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This paper studies the problem of determining invertible elements (units) in any n-refined neutrosophic ring. It presents the
necessary and sufficient condition for any n-refined neutrosophic element to be invertible, idempotent, and nilpotent. Also, this
work introduces some of the elementary algebraic properties of n-refined neutrosophic matrices with a direct application in

solving n-refined neutrosophic algebraic equations.

1. Introduction

Neutrosophy is a new kind of generalized logic proposed by
Smarandache [1]. It becomes a useful tool in many areas of
science such as number theory [2, 3], solving equations [4],
and medical studies [5, 6]. Also, we find many applications
of neutrosophic structures in statistics [7], optimization [8],
topology [9], and decision making [10, 11].

On the other hand, neutrosophic algebra began in [12],
where Smarandache and Kandasamy defined concepts such
as neutrosophic groups and neutrosophic rings. These no-
tions were handled widely by Agboola et al. in [13, 14], where
homomorphisms and AH-substructures were studied [15].

Recently, there is an increasing interest by the gener-
alizations of neutrosophic algebraic structures. Smarand-
ache and Abobala proposed n-refined neutrosophic rings
[16], modules [17, 18], and spaces [19-22].

Neutrosophic algebraic equations are useful in many
scientific areas; there is a full description of their solutions in
neutrosophic fields and refined neutrosophic fields [23]. In
particular, the relations between neutrosophic matrices and
equations are defined in [24].

From this point of view, we are motivated to generalize
the previous studies so that we study some of the algebraic
properties of n-refined neutrosophic elements such as
invertibility, nilpotency, and idempotency. Also, we study

elementary properties of n-refined neutrosophic matrices
and their application in solving the n-refined neutrosophic
linear system of equations as a new generalization of pre-
vious efforts in [23-25].

2. Preliminaries

Definition 1 (see [16])

Let (R, +, x) be a ring and I;,1<k<n be n indeter-
minacies. We define R, (I) = {ag +a,I +---+a,l,; a; € R}
to be n-refined neutrosophic ring. If n—2, we get a ring
which is isomorphic to 2-refined neutrosophic ring
R(I,,L,).

Addition and multiplication on R, (I) are defined as
follows:

ixi ix‘*)’l

i=0 i=0 i=

n n
Z x;I; % Z yil;
=0 i=0

l
i

(x xy]) il (1)

o

M=

1,j=0

where x is the multiplication defined on the ring R and xI;, =
X fOl‘ all X € R I]Il = III] = Imin(i,j)’ 101] = I].

It is easy to see that R, (I) is a ring in the classical concept
and contains a proper ring R.
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Definition 2 (see [16])

Let R, (I) be an n-refined neutrosophic ring, and it is said
to be commutative if xy = yx for each x, y € R, (I); if there
is 1eR,(I) such 1-x=x-1=x, then it is called an
n-refined neutrosophic ring with unity.

Theorem 1 (see [16]). Let R,(I) be an n-refined neu-
trosophic ring. Then,

(a) R is commutative if and only if R, (I) is commutative
(b) R has unity if and only if R, (I) has unity
(©) R,(I) = YLy RI; = {¥Ly x;I;: x; € R}

Definition 3 (see [16])

(a) Let R, (I) be an n-refined neutrosophic ring and P =
YioPl={ag+al+---+a,l,: a; € P;} where P;
is a subset of R; we define P to be an AH-subring if P;
is a subring of R for all i; AHS-subring is defined by
the condition P; = P]- for all 4, j.

(b) Pisan AH-ideal if P, is a two-sided ideal of R for all 4,
and the AHS-ideal is defined by the condition P; =
P; foralli,j.

(c) The AH-ideal P is said to be null if P; = Ror P; = {0}
for all i.

Definition 4 (see [16])

Let R, (I) be an n-refined neutrosophic ring and P =
YioPI; be an AH-ideal; we define AH-factor
R(I)/P =31, (RIP)I; = Y (x; + P)I; x; € R.

Theorem 2 (see [16])
Let R,(I) be an n-refined neutrosophic ring and
P=Y%",P.I, be an AH-ideal;
R, (I)/P is a ring with the following two binary operations:

Zn: (x; + P)I; + Zn: (yi + P)L;
i=0 i=0
= i(xi+yi+Pi)Ii’Zn:(xi + Pl Xi(yi"'Pi)Ii
0 i=0 i=0
= Zn:(xixyi+Pi)Ii' (2)

Il
(=]
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3. Main Discussion

In this section, we study the invertibility of any element in
any n-refined neutrosophic ring, and we show the conditions
of idempotency and nilpotency in these rings. All rings in
this section are considered with unity 1.

Definition 5 Let X = Ay + A1, +---+ A,I, be an n-refined
neutrosophic element; we define its canonical sequence as
follows:

M, = A,,

(3)
M;=Ay+Aj+Aj,+-+4, l<j<n
For example,
My=A+A;+A,+---+ A, (4)

Remark 1
The multiplication operation between two n-refined neu-
trosophic elements can be represented by the following
equation:
(Ag+ AL +--+A,L)(By+BI, +---+B,,) = MyN,
n-1
+(M,N, = MyNo)I,, + Z (M;N; = M;; 1Ny, )T
i=1

(5)

where M; and N, are the canonical sequences of A, + A, I, +
---+A,I, and By + B,I, +--- + B,I,, respectively.

Proof. For n = 0, the statement is true easily. Suppose that it
is true for n = k, we must prove it for n = k + 1. We compute
the multiplication L= (Ay+ AL+ -+ A1) (Bot
BiIy +:- + By Ipyy).

(Ag+ AL+ + Ay Iy ) (Bo + By + -+ + By Iy ) = (Ag + ATy + -+ Agly) (By + Byl + - + Bily)
+ A Ter (By + Byl + -+ Bl ) + (Ag + ATy + -+ Al) By Iy + A e Bian It

k

= MNg + (MNy = MgNo)I; + Z (M;N; = M i Ny )+ 1) [Ag By + A By |

i=1

(6)

+ I, [ Ay By + AyBiyy | + - + L [Ag B + AgBry | + T [AgBra + Agi1 By + Ay Biy |-

Thus, the coefficient of I, is AyBr+ ApBot
Api1Brin = (Aggy + Ag) (Biya + By) = (Ag) (By) = My Ny =
MyN,. Also, the «coefficient of I;, 1<i<k is

M;N;=M;; N+ ApBi+ ABiyy = (Ag+ A+ A+ ot
Ap) (Bp+B;+B; +-+B)— (Ag+ A+ A+ + A

(Bop+Bjy1+ By +-++Bi) + Ap Bi+ A By = (Ag+ A+ AL

i+1 i+2
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1+ - +A+AL;) (By+Bj+Bj +--+Br+B,)— (At
Az+1+Az+2+ A+ AL) (By+Bj;) + By +-+-+ B+
Bi,1)= M;N;—M; ;N,,;, where 1<i<k+1. Hence, our

proof is completed by induction.

Theorem 3
Let X=Ay+A I +---+A1I, be an n-refined neu-
trosophic element, then it is invertible if and only if

M;,0<j<n are invertible The mverse of X is
X1 = (Mp)™ '+ (M - MY, +2 (MG - M) =
(A)) "+ ((Ay+ A +- +A) —(A +A +- +A) N
I+ ((Ag+ A, + --+An)" (Ag+ A5 + +An) NI, +
((Ag+ A3+ +A) = (A + A, + -~+A,,)"1)I3+
((Ag+A,) "= (A4) DI,

Proof. X is invertible if and only if there exists
Y =B,+B,I,+---+B,I,, where XY =YX = 1. By using

Remark 14, we can write the followmg
MyNg+ (M,N, - MoN)I, + Y"1 (M,N, - M;,,N,,,)
I =1. Thls implies thatMONo =1 and M;N; -—M,;, N, =
0 for all i, where 0 is the zero element. Hence, we get M;N; =
M; Nj = MyN, = 1. So, M;, 0< j<n are invertible.
On the other hand we
X '=(My) '+ (M;' - M, 1)1 + 20 (M - M1,
and now we compute XX ! as follows

XX "= MoMg' +(M M7 - MM

put

H MM = MM + -+ (MM, = MM, = 1.

(7)

Example 1

Considering Z(I) = {a + bl, + cl,; a,b,c € Z,} the 2-
refined neutrosophic ring of integers, the set of invertible
elements in Z, is {-1,1}. Hence, the set of all invertible
elements in the corresponding 2-refined neutrosophic ring is

{1,-1,1-2L,,-1+ 21,,1-2I,,—-1+2I,,1+2I, -2I,,
—1-2I, +2L,}.
Theorem 4

Let X=Ay+AI +---+A,]I, be an n-refined neu-
trosophic element, and we have the following:
(a) X is nilpotent if and only if M, for all j are nilpotent

(b) X is idempotent if and only if M,forallj are
idempotent

Proof

(a) First of all we will prove that X" = Mj + I,[(M,)" —
(M) 1+ X5 (M7) = (M, ).
We use the induction, for r =1 it is clear. Suppose
that it is true for r = k, we prove it for k + 1.

X"“:X"X:(M + [ (M) - (M)!] + Z(( ;) -(M ,+1))1i>(A0+A111+”'+AnIn)

:<Mg+1n[< D=1, S (e

i=1

) ( l+1))1i> (Mo + (M, — M,)I,, + ni(Mi - Mi+1)>

i=1

(8)

i+1

n-1
= MMy + I, [ (M,)*M,, - MgM, | + ¥ (MfM;) = (M5, M, ) )1
i=1

— M§+1 + In[(Mn)k+l _ (Mo)k+l] + HZ((Mk+1

i=1

X is nilpotent if there is a positive integer r such that
X" = 0. This is equivalent to

My = (M,)*
=(Mj)k

=0 forall j, which implies the proof.

©)

(b) The proof is similar to (a).

1

) =(ME))1

4. n-Refined Neutrosophic Linear
Algebraic Equations

This section is dedicated to introduce an algorithm to solve
n-refined neutrosophic linear equations over any n-refined
neutrosophic field by turning them into classical systems of
numbers.

Also, we discuss some elementary properties of n-refined
neutrosophic matrices.



Definition 6

Let F,(I) be any n-refined neutrosophic field. The
n-refined linear neutrosophic equation with one variable
over F_ (I) is defined as follows:

AX+B=0,
(10)
A,B, X eF,(]),
where
A=a,+al +---+a,l,
B=by+bI +---+b,I, (11)
X=xy+xI; +---+x,I
Theorem 5

Let ¥, (I) be any n-refined neutrosophic field and
(*)AX + B =0 be any n-refined linear neutrosophic equa-
tion over E, (I). Then, ( ) is solvable over ¥ (I) if and only if
the following classical system is solvable over the classical field
F:

(1) agxy +by =0
(2) (ag+a,)(xy+x,)+ (by+b,) =0
(3) (ag+a,+a, ;) (xg+x,+X,_;)+ (by+b,+b,_;)=0

(n+1-) (ag+ a;+---+a,) (Xo+x;+---+Xx,)+
(by+b;+---+b,) =0

Proof. We will show that Equation (18) is equivalent to the
previous classical system of equations.
We compute Equation (18) by using the canonical form,
and we get
n-1
MyN; + (M,N, - MyNy)I,, + Z (MiN; - M, N, )T
i=1
=-b,-bI; —----b,I,

n n

(12)

where M; andN; are the canonical forms of A and X,
respectively.
From (12), we get the following classical system:

M,N, = _bo’
M,N, - M,N, = -b,, (13)

M;N; - M;,|N;,, = -b;,

»» foralll<i<n-1

The equation MyN, = —b, equivalents a,x, + b, = 0. The
equation M,N, - MyN, =-b, equivalents (a,+a,)
(xp +x,) + (by +b,) =0.

Also, any equation with form M;N; -M;, N,
=-b;forall1<i<n-1 equivalents (a,+a,+a, ;+---+
a)(xg+x, +x,; +--+x)+ (by+b,+b, ; +---+b;) =
0 by mathematical induction; thus, our proof is complete.

Mathematical Problems in Engineering

Now, we can apply the previous theorem to solve
n-refined neutrosophic linear equations, and we illustrate an
example.

Example 2

Let R be the real field and R, (I) be its corresponding 3-
refined neutrosophic field. Consider the following 3-refined
neutrosophic Equation (18) (1+1I, + ;)X + (I, +2I,) = 0.
To solve it, we turn it into the classical equivalent system.

(1) 1-x4 + 0 = 0; its solution x, = 0.

2) I+1D(xg+x3)+(0+0)=0; its
X, + X; = 0; thusx; = 0.

B) 1+1+1)(xg+x%x3+%x,)+ (0+0+2) =05 its solu-
tion is 3 (xy + X3 + X,) = —2; thusx, = -2/3.

(4) A+1+1+0)(xp+X3+X, +x)+ (0+1+2+0)

solution is

=0; its solution is X, +X; +X, + X, = —1; thusx,
=-1/3.
Hence, the solution of Equation (18) is
2 1
X=—I,--I,. 14
3—3h (14)
Definition 7 [ ayy .... Gy
Let A= Lo : be an m xn matrix; if
A Am

a;j =x+yly +zl, +---+tl, € R, (I), then it is called an n-
refined neutrosophic matrix, where R, (I) is an n-refined
neutrosophic ring.

Remark 2

If A is an m x n matrix, then it can be represented as an
element of the n-refined neutrosophic ring of matrices like
the followingg A=B+CI,+DI,+---+KI, where
D,B,C,...,K are classical matrices with elements from the

ring R and from size m x <n

XL 43, -1, 11,1, _
For example, A={ "3 U150 1+1, )7

21 1 -1 3 -1 -10 .
(31)+<0 1>11+<40)12+I3<2 0) is a 3-
refined neutrosophic matrix.

Remark 3
The identity with respect to multiplication is the normal
unitary matrix.

Definition 8

Let A be a square m x m n-refined neutrosophic matrix,
then it is called invertible if there exists an n-refined square
m x m neutrosophic matrix B such that AB = U, where
U,.«m is the unitary classical matrix.

Remark 4

Let X=Ay+A, I, +---+A,, be a square m xm n-re-
fined neutrosophic matrix, then it is invertible if and only if
M;, 0< j<nare invertible. The inverse of X is
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1 1 1 1 STy 1
X = (M) (M, - MO+ Y (MG - ML)
j=1
=(4y)"" +((A0 A e A = (Ag+ Ayt +An)_1)Il (15)
+((AO+A2 +~-+An)_1 —(Ag+ Ay + ~+An)_1)12
+((A0 +A;+ ~+An)71 - (A + A, +-~+An)71)13 + -~+((A0 +4A,)" —(Ao)fl)ln.

The proof holds directly as a special case of Theorem 3.

Definition 9

detX = detA, + [det(Ag + A} +---

+[det(Ag+ A, +---+ A,) —det(A, + A; +

+A,)—det(Ag+ Ay + -

We defined the determinant of a square m x m n-refined
neutrosophic matrix as

+ An)]Il

+ AL+

(16)

+[det(Ay + A,) — det(A)]I,, = det(M,) + (det(M,,) — det(M,))I,, + ni (det(M;) — det(M,,,))I;.

This definition is supported by the condition of
invertibility.

Theorem 6
Let X =A,+AI +---+A,I, be a square mxm n-
refined neutrosophic matrix, and we have the following:

(a) X is invertible if and only if detX #0

i=1

(c) detX~ ! = (detX)!

Proof.

(@) If detX+#0, this will be equivalent to
det M #0forall j, i.e, M; are invertible; thus, X is
invertible according to Theorem 3.

(b)) If Y =By+BI, +---+B,I, is a square mxm n- (b) XY = MyNy+ (M,N, - M{N)I,+ Y ' (M;N,~
refined neutrosophic matrix, then detXY = detXdetY M;, N;,DI;. Hence,
detXY = det(M,N,) +I,,[det(M,N,) — det(MyN,)]
5 [(det (,N) - et (M, N )]
i=1
= detMydetN, + I,,[det (M, )det(N,) — det (M,)det (N,)]
+ ’S (det(M;)det(N;) — det (M, )det(N;,,))]; (17)
i=1

= [det(Mo) + (det (M,,) -

det(M)I, + 3 (det(M,) - de <M,-H>>1,}

i=1

n-1

. [det(NO) + (det(N,,) — det(Ny))I,, + Z (det(N;) — det (N,-H))Il] = detXdetY.

(c) It holds directly from (b).

Now, we can find an easy algorithm to solve a linear
system of n-refined neutrosophic algebraic equations over
any n-refined neutrosophic field by using the inverse matrix
method.

We construct an example.

Example 3
Consider the following system of 2-refined neutrosophic
linear equations:

2+1,+3L)X+(1-1, - L)Y = -I,, (18)

(B+4L)X+(1+1))Y = I, (19)



The corresponding refined neutrosophic matrix is

Ao (2th3L -1 -1
3 +4I, 1+1, /)

We have the following:
2+ +30L1-1,-1,\ (21 (1-1
(a)A‘( 3+ar,  1+1, )-\31)t\o1 )0t

3-1 21 1-1
(40>12 where B—<31>, C—<01>, and

(b) B-I:( - ),(B+D)‘ =
2/191/19
-7/1%/19 )

() A'=B'+I, [(B+C+D)'-(B+D)'l +I,
[(B+D) '-B']=

(—1 1 >+1 (—9/95 1/19 )+
3 -2 )71\ 98/95-13/19
1( 6/5 -1)_

2\ -22/53 |~

—1-(9/95)I, + (6/5)I, 1+ (1/19)I, -1,
3+ (98/95)1, — (22/5)1, -2 — (13/19)1, +31, |’

It is easy to find that A"'A = AA"! = <(1) ?)

(d) det B=-1,det (B+ D) =5,det (B+C+ D) =19,
detA =-1+1,[19-5]+L,[5- (-1)] = -1 + 14I,+
61,.

Since A is invertible, we get the solution of the previous
system of the 2-refined linear system by computing the
product:

1 91 +6I 1+11 1
-1, 95 ' 572 19" 2
Al =
I 98 22 13
2 341, -1, —2——I, +3I,
95 5 19
9 6 1
g5 y)
-1, 95 5 19
I, 98 22 13
Il[—3—— — ]+12[ 2 + 3]
95 5 19
1
19
6
—511+I2
(20)
Thus,

Mathematical Problems in Engineering

1
X=-——1I,
19
(21)
6
Y = —1—911 + 12.

5. Conclusion

In this paper, we have determined the necessary and suf-
ficient conditions for the invertibility, nilpotency, and
idempotency of elements in a refined neutrosophic ring. In
particular, we have studied some of algebraic properties of
n-refined neutrosophic matrices such as determinants and
inverses with an application solving the n-refined neu-
trosophic linear algebraic system of equations.

As a future research direction, we aim to study n-refined
neutrosophic Diophantine equations.
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