisfying that at least one of Ψ1 and Ψ2 is smaller than 0, or at least one of Ω1 and
Ω2 is bigger than 1, then, a neutrosophic component n-offuninorm aggregates both of them, according
to the interpretation we have to obtain.

For example, if c1: MO→[–1,1] and c2: MO→[0,1], and the first one means the relationship
between two variables like the linear regression coefficient and the second one represents a
classical probability, if we need to obtain the aggregation in [–1,1] in the framework of variable
relationships, then after transforming c2 : MO → [0, 1] to ĉ2 : MO → [−1, 1] , we aggregate c1 and ĉ2

using Nu
O : [−1, 1]2 → [−1, 1] , only in the case that it makes sense to rescale c2, otherwise, because

[0,1] ⊂[–1,1], we can apply Nu
O : [−1, 1]2 → [−1, 1] over c1 and c2.

However, if we need to obtain a classical probabilistic interpretation, then we aggregate c2:
MO→[0,1] and ĉ1 : MO → [0, 1] , where ĉ1 is a transformation obtained from c1: MO→[−1, 1].

Example 5. Let us revisit Example 3 with U1 : [−0.7, 1.2]3 × [−0.7, 1.2]3 → [−0.7, 1.2]3 and neutral
element e = 〈−0.5, 0, 0〉, defined as U1(〈T1, I1, F1〉, 〈T2, I2, F2〉) = 〈UZC(T1, T2), UZD(I1, I2), UZD(F1, F2)〉.
Then, we have:

ULC(TO(x), TO(y)) =
{

max(TO(x), TO(y)), if TO(x), TO(y) ∈ [−0.5, 1.2]
min(TO(x), TO(y)), otherwise

ULD(IO(x), IO(y)) =
{

min(IO(x), IO(y)), if IO(x), IO(y) ∈ [−0.7, 0]
max(IO(x), IO(y)), otherwise

ULD(FO(x), FO(y)) =
{

min(FO(x), FO(y)), if FO(x), FO(y) ∈ [−0.7, 0]
max(FO(x), FO(y)), otherwise

Let us aggregate the elements of A =
{
(x1, 〈1.2, 0.4,−0.1〉), (x2, 〈0.2, 0.3,−0.7〉)

}
by using U1(·, ·),

then, U1((x1, 〈1.2, 0.4,−0.1〉), (x2, 〈0.2, 0.3,−0.7〉)) = 〈ULC(1.2, 0.2), ULD(0.4, 0.3), ULD(−0.1,−0.7)〉 =
〈1.2, 0.4,−0.7〉.
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4. Applications

In the following, we illustrate the applicability of the present investigation aided by three areas
of application.

4.1. N-Offuninorms and MYCIN

Let us start with the parameterized Silvert uninorms, see [40]:

uNλ(cN(x), cN(y)) =

 λcN(x)cN(y)
λcN(x)cN(y)+(1−cN(x))(1−cN(y)) , if (cN(x), cN(y)) ∈ [0, 1]2\

{
(0, 1), (1, 0)

}
0, otherwise

where λ > 0 and cN(eλ) = 1
λ+1 . To convert this family to the equivalent one defined into

[−1, 1] we have to apply the Equations in Proposition 5. Then, it is obtained uOλ(cO(x), cO(y)) = (λ−1)(1+cO(x)cO(y))+(λ+1)(cO(x)+cO(y))
(λ+1)(1+cO(x)cO(y))+(λ−1)(cO(x)+cO(y))

, if (cO(x), cO(y)) ∈ [−1, 1]2\
{
(−1, 1), (1, −1)

}
0, otherwise

where cO(eλ) = 1−λ
1+λ .

Let us note that lim
λ→0+

cO(eλ) = 1 and lim
λ→+∞

cO(eλ) = −1. Therefore, the closer λ approximates

to 0, the closer uOλ(·, ·) performs like a neutrosophic component n-offnorm; whereas, the greater λ,
the closer uOλ(·, ·) performs like a neutrosophic component n-offconorm.

An additional consequence of these assertions is that inequalities 0<λ1<λ2 imply
uOλ1(cO(x), cO(y)) < uOλ2(cO(x), cO(y)).

Applying Equations (2)–(5) to the conditions of the present example, the following transformations
are obtained:

ϕ̂1λ(cO(x)) = (1 + λ)cO(x) + λ, ϕ̂−1
1λ(cO(x)) =

cO(x)−λ
1+λ , ϕ̂2λ(cO(x)) =

(1+λ)cO(x)−1
λ and

ϕ̂−1
2λ(cO(x)) =

λcO(x)+1
1+λ .

Then, a neutrosophic component n-offnorm and a neutrosophic component n-offconorm are
defined from Equations (8) and (9), as follows:

c(x)
∧

λO
c(y) = ϕ̂1λ

(
uOλ

(
ϕ̂−1

1λ(c(x)), ϕ̂
−1
1λ(c(y))

))
and c(x)

∨

λO
c(y) =

ϕ̂2λ
(
uOλ

(
ϕ̂−1

2λ(c(x)), ϕ̂
−1
2λ(c(y))

))
, respectively.

Other properties of uOλ(·, ·) are the following:

1. uOλ(cO(x),−cO(x)) =
{ λ−1

1+λ , if cO(x) ∈ (−1, 1)
−1, otherwise

2. uOλ(·, ·) is Archimedean. To prove it, given cO(x) < cO(eλ), then uOλ(cO(x), cO(x)) ≤
uOλ(cO(x), cO(eλ)) = cO(x) and if cO(x) > cO(eλ), uOλ(cO(x), cO(x)) ≥ uOλ(cO(x), cO(eλ)) =

cO(x).

To prove those inequalities are strict, let us suppose the equation

uOλ(cO(x), cO(x)) =
(λ−1)(1+c2

O(x))+2(λ+1)cO(x)

(λ+1)(1+c2
O(x))+2(λ−1)cO(x)

= cO(x) holds, or equivalently (λ− 1)
(
1 + c2

O(x)
)
+

2(λ+ 1)cO(x) = cO(x)
[
(λ+ 1)

(
1 + c2

O(x)
)
+ 2(λ− 1)cO(x)

]
, thus, (λ− 1)

(
1− c2

O(x)
)
+

(λ+ 1)cO(x)
(
1− c2

O(x)
)
= 0 and finally,

(
1− c2

O(x)
)
(λ− 1 + (λ+ 1)cO(x)) = 0, hence the solutions are

cO(x) = ±1 and cO(x) = cO(eλ). Then, we conclude it is Archimedean.
A remarkable case is λ = 1, which converts into Equation (12).

uO1(cO(x), cO(y)) =

 cO(x)+cO(y)
1+cO(x)cO(y) , if (cO(x), cO(y)) ∈ [−1, 1]2\

{
(−1, 1), (1, −1)

}
−1, otherwise

(12)

uO1(·, ·) is the function called PROSPECTOR which aggregates hypothesis values or Certainty
Factors (CF) related to MYCIN, the well-known medical Expert System; nevertheless, the function
used in MYCIN is undefined for the arguments (−1, 1) and (1, −1), see [32–34]. Summarizing, we can
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say that PROSPECTOR is a neutrosophic component n-offuninorm, such that cO(e1) = 0, which is an
effective and widely used aggregation operator.

uO1(·, ·) means the combination of the CFs of two independent experts about the hypothesis
H. CF = –1.0 means expert has 100% evidence against H and CF = 1.0 means he or she has 100%
evidence to support H. The smaller the CF, the greater the evidence against H; the larger the CF,
the greater the evidence supporting H; whereas evidence with degree close to 0 means a borderline
degree of evidence. Here, uO1(cO(x),−cO(x)) = 0, where uO1(−1, 1) = uO1(1,−1) = −1 for meaning
that the 100% contradiction is assessed as 100% against H. The original uO1(·, ·) in [32] accepts they
are undefined.

Another function is the Modified Combining Function C(x,y), see [34], defined as

C(x, y) =


x + y(1− x), if min(x, y) ≥ 0

x+y
1−min(|x|,|y|)

, if min(x, y) < 0 < max(x, y)

x + y(1 + x), if max(x, y) ≤ 0

The components n-offnorm and n-offconorm obtained from the PROSPECTOR are the following:

cO(x)
∧

1O
cO(y) =

4(cO(x)+cO(y)−2)
4+(cO(x)−1)(cO(y)−1) + 1 and cO(x)

∨

1O
cO(y) =

4(cO(x)+cO(y)+2)
4+(cO(x)+1)(cO(y)+1) − 1,

respectively, see Figures 1 and 2.
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Hitherto we mostly calculated on neutrosophic components, nevertheless n-offuninorms
have to be defined for the three components altogether. For example, given x, y ∈ [−1, 1]3,
UNλ(x, y) = 〈uOλ1(TO(x), TO(y)), uOλ2(IO(x), IO(y)), uOλ3(FO(x), FO(y))〉 is an n-offuninorm, which
evidently it is not conjunctive, neither is it disjunctive, see that UNλ(〈−1, 1, 1〉, 〈1,−1,−1〉) =

〈−1,−1,−1〉.
Conjunctive and disjunctive neutrosophic component n-offuninorms were illustrated in Example

3; see also Example 5. Example 6 is a hypothetical example to explain the use of this theory in a
real-life situation.

Example 6. Three physicians, denoted by A, B, and C, have to emit a criterion about a patient’s disease which
suffers from somewhat confusing symptoms. They agree that the Certainty Factor is the better way to express
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their opinions. They use single-valued neutrosophic offsets, instead of a simple CF to increase the accuracy of
the criteria.

After a discussion, they are convinced that it is most likely that the patient has either a thyroid
disease or an infectious one. The treatment for each disease is different each other. Therefore, they have
two hypotheses; one is HT which means the patient has thyroid disease and HI that patient has an
infectious disease.
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Physician A thinks that the probability they are dealing with a thyroid disease is AT = <−0.6, 0.4,
0.6> and that it is an infectious disease is AI = <0.8, −0.5, −0.8>, thus, A is 60% against HT and 40%
undecided about it; however, A is 80% in favor of HI and 50% sure about it.

Similarly, we have that B’s criteria are, BT = <−0.1, −0.2,0.1> and BI = <0.1, 0.8, −0.1>, whereas C’s
criteria are CT = <0.7, 0.1, −0.2> and CI = <−0.6, −0.3, 0.7>.

To decide what is the strongest hypothesis, HT or HI, they select the well-known PROSPECTOR
function used in MYCIN (see Equation (12)) for each component.

Thus, for HT we have an aggregated value equal to <0.073684, 0.31064, 0.53043> and for HI it
is <0.46667, 0.23529, −0.32>, therefore, evidently, the infectious disease is the strongest hypothesis,
because 〈0.073684, 0.31064, 0.53043〉 <O 〈0.46667, 0.23529, −0.32〉.

Despite we proved in Proposition 5 that neutrosophic uninorms are mathematically equivalent to
offuninorms, it is worthwhile to remark that the reason for using an interval different of [0, 1] is that it
could be useful to model real-life problems. The present example is a good one to explain that reason.
The advantages arise from the accuracy and compactness of an expert’s information. In this example,
from an expert’s viewpoint, it is easier to express opinions in the scale [−1, 1] with the aforementioned
meaning than in the scale [0, 1], which is less clear. Information compactness is given because of only a
single offset is semantically equivalent to at least two neutrosophic sets.

Additionally, because of the significance of functions like uO1(·, ·) and C(x,y), which were used as
aggregation functions in that well-known expert system, some authors have extended the domain of
fuzzy uninorms to any interval [a, b], not necessarily restricted to a = 0 and b = 1; see [33,34].

This fact supports the usefulness of the present work, where for the first time the precedent ideas
on extending the truth values beyond the scope of [0, 1] naturally associate with the offset concept
maintaining the original definitions of the aggregation functions used in MYCIN.

Another powerful reason is the applicability of uO1(·, ·) and C(x,y), and hence of the fuzzy
uninorms defined in [a, b], as threshold functions of artificial neurons in Artificial Neural Networks,
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as well as to Fuzzy Cognitive Maps, which are used in fields like decision making, forecasting, and
strategic planning [33].

Such applications of uninorms in the fuzzy domain can be explored in the framework of
neutrosophy theory, e.g., in Artificial Neural Networks based on neutrosophic sets, in Neutrosophic
Cognitive Maps, among others [36,37].

4.2. N-Offuninorms and Implicators

Fuzzy uninorms are used to define implicators (see [41], pp. 151–160). This application was
extended to neutrosophic uninorms ([25]). To extend the implication operator in the offuninorm
framework, first, we need to consider the notion of offimplication, which has been defined symbolically.

The Symbolic Neutrosophic Offlogic Operators or briefly the Symbolic Neutrosophic Offoperators extend
the Symbolic Neutrosophic Logic Operators, where every one of T, I, F has an under and an over
version (see [31], pp. 132–139).

TO = Over Truth,
TU = Under Truth;
IO = Over Indeterminacy,
IU = Under Indeterminacy;
FO = Over Falsehood,
FU = Under Falsehood.
Let SN = {TO, T, TU, IO, I, IU, FO, F, FU} be the set of neutrosophic symbols, an order is defined in

SN as follows: if ‘<’ denotes “more important than”, we have the following order, TU < IU < FU < F <
I < T < FO < IO < TO, where −∞ < TU < IU < FU < 0, 0 ≤ F < I < T ≤ 1 and 1 < FO < IO < TO < +∞;
see Figure 3. Let us note that the proposed order is not the unique one, it depends on the decision
maker’s objective.
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Let us observe that I is the center of the elements according to <. For every α ∈ SN, the symbolic
neutrosophic offcomplement is denoted by CO(α) and it is defined as the symmetric element respect
to the median centered in I, e.g., CSO(FO) = FU and CSO(F) = T, hence, given α ∈ SN its symbolic

neutrosophic offnegation is
¬

SO
α = CSO(α).

Additionally, for any α, β ∈ SN the symbolic neutrosophic offconjunction is defined as α
∧

SO
β =

min(α, β), the symbolic neutrosophic offdisjunction is defined as α
∨

SO
β = max(α, β), whereas the

symbolic neutrosophic offimplication is defined in Equation (13).

α
→

SO
β =

(
¬

SO
α

)
∨

SO
β (13)

In this paper, we redefine some of the symbolic neutrosophic offoperators to the continuous
quantitative domain. Given α ∈ [Ψ, Ω], where Ψ < 0 or Ω > 1, the neutrosophic offnegation is defined by
Equation (14).

¬

O
α =

{
min{Ω, 1−α}, if α ≤ 0.5
max{Ψ, 1−α}, if α > 0.5

(14)

The neutrosophic offnegation satisfies the following properties:
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1. It is a non-increasing operator, which extends the classical negation operator in fuzzy logic theory.
It is strictly decreasing when Ω + Ψ = 1.

2. It extends the notion of symbolic neutrosophic offnegation because satisfies the following
properties:

2.1 It is centered in 0.5, i.e.,
¬

O
0.5 = 0.5, therefore I = 0.5.

2.2 If α ∈ [0, 1], then
¬

O
α ∈ [0, 1],

¬

O
0 = 1 and

¬

O
1 = 0, which is the usual negation

operator in fuzzy logic.

2.3 If α < 0, then
¬

O
α ≥ 1.

¬

O
α = 1 only when Ω = 1.

2.4 If α > 1, then
¬

O
α ≤ 0.

¬

O
α = 0 only when Ψ = 0.

2.5 When Ω + Ψ = 1, we have
¬

O
Ψ = Ω and

¬

O
Ω = Ψ.

3. If Ω + Ψ = 1, then
¬

O
¬

O
α = α, for every α ∈ [Ψ, Ω].

The precedent properties are easy to demonstrate.

Hence, the definition of offimplication
→

O
: [Ψ, Ω]3 × [Ψ, Ω]3 → [Ψ, Ω]3 is defined in Equation

(15), for every α,β ∈ [Ψ, Ω]3.

α
→

O
β = 〈Nco

O

(
¬

O
TO(α), TO

(
β
))

, Nn1
O

(
¬

O
IO(α), IO

(
β
))

, Nn2
O

(
¬

O
FO(α), FO

(
β
))
〉 (15)

where, Nni
O (·, ·) i = 1, 2 are neutrosophic components n-offnorms, Nco

O (·, ·) is a neutrosophic component

n-offconorm, and
O

is the offnegation defined in Equation (14).

Equation (15) is generalized by using offuninorms, see Equation (16).

α
→

UO
β = 〈Nu1

O

(
¬

O
TO(α), TO

(
β
))

, Nu2
O

(
¬

O
IO(α), IO

(
β
))

, Nu3
O

(
¬

O
FO(α), FO

(
β
))
〉 (16)

where Nui
O (·, ·) for i = 1, 2, and 3 are neutrosophic components n-offuninorms.

Example 7. One illustrative example of Equation (16) is obtained revisiting Section 4.1, by defining the
following neutrosophic component n-offnorm:

uO(cO(x), cO(y)) =

 3(cO(x)+1)(cO(y)+1)
(cO(x)+1)(cO(y)+1)+(2−cO(x))(2−cO(y)) − 1, if (cO(x), cO(y)) ∈ [−1, 2]2\

{
(−1, 2), (2, −1)

}
−1, otherwise

This is the transformation of Silvert uninorms to the domain [−1, 2]2 applying the functions in
Equations (10) and (11), and the transformation in Proposition 5. Also, let us take UZD(c(x), c(y)) of
Example 3. See that [−1, 2] is symmetric respect to 0.5, and the neutral element is 0.5.

Then, we study the offuninorm defined in the following equation:UO(α,β) =

〈UZD(TO(α), TO(β)), uO(IO(α), IO(β)), uO(FO(α), FO(β))〉 for α = 〈TO(α), IO(α), FO(α)〉 and
β = 〈TO(β), IO(β), FO(β)〉 in [−1, 2]3.

Thus, we define the offimplication generated by UO(·, ·) according to Equation (16) as follows:
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α
→

UO
β = 〈UZD

(
¬

O
TO(α), TO

(
β
))

, uO

(
¬

O
IO(α), IO

(
β
))

, uO

(
¬

O
FO(α), FO

(
β
))
〉.

where in this case we have UZD

(
TO(α), TO

(
β
))
=

 min
(
TO(α), TO

(
β
))

, if TO(α), TO

(
β
)
∈

[
−1, 1

2

]
max

(
TO(α), TO

(
β
))

, otherwise
,

see Figure 4, and uO(·, ·) models the neutrosophic n-components IO and FO, see Figure 5.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 25 

 

Example 7. One illustrative example of Equation (16) is obtained revisiting Section 4.1, by defining the 

following neutrosophic component n-offnorm: 

𝑢𝑂(𝑐𝑂(𝑥), 𝑐𝑂(𝑦))

= {

3(𝑐𝑂(𝑥) + 1)(𝑐𝑂(𝑦) + 1)

(𝑐𝑂(𝑥) + 1)(𝑐𝑂(𝑦) + 1) + (2 − 𝑐𝑂(𝑥))(2 − 𝑐𝑂(𝑦))
− 1, if (𝑐𝑂(𝑥), 𝑐𝑂(𝑦)) ∈ [−1, 2]

2 ∖ {(−1, 2), (2, −1)}

−1, otherwise

  

This is the transformation of Silvert uninorms to the domain [−1, 2]2 applying the functions in 

Equations (10) and (11), and the transformation in Proposition 5. Also, let us take UZD(𝑐(𝑥), 𝑐(𝑦)) 

of Example 3. See that [−1, 2] is symmetric respect to 0.5, and the neutral element is 0.5. 

Then, we study the offuninorm defined in the following equation: 𝑈𝑂(α̅, β̅) =

〈UZD(𝑇𝑂(α̅), 𝑇𝑂(β̅)), 𝑢𝑂(𝐼𝑂(α̅), 𝐼𝑂(β̅)), 𝑢𝑂(𝐹𝑂(α̅), 𝐹𝑂(β̅))〉 

for α̅ =  〈𝑇𝑂(α̅), 𝐼𝑂(α̅), 𝐹𝑂(α̅)〉 and β̅ =  〈𝑇𝑂(β̅), 𝐼𝑂(β̅), 𝐹𝑂(β̅)〉 in [−1, 2]3. 

Thus, we define the offimplication generated by 𝑈𝑂(∙,∙) according to Equation (16) as follows: 

α̅
→
𝑈𝑂
β̅ = 〈UZD (



𝑂TO(α̅), TO(β̅)) , 𝑢𝑂 (


𝑂IO(α̅), IO(β̅)) , 𝑢𝑂 (


𝑂FO(α̅), FO(β̅))〉. 

where in this case we have UZD (TO(α̅), TO(β̅)) = {
min (TO(α̅), TO(β̅)) , if TO(α̅), TO(β̅) ∈ [−1,

1

2
]

max (TO(α̅), TO(β̅)) , otherwise
, see 

Figure 4, and 𝑢𝑂(∙,∙) models the neutrosophic n-components IO and FO, see Figure 5. 

 

Figure 4. Depiction of the neutrosophic n-offimplication generated by UZD for TO. 

 

Figure 5. Depiction of the neutrosophic n-offimplication generated by uO for both, IO and FO. 

Figure 4. Depiction of the neutrosophic n-offimplication generated by UZD for TO.

Symmetry 2019, 11, x FOR PEER REVIEW 17 of 25 

 

Example 7. One illustrative example of Equation (16) is obtained revisiting Section 4.1, by defining the 

following neutrosophic component n-offnorm: 

𝑢𝑂(𝑐𝑂(𝑥), 𝑐𝑂(𝑦))

= {

3(𝑐𝑂(𝑥) + 1)(𝑐𝑂(𝑦) + 1)

(𝑐𝑂(𝑥) + 1)(𝑐𝑂(𝑦) + 1) + (2 − 𝑐𝑂(𝑥))(2 − 𝑐𝑂(𝑦))
− 1, if (𝑐𝑂(𝑥), 𝑐𝑂(𝑦)) ∈ [−1, 2]

2 ∖ {(−1, 2), (2, −1)}

−1, otherwise

  

This is the transformation of Silvert uninorms to the domain [−1, 2]2 applying the functions in 

Equations (10) and (11), and the transformation in Proposition 5. Also, let us take UZD(𝑐(𝑥), 𝑐(𝑦)) 

of Example 3. See that [−1, 2] is symmetric respect to 0.5, and the neutral element is 0.5. 

Then, we study the offuninorm defined in the following equation: 𝑈𝑂(α̅, β̅) =

〈UZD(𝑇𝑂(α̅), 𝑇𝑂(β̅)), 𝑢𝑂(𝐼𝑂(α̅), 𝐼𝑂(β̅)), 𝑢𝑂(𝐹𝑂(α̅), 𝐹𝑂(β̅))〉 

for α̅ =  〈𝑇𝑂(α̅), 𝐼𝑂(α̅), 𝐹𝑂(α̅)〉 and β̅ =  〈𝑇𝑂(β̅), 𝐼𝑂(β̅), 𝐹𝑂(β̅)〉 in [−1, 2]3. 

Thus, we define the offimplication generated by 𝑈𝑂(∙,∙) according to Equation (16) as follows: 

α̅
→
𝑈𝑂
β̅ = 〈UZD (



𝑂TO(α̅), TO(β̅)) , 𝑢𝑂 (


𝑂IO(α̅), IO(β̅)) , 𝑢𝑂 (


𝑂FO(α̅), FO(β̅))〉. 

where in this case we have UZD (TO(α̅), TO(β̅)) = {
min (TO(α̅), TO(β̅)) , if TO(α̅), TO(β̅) ∈ [−1,

1

2
]

max (TO(α̅), TO(β̅)) , otherwise
, see 

Figure 4, and 𝑢𝑂(∙,∙) models the neutrosophic n-components IO and FO, see Figure 5. 

 

Figure 4. Depiction of the neutrosophic n-offimplication generated by UZD for TO. 

 

Figure 5. Depiction of the neutrosophic n-offimplication generated by uO for both, IO and FO. Figure 5. Depiction of the neutrosophic n-offimplication generated by uO for both, IO and FO.

This offimplicator satisfies the overbounding conditions

〈−1, 2, 2〉
→

UO
〈−1, 2, 2〉 = 〈−1, 2, 2〉

→

UO
〈2, −1, −1〉 = 〈 2, −1, −1〉

→

UO
〈2, −1, −1〉 = 〈2, −1, −1〉,

whereas, 〈2, −1, −1〉
→

UO
〈−1, 2, 2〉 = 〈−1, 2, 2〉.

Also, 〈0, 1, 1〉
→

UO
〈0, 1, 1〉 = 〈 1, 0, 0〉

→

UO
〈1, 0, 0〉 = 〈1, 0.5, 0.5〉,

〈0, 1, 1〉
→

UO
〈1, 0, 0〉 = 〈1, −0.4, −0.4〉 and 〈1, 0, 0〉

→

UO
〈0, 1, 1〉 = 〈0, 1.4, 1.4〉. Additionally,

〈0.5, 0.5, 0.5〉
→

UO
〈0.5, 0.5, 0.5〉 = 〈0.5, 0.5, 0.5〉 because 0.5 is the neutral element of every neutrosophic

component n-offuninorm and
¬

O
0.5 = 0.5.
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It is easy to check that substituting uO(·, ·) by UZC(·, ·) in
→

UO
, we obtain the more classical

equations 〈0, 1, 1〉
→

UO
〈0, 1, 1〉 = 〈1, 0, 0〉

→

UO
〈1, 0, 0〉 = 〈0, 1, 1〉

→

UO
〈1, 0, 0〉 = 〈1, 0, 0〉 and

〈1, 0, 0〉
→

UO
〈0, 1, 1〉 = 〈0, 1, 1〉.

4.3. N-Offuninorms and Voting Games

The applicability of uninorms to solve group decision problems is evident. However, the use of
them as part of a game theory solution is not so obvious. This subsection is devoted to solving voting
games based on n-offuninorms.

A cooperative game with transferable utility consists of a pair (N,v), where N = {1, 2, . . . ,n} is a
non-empty set of players,n ∈ N and v: 2N

→R, i.e., v(·) is a function of the power set of N such that each
coalition or S⊆ N is associated with a real number. v is called characteristic function and v(S) represents
the conjoint payoff of players in S. Additionally, v(∅) = 0 (see [42], p. 2).

A simple game models voting situations. It is a cooperative game such that for every coalition S,
either v(S) = 0 or v(S) = 1, and v(N) = 1 (see [42], p. 7).

One solution is the Shapley–Shubik index, which is the Shapley value to simple games (see [42],
pp. 6–7). The equation of Shapley value is the following:

φi(v) =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[v(S∪ {i}) − v(S)] (17)

where |S| is the cardinality of coalition S, |N| is the cardinality of the set of players or grand coalition and
φi(v) is the value assigned to player i in the game.

This is the unique solution which satisfies the following axioms:

•
∑

i∈N
φi(v) = v(N) (Efficiency),

• If i, j∈N are interchangeable in v, then φi(v) = φ j(v) (Symmetry),

• If i is such that for every coalition S the equation v(S ∪ {i}) = v(S) holds, then φi(v) = 0 (Dummy),
• Given v and w two games over N, then φi(v + w) = φi(v) +φi(w) (Additivity).

This value is the sum of the terms [v(S∪ {i}) − v(S)], which mean the marginal contribution of

player i to the coalitions S, multiplied by |S|!(|N|−|S|−1)!
|N|! which is the probability that |S| − 1 players

precede player i in the game and |N| − |S| players follow him or her. Thus, the Shapley value of i is the
expected marginal contribution of i to the game (see [42], p. 7). The result of the Shapley–Shubik index
is interpreted as a measure of each player’s power.

In the present paper we basically study voting games with some additional features. We call them
voting n-offgames. A voting n-offgame consists in a pair (N, v), where N = {1, 2, . . . , n} is the set of players;
the characteristic function v: 2N

→{1, . . . , 2n} × {1, . . . , 2n} × {1, . . . , 2n} is such that for any coalition
S we have v(S) = (k,l,2n-k+1) and v(∅) = (2n, 2n,1).

The n-offgame is interpreted in the following way:

1. Experts forecast that voters will rank coalition S in the kth position of their preference, also they
cannot decide if S will be ranked in the lth position. The first place or k = 1 corresponds to the
preferred coalition of all and so on. Additionally, the n-offgame must satisfy the following rules:

2. Given any two coalitions S1 and S2, S1,S2, we have the first component that both v(S1) and v(S2)
are different. Thus, every coalition is associated with a unique number in the order of preference.

3. v(S) = (k,k,2n– k+1) means experts have no doubt that coalition S will be voted in the kth position.

Let us observe that it is not a simple game. This game can be interpreted as a multicriteria
decision-making problem, where its solution is a measure of every player’s power in the game



Symmetry 2019, 11, 1136 20 of 26

according to the forecasted experts’ ranking of the coalitions. Each coalition can represent a bloc of
political parties.

Shapley value can be the solution to voting n-offgames, in the form given in Equation (18):

φi(v) = −
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[v(S∪ {i}) − v(S)] (18)

Let us note that the minus sign in the expression was taken for convenience because the rank
we applied is decreasing respect to the coalition´s significance. Additionally, v(S∪ {i}) − v(S) is the
difference between two 3-tuple values, thus the operation (k1, l1, 2n

− k1+1)−(k2, l2, 2n
−k2+1):= (k1−

k2, l1− l2, k2− k1) is defined. Equation (18) means the expected number of places won or lost in voter
preference, as predicted by experts.

Apparently, Shapley value cannot be the solution to this problem because v(∅) , 0 and v(·) is not a
game. However, if we take in that v(S) = (k,l,2n – k+1) in fact represents three games, namely, v1(S)=k,
v2(S)= l, and v3(S) =2n– k+1, one per component and additionally taking into account they are linear
transformations of three games with characteristic functions w1, w2,, and w3; where w1(S)= 2n

− v1(S),
w2(S)= 2n

− v2(S), and w 3(S) = 1 − v3(S), then, the marginal contributions of the three pairs, w1(·) and
v1(·), w2(·) and v2(·), w3(·) and v3(·), are the same except for the sign. Thus, these three pairs have the
same Shapley value except for the sign and therefore this property is extended to v(·) and w(·).

Shapley value is a rational solution to the game, nevertheless, it can differ from actual human
behavior, as Zhang et al. suggested in [43] to model restrictions in game decisions according to the
human behavior based on fuzzy uninorms. Therefore, we propose n-offuninorms to explore other
behaviors in human decision making by recursively applying an n-offuninorm to every pair of values
|S|!(|N|−|S|−1)!

|N|! [v(S) − v(S∪ {i})] in the set of S ⊆ N\{i}.
Here we explore n-offuninorms defined on [−L, L], L = 2n

−1 and with the PROSPECTOR
parameterized function with λ> 0 and neutral element e = L

(
1−λ
1+λ

)
, see Equation (19).

UOλ(c(x), c(y)) = ϕ−1
3

(
λϕ3(c(x))ϕ3(c(y))

λϕ3(c(x))ϕ3(c(y)) + (1−ϕ3(c(x)))(1−ϕ3(c(y)))

)
(19)

where ϕ3(·) and ϕ−1
3 (·) are those defined in Equations (10) and (11), respectively, and now they are

ϕ3(c(x)) =
c(x)+L

2L and ϕ−1
3 (c(x)) = 2Lc(x) − L.

Thus the Algorithm for solving voting n-offgames can be described as follows:

Algorithm 1. Algorithm for solving voting n-offgames

1. Given (N, v) a voting n-offgame. Fix λ > 0.
2. Fix player i = 1.
3. Let Sj be the set of coalitions not containing i, and j = 1, 2, . . . , 2n−1. Let us take ai1 = v(S1) and ai2 = v(S2)

and calculate aprev = UOλ

(
|S1 |!(n−|S1 |−1)!

n! [v(S1) − v(S1 ∪ {i})],
|S2 |!(n−|S2 |−1)!

n! [v(S2) − v(S2 ∪ {i})]
)
, fix j = 3

and go to step 4.

4. If j<2n−1, calculate acurr = UOλ

(
aprev, |

S j|!(n−|S j|−1)!
n!

[
v
(
S j

)
− v

(
S j ∪ {i}

)])
. aprev = acurr and j = j + 1. Repeat

this step. Else, if j = 2n−1, πi(v) = acurr. Go to Step 5.
5. If i< n, then i = i+ 1 and go to Step 3. Else Finish.

Let us point out that in the precedent algorithm the associativity of n-offuninorms was used.
Moreover, the algebraic sum in Shapley value and the n-offuninorms yield to somewhat similar
results. Thus, for Uoλ(·,·) with λ = 1, we have that x, y < 0 imply both Uoλ(x,y)<min(x,y) and x+y<

min(x,y), whereas when x, y > 0, we have Uoλ(x,y)>max(x,y) and x+y> max(x,y). For x,y satisfying
x·y<0, then both Uoλ(x,y) and x+y are compensatory operators, and finally 0 is the neutral element of
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them. For λ, 1 and hence e, 0, we obtain other behavioral effects. Let us also recall that Uoλ(·,·) is a
neutrosophic uninorm transformation, which is described as symmetric summation by Silvert in [40].

Example 8. Let us consider the 3-person voting n-offgame (N, v), where N = {1, 2, 3} and experts predict that
coalitions will be ranked according to the positions shown in Table 1.

Table 1. Position assigned to the coalitions of the 3-person voting n-offgame.

Coalition Ranking

∅ (8,8,1)
{1} (3,2,6)
{2} (4,3,5)
{3} (7,6,2)

{1,2} (2,3,7)
{1,3} (5,6,4)
{2,3} (6,5,3)

{1,2,3} (1,1,8)

According to Table 1, the grand coalition N has (1,1,8) as ranking value, i.e., experts think this
coalition will undoubtedly be ranked in the first place or k = 1. v(∅) = (8,8,1) because it is axiomatically
predetermined, which means that to not negotiate at all is the worst option, whereas v({2,3}) = (6,5,3)
means this coalition shall be ranked in the sixth place and maybe in the fifth one, but never in the
third place.

Thus, to calculate each player´s power according to our approach we have to apply the precedent
algorithm. We fixed λ=1 in UOλ therefore c(e)= 0, which is defined in [−7, 7].

Table 2 contains the detailed calculus of the Shapley value in Equation (18) and the proposed
algorithm to resolve the precedent voting n-offgame.

Table 2. Shapley value and n-offuninorm based solutions to the 3-person voting n-offgame. The final
values are written in bold font.

Playeri SSuch That
i<S v(S)–v(S∪{i})

v(S)–v(S∪{i})
Multiplied by
the Probability

Partial Summations
of the Shapley

Value

Partial Aggregation
with Uo1

1 ∅ (5,6,−5) (5/3, 2,−5/3) (5/3,2,−5/3) (5/3,2,−5/3)
{2} (2,0,−2) (1/3,0,−1/3) (2,2,−2) (1.9776,2.0000,−1.9776)
{3} (2,0,−2) (1/3,0,−1/3) (7/3,2,−7/3) (2.2802,2.0000,−2.2802)

{2,3} (5,4,−5) (5/3,4/3,−5/3) (4,10/3,−4) (3.6628,3.1613,−3.6628)

2 ∅ (4,5,−4) (4/3,5/3,−4/3) (4/3,5/3,−4/3) (4/3,5/3,−4/3)
{1} (1,−1,−1) (1/6,-1/6,−1/6) (3/2,3/2,−3/2) (1.4932,1.5086,−1.4932)
{3} (1,1,−1) (1/6,1/6,−1/6) (5/3,5/3,−5/3) (1.6515,1.6667,−1.6515)

{1,3} (4,5,−4) (4/3,5/3,−4/3) (3,10/3,−3) (2.8565,3.1545,−2.8565)

3 ∅ (1,2,−1) (1/3,2/3,−1/3) (1/3,2/3,−1/3) (1/3,2/3,−1/3)
{1} (-2,−4,2) (-1/3,−2/3,1/3) (0,0,0) (0,0,0)
{2} (-2,−2,2) (-1/3,−1/3,1/3) (-1/3,−1/3,1/3) (−1/3,−1/3,1/3)

{1,2} (1,2,−1) (1/3,2/3,−1/3) (0,1/3,0) (0,0.33485,0)

According to the results summarized in Table 1, we have that the expected value of places gains by
player 1 is 4 with the Shapley value solution and 3.6628 with Uo1, whereas the results for player 2 are 3
and 2.8565, respectively, and for player 3 are 0 and 0. Therefore, player 1 is the most powerful of them,
followed by player 2 and 3 in this order. Thus, the proposed approach and Shapley value are similar.

Table 3 contains the voting n-offgame solutions comparing Uo1 with c(e) = 0, Uo99/101 with
c(e) = 7/100 and Uo101/99 with c(e) = −7/100.
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Table 3. Solutions of the 3-person voting n-offgame applying Uoλ with λ = 1, 99/101 and
101/99, respectively.

Player Solution with Uo1 Solution with Uo99/101 Solution with Uo101/99

1 (3.6628,3.1613,−3.6628) (3.5079,2.9919,−3.8129) (3.8129,3.3262,−3.5079)
2 (2.8565,3.1545,−2.8565) (2.6793,2.9849,−3.0293) (3.0293,3.3196,−2.6793)
3 (0,0.33485,0) (−0.20994,0.12509,−0.20994) (0.20994,0.54402,0.20994)

The solutions in Table 3 prove that the greater λ, the greater the solution values. Thus, when λ is
increased, its associated solution models more optimistic behavior with respect to the first component,
which is compensated with more pessimistic behavior with respect to the third component.

The advantages of the proposed approach are more evident when it is compared with a classical
one restricted to {0, 1}. Here we used a semantic represented with natural numbers and we calculated
directly on them. In contrast, for applying classical definitions in {0, 1}, we would need to define eight
Boolean functions, one per element. What is more, some operations such as marginal contributions,
which is an algebraic difference, cannot be directly applied in the logic sense.

In case we would need to extend the approaches to the continuous gradation, then a continuous
ranking can be modeled with the identity line Id(x) = x, but in the classical approach, eight memberships
functions would have to be considered, where the simplest ones are triangular (see Figure 6).
From Figure 6 we can infer that there exists a transformation between both models; however,
the proposed model is the simplest one.Symmetry 2019, 11, x FOR PEER REVIEW 22 of 25 
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offsets. The points represent the Boolean restrictions.

5. Discussion

Neutrosophic oversets, undersets, and offsets are concepts of a novel and non-conventional theory
of uncertainty. Historically, the convention of restricting logic to the interval [0, 1] has dominated fuzzy
logic and its generalizations. Possibly this is a legacy of probability and mathematical logic, where,
semantically speaking, 0 and 1 have been considered the two extreme opposite sides. Therefore, oversets,
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undersets, and offsets can be understood as controversial subjects. Nevertheless, Smarandache in [31]
illustrates with some examples that such sets, of which their domains surpass the scope of [0, 1],
could be useful to represent knowledge in a valid semantic.

This is a recent theory that needs more developing and the scientific community’s acknowledgment
of its usefulness. One of our aims with this paper is to demonstrate that this theory can be useful.
To achieve this end, we introduced the uninorm theory in the neutrosophic offset framework. This union
is manifold advantageous, the most evident one being that we have provided a new aggregator operator
to these sets. As we mentioned in the introduction, there exists a wide variety of fuzzy uninorm
applications, namely, Decision Making [9,14,15], DNA and RNA fusion [9], logic [17], Artificial Neural
Networks [16], among others. Uninorm is more flexible than t-norm and t-conorm because it includes
the compensatory property in some cases, which is more realistic for modeling human decision making,
as was experimentally proved by Zimmermann in [21].

Also, uninorms have enriched other theories when they were generalized to other frameworks.
In L*-fuzzy set theory [23], uninorms also aggregate independent non-membership functions to
achieve more precision. Moreover, neutrosophic uninorms aggregate the indeterminate-membership
functions [25].

Additionally, some authors have associated uninorms with non-conventional theories. In [33,34]
we can find some attempts to extend uninorm domains to an interval [a, b]. The reason is that the
PROSPECTOR function related to the MYCIN Expert System is one very important milestone in
Artificial Intelligence history. The point is that the PROSPECTOR function is basically a uninorm
except it is defined in the interval [−1, 1], thus, we can consider intervals greater than [0, 1]. They have
argued that there exist two reasons to maintain the interval [−1, 1]—the first one is the importance of
the PROSPECTOR function, the second one is the facility to interchange information among users and
decision makers in form of degrees to accept or reject hypotheses.

The second non-conventional approach is the bipolar or Multi-Polar uninorms defined in [24].
The world is (and some people are) is evidently multi-polar; in case of bipolarity they are modeled
in [−1, 1]. Especially in [24], we have a multi-polar space consisting of an ordered pair of (k, x),
where k∈{1, 2, . . . , n} represents a category or class and x∈(0, 1], with the convention 0 = (k, 0) for
every category. This is a more complex representation that takes a unique interval [−n, n] where,
for x∈[−n, n], the function round(x) represents the category and its fractional part represents the degree
of membership to that category. This is a real extension of bipolarity in [−1, 1] to multi-polarity. In [31]
(pp. 127, 130) Tripolar offsets and Multi-polar offsets are defined. We illustrated in Example 8 that
considering the semantic values belong to {−n,−n+1, . . . , 0, 1, . . . , n} could be advantageous.

The definition of uninorm-based implicators is not new in literature, they can be seen in [41]
(pp. 151–160) for fuzzy uninorms, in [17] it is extended for type 2 fuzzy sets, in [24] for L*-fuzzy set theory,
and in [25] for neutrosophic uninorms. In the present paper, uninorm-based offimplicators are defined,
however, we only counted on symbolic offimplication operators (see [31], p. 139). To extend this
definition to a continuous framework, we had to extend the symbolic offnegation to a continuous one.

Finally, we preferred to illustrate a voting game solution instead of a group decision method
because the relationship of offuninorms with the latter subject is predictable. However, to find any
game theory associated with uninorms is uncommon in literature. One remarkable example can be
seen in [43], where a behavioral approach has been made to certain kind of games, where uninorms
model the humans’ restrictions to make the division of gains among the players.

In the present paper, another approach is proposed where an indeterminacy component is taken
into account. Also, we proved that modeling with a natural number semantic is simpler than to utilize
the classical [0, 1] interval, because of the fact that n membership functions can be substituted by a
linear identity function. We basically defined the voting game solution since the Shapley–Shubik index
components (see [42], pp. 6–7), where we only changed the algebraic sum by offuninorms. The classical
approaches such as the Shapley–Shubik index are interested in a rational and fair solution; nevertheless,
many times that does not occur in real negotiations and then behavioral solutions are needed.
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6. Conclusions

This paper was devoted to defining for the first time the theory of neutrosophic offuninorms,
which is a generalization of both the neutrosophic offnorms and neutrosophic offconorms, where the
neutral element lays in the interval [Ψ, Ω]. The properties of these novel operators were proved.
Moreover, we defined neutrosophic offuninorms from neutrosophic offnorms and neutrosophic
offconorms and vice versa, we also proved their properties. Additionally, we proved the relationship
between neutrosophic offuninorms and neutrosophic uninorms.

One of the purposes of this paper is to show the convenience of applying offsets, and to prove that
they are not only simple theoretical concepts; furthermore, they are also necessary to define new concepts.
This need is demonstrated in this paper by associating offsets with the PROSPECTOR aggregation
function, where it is recommendable to extend its domain to the interval [−1, 1]. Some authors in fuzzy
logic have suggested the advantages to calculate in the domains [a, b] instead of the classical [0, 1].
Therefore, the use of the idea of the offset in uninorms has some precedence in fuzzy logic.

Additionally, we recommend offsets because they permit more accuracy and compactness.
We showed that it is possible to define offimplication operators based on offuninorms. A future
direction of this research is to solve problems by using artificial neural networks based on neutrosophic
offuninorms, such that neutrosophic offuninorms are utilized as the threshold functions in the neurons
or in neutrosophic cognitive maps. For the first time, solutions to cooperative games are defined in the
neutrosophic framework—this is an area that it is worthy of development.
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