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Single-valued neutrosophic set (SVNS) is considered as generalization and extension of fuzzy set, intuitionistic fuzzy set (IFS), and
crisp set for expressing the imprecise, incomplete, and indeterminate information about real-life decision-oriented models. %e
theme of this research is to develop a solution approach to solve constrained bimatrix games with payoffs of single-valued
trapezoidal neutrosophic numbers (SVTNNs). In this approach, the concepts and suitable ranking function of SVTNNs are
defined. Hereby, the equilibrium optimal strategies and equilibrium values for both players can be determined by solving the
parameterized mathematical programming problems, which are obtained from two novel auxiliary SVTNNs programming
problems based on the proposed ranking approach of SVTNNs. Moreover, an application example is examined to verify the
effectiveness and superiority of the developed algorithm. Finally, a comparison analysis between the proposed and the existing
approaches is conducted to expose the advantages of our work.

1. Introduction

Constrained bimatrix games are nonzero-sum two-player
noncooperative games which play a dominant role in many
real-life applications such as in military, finance, economy,
strategic welfares, cartel behaviour, management models,
social problems or auctions, political voting systems, races,
and development research [1, 2]. Usually, the constrained
bimatrix game makes the assumption that the payoff values
are described with crisp elements and exactly known by each
player. However, players are not able to evaluate the games
outcomes exactly due to the unavailability and ambiguity of
information. To handle that, Zadeh [3] introduced the fuzzy
set concept and since then various researchers have extended
it to the different sets such as interval intuitionistic fuzzy set,

IFS, linguistic interval IFS, and cubic IFS. Many scholars
have studied various kinds of noncooperative games under
uncertainty. For instance, Li et al. [4] proposed a bilinear
programming algorithm for solving bimatrix games with
intuitionistic fuzzy (IF) payoffs. Figueroa et al. [5] studied
group matrix games with interval-valued fuzzy numbers
payoffs. Jana et al. [6] introduced novel similarity measure to
solve matrix games with dual hesitant fuzzy payoffs. Singh
et al. [7] established 2-tuple linguistic matrix games. Zhou
et al. [8] constructed novel matrix game with generalized
Dempster-Shafer payoffs. Seikh et al. [9] solved matrix
games with payoffs of hesitant fuzzy numbers. Han et al. [10]
described new matrix game with Maxitive Belief informa-
tion. Roy et al. [11] discussed Stackelberg game with payoffs
of type-2 fuzzy numbers. Bhaumik et al. [12] solved
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Prisoners’ dilemma matrix game with hesitant interval-
valued intuitionistic fuzzy-linguistic payoffs elements.
Ammar et al. [13] studied bimatrix games with rough in-
terval payoffs. Brikaa et al. [14] developed fuzzy multi-
objective programming technique to solve fuzzy rough
constrained matrix games. Bhaumik et al. [15] introduced
multiobjective linguistic-neutrosophic matrix game with
applications to tourism management. Brikaa et al. [16]
applied resolving indeterminacy technique to find optimal
solutions of multicriteria matrix games with IF goals. So far,
as the authors are aware, there are only four articles that
studied constraint bimatrix games. Jing-Jing et al. [17]
proposed linear programming method for solving con-
strained bimatrix games with IF payoffs. Koorosh et al. [18]
presented constrained bimatrix games and their application
in wireless communications. Fanyong et al. [19] applied two
approaches to solve the classical constrained bimatrix games.
Bigdeli et al. [20] discussed constrained bimatrix games with
fuzzy goals.

However, the IFS and fuzzy set theories are unable to
deal with inconsistent and indeterminate data correctly. To
consider that, Smarandache [21] introduced the theory of
neutrosophic set (NS), defining the three components of
indeterminacy, falsity, and truth; all lie in ]0− , 1+[ and are
independent. As NS is difficult to implement on realistic
applications, Wang et al. [22] developed the single-valued
neutrosophic set (SVNS) concept, which is an extension of
the NS. Due to its importance, many scholars have applied
the SVNS theory in various disciplines. For example, Garg
[23] studied the analysis of decision-making based on sine
trigonometric operational laws for SVNSs. Murugappan
[24] presented neutrosophic inventory problem with im-
mediate return for deficient items. Garg [25] proposed new
neutrality aggregation operators with multiattribute deci-
sion-making (MADM) approach for single-valued neu-
trosophic numbers (SVNNs). Abdel-Basset et al. [26]
investigated resource levelling model in construction proj-
ects with neutrosophic information. Garai et al. [27] dis-
cussed variance, standard deviation, and possibility mean of
SVNNs with applications to MADM models. Broumi et al.
[28] solved neutrosophic shortest path model by applying
Bellman technique. Garg [29] proposed TOPSIS and clus-
tering approaches to solve SVNNs decision-making model.
Mullai et al. [30] presented inventory backorder model with
neutrosophic environment. Garg et al. [31] studied MADM
based on Frank Choquet Heronian mean operator for
SVNSs. Leyva et al. [32] introduced a new problem of in-
formation technology project with neutrosophic informa-
tion. Garg [33] presented nonlinear programming approach
for solving MADM model with interval neutrosophic pa-
rameters. Sun et al. [34] developed new SVNN decision-
making algorithms based on the theory of prospect. Garg
[35] introduced biparametric distance measures on SVNSs
and their applications in medical diagnosis and pattern
recognition.

In the imprecise data game, players may encounter some
assessment data that cannot be represented as real numbers
when estimating the utility functions or uncertain subjects.
Since SVNS has great superiority and flexibility in describing

many uncertainties with complex environments, it is ef-
fective and convenient to represent the constrained bimatrix
games with neutrosophic data. Due to decision-making
growing requirements of expressing their judgments in a
human friendly and neatly manner, it is important to extend
the IF or fuzzy constrained bimatrix games into neu-
trosophic environment. %e SVNS is an effective tool to
satisfy the increasing requirement of higher uncertain and
complicated constrained bimatrix game models. Probably,
this is the first attempt of solving constrained bimatrix game
with SVTNNs payoffs.%e fundamental targets of this article
are listed as follows:

(1) To propose a novel constrained bimatrix games
model with SVTNNs payoffs

(2) To develop an effective algorithm for SVTNN con-
strained bimatrix games to obtain the optimal
strategies for such games

(3) To formulate crisp linear optimization problems
from the neutrosophic models based on the defined
ambiguity and value indexes of SVTNN

(4) To present an application example to demonstrate
the effectiveness and applicability of the proposed
method

(5) To compare our results with other existing
approaches

%e remainder of the manuscript is summarized as
follows. Section 2 introduces the concept, cut sets, and
arithmetic operations of SVTNNs. Section 3 gives the
concept of ambiguity and value indexes of SVTNNs and the
ranking technique of SVTNNs. Section 4 formulates con-
strained bimatrix games with SVTNNs payoffs and the
solution approach to solve such games. %e illustrative
example with comparative analysis is discussed in Section 5.
Lastly, a short conclusion is given in Section 6.

2. Preliminaries

In the following, we introduce the basic concepts of fuzzy
sets, IFSs, NSs, SVNSs, and SVNNs.

Definition 1 (see [36]). A fuzzy number 􏽥B � (b1, b2, b3, b4) is
said to be a trapezoidal fuzzy number (TFN), if its mem-
bership function δ􏽥B(y) is given by

δ􏽥B(y) �

y − b1

b2 − b1
, if b1 ≤y≤ b2,

1, if b2 ≤y≤ b3,

b4 − y

b4 − b3
, if b3 ≤y≤ b4,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Definition 2 (see [37]). Suppose that Y is a universal set. An
IFS 􏽥C is defined as follows:

􏽥C � 〈y, δ􏽥C
(y), c􏽥C

(y)〉: y ∈ Y􏽮 􏽯, (2)

where c􏽥C
: Y⟶ [0, 1] and δ􏽥C

: Y⟶ [0, 1] are the non-
membership degree and the membership degree of y ∈ Y to
the set 􏽥C⊆Y, such that 0≤ δ􏽥C

(y) + c􏽥C
(y)≤ 1, ∀y ∈ Y.

Definition 3 (see [22]). An SVNS 􏽥B in a universe Y is defined
by

􏽥B � 〈y, T􏽥B(y), I􏽥B(y), F􏽥B(y)〉: y ∈ Y􏽮 􏽯, (3)

where T􏽥B(y): Y⟶ [0, 1], I􏽥B(y): Y⟶ [0, 1], and
F􏽥B(y): Y⟶ [0, 1] such that 0≤T􏽥B(y)+ I􏽥B(y), +

F􏽥B(y)≤ 3, ∀y ∈ Y. %e valuesF􏽥B(y), I􏽥B(y) andT􏽥B(y), re-
spectively, express the falsity membership, indeterminacy
membership, and truth membership degree of y to 􏽥B.

Definition 4 (see [22]). An (α, β, c)-cut set of SVNS 􏽥B, a
crisp subset of R, is given by

􏽥B(α,β,c) � y: T􏽥B(y)≥ α, I􏽥B(y)≤ β, F􏽥B(y)≤ c􏽮 􏽯, (4)

where 0≤ α≤ 1, 0≤ β≤ 1, 0≤ c≤ 1, and 0≤ α + β + c≤ 3.

Definition 5 (see [22]). An SVNS 􏽥B � 〈y, T􏽥B(y),􏽮

I􏽥B(y), F􏽥B(y)〉: y ∈ Y} is called neutrosophic normal, if
there exist at least three points y1, y2, y3 ∈ Y such that
T􏽥B(y1) � I􏽥B(y2) � F􏽥B(y3) � 1.

Definition 6 (see [22]). An SVNS 􏽥B � 〈y,􏼈 T􏽥B(y),

I􏽥B(y), F􏽥B(y)〉: y ∈ Y} is said to be neutrosophic convex, if,
∀y1, y2 ∈ Y and ξ ∈ [0, 1], the following conditions are
satisfied:

(i) T􏽥B(ξy1 + (1 − ξ)y2)≥min(T􏽥B(y1), T􏽥B(y2))

(ii) I􏽥B(ξy1 + (1 − ξ)y2)≤max(I􏽥B(y1), I􏽥B(y2))

(iii) F􏽥B(ξy1 + (1 − ξ)y2)≤max(F􏽥B(y1), F􏽥B(y2))

Definition 7 (see [22]). An SVNS 􏽥B � 〈y, T􏽥B(y),􏽮

I􏽥B(y), F􏽥B(y)〉: y ∈ Y}, is said to be single-valued neu-
trosophic number when

(1) 􏽥B is neutrosophic normal
(2) 􏽥B is neutrosophic convex
(3) T􏽥B(y) is upper semicontinuous, I􏽥B(y) is lower

semicontinuous, and F􏽥B(y) is lower semicontinuous
(4) %e support of 􏽥B, that is, S(􏽥B) � 〈T􏽥B(y)>􏽮

0, I􏽥B(y)< 1, F􏽥B(y)< 1, ∀y ∈ Y〉}, is bounded

Definition 8 (see [38]). An SVTNN 􏽥b � 〈(k, l, m, n);

u􏽥b
, v􏽥b

, w􏽥b
〉 is a special neutrosophic set on the set of real

numbers R, whose truth membership, indeterminacy
membership, and falsity membership are represented as

μ􏽥b
(y) �

(y − k)u􏽥b
l − k

, if k≤y< l,

u􏽥b
, if l≤y≤m,

(n − y)u􏽥b
n − m

, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ􏽥b(y) �

l − y + (y − k)v􏽥b
􏼒 􏼓

l − k
, if k≤y< l,

v􏽥b
, if l≤y≤m,

y − m + (n − y)v􏽥b
􏼒 􏼓

n − m
, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η􏽥b
(y) �

l − y + (y − k)w􏽥b
􏼒 􏼓

l − k
, if k≤y< l,

w􏽥b
, if l≤y≤m,

y − m + (n − y)w􏽥b
􏼒 􏼓

n − m
, if m<y≤ n,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

respectively.

Definition 9 (see [38]). Let 􏽥c � 〈(k1, l1, m1, n1); u􏽥c, v􏽥c, w􏽥c〉

and 􏽥d � 〈(k2, l2, m2, n2); u􏽥d
, v􏽥d

, w􏽥d
〉 be two SVTNNs and let

λ≠ 0 be any real number. %en,

(1) 􏽥c + 􏽥d � 〈(k1 + k2, l1 + l2, m1 + m2, n1 +

n2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c∨w􏽥d
〉

(2) 􏽥c􏽥d � 〈(k1k2, l1l2, m1m2, n1n2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c􏽮

∨w􏽥d
〉(n1 > 0, n2 > 0)〈(k1n2, l1m2, m1l2, n1k2); u􏽥c∧u􏽥d

,

v􏽥c∨v􏽥d
, w􏽥c∨w􏽥d

〉(n1 < 0, n2 > 0)〈(n1n2, m1m2, l1l2,

k1k2); u􏽥c∧u􏽥d
, v􏽥c∨v􏽥d

, w􏽥c∨w􏽥d
〉(n1 < 0, n2 < 0)

(3) λ􏽥c �
〈(λk1, λl1, λm1, λn1); u􏽥c, v􏽥c, w􏽥c〉 (λ> 0)

〈(λn1, λm1, λl1, λk1); u􏽥c, v􏽥c, w􏽥c〉 (λ< 0)
􏼨

Definition 10 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN.
%en, 〈α, β, c〉-cut set of the SVTNN 􏽥b, represented by
􏽥b〈α,β,c〉, is given as
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􏽥b〈α,β,c〉 � y: μ􏽥b
(y)≥ α, δ􏽥b(y)≤ β, η􏽥b

(y)≤ c, y ∈ R􏼚 􏼛,

(6)

which satisfies the following conditions:

0≤ α≤ u􏽥b
,

v􏽥b
≤ β≤ 1,

w􏽥b
≤ c≤ 1,

0≤ α + β + c≤ 3.

(7)

Obviously, any 〈α, β, c〉-cut set 􏽥b〈α,β,c〉 of an SVTNN 􏽥b is
a crisp subset over the set of real numbers R.

Definition 11 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN.
%en, α-cut set of the SVTNN 􏽥b, represented by 􏽥bα, is given
as

􏽥bα � y: μ􏽥b
(y)≥ α, y ∈ R􏼚 􏼛, (8)

where α ∈ [0, u􏽥b
].

Obviously, any α-cut set 􏽥bα of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any α-cut set of an SVTNN 􏽥b for the truth
membership function is a closed interval, represented by
􏽥bα � [Lα(􏽥b), Rα(􏽥b)].

Definition 12 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1),

u􏽥b
), ((k2, l2, m2, n2), v􏽥b

), ((k3, l3, m3, n3), w􏽥b
)〉 be an SVTNN.

%en, β-cut set of the SVTNN 􏽥b, represented by 􏽥bβ, is given
as

􏽥bβ � y: δ􏽥b(y)≤ β, y ∈ R􏼚 􏼛, (9)

where β ∈ [v􏽥b
, 1].

Obviously, any β-cut set 􏽥bβ of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any β-cut set of an SVTNN 􏽥b for the indeterminacy
membership function is a closed interval, represented by
􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)].

Definition 13 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1),

u􏽥b
), ((k2, l2, m2, n2), v􏽥b

), ((k3, l3, m3, n3), w􏽥b
)〉 be an SVTNN.

%en, c-cut set of the SVTNN 􏽥b, represented by 􏽥bc, is given
as

􏽥bc � y: η􏽥b
(y)≤ c, y ∈ R􏼚 􏼛, (10)

where c ∈ [w􏽥b
, 1].

Obviously, any c-cut set 􏽥bc of an SVTNN 􏽥b is a crisp
subset over the set of real numbers R.

Here, any c-cut set of an SVTNN 􏽥b for the falsity
membership function is a closed interval, represented by
􏽥bc � [Lc(􏽥b), Rc(􏽥b)].

3. Characteristics and the Ranking
Approach for SVTNNs

3.1.ValueandAmbiguityof SVTNNs. Here, we introduce the
basic definitions of value and ambiguity indices of SVTNN.

Definition 14 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
),

((k2, l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN and
let 􏽥bα � [Lα(􏽥b), Rα(􏽥b)], 􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)], and 􏽥bc �

[Lc(􏽥b), Rc(􏽥b)] be any α-cut set, β-cut set, and c-cut set of the
SVTNN 􏽥b, respectively. %en, we have the following.

(1) %e value of the SVTNN 􏽥b for α-cut set, represented
by Vμ(􏽥b), is given as

Vμ(􏽥b) � 􏽚
u􏽥b

0
L
α
(􏽥b) + R

α
(􏽥b)􏼐 􏼑h(α)dα, (11)

where h(α) ∈ [0, 1] (α ∈ [0, u􏽥b
]), h(0) � 0, and

h(α)is nondecreasing and monotonic of α ∈ [0, u􏽥b
].

(2) %e value of the SVTNN 􏽥b for β-cut set, represented
by Vδ(

􏽥b), is given as

Vδ(
􏽥b) � 􏽚

1

v􏽥b

L
β
(􏽥b) + R

β
(􏽥b)􏼐 􏼑f(β)dβ, (12)

where f(β) ∈ [0, 1] (β ∈ [v􏽥b
, 1]), f(1) � 0, andf(β)

is nondecreasing and monotonic of β ∈ [v􏽥b
, 1].

(3) %e value of the SVTNN 􏽥b for c-cut set, represented
by Vη(􏽥b), is given as

Vη(􏽥b) � 􏽚
1

w􏽥b

L
c
(􏽥b) + R

c
(􏽥b)􏼐 􏼑g(c)dc, (13)

where g(c) ∈ [0, 1] (c ∈ [w􏽥b
, 1]), g(1) � 0, and

g(c) is nondecreasing and monotonic of c ∈ [w􏽥b
, 1].

Definition 15 (see [38]). Let 􏽥b � 〈((k1, l1, m1, n1), u􏽥b
), ((k2,

l2, m2, n2), v􏽥b
), ((k3, l3, m3, n3), w􏽥b

)〉 be an SVTNN and let
􏽥bα � [Lα(􏽥b), Rα(􏽥b)], 􏽥bβ � [Lβ(􏽥b), Rβ(􏽥b)], and 􏽥bc � [Lc(􏽥b),

Rc(􏽥b)] be any α-cut set, β-cut set, and c-cut set of the SVNN
􏽥b, respectively. %en, we have the following.

(1) %e ambiguities of the SVTNN 􏽥b for α-cut set,
represented by Aμ(􏽥b), are given as

Aμ(􏽥b) � 􏽚
u􏽥b

0
R
α
(􏽥b) − L

α
(􏽥b)􏼐 􏼑h(α)dα, (14)

where h(α) ∈ [0, 1] (α ∈ [0, u􏽥b
]), h(0) � 0, and

h(α)is nondecreasing and monotonic of α ∈ [0, u􏽥b
].

(2) %e ambiguities of the SVTNN 􏽥b for β-cut set,
represented by Aδ(

􏽥b), are given as

Aδ(
􏽥b) � 􏽚

1

v􏽥b

R
β
(􏽥b) − L

β
(􏽥b)􏼐 􏼑f(β)dβ, (15)

where f(β) ∈ [0, 1] (β ∈ [v􏽥b
, 1]), f(1) � 0, andf(β)

is nondecreasing and monotonic of β ∈ [v􏽥b
, 1].
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(3) %e ambiguities of the SVTNN 􏽥b for c-cut set,
represented by Aη(􏽥b), are given as

Aη(􏽥b) � 􏽚
1

w􏽥b

R
c
(􏽥b) − L

c
(􏽥b)􏼐 􏼑h(c)dc, (16)

where g(c) ∈ [0, 1] (c ∈ [w􏽥b
, 1]), g(1) � 0a, and

g(c) is nondecreasing and monotonic of c ∈ [w􏽥b
, 1].

Here, the weighting functions h(α), f(β), and g(c) can
be supposed according to the decision-making model na-
ture. Suppose that h(α) � α, f(β) � 1 − β, and g(c) � 1 − c.

Let 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 be an SVTNN. %en the

value and ambiguity indices, using the above descriptions,
are constructed as

Vμ(􏽥b) �
(k + 2l + 2m + n)u

2
􏽥b

6
, Aμ(􏽥b) �

(n − k + 2m − 2l)u
2
􏽥b

6
,

Vδ(
􏽥b) �

(k + 2l + 2m + n) 1 − v􏽥b
􏼒 􏼓

2

6
, Aδ(

􏽥b) �
(n − k + 2m − 2l) 1 − v􏽥b

􏼒 􏼓
2

6
,

Vη(􏽥b) �
(k + 2l + 2m + n) 1 − w􏽥b

􏼒 􏼓
2

6
, Aη(􏽥b) �

(n − k + 2m − 2l) 1 − w􏽥b
􏼒 􏼓

2

6
.

(17)

3.2. A Ranking Approach of an SVTNN Based on Value and
Ambiguity Indices. %is section provides a ranking approach
of SVTNNs based on the ambiguity and value indices of
SVTNNs in a similar way to those of SVNNs introduced by
A. Bhaumik et al. [39].

Definition 16. Let 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 be an SVTNN.

%e weighted value ambiguity index for an SVTNN 􏽥b is
given as

Rλ1 ,λ2 ,λ3(
􏽥b) � λ1Vμ(􏽥b) + 1 − λ1( 􏼁Aμ(􏽥b)􏽨 􏽩 + λ2Vδ(

􏽥b) + 1 − λ2( 􏼁Aδ(
􏽥b)􏽨 􏽩 + λ3Vη(􏽥b) + 1 − λ3( 􏼁Aη(􏽥b)􏽨 􏽩, (18)

with λ1, λ2, λ3 ∈ [0, 1].

Definition 17. Let 􏽥c and 􏽥d be two SVTNNs and let
λ1, λ2, λ3 ∈ [0, 1]. For the weighted value ambiguity index of
the SVTNNs 􏽥c and 􏽥d, the ranking order of 􏽥c and 􏽥d is given as
follows:

(1) if Rλ1 ,λ2 ,λ3(􏽥c)>NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c>N

􏽥d

(2) if Rλ1 ,λ2 ,λ3(􏽥c)<NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c<N

􏽥d

(3) if Rλ1 ,λ2 ,λ3(􏽥c)�NRλ1 ,λ2 ,λ3(
􏽥d), then 􏽥c�N

􏽥d

where “>N” and “<N” are neutrosophic versions of the
order relations “> ” and “< ” in the real line, respectively.

4. Constrained Bimatrix Games with SVTNNs
Payoffs and Solution Method

Let us consider the constrained bimatrix game with
SVTNNs payoffs. Suppose that T1 � ξ1, ξ2, . . . , ξκ􏼈 􏼉 and
T2 � η1, η2, . . . , ηℓ􏼈 􏼉 are pure strategies sets for two
players I and II, respectively. When player II selects pure
strategy ηj ∈ T2 and player I selects pure strategy ξi ∈ T1,
at the situation (ξi, ηj), player II gains payoff and player I

gains payoff, which are expressed with SVTNNs as 􏽥C �

(􏽥cij)κ×ℓ and 􏽥D � (􏽥dij)κ×ℓ, where each 􏽥cij � 〈(aij, bij, fij, hij);

u􏽥cij
, v􏽥cij

, w􏽥cij
〉 and 􏽥dij � 〈(kij, lij, mij, nij); u􏽥dij

,

v􏽥dij

, w􏽥dij

〉(i � 1, 2, . . . , κ; j � 1, 2, . . . , ℓ) are SVTNNs de-
fined as above. %e mixed strategies vectors are repre-
sented as r � (r1, r2, . . . , rκ)

T and s � (s1, s2, . . . , sℓ)
T,

where ri (i � 1, 2, . . . , κ) and sj(j � 1, 2, . . . , ℓ) are prob-
abilities for both players selecting their pure strategies
ξi ∈ T1 and ηj ∈ T2, respectively. %e mixed strategies ri

and sj are affiliated with the strategies sets (convex
polyhedron) which are described by some inequalities
and equations. Let R � r: GTr≥ p, r≥ 0􏼈 􏼉 represent the
strategy constraint set of player I, where
p � (p1, p2, . . . , pe)

T, G � (gin)κ×e, and e is a positive in-
teger. Let S � s: Hs≥ q, s≥ 0􏼈 􏼉 express the strategy con-
straint set of player II, where q � (q1, q2, . . . , qb) ,
H � (hmj)b×ℓ, and b is a positive integer. Note that GTr≥p
contains 􏽐

κ
i�1 ri � 1, since 􏽐

κ
i�1 ri � 1 is equivalent to

􏽐
κ
i�1 ri ≥ 1 and − 􏽐

κ
i�1 ri ≥ − 1. Similarly, Hs≥ q contains

􏽐
ℓ
j�1 sj � 1. In the sequel, the above SVTNN constrained

bimatrix game is simply denoted by (􏽥C, 􏽥D) for short.
Without loss of generality, suppose that both players I

and II, respectively, select mixed strategies r ∈ R and s ∈ S in
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order to maximize their own payoffs; then their expected
payoffs can be obtained as follows:

E1(r, s, 􏽥C) � rT 􏽥Cs � 􏽘
κ

i�1
􏽘

ℓ

j�1
ri􏽥cijsj,

E2(r, s, 􏽥D) � rT 􏽥Ds � 􏽘
κ

i�1
􏽘

ℓ

j�1
ri

􏽥dijsj.

(19)

Definition 18 (see [40]). If (r∗, s∗) ∈ R × S satisfies the
following conditions:

r∗T 􏽥Cs∗ � min
s∈S

r∗T 􏽥Cs � max
r∈R

min
s∈S

rT 􏽥Cs,

r∗T 􏽥Ds∗ � min
r∈R

rT 􏽥Ds∗ � max
s∈S

min
r∈R

rT 􏽥Ds,
(20)

for any mixed strategies r ∈ R and s ∈ S, then r∗ and s∗ are
called equilibrium strategies, and U∗ � r∗T 􏽥Cs∗ and W∗ �

r∗T 􏽥Ds∗ are called equilibrium values of players I and II,
respectively.

Theorem 1. If (r∗, y∗) and (s∗, z∗) are the optimal solutions
of the following linear programming problems:

max qTy􏽮 􏽯

s.t.

HTy ≤N
􏽥CTr,

GTr≥p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

max pTz􏽮 􏽯,

s.t.

Gz≤N
􏽥Ds,

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

respectively, then r∗ and s∗ are equilibrium strategies of the
SVTNN constrained bimatrix game (􏽥C, 􏽥D), and U∗ � qTy∗ �

r∗T 􏽥Cs∗ and W∗ � pTz∗ � r∗T 􏽥Ds∗ are equilibrium values of
players I and II, respectively.

Proof:. %e proof of this theorem is similar to the proof
given by Jing-Jing et al. [17].

It is obvious that the two players often cannot calculate
the payoffs accurately in each situation, and the game values
of the SVTNN constrained bimatrix games are not equal to
qTy in (21) and pTz in (22). %e two players may allow some
violations on the set of constraints HTy ≤N

􏽥CTr and
Gz≤N

􏽥Ds.
%erefore, the equilibrium strategies r∗ and s∗ and

equilibrium values U∗ and W∗ of the SVTNN constrained
bimatrix games are equal to the optimal values and optimal
solutions of (23 and 24) as follows:

max qTy􏽮 􏽯,

s.t.

HTy − 􏽥CTr≤N(1 − ρ) 􏽥m,

GTr≥ p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

max pTz􏽮 􏽯,

s.t.

Gz − 􏽥Ds≤N(1 − ρ)􏽥n,

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

respectively, where 􏽥m � ( 􏽥m1, 􏽥m2, . . . , 􏽥mℓ)
T, 􏽥n � (􏽥n1, 􏽥n2, . . . ,

􏽥nk)T, and all the vectors elements of 􏽥m and 􏽥n are SVTNNs
that are approximately equal to zero, which represent the
maximum violations that the two players may permit on the
set of constraints. %e parameter ρ (0≤ ρ≤ 1) is a real
number.

Applying the ranking approach of SVTNNs, as proposed
in Subsection 3.2, the SVTNN mathematical programming
problems (equations (23) and (24)) can be transformed into
the following parameterized programming problems:

max qTy􏽮 􏽯,

s.t.

HTy − Rλ1 ,λ2 ,λ3
􏽥CT

􏼒 􏼓r≤N(1 − ρ)Rλ1 ,λ2,λ3( 􏽥m),

GTr≥p,

r≥ 0,

y ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

max pTz􏽮 􏽯,

s.t.

Gz − Rλ1 ,λ2,λ3(
􏽥D)s≤N(1 − ρ)Rλ1 ,λ2 ,λ3(􏽥n),

Hs≥ q,

s≥ 0,

z≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

respectively.
For given λ1, λ2, λ3 ∈ [0, 1], solving equations (25) and

(26), we can obtain the optimal game values qTy∗(ρ) and
pTz∗(ρ) and the optimal solutions (r∗(ρ), y∗(ρ)) and
(s∗(ρ), z∗(ρ)), respectively. □

Theorem 2. If (r∗(ρ), y∗(ρ)) and
(s∗(ρ), z∗(ρ))(λ1, λ2, λ3 ∈ [0, 1]) are optimal solutions of
equations (25) and (26), respectively, then r∗(ρ) and s∗(ρ)

are equilibrium strategies, and U∗ � qTy∗(ρ) and
W∗ � pTz∗(ρ) are equilibrium values of both players for
SVTNN constrained bimatrix games, respectively.
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5. Application Example

In this section, an example of the company development
strategy choice model adapted from Jing-Jing et al. [17] is
used to illustrate the solution procedure of a constrained
bimatrix game with payoffs of SVTNNs.

5.1. Ee Company Development Strategy Choice Model.
“We consider two companies E1 and E2 (i.e., players I and
II). In order to improve the two companies competitiveness,
both players have two strategies: introducing the advanced
equipment ξ1 or η1 and introducing the senior talent ξ2 or
η2. When player I chooses pure strategies ξ1 and ξ2, he wants
to invest 7 million and 5 million dollars, respectively. Due to
a lack of fund, player I can invest up to 6.5 million dollars,
which means that player I has a constraint, 7r1 + 5r2 ≤ 6.5,
when selecting strategy. Likewise, player II wants to invest 4
million and 6.5 million dollars when he chooses pure
strategies η1 and η2, respectively. However, due to a lack of
fund, player II can invest up to 5.5 million dollars. Namely,
player II has a constraint, 4s1 + 6.5s2 ≤ 5.5, when choosing
strategies.” %is is a typical SVTN constrained bimatrix
game. According to the previous description of the matrix
game model, the two players’ constrained strategy sets are
given as follows:

R � r|7r1 + 5r2 ≤ 6.5, r1 + r2 � 1, r1 ≥ 0, r2 ≥ 0􏼈 􏼉,

S � s|4s1 + 6.5s2 ≤ 5.5, s1 + s2 � 1, s1 ≥ 0, s2 ≥ 0􏼈 􏼉,
(27)

respectively. %e SVTNNs payoff matrices of the two players
are given by

Table 1: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.2, 0.3, 0.5).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 4.868 (0.4, 0.6) 4.855
0.1 (0.75, 0.25) 4.854 (0.4, 0.6) 4.849
0.2 (0.75, 0.25) 4.839 (0.4, 0.6) 4.844
0.3 (0.75, 0.25) 4.825 (0.4, 0.6) 4.838
0.4 (0.75, 0.25) 4.811 (0.4, 0.6) 4.832
0.5 (0.75, 0.25) 4.797 (0.4, 0.6) 4.827
0.6 (0.75, 0.25) 4.782 (0.4, 0.6) 4.821
0.7 (0.75, 0.25) 4.768 (0.4, 0.6) 4.815
0.8 (0.75, 0.25) 4.754 (0.4, 0.6) 4.809
0.9 (0.75, 0.25) 4.739 (0.4, 0.6) 4.804
1.0 (0.75, 0.25) 4.725 (0.4, 0.6) 4.798

Table 2: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.4, 0.5, 0.6).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.223 (0.4, 0.6) 6.666
0.1 (0.75, 0.25) 6.204 (0.4, 0.6) 6.658
0.2 (0.75, 0.25) 6.186 (0.4, 0.6) 6.649
0.3 (0.75, 0.25) 6.168 (0.4, 0.6) 6.642
0.4 (0.75, 0.25) 6.149 (0.4, 0.6) 6.634
0.5 (0.75, 0.25) 6.132 (0.4, 0.6) 6.626
0.6 (0.75, 0.25) 6.113 (0.4, 0.6) 6.617
0.7 (0.75, 0.25) 6.095 (0.4, 0.6) 6.609
0.8 (0.75, 0.25) 6.076 (0.4, 0.6) 6.601
0.9 (0.75, 0.25) 6.059 (0.4, 0.6) 6.593
1.0 (0.75, 0.25) 6.04 (0.4, 0.6) 6.585

Table 3: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.5, 0.5, 0.5).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.232 (0.4, 0.6) 6.801
0.1 (0.75, 0.25) 6.214 (0.4, 0.6) 6.792
0.2 (0.75, 0.25) 6.196 (0.4, 0.6) 6.784
0.3 (0.75, 0.25) 6.178 (0.4, 0.6) 6.776
0.4 (0.75, 0.25) 6.16 (0.4, 0.6) 6.767
0.5 (0.75, 0.25) 6.143 (0.4, 0.6) 6.759
0.6 (0.75, 0.25) 6.125 (0.4, 0.6) 6.751
0.7 (0.75, 0.25) 6.107 (0.4, 0.6) 6.743
0.8 (0.75, 0.25) 6089 (0.4, 0.6) 6.735
0.9 (0.75, 0.25) 6.071 (0.4, 0.6) 6.726
1.0 (0.75, 0.25) 6.054 (0.4, 0.6) 6.718

Table 4: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.6, 0.4, 0.7).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.785 (0.4, 0.6) 7.309
0.1 (0.75, 0.25) 6.765 (0.4, 0.6) 7.301
0.2 (0.75, 0.25) 6.746 (0.4, 0.6) 7.292
0.3 (0.75, 0.25) 6.726 (0.4, 0.6) 7.283
0.4 (0.75, 0.25) 6.706 (0.4, 0.6) 7.274
0.5 (0.75, 0.25) 6.687 (0.4, 0.6) 7.265
0.6 (0.75, 0.25) 6.667 (0.4, 0.6) 7.256
0.7 (0.75, 0.25) 6.647 (0.4, 0.6) 7.247
0.8 (0.75, 0.25) 6.628 (0.4, 0.6) 7.238
0.9 (0.75, 0.25) 6.608 (0.4, 0.6) 7.229
1.0 (0.75, 0.25) 6.588 (0.4, 0.6) 7.219

Table 5: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.7, 0.6, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 7.861 (0.4, 0.6) 8.732
0.1 (0.75, 0.25) 7.838 (0.4, 0.6) 8.721
0.2 (0.75, 0.25) 7.815 (0.4, 0.6) 8.709
0.3 (0.75, 0.25) 7.792 (0.4, 0.6) 8.699
0.4 (0.75, 0.25) 7.769 (0.4, 0.6) 8.688
0.5 (0.75, 0.25) 7.746 (0.4, 0.6) 8.677
0.6 (0.75, 0.25) 7.723 (0.4, 0.6) 8.666
0.7 (0.75, 0.25) 7.7 (0.4, 0.6) 8.655
0.8 (0.75, 0.25) 7.678 (0.4, 0.6) 8.644
0.9 (0.75, 0.25) 7.655 (0.4, 0.6) 8.633
1.0 (0.75, 0.25) 7.632 (0.4, 0.6) 8.622
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􏽥C �
〈(6, 7, 9, 1); 0.9, 0.2, 0.4〉 〈(3.5, 5, 7, 9); 0.5, 0.4, 0.2〉

〈(3, 5, 6, 8); 0.6, 0.5, 0.1〉 〈(5, 6.5, 8, 10); 0.7, 0.3, 0.5〉
􏼠 􏼡,

􏽥D �
〈(5, 6.5, 8, 9); 0.8, 0.2, 0.3〉 〈(4, 5, 7, 8.5); 0.8, 0.3, 0.1〉

〈(3.5, 4.5, 6, 7.5); 0.6, 0.4, 0.2〉 〈(6, 7, 8, 9); 0.9, 0.1, 0.4〉
􏼠 􏼡.

(28)

%e vectors of the constraints and the coefficient ma-
trices are given by

G �
− 7 1 − 1

− 5 1 − 1
􏼠 􏼡,

HT
�

− 4 1 − 1

− 6.5 1 − 1
􏼠 􏼡,

p � − 6.5 1 − 1( 􏼁
T
,

q � − 5.5 1 − 1( 􏼁
T
.

(29)

Let the two players select 􏽥m1 � 􏽥m2 � 〈(0.18, 0.1, 0.21,

0.13); 0.7, 0.2, 0.1〉 and 􏽥n1 � 􏽥n2 � 〈(0.04, 0.1, 0.13, 0.02);

0.8, 0.2, 0.3〉, respectively.

5.2.Ee Solution Procedure. Applying the ranking approach
presented in Section 3 to the SVTN constrained bimatrix
game, we have

Rλ1 ,λ2 ,λ3(
􏽥C) �

5.4λ1 + 4.267λ2 + 2.4λ3 + 2.715 1.125λ1 + 1.62λ2 + 2.88λ3 + 1.979

1.56λ1 + 1.083λ2 + 3.51λ3 + 1.657 2.94λ1 + 2.94λ2 + 1.5λ3 + 1.64
􏼠 􏼡,

Rλ1 ,λ2 ,λ3(
􏽥D) �

3.84λ1 + 3.84λ2 + 2.94λ3 + 2.065 2.987λ1 + 2.287λ2 + 3.78λ3 + 2.748

1.5λ1 + 1.5λ2 + 2.667λ3 + 1.587 5.4λ1 + 5.4λ2 + 2.4λ3 + 1.65
􏼠 􏼡.

(30)

According to equations (25) and (26), we can formulate
the optimization problems with four parameters
λ1, λ2, λ3 ∈ [0, 1], and ρ ∈ [0, 1] as follows:

maximize − 5.5y1 + y2 − y3􏼈 􏼉,

subject to

− 4y1 + y2 − y3 − 5.4λ1 + 4.267λ2 + 2.4λ3 + 2.715( 􏼁r1 − 1.56λ1 + 1.083λ2 + 3.51λ3 + 1.657( 􏼁r2

≤ 0.062λ1 + 0.081λ2 + 0.103λ3 + 0.055( 􏼁(1 − ρ),

− 6.5y1 + y2 − y3 − 1.125λ1 + 1.62λ2 + 2.88λ3 + 1.979( 􏼁r1 − 2.94λ1 + 2.94λ2 + 1.5λ3 + 1.64( 􏼁r2

≤ 0.062λ1 + 0.081λ2 + 0.103λ3 + 0.055( 􏼁(1 − ρ),

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

(31)

maximize − 6.5z1 + z2 − z3􏼈 􏼉,

subject to

− 7z1 + z2 − z3 − 3.84λ1 + 3.84λ2 + 2.94λ3 + 2.065( 􏼁s1 − 2.987λ1 + 2.287λ2 + 3.78λ3 + 2.748( 􏼁s2

≤ 0.051λ1 + 0.051λ2 + 0.039λ3 + 0.012( 􏼁(1 − ρ),

− 5z1 + z2 − z3 − 1.5λ1 + 1.5λ2 + 2.667λ3 + 1.587( 􏼁s1 − 5.4λ1 + 5.4λ2 + 2.4λ3 + 1.65( 􏼁s2

≤ 0.051λ1 + 0.051λ2 + 0.039λ3 + 0.012( 􏼁(1 − ρ),

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

(32)
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For different values λ1, λ2, λ3, and ρ, the equilibrium
strategies and the equilibrium values of both players can be
obtained by solving equations (31) and (32), as depicted in
Tables 1–12.

It can be easily seen from Table 1 that when
λ1 � 0.2, λ2 � 0.3, λ3 � 0.5, and ρ � 0, the equilibrium
value and the equilibrium strategy for player I are U∗ �

qTy∗ � 4.868 and r∗ � (0.75, 0.25)T, respectively; and the
equilibrium value and the equilibrium strategy for player
II are W∗ � pTz∗ � 4.855 and s∗ � (0.4, 0.6)T, respec-
tively. %e results indicate that different optimal solu-
tions can be obtained for different values of λ1, λ2, λ3, and
ρ. %us, it is essential to take all the parameters into
consideration.

Table 6: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.7, 0.7, 0.7).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 7.856 (0.4, 0.6) 8.866
0.1 (0.75, 0.25) 7.833 (0.4, 0.6) 8.855
0.2 (0.75, 0.25) 7.81 (0.4, 0.6) 8.844
0.3 (0.75, 0.25) 7.787 (0.4, 0.6) 8.833
0.4 (0.75, 0.25) 7.765 (0.4, 0.6) 8.822
0.5 (0.75, 0.25) 7.742 (0.4, 0.6) 8.811
0.6 (0.75, 0.25) 7.719 (0.4, 0.6) 8.799
0.7 (0.75, 0.25) 7.696 (0.4, 0.6) 8.789
0.8 (0.75, 0.25) 7.674 (0.4, 0.6) 8.778
0.9 (0.75, 0.25) 7.651 (0.4, 0.6) 8.767
1.0 (0.75, 0.25) 7.628 (0.4, 0.6) 8.756

Table 7: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.8, 0.7, 0.9).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.673 (0.4, 0.6) 9.765
0.1 (0.75, 0.25) 8.648 (0.4, 0.6) 9.752
0.2 (0.75, 0.25) 8.622 (0.4, 0.6) 9.739
0.3 (0.75, 0.25) 8.597 (0.4, 0.6) 9.727
0.4 (0.75, 0.25) 8.571 (0.4, 0.6) 9.715
0.5 (0.75, 0.25) 8.546 (0.4, 0.6) 9.703
0.6 (0.75, 0.25) 8.521 (0.4, 0.6) 9.690
0.7 (0.75, 0.25) 8.495 (0.4, 0.6) 9.678
0.8 (0.75, 0.25) 8.469 (0.4, 0.6) 9.665
0.9 (0.75, 0.25) 8.444 (0.4, 0.6) 9.653
1.0 (0.75, 0.25) 8.419 (0.4, 0.6) 9.641

Table 8: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.8, 0.8, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.667 (0.4, 0.6) 9.899
0.1 (0.75, 0.25) 8.642 (0.4, 0.6) 9.887
0.2 (0.75, 0.25) 8.617 (0.4, 0.6) 9.874
0.3 (0.75, 0.25) 8.591 (0.4, 0.6) 9.862
0.4 (0.75, 0.25) 8.567 (0.4, 0.6) 9.849
0.5 (0.75, 0.25) 8.542 (0.4, 0.6) 9.837
0.6 (0.75, 0.25) 8.516 (0.4, 0.6) 9.824
0.7 (0.75, 0.25) 8.491 (0.4, 0.6) 9.812
0.8 (0.75, 0.25) 8.466 (0.4, 0.6) 9.799
0.9 (0.75, 0.25) 8.441 (0.4, 0.6) 9.787
1.0 (0.75, 0.25) 8.416 (0.4, 0.6) 9.774

Table 9: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.9, 0.8, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 8.946 (0.4, 0.6) 10.288
0.1 (0.75, 0.25) 8.92 (0.4, 0.6) 10.275
0.2 (0.75, 0.25) 8.894 (0.4, 0.6) 10.262
0.3 (0.75, 0.25) 8.869 (0.4, 0.6) 10.249
0.4 (0.75, 0.25) 8.843 (0.4, 0.6) 10.236
0.5 (0.75, 0.25) 8.817 (0.4, 0.6) 10.223
0.6 (0.75, 0.25) 8.791 (0.4, 0.6) 10.21
0.7 (0.75, 0.25) 8.765 (0.4, 0.6) 10.197
0.8 (0.75, 0.25) 8.739 (0.4, 0.6) 10.184
0.9 (0.75, 0.25) 8.714 (0.4, 0.6) 10.171
1.0 (0.75, 0.25) 8.688 (0.4, 0.6) 10.158

Table 10: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (0.9, 0.9, 0.9).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 9.479 (0.4, 0.6) 10.932
0.1 (0.75, 0.25) 9.452 (0.4, 0.6) 10.918
0.2 (0.75, 0.25) 9.424 (0.4, 0.6) 10.904
0.3 (0.75, 0.25) 9.397 (0.4, 0.6) 10.89
0.4 (0.75, 0.25) 9.369 (0.4, 0.6) 10.876
0.5 (0.75, 0.25) 9.341 (0.4, 0.6) 10.862
0.6 (0.75, 0.25) 9.314 (0.4, 0.6) 10.848
0.7 (0.75, 0.25) 9.286 (0.4, 0.6) 10.835
0.8 (0.75, 0.25) 9.258 (0.4, 0.6) 10.821
0.9 (0.75, 0.25) 9.231 (0.4, 0.6) 10.807
1.0 (0.75, 0.25) 9.203 (0.4, 0.6) 10.793

Table 11: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (1.0, 0.9, 0.8).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 9.488 (0.4, 0.6) 11.066
0.1 (0.75, 0.25) 9.461 (0.4, 0.6) 11.052
0.2 (0.75, 0.25) 9.434 (0.4, 0.6) 11.038
0.3 (0.75, 0.25) 9.407 (0.4, 0.6) 11.024
0.4 (0.75, 0.25) 9.379 (0.4, 0.6) 11.01
0.5 (0.75, 0.25) 9.352 (0.4, 0.6) 10.996
0.6 (0.75, 0.25) 9.325 (0.4, 0.6) 10.982
0.7 (0.75, 0.25) 9.298 (0.4, 0.6) 10.968
0.8 (0.75, 0.25) 9.27 (0.4, 0.6) 10.954
0.9 (0.75, 0.25) 9.243 (0.4, 0.6) 10.94
1.0 (0.75, 0.25) 9.216 (0.4, 0.6) 10.926
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5.3. Comparison Analysis. In this subsection, the proposed
ranking approach is compared with three other approaches
that were introduced by Khalifa [41], Ye [42], and Garai et al.
[43].

We compare our results with those of Khalifa [41], where
a score function is described by

S(􏽥b) �
1
16

(k + l + m + n) u􏽥b
+ 1 − v􏽥b

􏼒 􏼓 + 1 − w􏽥b
􏼒 􏼓􏼒 􏼓.

(33)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 expresses an SVTNN.

Based on this score function, we obtain a set of linear op-
timization models as follows:

max − 5.5y1 + y2 − y3􏼈 􏼉,

s.t.

− 4y1 + y2 − y3 − 4.744r1 − 2.75r2 ≤ 0,

− 6.5y1 + y2 − y3 − 2.909r1 − 3.503r2 ≤ 0,

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max − 6.5z1 + z2 − z3􏼈 􏼉,

s.t.

− 7z1 + z2 − z3 − 4.097s1 − 3.675s2 ≤ 0,

− 5z1 + z2 − z3 − 2.688s1 − 4.5s2 ≤ 0,

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Using the Simplex technique, we can obtain that the
equilibrium value and the equilibrium strategy for player I
are U∗ � qTy∗ � 3.533 and r∗ � (0.75, 0.25)T, respectively;
and the equilibrium value and the equilibrium strategy for
player II are W∗ � pTz∗ � 3.775 and s∗ � (0.4, 0.6), re-
spectively, although this approach provides the same opti-
mal solutions as our results.

We compare our results with those of Jun Ye [42], where
the score function is given by

S(􏽥b) �
1
12

(k + l + m + n) 2 + u􏽥b
− v􏽥b

− w􏽥b
􏼒 􏼓. (35)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 expresses an SVTNN.

Based on this score function, we obtain the following
mathematical programming models:

Table 12: %e equilibrium strategies and the equilibrium values of
player I and player II when (λ1, λ2, λ3) � (1.0, 1.0, 1.0).

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 10.291 (0.4, 0.6) 11.965
0.1 (0.75, 0.25) 10.261 (0.4, 0.6) 11.949
0.2 (0.75, 0.25) 10.231 (0.4, 0.6) 11.934
0.3 (0.75, 0.25) 10.201 (0.4, 0.6) 11.919
0.4 (0.75, 0.25) 10.171 (0.4, 0.6) 11.903
0.5 (0.75, 0.25) 10.141 (0.4, 0.6) 11.888
0.6 (0.75, 0.25) 10.111 (0.4, 0.6) 11.873
0.7 (0.75, 0.25) 10.081 (0.4, 0.6) 11.858
0.8 (0.75, 0.25) 10.051 (0.4, 0.6) 11.842
0.9 (0.75, 0.25) 10.021 (0.4, 0.6) 11.827
1.0 (0.75, 0.25) 9.99 (0.4, 0.6) 11.812

Table 13: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.809 (0.4, 0.6) 7.496
0.1 (0.75, 0.25) 6.787 (0.4, 0.6) 7.486
0.2 (0.75, 0.25) 6.764 (0.4, 0.6) 7.476
0.3 (0.75, 0.25) 6.742 (0.4, 0.6) 7.467
0.4 (0.75, 0.25) 6.719 (0.4, 0.6) 7.457
0.5 (0.75, 0.25) 6.697 (0.4, 0.6) 7.447
0.6 (0.75, 0.25) 6.674 (0.4, 0.6) 7.438
0.7 (0.75, 0.25) 6.652 (0.4, 0.6) 7.427
0.8 (0.75, 0.25) 6.629 (0.4, 0.6) 7.418
0.9 (0.75, 0.25) 6.607 (0.4, 0.6) 7.408
1.0 (0.75, 0.25) 6.585 (0.4, 0.6) 7.398

Table 15: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.4.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 5.478 (0.4, 0.6) 6.285
0.1 (0.75, 0.25) 5.462 (0.4, 0.6) 6.277
0.2 (0.75, 0.25) 5.445 (0.4, 0.6) 6.269
0.3 (0.75, 0.25) 5.429 (0.4, 0.6) 6.261
0.4 (0.75, 0.25) 5.412 (0.4, 0.6) 6.253
0.5 (0.75, 0.25) 5.396 (0.4, 0.6) 6.245
0.6 (0.75, 0.25) 5.379 (0.4, 0.6) 6.237
0.7 (0.75, 0.25) 5.363 (0.4, 0.6) 6.228
0.8 (0.75, 0.25) 5.346 (0.4, 0.6) 6.220
0.9 (0.75, 0.25) 5.329 (0.4, 0.6) 6.212
1.0 (0.75, 0.25) 5.313 (0.4, 0.6) 6.204

Table 14: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.2.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 6.144 (0.4, 0.6) 6.891
0.1 (0.75, 0.25) 6.124 (0.4, 0.6) 6.882
0.2 (0.75, 0.25) 6.105 (0.4, 0.6) 6.873
0.3 (0.75, 0.25) 6.085 (0.4, 0.6) 6.864
0.4 (0.75, 0.25) 6.066 (0.4, 0.6) 6.854
0.5 (0.75, 0.25) 6.046 (0.4, 0.6) 6.846
0.6 (0.75, 0.25) 6.027 (0.4, 0.6) 6.837
0.7 (0.75, 0.25) 6.007 (0.4, 0.6) 6.828
0.8 (0.75, 0.25) 5.988 (0.4, 0.6) 6.819
0.9 (0.75, 0.25) 5.968 (0.4, 0.6) 6.810
1.0 (0.75, 0.25) 5.949 (0.4, 0.6) 6.801
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max − 5.5y1 + y2 − y3􏼈 􏼉

s.t.

− 4y1 + y2 − y3 − 6.325r1 − 3.667r2 ≤ 0,

− 6.5y1 + y2 − y3 − 3.879r1 − 4.671r2 ≤ 0,

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max − 6.5z1 + z2 − z3􏼈 􏼉,

s.t.

− 7z1 + z2 − z3 − 5.463s1 − 4.9s2 ≤ 0,

− 5z1 + z2 − z3 − 3.583s1 − 6s2 ≤ 0,

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Using the Simplex technique, we can obtain the equi-
librium value and the equilibrium strategy for player I as
U∗ � qTy∗ � 4.71 and r∗ � (0.75, 0.25)T, respectively; and
the equilibrium value and the equilibrium strategy for player
II are W∗ � pTz∗ � 5.033 and s∗ � (0.4, 0.6), respectively,
although this approach provides the same optimal solutions
as our results.

Finally, we compare our results with those of Garai et al.
[43], where the ranking function is described by

M(􏽥b) �
1
6

(k + 2l + 2m + n) θu
2
􏽥b

+ (1 − θ) 1 − v􏽥b
􏼒 􏼓

2
􏼠

+ (1 − θ) 1 − w􏽥b
􏼒 􏼓

2
).

(37)

Here, 􏽥b � 〈(k, l, m, n); u􏽥b
, v􏽥b

, w􏽥b
〉 represents an SVTNN.

Based on this ranking function, we can get a set of opti-
mization models as follows:

maximize − 5.5y1 + y2 − y3􏼈 􏼉,

subject to

− 4y1 + y2 − y3 − (8.16667 − 1.55167θ)r1 − (5.83 − 3.85θ)r2 ≤ (0.22475 − 0.1488θ)(1 − ρ),

− 6.5y1 + y2 − y3 − (6.08333 − 4.5625θ)r1 − (5.42667 − 1.83333θ)r2 ≤ (0.22475 − 0.1488θ)(1 − ρ),

7r1 + 5r2 ≤ 6.5,

r1 + r2 � 1,

y1, y2, y3, r1, r2 ≥ 0.

maximize − 6.5z1 + z2 − z3􏼈 􏼉,

subject to

− 7z1 + z2 − z3 − (8.09833 − 3.51167θ)s1 − (7.90833 − 4.015θ)s2 ≤ (0.0979333 − 0.0424667θ)(1 − ρ),

− 5z1 + z2 − z3 − (5.33333 − 3.41333θ)s1 − (8.775 − 2.7θ)s2 ≤ (0.0979333 − 0.0424667θ)(1 − ρ),

4s1 + 6.5s2 ≤ 5.5,

s1 + s2 � 1,

z1, z2, z3s1, s2 ≥ 0.

(38)

By solving the above mathematical programming
models, we obtain the following tabulated optimal solutions,

given in Tables 13–18. From the results shown in
Tables 1–18, the optimal strategies obtained by different

Table 16: %e equilibrium strategies and the equilibrium values of
player I and player II when θ � 0.6.

ρ
Player I Player II

r∗ U∗ s∗ W∗

0 (0.75, 0.25) 4.813 (0.4, 0.6) 5.679
0.1 (0.75, 0.25) 4.799 (0.4, 0.6) 5.672
0.2 (0.75, 0.25) 4.786 (0.4, 0.6) 5.665
0.3 (0.75, 0.25) 4.772 (0.4, 0.6) 5.658
0.4 (0.75, 0.25) 4.759 (0.4, 0.6) 5.651
0.5 (0.75, 0.25) 4.745 (0.4, 0.6) 5.643
0.6 (0.75, 0.25) 4.732 (0.4, 0.6) 5.636
0.7 (0.75, 0.25) 4.718 (0.4, 0.6) 5.629
0.8 (0.75, 0.25) 4.704 (0.4, 0.6) 5.622
0.9 (0.75, 0.25) 4.691 (0.4, 0.6) 5.614
1.0 (0.75, 0.25) 4.677 (0.4, 0.6) 5.607
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ranking approaches are the same as those of the proposed
approach. So, the proposed approach is feasible and
effective.

6. Conclusion

%e constrained bimatrix games with payoffs of SVTNNs are
studied and constructed in this article. %e ranking order re-
lation, important theorems, and arithmetic operations of
SVTNNs are outlined. Novel neutrosophic optimization
problems for both players are established from the arithmetic
operations of SVTNNs and solution method for SVTNNs
constrained bimatrix games. Based on the ranking approach of
SVTNNs presented in this article, the neutrosophic optimization
problems for both players are converted into crisp parameterized
problems, which are solved to obtain the equilibrium optimal
strategies and equilibrium values for two players. Moreover, the
ranking approach proposed in this article is demonstratedwith a
numerical simulation. Finally, our article is the first to study the
constrained bimatrix games under neutrosophic environment
and provide algorithm and practicable application for SVTNNs
constrained bimatrix games.

In the future, we will study game theory under other
types of uncertain environment such as linguistic

neutrosophic, interval neutrosophic, linguistic interval
neutrosophic, and linguistic interval intuitionistic neu-
trosophic. Furthermore, we will apply the proposed ranking
approach to other areas such as pattern recognition, supply
chain, risk evaluation, teacher selection, and optimization
models.
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