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Abstract: Rough set approaches encounter uncertainty by means of boundary regions instead of
membership values. In this paper, we develop the topological structure on soft rough set (SR-set)
by using pairwise SR-approximations. We define SR-open set, SR-closed sets, SR-closure,
SR-interior, SR-neighborhood, SR-bases, product topology on SR-sets, continuous mapping, and
compactness in soft rough topological space (SRT S). The developments of the theory on SR-set
and SR-topology exhibit not only an important theoretical value but also represent significant
applications of SR-sets. We applied an algorithm based on SR-set to multi-attribute group decision
making (MAGDM) to deal with uncertainty.
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1. Introduction

The problem of imperfect knowledge has been the center of attention for many years.
In the field of mathematics, computer science, and artificial intelligence, researchers have used
different methods to tackle the problem of uncertain and incomplete data, including probability theory,
fuzzy set [1], and rough set [2,3] and soft set techniques [4–6]. Molodstov [6] introduced soft set as
an effective tool to manage imprecision; it includes a set of parameters to describe the set properly.
Maji et al. (2002–2003) [4,5] extended some operations of soft set and effectively used this technique in
a decision-making problem. Soft set with decision making have studied by many researchers [7–11].
In 2011, Shabir and Naz [12] and Cagman et al. [13] independently worked on the topological structure of
soft set. Chen [14] presented a new definition related to the reduction of soft parameterization.
The study of hybrid structures, having emerged from the fusion of soft sets with other mathematical
approaches, is becoming an active topic for research nowadays. Aktas and Cagman (2007) [15]
efficiently related the three concepts of soft set, rough set, and fuzzy set. Riaz et al. [16–18] established
some results of soft algebra, soft metric spaces, and measurable soft mappings. Riaz and Masooma [19–23]
introduced fuzzy parameterized fuzzy soft set (fpfs-set), fpfs-topology, and fpfs-compact spaces, with
some important applications of fpfs-set to decision-making problems. They presented fns-mappings
and fixed points of fns-mapping. Different researchers have tackled the problem of incomplete or
uncertain information in the system in different ways. Shang worked on robust statistics, and he
investigated the robustness of a system under different circumstances and analyzed the robustness
properties of subgraphs under attack in complex networks [24,25]. The rough set concept presented by
Pawlak presents a systematic approach for the classification of objects. It characterizes a set of objects
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by two exact concepts, known as its approximations. Here, vagueness is expressed in the form of
a boundary region, where empty boundary region implies that the set is crisp, and a non-empty
boundary region implies that our knowledge is insufficient to explain the set precisely. By using
equivalence relations, Thivagar et al. [26] generated the topology on rough set which includes
approximations and the boundary region. Equivalence relation plays an important role in Pawlak’s
rough set model, and by replacing it with a soft set, soft rough set SR-sets were introduced by
Feng [27]. Feng et al. [28] presented some properties related to SR-approximations. Xue et al. [29]
presented some decision-making algorithms regarding hybrid soft models. Zou and Xiao [30]
analyzed data in soft sets under incomplete information systems. There are mainly two streams of
study connecting soft rough set theory and topology theory. At the same time, according to the
topological properties on the topological SR-space, some applications for image processing and
some topological diagrams are introduced. The remainder of the paper is composed as follows.
In Section 2, we briefly define the notions of rough setR-set and soft rough set SR-set. In Section 3,
we present a novel topological structure of SR-set. We present some new results of SR-set theory
and SR-topology. A topological structure on soft rough set was defined by Bakier et al. [31]. Malik
and Riaz [32,33] studied action of modular group on real quadratic fields. Soft sets, neutrosophic
set and rough sets with decision making problems have studied by many researchers [34–40].
We define SR-topology on soft rough set in the form of the pair τSR = (τSR?, τSR?), where τSR?
is the lower SR-topology and τSR? is the upper SR-topology on set Y . This SR-topology is
more appropriate, as it looks like a natural soft rough topology on a soft rough set. In Section 4,
continuity, homeomorphism, and projection mappings in SR-set are discussed. Section 5 describes
the compactness in SR-set. In Section 6, SR approximations are employed to solve multi-attribute
group decision-making problem.

2. Preliminaries

In this section, we illustrate some basic notions related to SR-theory. First we define rough set
R-set and soft rough set SR-set and then explain a few related operations on SR-set.

Definition 1 ([2]). Suppose we have an object set V known as universe, and an indiscernibility relation
< ⊆ V × V which represents knowledge about elements of V . We take < as an equivalence relation and denote
it by <(y). The pair (V ,<) is called the approximation space. Let Y be any subset of V . We characterize the set
Y with respect to <.

(1) The union of all granules which are entirely included in the set Y is called the lower approximation of
the set Y w.r.t <, mathematically defined as

<?(Y) =
⋃

y∈V
{<(y) : <(y) ⊆ Y}

(2) The union of all the granules having a non-empty intersection with the set Y is called the upper
approximation of the set Y w.r.t <, mathematically defined as

<?(Y) =
⋃

y∈V
{<(y) : <(y) ∩ Y 6= ∅}

(3) The difference between the upper and lower approximations is called the boundary region of the set Y
w.r.t <, mathematically defined as

B<(Y) = <?(Y)−<?(Y)

If <?(Y) = <?(Y), the set Y is said to be defined. If <?(Y) 6= <?(Y), i.e., BR(Y) 6= ∅, the set Y is
said to be a (imprecise) rough set w.r.t <.

We denote a rough set Y by a pair comprising a lower approximation and upper approximation
Y = (<?(Y),<?(Y))
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Definition 2 ([28]). Consider a soft set S = (T ,A) over the universe V , where A ⊆ E and T is a mapping
defined as T : A → P(V). Here, soft approximation space is the pair P = (V ,S). Following the soft
approximation space P , we define two operations as follows:

<P?(Y) = {v ∈ V : ∃a ∈ A, [v ∈ T (a) ⊆ Y ]},

<P
?(Y) = {v ∈ V : ∃a ∈ A, [v ∈ T (a) ∩ Y 6= ∅]}

regarding every subset Y ⊆ V , two sets <P?(Y) and <P
?(Y), which are called the soft P-lower approximation

and soft P-upper approximation of Y , respectively. In general, we refer to <P?(Y) and <P
?(Y) as

SR-approximations of Y w.r.t P. If <P?(Y) = <P
?(Y), then Y is said to be soft P-definable; otherwise,

Y is a soft P-rough set. Then, BndP = <P
?(Y)−<P?(Y) is the SR-boundary region.

We denote SR-set (SR-set) Y by a pair comprising SR-lower approximation and SR-upper
approximation Y = (<P?(Y),<P

?(Y)).

Example 1. Let V = {s1, s2, s3, s4, s5} be the set of perfumes, and let A = {ζ1, ζ2, ζ3, ζ4} = E
be the qualities which Miss Amal wants in her perfume. Let S = (T ,A) be a soft set over V .
T (ζ1) = {s3, s5}, T (ζ2) = {s2, s4, s5}, T (ζ3) = {s1, s2, s5}, T (ζ4) = {s2, s3} and the soft approximation
space P = (V ,S).The tabular form of soft set (T ,A) is given in Table 1.

Table 1. Soft set (T ,A).

(T ,A) s1 s2 s3 s4 s5

ζ1 0 1 1 0 0
ζ2 0 1 0 1 1
ζ3 1 1 0 0 1
ζ4 0 0 1 0 1

For Y = {s3, s4, s5} ⊆ V , we have <P?(Y) = {s3, s5} and <P
?(Y) = {s1, s2, s3, s4, s5}.

Since<P?(Y) 6= <P
?(Y); therefore, Y is a soft P-rough set and is denoted by Y = ({s3, s5}, {s1, s2, s3, s4, s5})

Definition 3. Let A = (<P?(A),<P
?(A)) and B = (<P?(B),<P

?(B)) be two arbitrary SR-sets and
P = (V ,S) be soft approximation space. Then, A is a SR-subset of B if <P?(A) ⊆ <P?(B) and
<P

?(A) ⊆ <P
?(B).

Example 2. Suppose V = {α1, α2, α3, α4, α5, α6, α7, α8} and E = {ξ1, ξ2, ξ3, ξ4}. Let S = (T , E) be a soft
set over V ,

T (ξ1) = {α2, α8}
T (ξ2) = {α2, α3, α6, α8}
T (ξ3) = {α2, α5, α7}
T (ξ4) = {α3, α4, α6}

and P = (V ,S) be soft approximation space. Consider A = {α2, α4, α5, α7} ⊆ V and B = {α3, α4}
then <P?(A) = {α2, α5, α7} and <P

?(A) = {α2, α3, α4, α5, α6, α7, α8}, while <P?(B) = ∅ and
<P

?(B) = {α2, α3, α4, α6, α8}.
So we have two SR-sets A = (<P?(A),<P

?(A)) = ({α2, α5, α7}, {α2, α3, α4, α5, α6, α7, α8}) and
B = (<P?(B),<P

?(B)) = (∅, {α2, α3, α4, α6, α8}). Since <P?(B) ⊆ <P?(A) and <P
?(B) ⊆ <P?(B).

Thus, B is SR-subset of A.

Definition 4. Let A = (<P?(A),<P
?(A)), B = (<P?(B),<P

?(B)) be taken as two arbitrary
SR sets and let (V ,S) be soft approximation space. Then, the union of A and B is defined as
A∪ B = (<P?(A) ∪ <P?(B),<P

?(A) ∪ <P
?(B)).
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Definition 5. Let A = (<P?(A),<P
?(A)), B = (<P?(B),<P

?(B)) be taken as two arbitrary
SR sets and (V ,S) be soft approximation space. Then, the intersection of A and B is defined as
A∩ B = (<P?(A) ∩ <P?(B),<P

?(A) ∩ <P
?(B)).

Example 3. By using Example 2, we obtain
A∪ B = (<P?(A) ∪ <P?(B),<P

?(A) ∪ <P?(B)) = ({α2, α5, α7}, {α2, α3, α4, α5, α6, α7, α8})
and
A∩ B = (<P?(A) ∪ <P?(B),<P

?(A) ∪ <P?(B)) = (∅, {α2, α3, α4, α6, α8}).

Definition 6 ([31]). Let V be the universe of discourse and P = (V ,S) is soft approximation space; then,
SR-topology is defined as

τSR(Y) = {V , ∅,<P?(Y),<P
?(Y), Bd(Y)}

where Y ⊆ V . τSR(Y) satisfies the following axioms:
(i) V and ∅ belong to τSR(X).
(ii) Union of elements of any subcollection of τSR(Y) belongs to τSR(Y).
(iii) Intersection of elements of finite subcollection of τSR(Y) belongs to τSR(Y).
The topology defined by τSR(Y) on V is called SR-topology on V w.r.t Y and (V , τSR(Y), E) is said to

be SR-topological space. Soft rough set with the topology τSR is called a topological SR-set.

Example 4. Let V = {ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6} be the set of cars under consideration, and let E = {ζ1, ζ2, ζ3, ζ4, ζ5}
be the set of all parameters and A = {ζ1, ζ2, ζ3} ⊆ E . Consider the soft approximation P = (V ,S), where
S = (T ,A) is a soft set over U given by:
T (ζ1) = {ϑ1, ϑ3}, T (ζ2) = {ϑ1, ϑ3, ϑ6} and T (ζ3) = {ϑ2, ϑ4}.

For Y = {ϑ2, ϑ3, ϑ4, ϑ6}, we obtain <P?(Y) = {ϑ2, ϑ4}, <P
?(Y) = {ϑ1, ϑ2, ϑ3, ϑ4, ϑ6} and

Bd(Y) = {ϑ1, ϑ3, ϑ6}. Then,

τSR(Y) = {V , ∅, {ϑ2, ϑ4}, {ϑ1, ϑ2, ϑ3, ϑ4, ϑ6}, {ϑ1, ϑ3, ϑ6}}

is a SR-topology.

Definition 7. Let (V , τSR(Y), E) be a SR-topological space. Any subset A such that A ∈ τSR A is said to
be SR-open, and any subset A is SR-closed if and only if Ac ∈ τSR.

Example 5. In Example 2, we can see that {ϑ2, ϑ4}, {ϑ1, ϑ2, ϑ3, ϑ4, ϑ6}, {ϑ1, ϑ3, ϑ6} are SR-open sets, and
their relative complements {ϑ1, ϑ3, ϑ5, ϑ6}, {ϑ5}, {ϑ2, ϑ4, ϑ5} are SR-closed sets, while V and ∅ are both
SR-open and SR-closed.

3. Topological Structure of SR-Sets

In this section, we define a new topological structure on SR-sets. We define SR-open set,
SR-closed sets, SR-closure, SR-interior, SR-neighborhood, and SR-bases.

Definition 8. Let Y = (<P?(Y),<P
?(Y)) be a SR-subset, where P = (V ,S). Let τSR? and τSR?

be two topologies which contain only exact subsets of <P?(Y) and <P
?(Y), respectively. Then, the pair

τSR = (τSR?, τSR?) is called a SR-topology on the SR-set Y and the pair (Y , τSR) is known as a soft rough
topological space (SRTS). Soft rough set Y with the topology τSR = (τSR?, τSR?) is known as topological
SR-set. Also, in a SR-topology, τSR = (τSR?, τSR?), τSR? is the lower SR-topology and τSR? is the upper
SR-topology on X.
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Remark 1. Since <P?(Y) and <P
?(Y) are only exactly defined sets in SR-approximation space, we restrict

the elements of τ? and τ? to the set of all exact or definable subsets of <P?(Y) and <P
?(Y), respectively.

However, when they are grouped to form the SR-topology τSR = (τSR?, τSR?), indefinable sets can also
be SR-open. The point to be noted is that a subset of Y , either exact or inexact, is SR-open iff its lower
approximation is in the lower SR-topology and its upper approximation is in the upper SR-topology.

Definition 9. Let (Y , τSR) be an SRTS, where τSR = (τSR?, τSR?). Let A = (<P?(A),<P
?(A)) be any

SR-subset of Y = (<P?(Y),<P
?(Y)). Then, A is said to be lower SR-open if the lower approximation of A

belongs to the lower SR-topology. That is, <P?(A) ∈ τSR?. Also, A is said to be upper SR-open if the upper
approximation of A belongs to the upper SR-topology. That is, <P

?(A) ∈ τSR?. A is said to be SR-open iff
A is both lower SR-open and upper SR-open, i.e., <P?(A) ∈ τSR? and <P

?(A) ∈ τSR?.

Theorem 1. Consider an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?). Let T

be a collection of SR-open subsets of (Y , τSR). Then, T is a topology on Y .

Proof. Consider Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

(i) We have ∅ ∈ τSR? and ∅ ∈ τSR?. Therefore, ∅ (∅, ∅) ∈ T. Also, <P?(Y) ∈ τSR? and
<P

?(Y) ∈ τSR? and, hence, Y = (<P?(Y),<P
?(Y)) ∈ T.

(ii) Let A = (<P?(A),<P
?(A)) and B = (<P?(B),<P

?(B)) be any two elements of T, implying
that both A and B are SR-open subsets of Y . Therefore, <P?(A) ∈ τSR?, <P

?(A) ∈ τSR?

and <P?(B) ∈ τSR?, <P
?(B) ∈ τSR?. Being topologies, τSR? and τSR? are closed under finite

intersection; therefore, <P?(A) ∩ <P?(B) ∈ τSR? and <P
?(A) ∩ <P

?(B) ∈ τSR?. Hence, A ∩ B =

(<P?(A) ∩ <P?(B),<P
?(A) ∩ <P

?(B)) is an SR-open subset of Y , which shows that A ∩ B ∈ T.
Since A and B are arbitrary, T is closed under finite intersections.
(iii) Let {Aµ = (<P?(Aµ),<P

?(Aµ)) | µ ∈ Ω} be an arbitrary family of SR-open subsets of Y ,
and belongs to the subcollection T. Aµ = (<P?(Aµ),<P

?(Aµ)) ∈ T implies <P?(Aµ) ∈ τSR?
and <P

?(Aµ) ∈ τSR? for all µ ∈ Ω. Since τSR? and τSR? are closed under arbitrary union,
we have

⋃
µ∈Ω <P?(Aµ) ∈ τSR? and

⋃
µ∈Ω <P

?(Aµ) ∈ τSR?, which shows that
⋃

µ∈ΩAµ =(⋃
µ∈Ω <P?(Aµ),

⋃
µ∈Ω <P

?(Aµ)
)

is an SR-open subset of Y . Thus, T is closed under arbitrary union.
From (i), (ii), and (iii), the family T of Y forms a topology on Y .

Definition 10. In any SR-set Y = (<P?(Y),<P
?(Y)), define τSR? = {A ⊆ <P?(Y) | A is P− de f inable}

and τSR? = {B ⊆ <P
?(Y)/B is P − de f inable}. Then, τSR? and τSR? are topologies on <P?(Y) and

<P
?(Y), respectively, and the SR-topology τSR = (τSR?, τSR?) is known as the Discrete SR-topology on Y ,

and the topological space (Y , τSR) is known as the Discrete SR-Topological Space on Y .

Definition 11. In an SR-set Y = (<P?(Y),<P
?(Y)), take τSR? = (∅,<P?(Y)) and τSR? = (∅,<P

?(Y)),
then τSR? and τSR? are topologies on <P?(Y) and <P

?(Y), respectively, and the SR-topology
τSR = (τSR?, τSR?) on Y is known as the indiscrete SR-topology on Y , and (Y , τSR) is known as the
indiscrete SR-topological space on Y .

Definition 12. In an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?). Consider a

subcollection β? of subsets of <P?(Y); if every element of τSR? can be expressed as the union of some elements of
β?, then β? is said to be a base for τSR?. If every member of τSR? can be expressed as the union of some
members of β? for another subcollection β? of subsets of <P

?(Y), then β? is said to be a base for τSR?. If the
above conditions are satisfied, then the pair βSR = (β?, β?) is known as a SR-base for the SR-topology τSR
on Y .
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Theorem 2. Consider the SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

βSR = (β?, β?) is an SR-base for τSR iff for any SR-open set A = (<P?(A),<P
?(A)) of (Y , τSR) and

(x, y) ∈ A such that x ∈ <P?(A) and y ∈ <P
?(A), then there exist B? ∈ β? and B? ∈ β? such that

x ∈ B? ⊆ <P?(A) and y ∈ B? ⊆ <P
?(A).

Proof. Consider the SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?). Let β?

and β? be families of subsets of <P?(Y) and <P?(Y), respectively, such that βSR = (β?, β?) is a
SR-base for τSR. Also, consider any SR-subset A = (<P?(A),<P

?(A)) and let (x, y) ∈ A be
an arbitrary point such that x ∈ <P?(A) and y ∈ <P

?(A). Now, x ∈ <P?(A),<P?(A) ∈ τSR?
and β? is a base for τSR?, which implies that <P?(A) can be written as the union of elements of
β?. Hence, ∃Bµ ∈ β? such that x ∈ Bµ and Bµ ⊆ <P

?(A). Choose such a Bµ as B?. Therefore,
x ∈ B? ⊆ <P?(A).

Similarly, by the same argument, there exists B? ∈ β? such that y ∈ B? ⊆ <P
?(A).

Conversely, suppose that β? and β? are families of subsets of <P?(Y) and <P
?(Y), respectively,

such that for any SR-open set A = (<P?(A),<P
?(A)) of (Y , τSR), (x, y) ∈ A, where x ∈ <P?(A)

and y ∈ <P
?(A); then, there exist B? ∈ β? and B? ∈ β? such that x ∈ B? ⊆ <P?(A) and y ∈ B? ⊆

<P
?(A). Now, we have to prove that βSR = (β?, β?) is an SR-base for τSR. Let C = (<P?(C),<P

?(C))
be any SR-open subset of the SRTS (Y , τSR). By our assumption, for each x ∈ <P?(C), we have
Bx? ∈ β? such that x ∈ Bx? ⊆ <P?(C). Thus, <P?(C) =

⋃
x∈<P?(C) Bx?. This implies that <P?(C) can

be expressed as the union of some elements of β?. Since C = (<P?(C),<P
?(C)) is taken arbitrarily, β?

is a lower base for SR-topology τSR.
Similarly, by the same argument, <P

?(C) can be expressed as the union of some members of
β?; therefore, β? is an upper base for the SR-topology τSR. Hence, βSR = (β?, β?) is an SR-base
for τSR.

Definition 13. In an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

The collection S = (S?,S?) of subsets of Y , where S? and S? are a collection of subsets of <P?(Y) and
<P

?(Y). S is said to be an SR-subbase for the topology τSR iff the following conditions are satisfied:
(i) S? ⊂ τSR? and S? ⊂ τSR?.
(ii) Finite intersection of elements of S? gives a base for τSR? and finite intersection of elements of S? gives a
base for τSR?.

Definition 14. In an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

Let A = (<P?(A),<P
?(A)) be any SR-subset of Y . Then, the lower closure of A is the closure of <P?(A)

in (<P?(Y), τSR?) and is defined as the intersection of all closed supersets of <P?(A), and it is denoted
by ClSR(<P?(A)). Also, the upper closure of <P

?(A) in (<P
?(Y), τSR?) is the intersection of all closed

supersets of <P
?(A) and is denoted by ClSR<P

?(A). Then, the SR-closure of A = (<P?(A),<P
?(A)) is

defined as ClSR(A) = (ClSR(<P?(A)), ClSR(<P
?(A))).

Definition 15. In an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

Let A = (<P?(A),<P
?(A)) be any SR-subset of Y . Then, the lower interior of A is the interior of

<P?(A) in (<P?(Y), τSR?) and is defined as union of all SR-open subsets of (<P?(Y), τSR?) contained in
<P?(A), and it is denoted by IntSR(<P?(A)). Also, the upper interior of <P

?(A) in (<P
?(Y), τSR?)

is the union of all SR-open subsets of (<P?(Y), τSR?) contained in <P
?(A) and is denoted by

IntSR(<P
?(A)). Then, the SR-interior of A = (<P?(A),<P

?(A)) and is defined as IntSR(A) =

(IntSR(<P?(A)), IntSR(<P
?(A))).
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Definition 16. An SR-subset A of (Y , τSR) is said to be dense in Y if ClSR(A) = Y , i.e., an SR-subset
A = (<P?(A),<P

?(A)) is dense in Y if ClSR(<P?(A)) = <P?(Y) and ClSR(<P
?(A)) = <P

?(Y).

Theorem 3. An SR-subsetA = (<P?(A),<P
?(A)) of SRTS (Y , τSR) is dense in Y iff for every non-empty

SR-open set B = (<P?(B),<P
?(B)) of (Y , τSR), <P?(A) ∩ <P?(B) 6= ∅ and <P

?(A) ∩ <P
?(B) 6= ∅.

Proof. Suppose A = (<P?(A),<P
?(A)) is dense in Y . Then, ClSR(A) = (ClSR(<P?(A)),

ClSR(<P
?(A))) = (<P?(Y),<P

?(Y)) = Y . Therefore, ClSR(<P?(A)) = <P?(Y) and
ClSR(<P

?(A)) = <P
?(Y). Now, B = (<P?(B),<P

?(B)) be any non-empty SR-open subset of
(Y , τSR). Then, A∩ B = (<P?(A) ∩ <P?(B),<P

?(A) ∩ <P
?(B)).

Suppose <P?(A) ∩ <P?(B) = ∅. Then, <P?(A) ⊆ (<P?(Y) \ <P?(B)), which implies
ClSR(<P?(A)) ⊆ (<P?(Y) \ <P?(B)), since <P?(B) ∈ τSR? and, therefore, (<P?(Y) \ <P?(B)) is
closed. However, (<P?(Y) \ <P?(B)) is a proper subset of <P?(Y), which contradicts ClSR<P

?(A) =
<P

?(Y). Hence, <P?(A) ∩ <P?(B) 6= ∅. Similarly, <P?(A) ∩ <P?(B) 6= ∅.
Conversely, suppose A = (<P?(A),<P

?(A)) is a SR-subset of Y such that for every non-empty
SR-open set B = (<P?(B),<P

?(B)) of (Y , τSR), <P?(A) ∩ <P?(B) 6= ∅ and <P
?(A) ∩ <P

?(B) 6= ∅.
Let y ∈ <P?(Y), since <P?(A) ∩ <P?(B) 6= ∅; so, either y ∈ <P?(A) or it is a limit point of
<P?(A). That is, y ∈ ClSR(<P?(A)). Therefore, <P?(Y) ⊆ ClSR(<P?(A)) ⊆ <P?(Y), which implies
ClSR(<P?(A)) = <P?(Y). By a similar argument, we can prove that ClSR(<P

?(A)) = <P
?(Y).

Hence ClSR(A) = (ClSR(<P
?(A)), ClSR(<P

?(A))) = (<P?(Y),<P
?(Y)) = Y . So, A is dense

in Y .

Definition 17. In an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?). If for

γ ∈ Y there exist an open set V1 of <P?(Y) such that γ ∈ V1 ⊆ N?, where N? ⊆ <P?(Y), then the subset
N? is called τSR? − neighborhood. Similarly, if for γ ∈ Y there exist an open set V2 of <P

?(Y) such that
γ ∈ V2 ⊆ N ?, whereN ? ⊆ <P

?(Y), then the subsetN ? is called τSR? − neighborhood. If, at the same time,
N? ⊆ <P?(Y) and N ? ⊆ <P

?(Y), then NSR = (N?,N ?) is said to be a τSR − neighborhood of γ ∈ Y .

Proposition 1. Consider an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

LetA = (<P?(A),<P
?(A)) be an SR-subset of SR-set Y satisfying <P?(A) ⊆ <P?(Y) ⊆ <P

?(Y). Then,
A is SR-open iff it is a neighborhood of each of its points.

Proof. Suppose that A = (<P?(A),<P
?(A)) as an open subset of SR-set Y = (<P?(Y),<P

?(Y)).
Then, for every µ ∈ <P?(A), µ ∈ <P?(A) ⊂ <P?(A), and for every ν ∈ <P

?(A), ν ∈ <P
?(A) ⊂

<P
?(A). Hence, <P?(A) and <P

?(A) satisfy the neighborhood definition and are neighborhoods of
each point, and, hence, A = (<P?(A),<P

?(A)) is a neighborhood of each of its points.
Conversely, suppose A = (<P?(A),<P

?(A)) is a neighborhood of each of its points. Given the
assumption <P?(A) ⊆ <P?(Y) ⊆ <P

?(Y), if A = ∅, then it is SR-open. For µ ∈ A, then there
exists an SR-open set V = (Vµ?

,Vµ
?) in Y such that µ ∈ Vµ?

⊂ <P?(A) and µ ∈ Vµ
? ⊂ <P

?(A).
This implies<P?(A) =

⋃{Vµ?
/ µ ∈ <P?(A)} and<P

?(A) = ⋃{Vµ
? / µ ∈ <P

?(A)}. Hence, <P?(A)
and <P

?(A) are SR-open, which implies A is open.

4. Continuity in SR-Sets

In this section, we discuss the continuity of functions in SR-topological spaces, the continuous
image of an SR-closed set. The SR-homeomorphism is the part of the conversation.
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Definition 18. Let (Y , τSR) and (Z , ρSR) be topological SR-sets with topologies τSR = (τSR?, τSR?)
and ρSR = (ρSR?, ρSR?), respectively. A function ϕ1 : <P?(Y) → <P?(Z) is continuous at µ ∈ Y iff
every ρ1-neighborhood H1 of ϕ1(µ) in <P?(Z) there exists a τ1-neighborhood G1 of µ in <P?(Y) such that
ϕ1(G1) ⊂ H1 and ϕ2 : <P

?(Y) → <P
?(Z) is continuous at µ ∈ Z iff every ρ2-neighborhood H2 of ϕ2(µ)

in <P?(Z) there exists a τ2-neighborhood G2 of µ in <P
?(Z) such that ϕ2(G2) ⊂ H2. Then, the function

ϕ = (ϕ1, ϕ2) : Y → Z is said to be a continuous function at µ if both ϕ1 and ϕ2 are continuous functions
at µ.

Example 6. Assume that V = {℘1,℘2,℘3,℘4}, E = {ζ1, ζ2, ζ3, ζ4}, A = {ζ1, ζ3, ζ4} ⊂ E and
G = {(ζ1, (℘1,℘4), (ζ3,℘2), (ζ4,℘3)} is a soft set. Thus, we get P = (V ,G) as a soft approximation
space. If we take Y ⊂ V , where Y = {℘3,℘4}, then we have <P?(Y) = {℘3}, <P

?(Y) = {℘1,℘3,℘4} and
BndP = {℘1,℘4}. Thus, τSR(Y) = {V , ∅, {℘3}, {℘1,℘3,℘4}, {℘1,℘4}} is an SR-topology.

Let W = {v1, v2, v3, v4} and H = {(ζ1, {v1}), (ζ3, {v2, v3}), (ζ4, {v4})} be a soft set; then,
we have P′ = (W ,H) as a soft approximation space. If we take Z ⊂ W , where Z = {v3, v4}, then
<P′?(Z) = {v4}, <P′

?(Z) = {v2, v3, v4} and BndP′ = {v2, v3},
and ρSR = {W , ∅, {v4}, {v2, v3, v4}, {v2, v3}} is another SR-topology.

Define a function ϕ = (ϕ1, ϕ2) : V → W such that ϕ(℘1) = ϕ2(℘1) = v2, ϕ(℘2) = ϕ2(℘2) = v1,
ϕ(℘3) = ϕ1(℘3) = ϕ1(℘1) = v4 and ϕ(℘4) = ϕ2(℘4) = v3. Then, ϕ−1({v2, v3, v4}) = {℘1,℘3,℘4},
ϕ−1({v2, v3}) = {℘1,℘4} and ϕ−1({v4}) = {℘3}. Thus, ϕ is SR-continuous, since the inverse image for
each SR-open set inW is SR-open in V .

Theorem 4. Consider (Y , τSR) and (Z , ρSR) are topological SR-sets and ϕ = (ϕ1, ϕ2) : Y → Z .
For every ρ-SR-open set V = (V1,V2), ϕ1

−1(V1) ⊆ <P?(Y) ⊆ ϕ2
−1(V2) ⊆ <P

?(Y). Then, ϕ is a
continuous function if and only if the inverse image of every SR-open set in Z under ϕ is SR-open in Y .

Proof. Suppose ϕ = (ϕ1, ϕ2) : Y → Z is a continuous function and V = (V1,V2) is an SR-open set
in Z . We have to prove that ϕ−1(V) =

(
ϕ1
−1(V1), ϕ2

−1(V2)
)

is an SR-open set in Y . If ϕ1
−1(V1) and

ϕ2
−1(V2) are empty, then the result is obvious.

Suppose µ ∈ ϕ1
−1(V1) ⇒ µ ∈ ϕ2

−1(V2), that is, ϕ1(µ) ∈ V1 and ϕ2(µ) ∈ V2. By following
the definition of continuity of ϕ1, there exists a neighborhood N1 of µ such that ϕ1(N1) ⊂ V1; then,
µ ∈ N1 = ϕ1

−1(ϕ(N1)) ⊆ ϕ1
−1(V1), which implies ϕ1

−1(V1) is SR-open. Similarly, ϕ2
−1(V2) is

also SR-open. Hence, ϕ−1(V) is SR-open.
Conversely, let ϕ−1(V) be SR-open in Y for every SR-open set V in Z . We have to prove that ϕ

is a continuous function.
Consider µ ∈ Y as an arbitrary point, and ϕ1(µ) ∈ V1 implies ϕ2(µ) ∈ V2 (by hypothesis). Then,

µ ∈ ϕ1
−1(V1) and µ ∈ ϕ2

−1(V2), which means ϕ1(ϕ1
−1(V1)) ⊂ V1 and ϕ2(ϕ2

−1(V2)) ⊂ V2 implies
that ϕ1 and ϕ2 are continuous at µ. Since we take µ as an arbitrary point, then ϕ1 and ϕ2 are continuous
everywhere. Hence, ϕ is continuous.

Corollary 1. A function ϕ = (ϕ1, ϕ2) : Y → Z is continuous if and only if for every SR-closed subset C in
Z , ϕ−1(C) is SR-closed in Y .

Proof. Consider ϕ = (ϕ1, ϕ2) : Y = (<P?(Y),<P
?(Y)) → Z = (<P?(Z),<P

?(Z)) is a continuous
function and C = (C1, C2) is an arbitrary SR-closed subset of Z . Then, <P?(Z) \ C1 and
<P

?(Z) \ C2 are SR-open in Y = (<P?(Y),<P
?(Y)) and ϕ1

−1(<P?(Y) \ C1) = <P?(Y) \ ϕ1
−1(C1)

and ϕ1
−1(<P

?(Y) \ C2) = <P
?(Y) \ ϕ1

−1(C2), which implies that ϕ1
−1(C1) and ϕ1

−1(C2) are closed
in <P?(Y) and <P

?(Y), respectively. Hence, ϕ−1(C) is SR-closed in Y .



Mathematics 2019, 7, 67 9 of 18

Conversely, suppose that for any SR-closed subset C = (C1, C2) in Z , ϕ−1(C) is
SR-closed in Y . Let V = (V1,V2) be any SR-open subset of Z = (<P?(Z),<P

?(Z)).
Then, Z \ (V) = (<P?(Z) \ (V1),<P

?(Z) \ (V2)) is SR-closed and ϕ−1(Z \ V) =(
ϕ1
−1(<P?(Z) \ V1), ϕ2

−1(<P
?(Z) \ V2)

)
=ϕ−1(Z) \ ϕ−1(V) = Z \ ϕ−1(V) is SR-closed in Y ,

which implies ϕ−1(V) is SR-open in Y . Thus, ϕ is continuous.

Remark 2. 1. Every restriction of a continuous mapping is also continuous.
Let ψ = (ψ1, ψ2) : Y = (<P?(Y),<P

?(Y)) → Z = (<P?(Z),<P
?(Z)) be a continuous function

and A = (<P?(A),<P
?(A)) be a SR-subset of Y . Then, the restriction ψ|A = ψA : A → Z of ψ to A

is continuous. This is so because for each SR-open subset W in Z , ψA−1(W) = ψ−1(W) ∩ A, which is
SR-open in A.
2. Consider βSR = (β?, β?) as a base for a SR-topology on Z . Then, the function ψ : Y → Z is continuous if
and only if, for each SR-basic open set in Z , ψ−1(β) is SR-open in Y .
3. A function ψ : Y → Z is open if the image of every SR-open set in Y is SR-open.
4. A function ψ : Y → Y is closed if the image of every SR-closed set in Y is SR-closed.

Definition 19. Let (Y , τSR) and (Z , ρSR) be topological SR-sets. A function ϕ = (ϕ1, ϕ2) : Y → Z is
known as SR-homeomorphism if

(i) ϕ is SR-bijective.
(ii) ϕ is SR-continuous.
(iii) ϕ−1 is SR-continuous.
Two soft rough topological spaces (SRTS) are said to be SR-homeomorphic if there is a SR-homeomorphism

between Y and Z .

Definition 20. Consider Y = (<P?(Y),<P
?(Y)) and Z = (<P?(Z),<P

?(Z)) as two topological
SR-sets with topologies τSR = (τ1, τ2) and ρSR = (ρ1, ρ2), respectively, and Y × Z = (<P?(Y) ×
<P?(Z),<P

?(Y)×<P
?(Z)) is the Cartesian product of Y and Z . The topology ξ1 on <P?(Y)×<P?(Y)

containing a gathering of open sets of the form L1 ×M1, where L1 is a τ1 − SR-open and M1 is a
ρ1 − SR-open, as basis, is known as the product topology. Similarly, the topology ξ2 on <P

?(Y)×<P
?(Z) is

the topology containing a gathering of open sets of the form L2 ×M2, where L2 is a τ2 − SR-open andM2

is a ρ2 − SR-open, as basis, is known as the product topology. Hence, the topology ξ = (ξ1, ξ2) is called thte
product topology on Y ×Z .

Definition 21. Consider Y = (<P?(Y),<P
?(Y)) and Z = (<P?(Z),<P

?(Z)) as two topological SR-sets
with topologies τSR = (τ1, τ2) and ρSR = (ρ1, ρ2), respectively. The mapping ∏µ?

= <P?(Y)×<P?(Z)→
<P?(Y) and ∏µ

? = <P
?(Y)×<P

?(Z)→ <P
?(Y), defined as ∏µ?

((µ, ν)) = µ, ∀ (µ, ν) ∈ <P?(Y)×
<P?(Z) and ∏µ

? ((µ, ν)) = µ, ∀ (µ, ν) ∈ <P
?(Y) × <P

?(Z), respectively, are known as projection

mappings. Then, ∏µ =
(

∏µ?
, ∏µ

?
)

is known as the projection mapping from Y ×Z → Y . Similarly, we can
define the projection mapping ∏ν = (∏ν?, ∏ν

?) from Y ×Z → Y .

Theorem 5. Consider Y and Z as two topological SR-sets and Y × Z as the product space. Then,
the projections ∏µ and ∏ν are continuous mappings.
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Proof. Suppose Y = (<P?(Y),<P
?(Y)) and Z = (<P?(Z),<P

?(Z)) are two topological SR-sets
with topologies τSR = (τ1, τ2) and ρSR = (ρ1, ρ2), respectively. Let ξ be the product topology onY ×Y
and L = (<P?(L),<P

?(L)) be an τ − SR-open set. Then, ∏µ?
−1(<P?(L)) = <P?(L) × <P?(Z),

where <P?(L) ∈ τ1 and <P?(Z) ∈ ρ1 imply that <P?(L)×<P?(Z) belongs to the basis for τ1. Also,
∏µ

?−1(<P
?(L)) = <P

?(L)×<P
?(Z), where <P

?(L) ∈ τ2 and <P
?(Y) ∈ ρ2 imply <P

?(L)×<P
?(Y)

belongs to the basis for τ2, which implies that (<P?(L)×<P?(Z),<P
?(L)×<P

?(Z)). Thus, ∏α? and

∏α
? are continuous mappings. Therefore, ∏α =

(
∏µ?

, ∏µ
?
)

is a continuous mapping. Similarly,
we can show that ∏ν = (∏ν?, ∏ν

?) is also a continuous mapping.

5. Compactness in SR-Set

In this section, we study the compactness of SR-topological spaces, discuss images of
SR-compact spaces, and prove some basic results.

Definition 22. Let Y = (<P?(Y),<P
?(Y)) be a SR-set. For any open covering V1 = {Vµ/i ∈ Ω} of

<P?(Y), if we get a finite subcovering V1
F = {Vµ /i = 1, 2, ..., m}, then <P?(Y) is said to be the compact

lower approximation of Y . Similarly, for any open covering V2 = {Vj/j ∈ Ω} of <P
?(Y), if we get a finite

subcovering V2
F = {Vj /j = 1, 2, ..., n}, then <P

?(Y) is said to be the compact upper approximation of Y .
Then, the SR-set Y = (<P?(Y),<P

?(Y)) is known as a compact SR-set.

Definition 23. Suppose A = (<P?(A),<P
?(A)) is an SR subset of Y = (<P?(Y),<P

?(Y)). If, for any
open covering W = {Wj/j ∈ Ω} of <P?(A), we get a finite subcovering VF = {Vj /j = 1, 2, ..., n} of
<P?(A), then <P?(A) as the subset of <P?(Y) is said to be compact. If, at the same time, <P

?(A) is also
compact, then we call A a compact SR-subset of Y .

Theorem 6. The continuous image of a compact topological SR-set is compact.

Proof. Consider Y = (<P?(Y),<P
?(Y)) as a compact SR-set and suppose that ψ = (ψ1, ψ2) :

(<P?(Y),<P
?(Y)) → (<P?(Z),<P

?(Z)) is a continuous mapping. Then, ψ1 : <P?(Y) → <P?(Z)
and ψ2 : <P

?(Y) → <P
?(Z) individually are continuous mappings. Let C1 = {Wν /ν ∈ Ω} be an

open covering of <P?(Z). Then, ψ1
−1(C1) = {ψ1

−1(Wν) /ν ∈ Ω} is an open covering for <P?(Y).
Since <P?(Y) is compact, then, by definition of compactness, it has a finite subcovering, and there

are indices ν1ν2, ..., νm such that <P?(Y) =
m⋃

i=1
ψ1
−1(C1). ψ1(<P?(Y)) ⊆

m⋃
i=1

(C1) ⊆ ψ1(<P?(Y)).
Therefore, {Wνµ /i = 1, 2, 3, ..., m} is a finite subcovering of ψ(<P?(Y)) = <P?(Z). So, <P?(Z) is also
compact. Similarly, we can show that <P

?(Z) is compact and, hence, Z = (<P?(Z),<P
?(Z)) is a

compact SR-set.

Corollary 2. The homeomorphic image of a compact SR-space is compact.

Remark 3. In topological SR-sets, compactness is a topological property.

Definition 24. Consider an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?).

Let Γ = {Aµ = (<P?(Aµ),<P
?(Aµ)) : µ ∈ Λ} be a collection of SR-subsets of Y . If every finite

subcollection of Γ has a non-empty intersection, which means that if we consider any finite subset Λ1 of Λ,
we get

⋂
ν∈Λ1

Aν 6= ∅, then the finite intersection property holds in collection Γ.

Theorem 7. Consider an SRTS (Y , τSR), where Y = (<P?(Y),<P
?(Y)) and τSR = (τSR?, τSR?); Y is

SR-compact iff every collection of SR-closed subsets in Y following the finite intersection property itself has
non-empty intersections.
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Proof. First, we suppose Y is SR-compact and Γ = {Dµ = (<P?(Dµ),<P
?(Dµ)) : µ ∈ Λ} is an

arbitrary collection of SR-closed sets satisfying the finite intersection property. We have to prove that
the collection {Dµ = (<P?(Dµ),<P

?(Dµ)) : µ ∈ Λ} itself has non-empty intersection. Suppose, on the
contrary, that

⋂
µ∈Λ
Dµ = ∅. By taking the complement (

⋂
µ∈Λ
Dµ)

′
= ∅

′
, we have Y =

⋃
µ∈Λ
D′µ, which

implies {Dµ
′
= (<P?(Dµ

′
),<P

?(Dµ
′
)) : µ ∈ Λ} is an open cover for Y = (<P?(Y),<P

?(Y)). By our
assumption, Y = (<P?(Y),<P

?(Y)) is SR-compact, and there are indices µ1, µ2, µ3, ..., µk such that

<P?(Y) =
k⋃

ι=1
<P?(Dµι

′
) and <P

?(Y) =
k⋃

ι=1
<P

?(Dµι

′
). Again, by taking the complement, we get

k⋂
ι=1
<P?(Dµι

) = ∅ and
k⋂

ι=1
<P

?(Dµι
) = ∅, that is,

k⋂
ι=1
Dµι

=

(
k⋂

ι=1
<P?(Dµι

),
k⋂

ι=1
<P

?(Dµι
)

)
= ∅, which

contradicts the finite intersection property. So, our assumption is wrong and
⋂

µ∈Λ
Dµ 6= ∅.

Conversely, suppose that every collection of SR-closed sets satisfying the finite intersection
property has a non-empty intersection itself. We now have to prove that Y = (<P?(Y),<P

?(Y))
is SR-compact. For this, let us consider {Vε = (<P?(Vε),<P

?(Vε)) : ε ∈ Υ} as an open cover of

Y , i.e., Y = (<P?(Y),<P
?(Y)) =

(
⋃

ε∈Υ
<P?(Vε),

⋃
ε∈Υ
<P

?(Vε)

)
. To prove that Y is SR-compact,

we have to show that this open cover has a finite subcover. On the contrary, suppose that there does not
exist any finite subcover for this open cover. Then, for any finite subcover Υ1 of Υ,

⋃
ε∈Υ1

Vε 6= Y ,

i.e.,

(
⋃

ε∈Υ1

<P?(Vε),
⋃

ε∈Υ1

<P
?(Vε)

)
6= (<P?(Y),<P

?(Y)). This implies
⋂

ε∈Υ1

Vε
′ 6= ∅. Now,

{Vε
′
= (<P?(Vε

′
),<P

?(Vε)
′
) : ε ∈ Υ} is a collection of SR-closed sets satisfying the finite intersection

property, so
⋂

ε∈Υ1

Vε
′ 6= ∅ i.e.,

(
⋂

ε∈Υ
<P?(Vε

′
),
⋂

ε∈Υ
<P

?(Vε
′
)

)
6= ∅. By taking the complement,

we get
(
⋃

ε∈Υ
<P?(Vε),

⋃
ε∈Υ
<P

?(Vε)

)
6= (<P?(Y),<P

?(Y)), which contradicts our supposition that

{Vε = (<P?(Vε),<P
?(Vε)) : ε ∈ Υ} is an open cover of Y . Hence, {Vε = (<P?(Vε),<P

?(Vε)) : ε ∈ Υ}
has a finite subcover, so Y is SR-compact.

Theorem 8. Every SR-closed subset of SR-compact space is SR-compact.

Proof. Let Y be an SR-compact space and D = (<P?(D),<P
?(D)) be a SR-closed subset of

Y . Let {Vε = (<P?(Vε),<P
?(Vε)) : ε ∈ Υ} be an open cover for D = (<P?(D),<P

?(D));
there exist an SR-open set Wε = (<P?(Wε),<P

?(Wε)) in Y = (<P?(Y),<P
?(Y)) such that

Vε = Wε ∩ D, ε ∈ Υ, i.e., <P?(Vε) = <P?(Wε) ∩ <P?(D) and <P
?(Vε) = <P

?(Wε) ∩ <P
?(D).

The collection {D′ ,Wε : ε ∈ Υ} is an open cover for Y . Since Y is compact, there exists a finite subcover

{D′ ,Wε : ε ∈ Υ} of Y , that is, Y = D′
k⋃

ι=1
Wει, which implies <P?(Y) = <P?(D

′
)

k⋃
ι=1
<P?(Wει) and

<P
?(Y) = <P

?(D′)
k⋃

ι=1
<P

?(Wει). D = Y ∩ D =

(
<P?(D

′
) ∩

k⋃
ι=1
<P?(Wει,<P

?(D′) ∩
k⋃

ι=1
<P

?(Wει

)

=
(

k⋃
ι=1
<P?(Vει),

k⋃
ι=1
<P?(Vει)

)
, which indicates D = (<P?(D),<P

?(D)) is SR-compact.

6. Application of SR-Set in Multi-Attribute Group Decision Making

Decision-making performs a vital role in our daily life, and this process yields the best alternative
among different choices. In this section, we present an application of an SR-set in multi-attribute
group decision making (MAGDM) for cosmetic brand selection. First, we present Algorithm 1 and its
flowchart for multi-attribute group decision making.
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Algorithm 1 The scheme of the algorithm is given as.
Step-1: Write the soft set G = (T ,A) which describes the given data.
Step-2: Based on initial assessment results of the group of analysts S , define a soft set.
Step-3: Obtain an SR-approximations in the form of soft sets Λ? = (λ?,S) and Λ? = (λ?,S).
Step-4: Define fuzzy sets νΛ?, νΛ and νΛ

? corresponding to the soft sets Λ? = (λ?,S), Λ = (λ,S) and
Λ? = (λ?,S) defined by the formulas:

νΛ?(αk) =
1
m

m

∑
ι=1

Cλ?Dι
(αk),

νΛ(αk) =
1
m

m

∑
ι=1

CλDι
(αk),

νΛ
?(αk) =

1
m

m

∑
ι=1

Cλ?Dι
(αk).

Step-6: Find the final decision set by adding Λ?, Λ, and Λ?, calculated as

Λ? + Λ + Λ? = νΛ?(αk) + νΛ(αk) + νΛ
?(αk)− (νΛ?(αk) ∗ νΛ(αk) ∗ νΛ

?(αk))

Step-7: Finally, the alternative having the maximum decision value can be chosen as the optimal
solution.

Now we present flow chart Algorithm 1 as given by Figure 1 and its flowchart for multi-attribute
group decision making.
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Step-7: Finally the alternative having maximum decision value can be chosen as optimal solu-
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Example 6.1. The trade of quality cosmetics is growing rapidly also among the lower-middle class

of developing countries like Pakistan and India. Assume that a popular departmental store of the

city wants to make a contract with a multi-national company for the production of cosmetics. The

managing committee of the store consist of three managers S = {M1,M2,M3} product manager,

marketing manager and accounts manager. The team of these three managers are elected to

choose one brand which covers the major production of cosmetics. They consider seven brands

V = {~1, ~2, ~3, ~4, ~5, ~6, ~7, ~8} where

~1 :Loreal,

~2 :Maybelline,

15

Figure 1. Graphical representation of Algorithm 1.

Example 7. The trade of quality cosmetics is growing rapidly among the lower-middle class of developing
countries like Pakistan and India. Assume that a popular departmental store of the city wants to make a
contract with a multinational company for the production of cosmetics. The managing committee of the store
consist of three managers, S = {M1, M2, M3}: the product manager, marketing manager, and accounts
manager. The team of these three managers is elected to choose one brand which covers the major production of
cosmetics. They consider seven brands: V = {h̄1, h̄2, h̄3, h̄4, h̄5, h̄6, h̄7, h̄8}, where
h̄1: Loreal,
h̄2: Maybelline,
h̄3: Remmil,
h̄4: Art Deco,
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h̄5: Essence,
h̄6: Color Studio,
h̄7: Mac,
h̄8: Sephora.
They define a set of criteria for the selection of a suitable brand for their store as follows,
E = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8}, where
ρ1: Product quality
ρ2: Relationship closeness (customer–brand relationship)
ρ3: Delivery performance
ρ4: Price stability
ρ5: Plans for major events
ρ6: Distribution plans (in-store furniture)
ρ7: Recovery services in case of damages
ρ8: Shopper marketing activities.

We construct a soft set G = (T ,A) which explains the qualities of the brands under consideration.
The tabular form of the soft set is given in Table 2.

Table 2. Soft set (T ,A).

(T ,A) ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

h̄1 1 0 1 1 0 1 0 0
h̄2 1 0 1 1 1 1 0 1
h̄3 0 1 0 1 0 0 1 0
h̄4 0 1 0 1 0 0 0 0
h̄5 1 0 1 0 0 1 0 1
h̄6 0 1 1 1 0 0 0 0
h̄7 1 0 1 1 0 1 1 0
h̄8 0 1 0 1 0 0 1 0

Let Xi be the initial assessment result of the manager team. We represent this evaluation by means of a soft
set Λ = (λ,S) whose tabular representation is given by Table 3.

Table 3. Soft set (λ,S).

D1 D2 D3

h̄1 1 0 1
h̄2 1 0 1
h̄3 0 1 0
h̄4 0 1 0
h̄5 0 0 1
h̄6 1 0 1
h̄7 1 0 1
h̄8 0 1 0

From this soft set Λ = (λ,S), the primary evaluation result of experts is

X1 = λ(D1) = {h̄1, h̄2, h̄6, h̄7},
X2 = λ(D2) = {h̄3, h̄4, h̄7, h̄8},
X3 = λ(D3) = {h̄1, h̄2, h̄5, h̄6}
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Now, we find the SR-approximations as

λ?(D1) = <P?(X1) = {h̄1},
λ?(D2) = <P?(X2) = {h̄3, h̄7, h̄8},
λ?(D3) = <P?(X3) = {h̄2, h̄5},

and
λ?(D1) = <P

?(X1) = V ,
λ?(D2) = <P

?(X2) = V ,
λ?(D3) = <P

?(X3) = V .

Following these SR-approximations, we get two soft sets, Λ? = (λ?,S) and Λ? = (λ?,S), where
λ?(Di) = <P?(Xi) and λ?(Di) = <P

?(Xi). Tabular representation of these soft sets are given in
Tables 4 and 5.

Table 4. Soft set Λ?.

D1 D2 D3

h̄1 0 0 0
h̄2 1 0 1
h̄3 0 1 0
h̄4 0 0 0
h̄5 0 0 1
h̄6 0 0 0
h̄7 0 1 0
h̄8 0 1 0

Table 5. Soft set Λ?.

D1 D2 D3

h̄1 1 1 1
h̄2 1 1 1
h̄3 1 1 1
h̄4 1 1 1
h̄5 1 1 1
h̄6 1 1 1
h̄7 1 1 1
h̄8 1 1 1

Now, we define a fuzzy set νΛ?(h̄k), νΛ(h̄k), and νΛ
?(h̄k) as follows:

νΛ?(h̄k) =
1
3

3

∑
i=1

Cλ?Di (h̄k),

νΛ(h̄k) =
1
3

3

∑
i=1

CλDi (h̄k),

νΛ
?(h̄k) =

1
3

3

∑
i=1

Cλ?Di (h̄k).

Thus, we have

νΛ?(h̄k) = {(h̄1, 0), (h̄2, 2/3), (h̄3, 1/3), (h̄4, 0), (h̄5, 1/3), (h̄6, 0), (h̄7, 1/3), (h̄8, 1/3)},
νΛ(h̄k) = {(h̄1, 2/3), (h̄2, 2/3), (h̄3, 1/3), (h̄4, 1/3), (h̄5, 1/3), (h̄6, 2/3), (h̄7, 2/3), (h̄8, 1/3)},
νΛ

?(h̄k) = {(h̄1, 0), (h̄2, 2/3), (h̄3, 1/3), (h̄4, 0), (h̄5, 1/3), (h̄6, 0), (h̄7, 1/3), (h̄8, 1/3)},



Mathematics 2019, 7, 67 15 of 18

Now, we find the decision set by adding Λ?, Λ, and Λ?. Then, we have

νΛ?+Λ+Λ?(h̄k) = νΛ?(h̄k) + νΛ(h̄k) + νΛ?(h̄k)− [νΛ?(h̄k) ∗ νΛ(h̄k) ∗ νΛ?(h̄k)].

Since h̄2 is the brand having the maximum decision value in Table 6, then h̄2 is selected by the the manager
team as the major production brand for cosmetics in the departmental store.

In the proposed algorithm, we observe that the use of SR-methodology filters the primary assessment
results and permits the experts to choose the optimal alternative in a suitable manner. Particularly, the SR-upper
approximation can be used to add optimal objects possibly neglected by the selectors in the primary assessment,
while the SR-lower approximation can be used to remove the objects that are irregularly selected as optimal.
Hence, SR reduces the error, to some extent, that is caused by the subjective nature of experts during group
decision making.

Table 6. Decision value table.

Decision Value

h̄1 1.000
h̄2 1.889
h̄3 1.556
h̄4 1.000
h̄5 1.556
h̄6 1.778
h̄7 1.778
h̄8 1.556

Now we present bar chart as given by Figure 2 of the decision values.
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Since ~2 is the brand having maximum decision value in table 6. So, ~2 is selected by the the

managers team as a major production brand for cosmetics in the departmental store.

In the proposed algorithm we observe that the use of SR-methodology filters the primary

assessment results and permit the experts to choose the optimal alternative in a suitable manner.

Particularly, SR-upper approximation can be used to add the optimal objects possibly neglected

by the selectors in primary assessment while SR-lower approximation can be used to remove the

objects that are irregularly selected as optimal. Hence SR-reduce the error to some extent caused

by subjective nature of experts during group decision making.

Applications of the Topological SR-Spaces in Image Processing

We know that geometrical figures can be obtained by its part information and its topological

structure properties. Similarly, according to the SR-topological properties of the SR-space, we

can also restore the SR-topological diagram for some incomplete diagram.

Example: One of the best example for incomplete image is fingerprints. Figure6 shows the part

of fingerprint information of a person; however, the fingerprint information is incomplete. We can

obtain the real fingerprint image on the basis of this figure6 by using SR-approximations and SR-

topological properties.

The development of these theories can form the theoretical basis for further applications of SR-set

and SR-topology in many science and engineering areas such as image processing, protein-structure

prediction, target recognition and gene-structure prediction.

19

Figure 2. Graphical representation of Decision Values.

7. Applications of the SR-Topological Spaces in Image Processing

We know that a geometrical figure can be obtained by its part information and its topological
structure properties. Similarly, according to the SR-topological properties of the SR-space, we can
also restore the SR-topological diagram for some incomplete diagram.

Example 8. One of the best examples of an incomplete image is that of fingerprints. Figure 3 shows a portion of
fingerprint information from a person; however, the fingerprint information is incomplete. We can obtain the
real fingerprint image on the basis of this Figure 3 by using SR-approximations and SR-topological properties.
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7 Conclusion

We established the topological structure on SR-set in a new way. We defined various topological

terms, define SR-continuity, product topology in SR-set, and compactness in SR-sets, by taking

SR-set as a pair of sets corresponding to the lower and upper approximations. Furthermore, We

presented an algorithm to cope with uncertainties in the multi-attribute group decision making

problems by utilizing SR-sets. The effectiveness of the algorithm has verified by a case study for

brand selection of cosmetics.However, under topological transformation, some properties of SR-set

and topological theory like connectedness and separation axioms on SR-set need to be further stud-

ied. If we combine SR-set with other soft computing methods such as bipolar fuzzy, neutrosophic

set, other hybrid structures and use them in image processing, expert systems, cognitive maps, the

high machine IQ and hybrid intelligent system can be designed, which will be a productive attempt.
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The development of these theories can form the theoretical basis for further applications of the
SR-set and SR-topology in many science and engineering areas, such as image processing, protein
structure prediction, target recognition, and gene structure prediction.

8. Conclusions

We established the topological structure on the SR-set in a new way. We define various topological
terms, define SR-continuity, product topology in SR-set, and compactness in SR-sets by taking
an SR-set as a pair of sets corresponding to the lower and upper approximations. Furthermore,
we present an algorithm to cope with uncertainties in multi-attribute group decision-making problems
by utilizing SR-sets. The effectiveness of the algorithm was verified by a case study for cosmetic
brand selection. However, under topological transformation, some properties of the SR-set and
topological theory, like connectedness and separation axioms on the SR-set, need to be further studied.
If we combine the SR-set with other soft computing methods, such as bipolar fuzzy, neutrosophic set,
and other hybrid structures, and use them in image processing, expert systems, and cognitive maps,
a high machine IQ and hybrid intelligent system can be designed, which will be a productive attempt.
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