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a b s t r a c t 

In this position paper we propose a consistent and unifying view to all those basic knowledge representa- 

tion models that are based on the existence of two somehow opposite fuzzy concepts. A number of these 

basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the 

semantic relationship between two paired concepts what determines the emergence of different types of 

neutrality, namely indeterminacy, ambivalence and conflict , widely used under different frameworks (pos- 

sibly under different names). It will be shown the potential relevance of paired structures , generated from 

two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In 

this way, paired structures can be viewed as a standard basic model from which different models arise. 

This unifying view should therefore allow a deeper analysis of the relationships between several existing 

knowledge representation formalisms, providing a basis from which more expressive models can be later 

developed. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recent advances in Psychology and Neurology are providing rel-

evant results for the development of decision making models. The

human brain has specifically and successfully evolved to manage

complex, uncertain, incomplete, and even apparently inconsistent

information. For example, neurologists have shown that the part

of the brain taking care of making up the last decision is differ-

ent to the part of the brain in charge of the previous rational

analysis of alternatives, being the first part associated with emo-

tions (see, e.g., [6,7] ). A number of similar results within neurology

(see, e.g. [41,52,82] ) suggest that the activation of different areas

of the brain, associated with both cognition and emotion, partic-

ipate in our decision processes through the continuous interplay

among different networks (namely the valuation network, the con-

trol network and the memory system), each one following their

own set of rules (see, e.g., [59,60] ). Among other key achievements,
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t has been recently shown the key role that concept representa-

ion plays in our knowledge process (see, e.g., [10,39] ), along with

he fact that the human brain manages positive information in a

ifferent way than negative information. This observation suggests

ome kind of bipolarity in the way that our brain handles infor-

ation (see, e.g., [17,18] ). Positive and negative affects are not pro-

essed in the same region of the brain, as they are generated by

learly different neural processes [61] . 

The importance of bipolar reasoning in human activity was em-

hasized by Osgood et al. in 1957 [54] (see also [38,71] ). These au-

hors proposed a semantic theory based on the Semantic Differen-

ial (SD) scale for evaluating the meaning of concepts. This theory

ecame very popular for measuring attitudes in a practical way,

here individuals are asked to use the SD scale to evaluate if a

iven object is perceived as being positive, neutral or negative . 

Nonetheless, it becomes evident that by using the SD scale,

bjects cannot be evaluated as being positive and negative at the

ame time, and its neutral value can hardly be understood as a

roper representation of neutrality . From this perspective, there

re certain attitudes that seem to escape the linear logic of such

 scale, but still require proper representation. This led to some

ritiques (see, e.g., [18,27,38] ), stating that the SD scale does not

onsider other relevant attitudes arising from the inherent tension

mong opposite-like concepts, like for example ambivalence . Hence,
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 modified SD scale was proposed (see, e.g., [38] ), consisting of

wo unipolar scales joined together by their minimal element, al-

owing the simultaneous measurement of positive and negative

valuations. 

The relevance of this discussion can be well positioned and il-

ustrated by different works in multicriteria decision making and

ecision theory (see e.g. [36,37,81] ). There, the SD scale, or unipolar

ivariate model [22,36] , has been widely applied, and further devel-

ped into more complex scales. These scales are grouped together

nder a general (somewhat oversimplifying) category of bipolar

nivariate models (for some examples on opposite-based decision

odeling see again [36] , but also [31,78] ). 

Moreover, it can be stated that our internal decision mak-

ng process is of a complex nature, implying previous differenti-

ted knowledge acquisition and representation processes (see, e.g.,

4 8,4 9] ), quite often based upon multi-criteria arguments. In fact,

he linear logic behind the SD scale does not allow representing

he natural complexity we perceive from reality. Hence, once such

 complexity is acknowledged, our mathematical modeling must

ontinuously balance precision and simplicity, just as our brain

ooks for relevant but at the same time manageable information. 

But whenever an objective measure for a concept is not avail-

ble, it will be difficult to manipulate such a concept in an iso-

ated manner. Most surely, immediately related concepts need to

e taken into account. Generally speaking, understanding concepts

y means of two opposite concepts , implies that we can capture

he tension between both opposites. In some way, such simulta-

eous opposite views are unavoidable to start understanding the

orld, and indeed we need more complex knowledge representa-

ion structures to manage more than two views. 

From our standpoint, most concepts cannot be properly under-

tood in an isolated way. Addressing two different views seems to

e the basic model to start with (although some concepts might

eed more than one surrounding concept in order to understand

ts limits). A number of quite similar fuzzy models focusing on

he existence of two opposite concepts can be found in the lit-

rature, somehow offering a confusing view that we pretend to

nify and explain within the unique umbrella of paired fuzzy sets

nd paired structures . We cannot understand certain concepts with-

ut understanding their opposite concepts. Pairs of predicates that

ill constitute paired concepts are, for example, tall / short, fat/slim,

ig/small, cheap / expensive or good/bad (see e.g. [63] ). 

The point of departure of this paper can be found in the above

onsiderations, together with the bipolar approach proposed by

ubois and Prade in several papers (see [22–24] ). Among other

hings, Dubois and Prade proposed a classification of bipolar mod-

ls in three types of bipolarity that indeed shows similarities with

ur proposal below, but also essential differences: our approach,

s it will be seen, follows from a constructive view of what we

all paired structures , by focusing on how the semantic tension be-

ween two opposites generates certain types of neutrality (see [62]

or a previous attempt). In this sense we emphasize the key role

f certain neutralities in our knowledge representation models, as

ointed out by Atanassov [4] , Smarandache [70] and others. But

otice that our notion of neutrality should not be confused with

he neutral value in a traditional sense (see [22,–24,36,54] , among

thers). Instead, we will stress the existence of different kinds of

eutrality that emerge (in the sense of [11] ) from the semantic

elation between two opposite concepts (and notice also that we

efer to a neutral category that does not entail linearity between

pposites). Such a constructive view establishes an alternative to

ubois–Prade’s approach, providing a distinction of those models

ased on opposites different from their types of bipolarity . More-

ver, the term paired concepts we propose instead is not subject to

e confused with the term bipolarity in the sense of a psychologi-

al disorder. 
e  
Therefore, our alternative for modeling basic knowledge repre-

entation is based on paired concepts , which will naturally lead to

aired structures . A paired structure is defined by a pair of opposite

oncepts plus their associated neutralities and the relationships be-

ween these elements. Such a basic structure stands as a primary

oundation from where further valuation scales and learning pro-

esses can be developed. As a consequence, it can be understood

s a first stage for more complex and meaningful evaluation struc-

ures, where non-neutralities are allowed besides the original two

pposites. This paired approach has already led to a specific model

or preference representation (see [32] ), a particular case whose

eneral framework should be found in this paper. 

Let us remark that this paper is not about formal logic or its

nterpretation. It rather deals with knowledge and natural language

epresentation by means of logical tools. 

In order to illustrate our position, this paper is organized as

ollows: in the next section we shall present a general example

rom where our discussion will evolve. Our proposal will be for-

alized in Section 3 , restricted to our definition of opposite con-

epts. From this definition we shall formalize what we understand

y paired fuzzy sets and paired structures . We shall expose the types

f neutrality that rise from paired fuzzy sets , and that will pro-

uce different paired structures . Section 4 is devoted to compare

ur proposal with some related existing models. A discussion in

ection 5 shows a standard procedure for building paired struc-

ures, and a final Section 6 is devoted to discuss some open key

ssues for future research. 

. Preliminary example: on the representation and 

easurement of size 

Let us try to illustrate our view through a classical well-known

xample. 

The meaning of the notion size of a person can be modeled in

erms of predicates defining an evaluation scale. The structure of

uch a scale highly depends on how size is perceived, and par-

icularly on whether it is viewed as a 1-dimensional or multi -

imensional characteristic. For example, in case size is understood

s size = height , the verification of its occurrence can be evaluated

ithin a linear scale. Let us examine more in detail this meaning

f size = height . 

Although we all know that height is measurable in the real line,

e should realize that we usually do not try to measure the height

f each person we meet with a value in the real line. Instead of

aying “Paula’s height looks around 1 ′ 90 m”, most people will talk

bout Paula as a tall person, i.e., in terms of the tallness concept,

hich can be regarded as a fuzzy context-dependent concept [85] .

ndeed, a person’s height is usually judged in terms of the predi-

ates tall and short , which constitute semantic references or land-

arks for the evaluation of such a notion. We hardly use the no-

ion of a person’s height without the landmarks provided by the

pposites tall and short , or any other equivalent pair of opposite

redicates. 

If our concept of tallness were crisp, the sentence “Paula is tall ”

ould have a direct translation on the evaluation scale in terms

f height : for example, “Paula is tall ” if and only if “Paula’s height

s at least 1 ′ 70 m”. As soon as we have this crisp definition, the

oncept of being non-tall is automatically created by the classi-

al crisp negation: “Paula is non-tall ” if and only if “Paula’s height

s less than 1 ′ 70 m”. That is, tallness is associated with the inter-

al [1 ′ 70 , ∞ ) meanwhile non-tallness is associated with the interval

0,1 ′ 70). In order to generate such paired predicates ( tall and non-

all ), we simply need to assume the existence of the crisp negation:

 person x within a community X belongs to the set of tall people

f and only if the height h ( x ) of such a person is greater than or

qual to 1 ′ 70 . And a person x within the community X belongs to
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the set of non-tall people within X if and only if the height h ( x ) of

such a person is smaller than 1 ′ 70. The set of tall people is Tall = { x

ε X, h ( x ) ≥ 1 ′ 70}, and the set of non-tall people is Non-tall = { x ε
X, h ( x ) < 1 ′ 70} . Within such a crisp context, no person can be tall

and non-tall at the same time, and everybody will be either tall or

non-tall . A basic paired structure to represent height has been built

from only one predicate ( tall ) and its negation ( non-tall ), and the

characteristic functions of both crisp predicates 

μTall (x ) = 1 ⇔ h (x ) ≥ 1 

′ 70 , μTall (x ) = 0 ⇔ h (x ) < 1 

′ 70 

are defined in such a way that 

μTall (x ) = n ( μNon −tall (x ) ) , ∀ x ∈ X 

μNon −tall (x ) = n ( μTall (x ) ) , ∀ x ∈ X 

being n :{0,1} → {0,1} , such that n (0) = 1 and n (1) = 0 , the only nega-

tion within the crisp {0,1} framework (in fact, and within the crisp

framework, the only one-to-one mapping from {0,1} into itself dif-

ferent from the identity mapping). These are well known facts, but

it is important to show that tall and non-tall appear as paired pred-

icates in a natural way within the crisp framework. Meanwhile a

measurement of height is available and precise, there is no room

for any kind of neutral concept. Borders between a predicate and its

negation ({ x ε X, h ( x ) = 1 ′ 70} in the above example) might still de-

serve specific attention, precisely because of a potential estimation

uncertainty. 

However, the introduction of short as the opposite predicate of

tall allows different translations into a measurable height , being

tall and short a different couple of paired predicates than tall and

non-tall . 

For example, and keeping the crisp approach, we can define

that “Paula is short ” if and only if “Paula’s height is at most

1 ′ 60 m”. Again, the concept of non-short is automatically created,

in such a way that Short = { x | x ε X, h ( x ) ≤ 1 ′ 60}, and the set of

non-short people is Non-short = { x | x ε X, h ( x ) > 1 ′ 60}. In this way,

all those people with height within the interval (1 ′ 60,1 ′ 70) are nei-

ther tall nor short , leading to some kind of indeterminacy (we can-

not assign any of the only two available predicates to some indi-

viduals). In this particular case we know that, in order to solve this

indeterminacy, we can create an intermediate non-neutral concept,

like Medium = { x | x ε X, 1 ′ 60 < h ( x ) < 1 ′ 70}. But this is a different

kind of argument, to be conducted in a subsequent stage. At first,

what we find is just that none of the two opposite, available pred-

icates apply to some individuals. In general, such indeterminacy

suggests the need for a new predicate. Such a new predicate will

not necessarily be a non-neutral intermediate predicate as Medium

in this example, where a non-paired three-valued linear scale Tall-

Medium-Short is easily suggested (please be aware of the specificity

of this example, where the linear representation behind is a pri-

ori known and the two opposite predicates we have chosen corre-

spond to left and right tails). 

On the other hand, we could have defined that “Paula is short ”

if and only if “Paula’s height is at most 1 ′ 80 m”. In this case,

Short = { x | x ε X, h ( x ) ≤ 1 ′ 80}. Then all those people with height

within the interval [1 ′ 70,1 ′ 80] will be both tall and short , lead-

ing to a certain ambivalence . That is, what we find now is that

both opposite predicates simultaneously apply. Clearly, in this spe-

cific example it is again suggested an intermediate concept in be-

tween opposites, like Medium = { x | x ε X, 1 ′ 70 ≤ h ( x ) ≤ 1 ′ 80}, and

then we could reshape opposites to avoid overlapping (for exam-

ple by redefining Tall = { x | x ε X, h ( x ) > 1 ′ 80} and Short = { x | x ε
X, h ( x ) < 1 ′ 70}). Once more, the construction of a linear evaluation

scale (or equivalently, the interpretation of such ambivalence as an

intermediate predicate Medium ) depends on a subsequent differ-

ent kind of argument relying on a previous interpretation of the

opposites and their relationship. But at a first stage we can only

acknowledge whether there are persons being both tall and short
ambivalence) or none of those predicates apply to some people

indeterminacy). 

Here it becomes evident the following observation, quite stan-

ard within a classification framework (see, e.g., [1,2] ): two op-

osite crisp predicates ( tall / short ) that refer to the same notion

 height ) can generate different neutral concepts ( indeterminacy and

mbivalence , or both), depending on their semantics. A more care-

ul analysis of indeterminacy and ambivalence might suggest spe-

ific scales (see, e.g., [40] ) by modifying the definition of the

wo basic opposite predicates and/or introducing new intermediate

redicates. But these evaluation scales and their corresponding se-

antics can only be properly understood by firstly addressing the

articular semantic relationship between the two basic opposites. 

A quite similar situation can be found within logic and the clas-

ical square of oppositions, where it is understood that a concept

 comes with its negation n(p) and its antonym ant(p) , being p

nd ant(p) mutually exclusive contraries (allowing therefore inde-

erminacy). In this way, n(p) and n(ant(p)) are overlapping sub-

ontraries (see [25] ). But notice that, following Amo et al. [2] , we

hould avoid a priori artificial conditions. In practice, such prop-

rties will be eventually reached after a sometimes long learning

rocess: in our model, a concept should not be initially associated

ith a contrary, but simply to a more general opposite . Depend-

ng on the semantic relationship between the initial concept and

ts opposite, we shall be able to identify indeterminacy, overlap-

ing or any other kind of neutrality. Moreover, notice that different

eutralities can simultaneously appear (for example, the selected

pposite of rather tall is naturally rather short , and indeterminacy

rising from these two opposites should not be simply associated

ith a middle stage between extremes). 

In particular, in addition to indeterminacy and ambivalence ,

here is a third standard neutrality that can appear in more com-

lex situations. In the above example we have based our argu-

ents upon the existence of a unique, linearly-based property for

nderstanding size , given by height . In practice, however, most of

ur concepts are complex in the sense that they can be explained

n terms of a number of simpler concepts (see, e.g., [32] ). In this

ase, our evaluation proceeds through a (perhaps non-conscious)

ggregation process. 

For example, when talking about the size of a person we can

efine two complex opposite predicates like big and small . But be-

ng big or small might depend on height ( tall versus short ) and

eight ( fat versus slim ). Of course it may be the case that a per-

on is neither big nor small , being there indeterminacy. And another

erson can be both big and small , being there ambivalence . But it

an also happen that we cannot choose among big and small be-

ause there is a conflict behind, i.e. both opposite predicates hold in

 conflictive manner. It is not the same to say that a person is both

ig and small because s/he is simultaneously both tall and short , or

oth fat and slim , than to say that such a person is big and small

ecause s/he is tall but slim , or fat but short . The taller and fatter a

erson is, the bigger such a person is; the shorter and the slimmer

 person is, the smaller such a person is. But taller and slimmer

re conflictive arguments, like shorter and fatter are. In this more

omplex (multicriteria) framework we can find conflict as a third

ind of neutrality associated with opposite complex predicates, in

ddition to indeterminacy and ambivalence . Similitude of these con-

ictive situations with incomparability within preference modeling

s obvious since they share an underlying multicriteria view (see,

.g., [29,30] and [78] ). But conflict is the cognition we detect, not

ny specific decision making solution. 

To conclude this example, let us briefly discuss the role of points

f symmetry . To this end, let us assume again that the meaning of

ize is interpreted solely in terms of the measurable characteris-

ic height , and that our references are given by the predicates tall

nd not-tall . Let us now consider these as fuzzy (i.e. non-crisp)
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oncepts. That is, we now allow both predicates to be evaluated

n the interval [0,1] rather than on the binary set {0,1}. Then, for

ny x ε X , we may for instance set the meaning of tall and its com-

lement to be represented by the fuzzy sets 

Tall (x ) = 

 

 

 

 

 

0 if h (x ) < 1 

′ 70 

h (x ) − 1 

′ 70 

1 

′ 80 − 1 

′ 70 

if 1 

′ 70 ≤ h (x ) ≤ 1 

′ 80 

1 if h (x ) > 1 

′ 80 

, μNot−tall (x ) = 1 −μTall (x ) . 

As usually admitted, this kind of representation enables both

all and its negation not-tall to exhibit an imprecise semantic,

voiding the boundary problems associated with crisp predicates.

ut, apart from that, we still have just a predicate and its nega-

ion as opposites, fully explaining the whole universe of discourse

. No room is left for neutral concepts. However, contrarily to

he previous crisp context, now it is possible for an object to

e equally associated with a concept and its opposite, as now

Tall (x ) = μNot−tall (x ) = 0 . 5 can hold for a given object x ε X (i.e.,

henever h ( x ) = 1 ′ 75 in the current example). We refer to this sit-

ation by saying that, in a fuzzy context, a reference predicate and

ts negation admit a point of symmetry between them. It is then

mportant to stress that such point of symmetry does not repre-

ent a new concept: as exposed above in the crisp case, there are

o other available options besides the opposites, as both predicates

re related by negation. 

In this way we can see how the tension between our two initial

pposite predicates suggests certain neutral categories and, even-

ually, a particular reshaping of those opposite predicates (or alter-

atively, a non-paired structure). Non overlapping opposites might

roduce indeterminacy , overlapping opposites produce ambivalence ,

nd multi-dimensional opposites might produce conflict . 

. Semantic opposites and paired structures 

Let us study the relationships that can arise between a pair of

redicates when these two predicates are semantically opposite,

onstituting the reference landmarks of a linguistic representation

f reality. We will refer to those pairs of opposite predicates as

aired concepts . Two paired concepts can generate neutral concepts,

nd meanwhile we consider only paired concepts together with as-

ociated neutral concepts we shall have a paired structure . 

.1. Paired concepts 

Paired concepts are not simply a couple of predicates. Our first

bjective is to clarify what we mean by paired. Paired predicates

ust be specifically related. To begin the discussion about the na-

ure of this relationship, let us remind that, as pointed out above,

ur mind is able to represent complex situations, related to inter-

sts and emotions, by using a pair of landmarks that constitute

he references for evaluation. Such reference concepts allow con-

guring the evaluation framework in which information can be as-

essed. In other words, they constitute the referential context in

hich pieces of information are understood. As shown in our pre-

iminary example, only if tallness can be known by means of a

pecific measure we can be confused in thinking that tallness can

e understood without an opposite predicate like shortness . Other-

ise, if such a measure has not yet been provided, even the pred-

cate tallness requires an opposite predicate like shortness in order

o be understood. 

We cannot understand most predicates without also knowing

he meaning of all those other predicates that define their lim-

ts (a complex concept might need several additional predicates to

how its limits). In this sense, two predicates have to be related
n some specific way to effectively configure an appropriate refer-

ntial context, i.e., in order to properly constitute a pair of refer-

nce landmarks. The previous arguments suggest the existence of

 particular structure , in the sense of a set of objects (predicates)

ogether with a set of relationships (opposition, neutrality, etc.) be-

ween them. 

Our point is that we should focus on the semantic opposition

etween paired predicates (see, e.g., [78] ). However, such an op-

osition does not have a unique possible representation or defini-

ion, and from the different opposition relationships different neu-

ral valuation concepts will emerge. For example, very tall and very

hort are opposite predicates, and more or less tall and more or less

hort are also opposite predicates, but they indeed suggest very dif-

erent spaces in between them. In this way, we will refer to nega-

ion, antonym and sub- antonym to capture the basic possibilities for

uch a semantic opposition. 

.2. Antonym and sub-antonym with respect to a negation 

In this paper, we focus on three particular forms of such

 semantic opposition between predicates, specifically negation,

ntonym and sub-antonym (see e.g. [72,75] , but also [64] ). 

Before formalizing these three basic semantic relationships, it

s important to make explicit that we assume that any predicate P

and thus particularly our reference opposites) can be represented

s a fuzzy set μP over a particular universe of discourse X. In this

ay, μP ( x ) ∈ [0, 1] denotes the degree up to which an object x ∈ X

erifies predicate P . Hence, the membership function μP is taken to

epresent the semantics (i.e. the practical meaning) of the predicate

 in the context given by the universe X . 

In a first approach, we will also assume reference predicates to

e simple, in the sense of referring to a characteristic depending

n just a single criterion or dimension (like tall and short refer to

ize = height ), i.e. not admitting a further decomposition in a set

f underlying criteria or sub-predicates. As already pointed out,

e can later on remove this assumption and analyze also com-

lex multidimensional reference concepts, as could be big/small or

ood/bad (these concepts usually require a further explanation in

erms of a set of underlying criteria). 

Now, let us recall that a negation function within the fuzzy con-

ext (see again [72,75] ) is usually understood as a non-increasing

unction n : [0, 1] → [0, 1] such that n (0) = 1 and n (1) = 0. All

hroughout this paper we are assuming that such a negation is a

trong negation, i.e., a strictly decreasing, continuous negation be-

ng also involutive (i.e. such that n ( n ( v )) = v for all v in [0,1]). If F ( X )

enotes the set of all fuzzy sets (i.e. predicates) over a given uni-

erse X , then any strong negation function n determines a negation

perator N : F ( X ) → F ( X ) such that N(μ)(x ) = n (μ(x )) for any pred-

cate μ ∈ F ( X ) and any object x ∈ X . It is therefore assured that our

egation operator N : F ( X ) → F ( X ) verifies 

(A1) N is involutive (i.e., the negation of the negation is the iden-

tity); 

(A2) μ( x ) ≤ μ( y ) ⇒ N ( μ)( y ) ≤ N ( μ)( x ) for all μ ∈ F ( X ) and x, y ∈
X ; 

Any operator O : F ( X ) → F ( X ) verifying these two properties A1

it is involutive in the sense that the opposition of the opposition is

he identity) and A2 (it is monotonous) will be called an opposition

perator. 

Let us assume now that a particular negation operator N :

 ( X ) → F ( X ) (or equivalently a particular negation function

 :[0,1] → [0,1]) has been fixed. An antonym operator was then de-

ned in [76] as a mapping A : F ( X ) → F ( X ) verifying 

(A1) A is involutive (i.e., the antonym of the antonym is the

identity); 
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(A2) μ( x ) ≤ μ( y ) ⇒ A ( μ)( y ) ≤ A ( μ)( x ) for all μ ∈ F ( X ) and x, y ∈
X ; 

(A3) A ≤ N . 

In other words, an antonym is a particular opposition verifying

condition A3, to be associated with a contrary within the nomen-

clature of the logical square of oppositions (see [25] ). 

It seems therefore natural to define a sub-antonym operator

(to be associated with a sub-contrary within the nomenclature of

square of oppositions [9,25,51,53] ) as a mapping A : F ( X ) → F ( X ) that

fulfills 

(A1) A is involutive (i.e., the sub-antonym of the sub-antonym is

the identity); 

(A2) μ( x ) ≤ μ( y ) ⇒ A ( μ)( y ) ≤ A ( μ)( x ) for any μ ∈ F ( X ) and x, y ∈
X . 

(A3) A ≥ N . 

Hence, N is in fact the only operator being simultaneously an

antonym and a sub-antonym with respect to N . Both antonyms and

sub-antonyms are instances of opposition operators, and there are

oppositions being neither an antonym nor a sub-antonym. In the

following we shall refer to antonym as any antonym not being the

given negation N. Analogously, we shall refer to sub-antonym as

any sub-antonym not being the given negation N . 

In a general sense, we consider that two predicates (or fuzzy

sets) P, Q are paired if and only if P = O ( Q ), and thus also Q = O ( P ),

holds for a certain semantic opposition operator O . Our point is that

neutral predicates emerge from the specific relation of opposition

holding between paired concepts. 

3.3. The concept of neutrality 

Neutral concepts are generated from two opposite predicates

whenever an object cannot be properly explained in terms of both

opposites. From a fuzzy approach, the point here is that the two

opposites may not define a fuzzy partition of the universe of dis-

course, see [66] or any of its generalizations based upon any al-

ternative logic (e.g. [19] , but particularly [1,2] ). In this context, the

term neutral represents an additional valuation concept that is be-

ing semantically generated from opposites. As suggested in [48] ,

different types of neutrality or neutral concepts can emerge from

the tension between opposites (see also [11] ). 

In the above preliminary example, we started from the oppo-

sition between a concept and its negation, and then we consid-

ered antonym and sub-antonym concepts. In this way, two types

of neutrality have been already introduced: indeterminacy and am-

bivalence . The first type of neutrality suggests that both opposite

concepts overlap [14] .The second type of neutrality suggests that

objects cannot be fully explained solely in terms of the given op-

posites [16] . 

But we were in fact assuming that there was a unique un-

derlying simple, 1-dimensional criterion or characteristic. In many

contexts, however, opposites are rather complex predicates (as

good/bad, beautiful/ugly or the previous big/small ). These complex

predicates show a multidimensional nature and suggest an expla-

nation in terms of simpler reference predicates. This situation can

be associated with a multi-criteria framework, in which the verifi-

cation of a concept is obtained through the aggregation of several

criteria. It is in this context where conflict can naturally appear as a

third type of neutrality. Such conflict should be naturally expected

within complex paired structures, whenever serious arguments for

both opposites are simultaneously found in different, independent

criteria (like when in the big/small example we find that some-

one is simultaneously very tall , suggesting a big person, but very

slim , suggesting a small person). This situation suggests that com-

plex opposites can show a kind of conflictive relation, different to
he ambivalence or the overlapping associated with opposite con-

epts over a simple, 1-dimensional characteristic. In fact, this con-

ict should not be expected when dealing with paired structures

n a 1-dimensional argument. Of course, different kinds of conflict

an be acknowledged in higher multidimensional problems besides

he above conflict between two underlying criteria. 

In summary, we should stress that different types of neutrality

ay appear depending on the semantic relationship between op-

osites. That is, it is the opposition relationship what determines

he particular meaning of the different types of neutrality that may

rise, and at the same time, of the whole paired structure. All these

inds of neutrality are quite often confused (sometimes even la-

eled under the same word) whenever a decision maker finds a

ind of symmetrical situation that makes essentially difficult to

hoose among both opposites. 

Such hesitation is suggested for the above neutralities, but there

re also non-neutral situations that show another kind of hesita-

ion. For example, imprecision when estimating degrees of mem-

ership implies facing a different kind of uncertainty, related to

he difficulty of choosing an exact value. Hence, even if two paired

oncepts cover reality without indeterminacy, as happens when

pposition is represented through a given negation , uncertainty as-

ociated with estimation uncertainty may still represent a specific

ind of hesitation. However, such hesitation due to imprecision

hould not be considered as a neutral concept, as it is not gen-

rated from the semantic tension between opposites. 

An easy approach for this imprecision problem is to associate

n interval instead of a single value (see, e.g., [16] ). The wider such

n interval is, the more imprecise our estimation. Maximum im-

recision for a membership value will be then associated with the

omplete unit interval, which would mean that we simply do not

ave any useful information about such an estimation (see [68] for

 complete approach within a probabilistic framework, and [67] for

he seminal approach within a fuzzy context). In general, type-2

uzzy sets [42] can naturally appear associated with this estima-

ion problem. 

.4. Paired structures 

Paired structures belong to a first level of knowledge repre-

entation. They stand as the subjacent semantic structure created

rom two opposite predicates and their associated neutral con-

epts. With the purpose of exploring the nature of such neutral-

ty, we should take particularly into account the arguments be-

ind two main opposite-based proposals: Atanassov’s intuitionistic

uzzy sets [4] (proved to be equivalent to interval-valued fuzzy sets

20,67,74,79] but also [13] ) and Dubois–Prade bipolarities [22,24]

see next section for a comparison between our paired approach

nd other related models). 

Starting from a concept of interest P , a first observation is that

 negation N is given in our model, from which it is then possi-

le to define different antonyms or sub-antonyms. In this sense,

et us remark that P and its negation not-P contain the same in-

ormation in our model (we should anyway remind that intuition

orks with positively defined concepts, see e.g. [21] , but also [48] ).

n this sense, a predicate and its negation indeed constitute two

aired predicates implying a particular empty space between op-

osites: no neutral concept can be defined in between a predicate

nd its negation, although estimation uncertainty can play a role,

s already pointed out. 

Anyway, as suggested in the preliminary example, neutrality

ay arise in different manners, whenever an object fails to be

ully described from the two reference predicates. Neutrality will

n fact represent a different concept from opposites, another rel-

vant available option for evaluating objects. Particularly, different

aired structures will exhibit different types of neutrality, in such
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 way that its nature will sometimes be definitive in order to iden-

ify the particular paired structure we are dealing with. 

Although the objective of this paper is, as already pointed out,

imply positional, let us grasp the formal model to be developed:

tarting from a basic predicate (and its negation) we can define an

pposite that might imply, to some extent, the existence of inde-

erminacy (antonym) and/or ambivalence (sub-antonym), and also

onflict. Hence, the point of departure for a general definition of a

aired structure is given by a qualitative scale 

 = { concept, opposit e ; indet erminacy, ambi v alence, conflict } , 
omposed by a pair of opposite concepts and three types of neu-

rality as primary valuations. This crisp setting corresponds to a ba-

ic model in which objects are evaluated by assigning exactly one

oncept to each object. In order to allow these valuations to be

ore general, it is then possible to introduce secondary valuations

referring to a secondary, ordered scale S , for instance S = [0,1]) ex-

ressing the degree of fulfillment of each of the predicates acting

s primary valuations, consistently with [2] and [48] . 

Thus, in a first formal approach, our paired structures can be

epresented through a multidimensional fuzzy set A L given by 

 L = { 〈 x ; ( μs (x )) s ∈ L 〉 | x ∈ X } , 
here X is the universe of discourse and each object x ∈ X is as-

igned up to a degree μs ( x ) ∈ S to each one of the above five predi-

ates s ∈ L . This structure ( X, L, S, A L ) should be then provided with

n appropriate logic (or logics, see [44,45] ), consistently enabling

he composition of arguments. 

emark 1. Notice that we have adopted the usual valuation scale

f fuzzy sets, the unit interval [0,1], as the secondary scale S ex-

ressing degrees of verification of the primary predicates in L .

owever, as pointed out in [33] , any other complete lattice would

e as valid meanwhile it allows representing the adequate grada-

ion needed in each context. In this sense, the simplest option,

orresponding to the previously mentioned crisp, binary setting,

ould be to take S = {0,1}. On the other extreme, if it is needed to

epresent imprecision in the estimated degrees, then it is possible

o allow intervals (or even general type-2 fuzzy sets) as secondary

aluations, leading to S as the set of interval-valued fuzzy sets (or

ny other appropriate type-2 lattice). 

emark 2. Although we do not think that just one kind of formal-

sm is enough to represent all the relationships between the val-

ation predicates in the primary scale L , we indeed think that it

s crucial for such a structure to be somehow described and rep-

esented, i.e. specifying the valuation predicates and the relation-

hips holding between them. In fact, one of our main objectives

hen writing this positional paper is to stress this structural issue .

e should clarify what makes a predicate to be associated with

ts character besides its name. As we will be discussing in the next

ection, many of the existing extensions of fuzzy sets fail to de-

cribe any underlying structure, and as a consequence, it is usually

ifficult to appreciate what are the actual differences and similari-

ies between those extensions. For instance, and following [48] , the

elationships between our primary predicates in L can be explained

n terms of a digraph, where neutrality with respect to our two op-

osites must be structurally acknowledged as neutral. But in some

ontexts these relationships might be better expressed through

onstraints relating the different degrees μs ( x ), s ∈ L , so they re-

ect their intended meaning. In this sense, notice that, following

1] and [2] , we are not in principle assuming that 
∑ 

s ∈ L μs (x ) = 1 ,

hich for each x ∈ X would define a convex polyhedron in [0, 1] L .

pecific constraints like this one might be appropriate depending

n the chosen logical connectives (see [55,65,80] ). Of course, other

eneralizations of fuzzy sets may also be considered for the repre-

entation of predicates (see, e.g., [11] ). 
. A comparison with some other opposite-based models 

In 1965 Zadeh introduced the notion of fuzzy set [85] . Since

t appeared, it was clear that there was a problem for building

he membership degree of each element in the considered set.

or this reason, in 1971 he proposed the first idea of an exten-

ion, called type-2 fuzzy set (see [42,86] ). In this extension, the

embership degree of each element is given by a fuzzy set of the

aluation scale [0,1]. Furthermore, the problem of constructing the

embership degrees has led to the introduction of different exten-

ions, of which we highlight interval-valued fuzzy sets (also known

s grey sets, and equivalent to vague sets), fuzzy multisets and

 -dimensional fuzzy sets, neutrosophic sets, hesitant fuzzy sets,

eta-fuzzy sets, etc. (see, e.g., [12] ). There exist also other types

f extensions (see, e.g., [13] ), as probabilistic sets, fuzzy rough sets

r fuzzy soft sets, which have a different origin from that of the

revious ones, since they were not introduced to solve the prob-

em of defining the membership degree of the elements. This large

equence of names and models has indeed produced certain con-

usion. In fact, some of those models were later found to be equiv-

lent to existing ones, and in some cases the intuitive justification

ehind such models does not fully fit the mathematical model it-

elf (some denominations happen to be equivalent only when cer-

ain structural issues are not taken into account, as pointed out in

48] ). Some light should be brought to this problem if we address

ow the most basic knowledge representation models are gener-

ted from two opposite concepts. Hence, let us then comment the

elationship between our paired approach and some of the main

pposite-based models: interval valued fuzzy sets, shadowed sets,

tanassov’s intuitionistic fuzzy sets, bipolar fuzzy sets, and neutro-

ophic fuzzy sets 

Among all those opposite-based fuzzy models, Atanassov’s in-

uitionistic fuzzy sets (A-IFS) deserve a particular analysis (see [21]

or a complete analysis). According to Atanassov [4] , an A-IFS as-

igns to each object both a degree of verification to certain prop-

rty and a degree of verification to the negation of such a property,

n such a way that these two degrees of verification sum at most

. In this way, a principle which is demanded in classical logic can

e recovered: the Lukasiewicz conjunction of the degree of verifi-

ation of a property and the degree of verification of the negation

f that property is always 0, and thus the non-contradiction law

olds. 

Moreover, Atanassov introduced the hesitancy or indeterminacy

ndex as 1 minus the sum of the degrees of verification of the

roperty and its negation. This index intends to represent the dif-

culty in the problem of building the exact membership and non-

embership functions. Hence, a fuzzy partition in the sense of

uspini [66] is being defined in terms of the given property, its

egation and the remaining hesitancy. 

First of all, it has been criticized that the entitlement “intuition-

stic” looks inappropriate despite many scientists have accepted

uch a denomination (see the alternative intuitionistic fuzzy model

roposed in [73] ). Moreover, measuring the degree of verification

f the negation of a property seems difficult to achieve in practice

for example, within a Probability framework we rarely ask for the

robability of the negation of an event: we usually evaluate the

robability of the event and then we reckon the probability of its

egation… Otherwise most probably the values we provide for the

vent and its negation will not sum up to 1). 

In addition, what the remaining category of “indeterminacy”

eans is not clear along Atanassov’s texts. Anyway, as already

ointed out, from a purely mathematical view A-IFS are equiva-

ent to interval-valued fuzzy sets (IVFS), in such a way that the

ength of each interval is the same as the hesitancy index defined

y Atanassov. Nevertheless, it has been pointed out in [48] that the

tructural issue is missing in both models. By explicitly stating the
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different predicates that intervene as well as the relationship be-

tween them, both models can be distinguished in the framework

of paired structures (and particularly in that of meta-fuzzy sets,

see [48] ). Without addressing the structural issue, both Atanassov’s

intuitionistic fuzzy sets and interval-valued fuzzy sets are simply

defining Ruspini ́s partitions [66] of three classes, no matter the

different names we assign to each of the three categories in each

model. 

Beside Atanassov’s argumentation, in our opinion the key el-

ement in his model is that he puts together several fuzzy sets,

stressing in this way that we cannot evaluate each fuzzy set

in an isolated way. A similar claim can be found in specific

frameworks, see e.g. [46] , where in order to escape from Ar-

row’s paradox [3] different types of intensity preferences (strict

preferences, weak preferences, indifferences, and potentially in-

comparability) were simultaneously amalgamated into structured

Ruspini’s partitions [66] . Ruspini’s partition was generalized in

[2] by suppressing any restriction on the degrees of member-

ship, producing what Miyamoto [43] calls multiset (see also

[83] ). But notice that classes in [2] were expected to evolve in

terms of non-overlapping, covering and relevance (see [1] ), con-

sistently with our paired approach. In this sense it is interesting

to point out that n -dimensional fuzzy sets [69] are multisets im-

plying the existence of a linear structure for the n classes under

consideration. 

On the other hand, the concept of bipolarity in a fuzzy frame-

work was initially proposed by Zhang and Zhang (see [87,88] ),

assigning two independent valuations to each object. As already

pointed out above, the term bipolarity comes from Psychology

where it has specific meanings that might not properly fit neither

into this proposal nor into the three types of bipolarity consid-

ered by Dubois and Prade (see again [22–24] ). Zhang and Zhang

assumed that one of the two opposites is assigned a value on the

unit interval [0,1], while the other one ranges in the opposite inter-

val [–1,0]. Hence, since both intervals are isomorphic, and no mat-

ter the terms used to intuitively justify these two values, the fact

is that Zhang-Zhang’s bipolar model appears as a specific multiset

( n = 2), with no restriction on their two degrees of membership.

Zhang-Zhang’s bipolar model is therefore equivalent to the neutro-

sophic sets proposed by Smarandache [70] . Notice also that none

of these two equivalent models include any formal structure, as

claimed in [48] . But the selected denominations within each model

might suggest different underlying structures: while the model

proposed by Zhang and Zhang suggests conflict between categories

(a specific type of neutrality different from Atanassov’s indetermi-

nacy), Smarandache suggests a general neutrality that should per-

haps jointly cover some of the specific types of neutrality consid-

ered in our paired approach. 

Shadowed sets [57] are a particular case of interval-valued

fuzzy sets, being isomorphic with a three valued logic: each ob-

ject is assigned a “0” if certain property does not hold, “1” if it

does hold, and the unit interval [0,1] otherwise. Anyway, it might

be unclear the meaning of the selected term for this third stage:

“complete ignorance” might refer to an extremely poor estima-

tion or to extremely poor knowledge about the model itself, for

example. 

All in all, the above discussion suggests that there is an urgent

need to put some unifying light on the similarities and differences

of all the mentioned extensions of fuzzy sets in terms of their rep-

resentational structures and capabilities. This is precisely the idea

we wish to communicate through this positional paper on paired

structures: the need for a unifying framework in which the differ-

ent models arise as a consequence of the specified structure (on

the primary predicates) and the different secondary scales. Such a

unifying view should then allow a deeper analysis of the relation-

ships between several knowledge representation formalisms, pro-
iding a basis from which more expressive models may be later

eveloped. 

Summing up, the structural issue is required for a proper spec-

fication of meaning in a logical-mathematical modeling. If struc-

ural issues are not properly addressed in our mathematical mod-

ls, we might be easily confused between different approaches

nce they appear as isomorphic, simply because the difference in

tructure is not taken into account. This was the main issue raised

n [48] , in this paper focused into opposite-based models. Our

athematical models should capture all the essential aspects of

eality, including the relations between modeled predicates. Listing

lements should be accompanied with the relations between the

lements of that list. It is the structural difference what justifies a

enomination, not the other way around. Structural performance of

 set of concepts does not come with a list of unrelated objects or

ames. If these elements suggest a structure, such structure should

e formally stated. 

. Building paired structures 

In our opinion, the most basic structure to represent knowledge

hould at least contain a predicate and its opposite, particularly in

erms of negation, antonym or sub-antonym. In this way we can

istinguish an arbitrary couple of concepts from two paired pred-

cates, and the associated neutral concepts naturally appear from

he characteristics of such an opposition. On this basis, we can pro-

ose a basic approach to a standard procedure for building paired

tructures: 

(1) We always start from a concept and its negation (a must in

our model, since antonym or sub-antonym are relative to the

given negation). 

(2) Then, any two opposite predicates are paired concepts and,

if different from such a negation, their semantic relation will

generate additional and specific neutral concepts. In case

our original predicate and its opposite do not overlap, in-

determinacy arises (our paired predicates do not fully ex-

plain reality, and they can be reshaped into wider concepts

or they can suggest a search for additional information, pro-

ducing perhaps a new intermediate non-neutral concept). In

case our seminal predicate and its opposite overlap, ambiva-

lence arises (the existence of a new concept associated with

such overlapping is suggested together with a reshaping of

opposites into more precise concepts). Of course indeter-

minacy and ambivalence can appear simultaneously, when-

ever the opposition is neither antonym nor sub-antonym

(overlapping in some objects might suggest ambivalence ,

and lack of fulfillment in some other objects might suggest

indeterminacy ). 

(3) Whenever we detect conflict , it entails that the considered

paired concepts are viewed in our mind as complex con-

cepts that should be decomposed into and aggregated from

simpler concepts. In addition, each one of those simpler con-

cepts is subject to the previous arguments (the concept, its

negation, its antonym or its sub-antonym, etc.) 

Hence, three main families of paired fuzzy sets appear in this

aper: 

- Those “basic” paired concepts based upon the negation of both

predicates, with no additional neutral concept being allowed. 

- Those “simple” paired concepts based upon opposites (antonym

or sub-antonym associated with indeterminacy or ambivalence

neutralities, and perhaps both simultaneously). 

- And those “complex” paired concepts based upon multidimen-

sionality, where in addition to indeterminacy and ambivalence

we can find different levels of conflict . 
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These three families of paired fuzzy sets are close to the three

ypes of bipolarities proposed by Dubois and Prade in [22-24] . But

ather than focusing on the formalization of scales that address

ome representational issues when dealing with poles, our focus

s on the configuration of such poles through opposition relation-

hips, and how these determine the scales to be used regarding

he representational power of the models. 

. Final comments 

In this paper we have presented a systematic approach to dif-

erent types of paired sets, to be considered as an alternative to

he notion of bipolarity proposed by Zhang and Zhang [87,88] ,

ubois and Prade [22–24] and other proposals somehow based

pon two basic opposite concepts (but taking into account the

tructural arguments of [48] ). All of these models are deeply re-

ated to Atanassov’s intuitionistic fuzzy sets (see [4,5] ). 

The main aim of this paper is to bring some light into this

iscussion, bolding the constructive argument towards a unifying

iew and stressing the role of different neutralities in between two

pposite concepts. In particular, we postulate that paired structures

epresent a basic model for most learning processes, which quite

ften start from two opposite predicates (see [28,47] ). Relation be-

ween these two predicates can create specific neutral concepts:

ndeterminacy (which can be justified in terms of too narrow con-

epts) , ambivalence (which can be justified in terms of too wide

pposites), and conflict (which can be justified in terms of multi-

imensional opposites). But it is the specific semantic tension be-

ween two basic opposites the key aspect to be analyzed. Of course

he three different neutralities we have considered in this paper

an appear in the same problem, together with other uncertainties

particularly, imprecision ). How we can simultaneously manage all

hese parameters becomes a suggesting and necessary objective for

uture research. 

In order to stress its unifying view on a number of models that

re based upon the existence of two opposites, a full mathemat-

cal development of our paired structures have been left outside

his positional paper. A first application of our paired approach

as been presented in [32] . Another interesting field to consider

ext should be Sentiment Analysis, where indeed two opposite

eanings (positive, negative) are associated with terms within a

ext that can be classified according our approach (see, e.g., [56] ).

lso, as already pointed out, main issues to be addressed in fu-

ure research on paired structures concern the study of different

ormalisms to represent the relationships between the elements of

he structure (e.g. sets of logical constraints on the degrees of the

ualitative predicates, digraphs, partial orders, etc.) and their ef-

ect in relation with the representational power of the associated

tructures. 

A possible drawback of the general case of paired fuzzy struc-

ures is that they can be considered too complex for some appli-

ations, since it might imply the direct estimation of quite a num-

er of degrees of verification for each object (in particular when

ur concepts have a multicriteria nature and all neutralities are

resent). Moreover, our structure has to be completed addressing

mprecision. In order to manage this complexity, another main is-

ue for future research on paired structures should be to explore

ther extensions of fuzzy sets (see, e.g., [15] ). An alternative ap-

roach is to obtain some degrees of membership or membership

unctions from a smaller subset of categories, in such a way that

he whole system can be fully described from a few parameters to

e estimated. To some extent, this is similar to what is sometimes

one in preference modeling, where three neutralities are natu-

ally learnt: the preferences between two alternatives may (they

re perhaps weak preferences, leading to the ambivalent indiffer-

nce ), or they are perhaps very extreme strict preferences (lead-
ng to indeterminacy ); or they can even reflect some multicriteria-

ased conflict (sometimes solved in terms of incomparability , see

.g. [30,31,50] and particularly [46] ). Similar models are found con-

erning different extensions of Belnap’s logic [8] , like that pro-

osed in [77] (see also [55,58] and [65,80] ). The study of appro-

riate logic connectives will play a crucial role in constructing and

onstraining the semantics of the different predicates generated

rom the two reference opposites (see also [26] ). In this sense, ag-

regation operators play a crucial role in all these models, and they

hould play a similar role in relation to complex paired structures

n which multidimensional concepts are decomposed into (and ob-

ained from) simpler concepts (see, e.g., [34,35,84] ). Moreover, as

uggested in introduction, another interesting objective for future

esearch is to extend this model into those multiple concepts that

annot be understood with a unique opposite concepts, but they

eed several concepts to capture its limits. 

All in all, the main objective of this paper is to stress the need

or a unifying framework that should allow a better understanding

f different models in terms of different specifications of a basic,

uite general structure. Such a unifying view should then allow a

larifying analysis of the relationships between several knowledge

epresentation formalisms. A basis for the development of more

xpressive models should be also provided. 

In particular, paired structures stand as a first attempt to de-

cribe reality through the logical representation of context and the

aired aggregation of semantically opposite-related concepts. As a

oint of departure for knowledge representation, paired structures

llow building the meaning of concepts by logical analysis, learn-

ng their semantic structure. The semantical relationship between

aired concepts can suggest new concepts or their own reshap-

ng. Paired fuzzy sets and paired structures should be considered

 basic model to move on towards more accurate representation

odels. 
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