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Power Aggregation Operators of Simplified

Neutrosophic Sets and Their Use in Multi-attribute

Group Decision Making
Chunfang Liu, Yuesheng Luo

Abstract—The simplified neutrosophic set (SNS) is a useful
generalization of the fuzzy set that is designed for some practical
situations in which each element has different truth membership
function, indeterminacy membership function and falsity mem-
bership function. In this paper, we develop a series of power ag-
gregation operators called simplified neutrosophic number power
weighted averaging (SNNPWA) operator, simplified neutrosophic
number power weighted geometric (SNNPWG) operator, sim-
plified neutrosophic number power ordered weighted averag-
ing (SNNPOWA) operator and simplified neutrosophic number
power ordered weighted geometric (SNNPOWG) operator. We
present some useful properties of the operators and discuss
the relationships among them. Moreover, an approach to multi-
attribute group decision making (MAGDM) within the frame-
work of SNSs is developed by the above aggregation operators.
Finally, a practical application of the developed approach to deal
with the problem of investment is given, and the result shows
that our approach is reasonable and effective in dealing with
uncertain decision making problems.

Index Terms—Multi-attribute group decision making
(MAGDM), uncertainty, simplified neutrosophic set (SNS),
power aggregation operator (PAO)

I. INTRODUCTION

S INCE Zadeh introduced fuzzy set in 1965, the fuzzy set
has been widely utilized in decision making, artificial in-

telligence, pattern recognition, information fusion, etc [1]−[2].
On the basis of Zadeh’s work, several high-order fuzzy sets
have been proposed as an extension of fuzzy sets , including
interval-valued fuzzy set, type-2 fuzzy set [3], soft set [4],
intuitionistic fuzzy set [5], interval-valued intuitionistic fuzzy
set [6], hesitant fuzzy set [7] and neutrosophic set (NS) [8]. So
far, the proposed high-order fuzzy sets have been successfully
utilized in dealing with different uncertain problems, such
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as decision making [9], pattern recognition [10], artificial
intelligence [11], etc.

As a generalization of fuzzy set, neutrosophic sets (NSs)
not only provide an effective choice to represent incomplete,
uncertain and inconsistent information in application fields
but also overcome limitations of the aforementioned three
fuzzy sets in representing and handling inconsistent infor-
mation. In 2014, Ye introduced SNS and discussed its basic
operations and proposed the weighted arithmetic aggregation
operator and weighted geometric aggregation operator [12].
Then he proposed the similarity measures of SNSs and
presented the multiple attribute decision making (MADM)
approaches based on these similarity measures [13]−[15].
Later, Peng et al. proposed an approach for ranking SNSs
and discussed its application in MADM [16]; Liu et al.
proposed the correlated aggregation operators for SNSs and
applied them to multi-attribute group decision making [17].
Broumi proposed the single valued neutrosophic trapezoid
linguistic aggregation operators [18]. Generally speaking, there
is little study on SNSs and its application fields. Due to
the merits of SNSs for addressing uncertain and inconsistent
information in MADM, it is of great importance to study
the relevant theory on MADM based on SNSs. Constructing
aggregation operators and ranking alternatives expressed with
SNSs belong to two key open problems for MADM within
the framework of SNSs. The weighted arithmetic aggregation
operator and weighted geometric aggregation operator [9]
cannot capture the sophisticated nuances the expert wants to
reflect in the aggregated values in the simplified neutrosophic
decision making situations. To overcome the defect of existing
operators, we develop a series of power aggregation operators
(PAO) depending on weighted arithmetic aggregation operator,
weighted geometric aggregation operator, and intuitionistic
fuzzy power aggregation operators. Power average operator
introduced by Yager was able to allow values being aggregated
to support and reinforce each other [19]. On the basis of power
average operator, Xu developed PAO under intuitionistic fuzzy
environment and utilized them to solve the multiple attribute
group decision making problems [20]. Except for above PAOs,
PAO for multi-valued neutrosophic set, PAO for linguistic
term set and other PAOs have been proposed for addressing
different uncertain information aggregation problems derived
from decision making and pattern recognition. Existing studies
indicate that PAOs have been successfully utilized to deal with
the aggregations in which a subset of data clustered around
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a common value can combine in a nonlinear style to act in
concert in determining the final aggregated value.

Motivated by the existed PAOs of intuitionistic fuzzy sets,
we propose the PAOs of the SNSs and study the properties
of the operators, such as idempotency, commutativity and
boundedness. Depending on the proposed PAOs of SNSs, we
investigate the multi-attribute group decision making problems
and present some decision making methods. Furthermore, we
utilize a numerical example to verify the effectiveness and
feasibility of the proposed decision making methods.

The rest of this paper is organized as follows. In Section
2, we recall the concepts of SNSs and PAOs. In Section 3,
we propose simplified neutrosophic number power weighted
averaging (SNNPWA) operator, simplified neutrosophic num-
ber power weighted geometric (SNNPWG) operator, simpli-
fied neutrosophic number power ordered weighted averaging
(SNNPOWA) operator and simplified neutrosophic number
power ordered weighted geometric (SNNPOWG) operator.
Meanwhile, we present some useful properties of the operators
and discuss the relationships among them. In Section 4, a
series of multi-attribute group decision making methods are
proposed based on the PAOs defined in Section 3. Section 5
utilizes an example to validate the proposed decision making
methods introduced in Section 4. Finally, a conclusion is given
in Section 6.

II. PRELIMINARIES

A. Simplified Neutrosophic Sets (SNSs)

SNS is an extension of neutrosophic set (NS) introduced
by Smarandache in 1998. NS allows one to deal with in-
determinacy, hesitation and/or uncertainty independent of the
membership degree and non-membership degree. Ever since
NS was introduced, it has been successfully utilized in dealing
with different uncertain decision making problems and pattern
recognition problems from applied fields [21]−[26].

Definition 2.1: [8] Assume X be a space of points with a
generic element in X denoted by x. A NS A on X is defined
by a truth membership function TA(x), an indeterminacy
membership function IA(x) and a falsity membership function
FA(x). TA(x), IA(x) and FA(x) are defined as

TA(x) : X →]0−, 1+[
IA(x) : X →]0−, 1+[
FA(x) : X →]0−, 1+[

where 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.
Since NS includes both non-standard and standard intervals

in its theory and related operations, which restricts its applica-
tion in applied fields due to complex process for representing
uncertain information. For simplification and practical appli-
cation, Ye proposed the concept of SNS which is a subclass
of NS and preserves all the operations on NS. In the following
part, we recall SNS and some operations.

Definition 2.2: [6] Assume X be a space of points with a
generic element in X denoted by x. A SNS A on X is defined
by a truth membership function TA(x), an indeterminacy

membership function IA(x) and a falsity membership function
FA(x). TA(x), IA(x) and FA(x) are defined as

TA(x) : X → [0, 1]
IA(x) : X → [0, 1]
FA(x) : X → [0, 1]

For convenience, we utilize A = {<
x, TA(x), IA(x), FA(x) > |x ∈ X} to denote a SNS A
in the following part. In particular, if A has only one
element, we call A a simplified neutrosophic number (SNN),
and denote it by A = {TA(x), IA(x), FA(x)} instead of
A = {< TA(x), IA(x), FA(x) >} in the following part.

Remark 2.1: In reference [5], Smarandache first introduced
the neutrosophic set whose elements involve three functions,
truth membership function, indeterminacy membership func-
tion and falsity membership function. The range of the func-
tion is ]0−, 1+[, where 0− = 0 − ε, 1+ = 1 + ε , ∀ε > 0 .
0−, 1+ are called the nonstandard number, and 0,1 are called
the standard number. SNS utilizes [0, 1] instead of ]0−, 1+[
to denote the range of the three functions TA(x), IA(x) and
FA(x). That is to say we can use the negative numbers or the
numbers greater than 1 to denote the NSs. The membership
functions are not in the interval [0,1]. Ye proposed SNS to
restrict the range of the three functions in the unit interval.
Compared with NS, SNS is much easier to represent uncertain
information.

Definition 2.3: [9] Let A and B be two SNSs on X , A ⊆ B
if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥
FB(x) for all x in X .

Definition 2.4: [16] Let A = {TA(x), IA(x), FA(x)} and
B = {TB(x), IB(x), FB(x)} be two SNSs on X , λ > 0, the
operations on A and B are defined by

A⊕B = {TA(x) + TB(x)− TA(x)TB(x), IA(x)IB(x),
FA(x)FB(x)}

A⊗B = {TA(x)TB(x), IA(x) + IB(x)− IA(x)IB(x),
FA(x) + FB(x)− FA(x)FB(x)};

λA = {1− (1− TA(x))λ, (IA(x))λ, (FA(x))λ};

Aλ = {(TA(x))λ, 1− (1− IA(x))λ, 1− (1− FA(x))λ}.

Definition 2.5: [16] Let A = {TA(x), IA(x), FA(x)} be an
SNS, then the score function s(A) is defined by

s(A) =
TA(x) + 2− IA(x)− FA(x)

3
(1)

Depending on the concept of score function on SNS, the
method for ranking alternatives expressed by SNSs is as below.

Definition 2.6: [16] Let A and B be two simplified neutro-
sophic numbers (SNNs), the ranking method is as follows: if
s(A) > s(B), then A > B.
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B. Review of Power Aggregation Operator

Aggregating data using various techniques belongs to key
operations in decision making or information fusion process
[27]. This situation has become even more challenging with
the expansion of the internet and accumulation of its big un-
certain data which results in a series of fuzzy decision making
problems. It is necessary to present different aggregation op-
erators to suit related decision making situations. Concerning
the problem of aggregating data in different environment, the
related power aggregation operators have been proposed in the
last decades for addressing the decision making or information
fusion problem in which argument values support each other
in the aggregation process.

Definition 2.7: [19] Let a1, a2, . . . , an be a collection of
values, the power averaging (PA) operator is the mapping PA:
Rn → R, which is defined by

PA(a1, a2, . . . , an) =
∑n

i=1(1 + G(ai))ai∑n
i=1(1 + G(ai))

(2)

where

G(ai) =
n∑

j=1,j 6=i

Sup(ai, aj) (3)

Sup(a, b) denotes the support for a from b. Mean-
while, Sup(a, b) satisfies the following three properties: (1)
Sup(a, b) ∈ [0, 1]; (2) Sup(a, b) = Sup(b, a); (3) Sup(a, b) ≥
Sup(x, y), if |a − b| < |x − y|. It implies that the closer the
two sets, the larger the support.

The PA operator is a tool whose weighting vector is
determined by the input arguments. To address the geometric
mean of the aggregated values, Xu and Yager introduced the
power geometric (PG) operator.

Definition 2.8: [25] Let a1, a2, . . . , an be a collection of
values, the power geometric operator is the mapping PG:
Rn → R, which is defined by

PG(a1, a2, . . . , an) =
n∏

i=1

a

1+G(ai)∑n
i=1(1+G(ai))

i (4)

where G(ai) satisfies equation (3).
The POWA operator is proposed by Yager to consider the

ordered positions of the elements.
Definition 2.9: [19] Let a1, a2, . . . , an be a collection of

values, the power order weighted averaging (POWA) operator
is the mapping: Rn → R, which is defined by

POWA(a1, a2, . . . , an) =
n∑

i=1

wiaσi
(5)

where aσi
(i = 1, 2, . . . , n) is the ith largest value of ai (i =

1, 2, . . . , n), wi (i = 1, 2, . . . , n) is defined as

wi = g(
Bi

TV
)− g(

Bi−1

TV
) (6)

where Bi =
∑i

j=1 Vσj , Vσj = 1 + G(Aσj ) and TV =∑n
j=1 Vσj

. The function g : [0, 1] → [0, 1] is a basic
unit-interval monotonic (BUM) function which satisfies the
following three properties: (1) g(0) = 0; (2) g(1) = 1; (3) if
x ≤ y, then g(x) ≤ g(y). If g(x) = x, then POWA operator
degrades into PA operator.

After the pioneering work of Yager and Xu, a series of
power aggregation operators for different fuzzy sets, such
as intuitionistic fuzzy set and hesitant fuzzy set, have been
successfully proposed in dealing with uncertain decision mak-
ing problems. SNS, a new high-order fuzzy set, provides a
generalization ability to cope with uncertain information. To
make use of the capacity of SNS for dealing with decision
making or information fusion problems, we present the power
aggregation operators on SNS and discuss their application in
MAGDM in the next section.

III. POWER AGGREGATION OPERATORS ON SNNS

On the basis of PA operator, PG operator and existing
power aggregation operators on some different values, we
present simplified neutrosophic number power weighted av-
eraging (SNNPWA) operator, simplified neutrosophic num-
ber power weighted geometric (SNNPWG) operator, simpli-
fied neutrosophic number power ordered weighted averaging
(SNNPOWA) operator and simplified neutrosophic number
power ordered weighted geometric (SNNPOWG) operator on
SNNs in this section.

A. SNNPWA Operator

Definition 3.1: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, and w = [w1, w2, . . . , wn]T be the
weight vector of A = {A1, A2, . . . , An} with

∑n
i=1 wi = 1

and wi ∈ [0, 1]. The simplified neutrosophic number power
weighted averaging (SNNPWA) operator is defined as follows:

SNNPWA(A1, A2, . . . , An)
= w1(1+G(A1))A1⊕···⊕wn(1+G(An))An∑n

i=1 wi(1+G(Ai))

(7)

where

G(Ai) =
n∑

j=1,j 6=i

Sup(Ai, Aj) (8)

and Sup(Ai, Aj) satisfies the aforementioned three properties
of Sup(a, b).

Based on operations on SNSs described in Definition 2.4,
we can obtain the following theorem.

Theorem 3.1: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, then their aggregated value using
SNNPWA operator is also an SNN, and

SNNPWA(A1, A2, . . . , An)

= {1−∏n
i=1(1− TAi

)
wi(1+G(Ai))∑n

i=1 wi(1+G(Ai)) ,
∏n

i=1 I

wi(1+G(Ai))∑n
i=1 wi(1+G(Ai))

Ai
,
∏n

i=1 F

wi(1+G(Ai))∑n
i=1 wi(1+G(Ai))

Ai
}

(9)
Proof. In the following proof, for convenience, let

ξi =
wi(1 + G(Ai))∑n
i=1 wi(1 + G(Ai))

(10)

By using the mathematical induction on n, we prove the
theorem.
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(1) If n = 2,

SNNPWA(A1, A2)
= ξ1A1 ⊕ ξ2A2

= {1− (1− TA1)
ξ1 , Iξ1

A1
, F ξ1

A1
}

⊕{1− (1− TA2)
ξ2 , Iξ2

A2
, F ξ2

A2
}

= {1− (1− TA1)
ξ1(1− TA2)

ξ2 , Iξ1
A1

Iξ2
A2

, F ξ1
A1

F ξ2
A2
}

(2) If Eq. (9) holds for n = k, then

SNNPWA(A1, A2, . . . , Ak)
= {1−∏k

i=1(1− TAi)
ξi ,

∏k
i=1 Iξi

Ai
,
∏k

i=1 F ξi

Ai
}

If n = k + 1, by definition 2.4, we get

SNNPWA(A1, A2, . . . , Ak+1)

=
∑k

i=1 wi(1+G(Ai))SNNPWA(A1,A2,...,Ak)⊕wk+1(1+G(Ak+1))∑k+1
i=1 wi(1+G(Ai))

= {1−∏k+1
i=1 (1− TAi

)ξi ,
∏k+1

i=1 Iξi

Ai
,
∏k+1

i=1 F ξi

Ai
}.

i.e., Eq. (9) holds for n = k + 1. Thus, Eq. (9) holds for all
n.

It can be easily proved that the SNNPWA operator has the
following properties.

Theorem 3.2: (Idempotency) Let Ai = {TAi
, IAi

, FAi
}

(i = 1, 2, . . . , n) be a collection of SNNs, and all Ai (i =
1, 2, . . . , n) are equal, i.e., Ai = A for all i ∈ {1, 2, . . . , n},
then

SNNPWA(A1, A2, . . . , An) = A.

Proof. If Ai = A, i = 1, 2, . . . , n, then

SNNPWA(A1, A2, . . . , An)
= SNNPWA(A,A, . . . , A)

= {1−∏n
i=1(1− TA)

wi(1+G(A))∑n
i=1 wi(1+G(A)) ,

∏n
i=1 I

wi(1+G(A))∑n
i=1 wi(1+G(A))

A ,
∏n

i=1 F

wi(1+G(A))∑n
i=1 wi(1+G(A))

A }
= {TA, IA, FA}.

Theorem 3.3: (Commutativity) Let Ai = {TAi , IAi , FAi}
(i = 1, 2, . . . , n) be a collection of SNNs, and Á1, Á2, . . . , Án

be any permutation of A1, A2, . . . , An, their weight vector
(ẃ1, ẃ2, . . . , ẃn) be permutation of (w1, w2, . . . , wn), then

SNNPWA(A1, A2, . . . , An) = SNNPWA(Á1, Á2, . . . , Án).

Proof. Let

SNNPWA(A1, A2, . . . , An) = ⊕n
i=1wi(1+G(Ai))Ai∑n

i=1 wi(1+G(Ai))
,

SNNPWA(Á1, Á2, . . . , Án) = ⊕n
i=1ẃi(1+G(Ái))Á1∑n

i=1 ẃi(1+G(Ái))
.

Since Á1, Á2, . . . , Án is any permutation of A1, A2, . . . , An,
then we have

n∑

i=1

wi(1 + G(Ai)) =
n∑

i=1

ẃi(1 + G(Ái))

and
w1(1 + G(A1))A1 ⊕ · · · ⊕ wn(1 + G(An))An∑n

i=1 wi(1 + G(Ai))

=
ẃ1(1 + G(Á1))Á1 ⊕ · · · ⊕ ẃn(1 + G(Án))Án∑n

i=1 ẃi(1 + G(Ái))
.

Thus, we complete the proof of the theorem.
Theorem 3.4: (Boundedness) Let Ai = {TAi , IAi , FAi}

(i = 1, 2, . . . , n) be a collection of SNNs, and
let Amin = {min

i
TAi

,max
i

IAi
,max

i
FAi

}, Amax =
{max

i
TAi

,min
i

IAi
,min

i
FAi

}, then

Amin ≤ SNNPWA(A1, A2, . . . , An) ≤ Amax.

Proof. For convenience, we denote

TAs
= max

i
TAi

, TAt
= min

i
TAi

,

IAl
= max

i
IAi

, IAm
= min

i
IAi

,

FAp
= max

i
FAi

, FAq
= min

i
FAi

,

and let

Amin = {TAt , IAl
, FAp}, Amax = {TAs , IAm , FAq}.

Since

TAt
≤ TAi

≤ TAs
,

then

1− TAs
≤ 1− TAi

≤ 1− TAt
,

(1− TAs
)ξi ≤ (1− TAi

)ξi ≤ (1− TAt
)ξi ,

and

1−
n∏

i=1

(1−TAt)
ξi ≤ 1−

n∏

i=1

(1−TAi)
ξi ≤ 1−

n∏

i=1

(1−TAs)
ξi ,

that is

TAt
≤ 1−

n∏

i=1

(1− TAi
)ξi ≤ TAs

.

With the same method, we get

IAm
≤

n∏

i=1

Iξi

Ai
≤ IAl

,

FAq
≤

n∏

i=1

F ξi

Ai
≤ FAp

.

That means

Amin ≤ SNNPWA(A1, A2, . . . , An) ≤ Amax.

Thus, we complete the proof of the theorem.
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B. SNNPWG Operator

Based on the PG operator and SNNPWA operator, here
we present a simplified neutrosophic number power weighted
geometric (SNNPWG) operator as follows.

Definition 3.2: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, and w = [w1, w2, . . . , wn]T be the
weight vector of A = {A1, A2, . . . , An} with

∑n
i=1 wi = 1

and wi ∈ [0, 1]. The SNNPWG operator is defined as follows:

SNNPWG(A1, A2, . . . , An)

= A
w1(1+G(A1))∑n

i=1 wi(1+G(Ai))

1 ⊗ · · · ⊗A
wn(1+G(An))∑n

i=1 wi(1+G(Ai))
n

(11)

where

G(Ai) =
n∑

j=1,j 6=i

Sup(Ai, Aj) (12)

and Sup(Ai, Aj) satisfies the aforementioned three properties
of Sup(a, b).

Theorem 3.5: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, then their aggregated value using
SNNPWG operator is also an SNN, and

SNNPWG(A1, A2, . . . , An)

= {∏n
i=1 T

wi(1+G(Ai))∑n
i=1 wi(1+G(Ai))

Ai
,

1−∏n
i=1(1− IAi

)
wi(1+G(Ai))∑n

i=1 wi(1+G(Ai)) ,

1−∏n
i=1(1− FAi

)
wi(1+G(Ai))∑n

i=1 wi(1+G(Ai)) }

(13)

Proof. By using mathematical induction on n, we prove the
theorem.
(1) If n = 2,

SNNPWG(A1, A2)

= Aξ1
1 ⊗Aξ2

2

= {T ξ1
A1

, 1− (1− IA1)
ξ1 , 1− (1− FA1)

ξ1}
⊗{T ξ2

A2
, 1− (1− IA2)

ξ2 , 1− (1− FA2)
ξ2}

= {T ξ1
A1

T ξ2
A2

, 1− (1− IA1)
ξ1(1− IA2)

ξ2 ,

1− (1− FA1)
ξ1(1− FA2)

ξ2}
(2) If Eq. (13) holds for n = k, then

SNNPWG(A1, A2, . . . , Ak)

= {∏k
i=1 T ξi

Ai
, 1−∏k

i=1(1− IAi
)ξi ,

1−∏k
i=1(1− FAi

)ξi}.
If n = k + 1, by definition 2.4, we get

SNNPWG(A1, A2, . . . , Ak+1)

= Aξ1
1 ⊗Aξ2

2 · · · ⊗Aξk

k ⊗A
ξ,

k+1
k+1

= (Aξ1
1 ⊗Aξ2

2 · · · ⊗Aξk

k )⊗A
ξ,

k+1
k+1

= {∏k
i=1 T ξi

Ai
, 1−∏k

i=1(1− IAi)
ξi , 1−∏k

i=1(1− FAi)
ξi}

⊗{T ξ,
k+1

Ak+1
, 1− (1− IAk+1)

ξ,
k+1 , 1− (1− FAk+1)

ξ,
k+1 , }

= {∏k+1
i=1 T

ξ,
i

Ai
, 1−∏k+1

i=1 (1− IAi
)ξ,

i ,

1−∏k+1
i=1 (1− FAi

)ξ,
i}.

where

ξi =
wi(1 + G(Ai))∑k
i=1 wi(1 + G(Ai))

,

ξ,
i =

wi(1 + G(Ai))∑k+1
i=1 wi(1 + G(Ai))

.

i.e., Eq. (13) holds for n = k+1. Thus, Eq. (13) holds for all n.

Computation Analysis. Based on the PA and PG operators,
we present the SNNPWA and SNNPWG operators. The weight
of the attribute values are calculated by the information of each
values. That is, according to Eq. (8), we get Eq. (10), which
is the weight of each value. Then according Eq. (9), (13), we
can aggregate the values.

Since the ordered weighted averaging (OWA) operator pro-
vides a family of averaging operators by choosing different
weighting vector, it has been successfully utilized in vari-
ous decision making and information fusion processes [28].
Therefore, we present SNNPOWA operator and SNNPOWG
operator on the basis of OWA operator, SNNPWA operator
and SNNPWG operator, respectively.

C. SNNPOWA operator
Definition 3.3: Let Ai = {TAi

, IAi
, FAi

} (i = 1, 2, . . . , n)
be a collection of SNNs. The SNNPOWA operator is defined
as follows:

SNNPOWA(A1, A2, . . . , An) = w1Aσ1⊕w2Aσ2⊕· · ·⊕wnAσn

(14)
where Aσi

(i = 1, 2, . . . , n) is the ith largest value of
Ai (i = 1, 2, . . . , n), wi (i = 1, 2, . . . , n) is defined by the
following function:

wi = g(
Bi

TV
)− g(

Bi−1

TV
) (15)

where Bi =
∑i

j=1 Vσj , Vσj = 1 + G(Aσj ) and TV =∑n
j=1 Vσj

.
The function g : [0, 1] → [0, 1] is a BUM function which

satisfies the following three properties: (1) g(0) = 0; (2)
g(1) = 1; (3) if x ≤ y, then g(x) ≤ g(y).

Theorem 3.6: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, then their aggregated value using
SNNPOWA operator is also an SNN, and

SNNPOWA(A1, A2, . . . , An)

= {1−∏n
i=1(1− TAσi

)wi ,
∏n

i=1 Iwi

Aσi
,
∏n

i=1 Fwi

Aσi
}
(16)

Proof. By using mathematical induction on n, we prove the
theorem.
(1) If n = 2, let Aσ1 = max{A1, A2}, Aσ2 = min{A1, A2},

SNNPOWA(A1, A2)

= w1Aσ1 ⊕ w2Aσ2

= {1− (1− TAσ1
)w1 ,

Iw1
Aσ1

, Fw1
Aσ1

} ⊕ {1− (1− TAσ2
)w2 , Iw2

Aσ2
, Fw2

Aσ2
}

= {1− (1− TAσ1
)w1(1− TAσ2

)w2 , Iw1
Aσ1

Iw2
Aσ2

, Fw1
Aσ1

Fw2
Aσ2

}
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(2) If Eq. (16) holds for n = k, then

SNNPOWA(Aσ1 , Aσ2 , . . . , Aσk
)

= {1−∏k
i=1(1− TAσi

)wi ,
∏k

i=1 Iwi

Aσi
,

∏k
i=1 Fwi

Aσi
}

If n = k + 1, by definition 2.4, we get

SNNPOWA(Aσ1 , Aσ2 , . . . , Aσk+1)

= w1Aσ1 ⊕ w2Aσ2 ⊕ . . .⊕ wkAσk
⊕ wk+1Aσk+1

= (w1Aσ1 ⊕ w2Aσ2 ⊕ . . .⊕ wkAσk
)⊕ wk+1Aσk+1

= {1−∏k
i=1(1− TAσi

)wi ,
∏k

i=1 Iwi

Aσi
,
∏k

i=1 Fwi

Aσi
}

⊕{1− (1− TAσk+1
)wk+1 , I

wk+1
Aσk+1

, F
wk+1
Aσk+1

}
= {1−∏k+1

i=1 (1− TAσi
)wi ,

∏k+1
i=1 Iwi

Aσi
,
∏k+1

i=1 Fwi

Aσi
}.

i.e., Eq. (16) holds for n = k +1. Thus, Eq. (16) holds for all
n.

D. SNNPOWG Operator

Definition 3.4: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs. The SNNPOWG operator is defined
as follows:

SNNPOWG(A1, A2, . . . , An) = Aw1
σ1
⊗Aw2

σ2
⊗ · · · ⊗Awn

σn

(17)
where Aσi

(i = 1, 2, . . . , n) is the ith largest value of
Ai (i = 1, 2, . . . , n), wi (i = 1, 2, . . . , n) satisfy Eq. (15).

Theorem 3.7: Let Ai = {TAi
, IAi

, FAi
} (i = 1, 2, . . . , n)

be a collection of SNNs, then their aggregated value using
SNNPOWG operator is also an SNN, and

SNNPOWG(A1, A2, . . . , An)

= {∏n
i=1 Twi

Aσi
, 1−∏n

i=1(1− IAσi
)wi ,

1−∏n
i=1(1− FAσi

)wi}
(18)

Proof. The proof is similar to theorem 3.6, by using
mathematical induction on n, we can prove the theorem,
however the proof is omitted here.

Computation Analysis. Based on the OWA operators,
we present the SNNPOWA and SNNPOWG operators. The
weights of the attribute values are calculated. That is, accord-
ing to score function (1), we rank the alternatives Ai, i =
1, 2, . . . , n, such that

Aσ1 ≥ Aσ2 ≥ · · · ≥ Aσn

then according to Eq. (15), we get the weight of each value,
and according to Eq. (16), (18), we can aggregate the values.

IV. MULTI-ATTRIBUTE GROUP DECISION MAKING
METHOD

SNSs provide an effective way to solve uncertain multi-
attribute group decision making (MAGDM) problems in which
the alternatives on attributes having uncertain information can
be classified by truth membership, indeterminacy membership
and falsity membership. In this section, we present a MAGDM
method based on the operations and aggregation operators on
SNSs.

For a MAGDM problem within the framework of SNSs,
let X = {a1, a2, . . . , an} be a set of alternatives,
C = {c1, c2, . . . , cm} be a set of attributes and w =
[w1, w2, . . . , wm]T be the weight vector of C satisfying∑m

i=1 wi = 1 and wi ∈ [0, 1] (i = 1, 2, . . . , m). Suppose that
there are s decision makers denoted by d = {d1, d2, . . . , ds},
the corresponding weight vector is λ = [λ1, λ2, . . . , λs]T . The
simplified neutrosophic decision matrix of X on C provided
by dk is Dk = [αk

ij ]n×m, where αk
ij is an SNN denoted by

{Tαk
ij

, Iαk
ij

, Fαk
ij
}.

Generally speaking, the attributes can be classified as benefit
attributes and cost attributes in MAGDM. It is necessary to
transform the different classes of attributes into one class. As-
sume that Dk = [αk

ij ]n×m is transformed into Rk = [rk
ij ]n×m

as

rk
ij = {Tαk

ij
, Iαk

ij
, Fαk

ij
} = { αk

ij benefit attribute cj

ᾱk
ij cost attribute cj

where ᾱk
ij = {Fαk

ij
, Iαk

ij
, Tαk

ij
}.

Then, we utilize the proposed aggregation operators and
some basic operations on SNSs to develop a method in dealing
with MAGDM problem within the framework of SNSs, which
can be described as follows:

Step 1. Transform the Dk = [αk
ij ]n×m into Rk = [rk

ij ]n×m.
Step 2. Calculate the supports Sup(rk

ij , r
l
ij) (k, l =

1, 2, . . . , s) as follows:

Sup(rk
ij , r

l
ij) = 1− d(rk

ij , r
l
ij)

where

d(rk
ij , r

l
ij)=

√
1
3
((Trk

ij
−Trl

ij
)2+(Irk

ij
−Irl

ij
)2+(Frk

ij
−Frl

ij
)2)

Step 3. Calculate the weighted supports G(rk
ij) =

s∑
l=1
l 6=k

λlSup(rk
ij , r

l
ij) and the weight ξk

ij of rk
ij by

ξk
ij =

λk(1 + G(rk
ij))∑s

k=1 λk(1 + G(rk
ij))

(19)

where
∑s

k=1 ξk
ij = 1 with ξk

ij ∈ [0, 1].
Step 4. Aggregate all the transformed decision making

matrices Rk (k = 1, 2, . . . , s) using aggregation operator on
SNSs and obtain a collective matrix denoted by R = [rij ]n×m.

Step 5. Aggregate all the preference values rij (j =
1, 2, . . . , m) using aggregation operator and get the overall
preference value ri for the alternative xi.

Step 6. Calculate the score function s(ri) (i = 1, 2, . . . , n)
by (1).
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Step 7. Rank all the alternatives and select the most
desirable one depending on the obtained values of s(ri) (i =
1, 2, . . . , n).

V. NUMERICAL EXAMPLE AND ANALYSIS

A. Numerical Example

In this section, an example adapted from [29] is utilized
to illustrate the applicability and validity of the proposed
MAGDM method. There is an invest problem concerning
a financial company with the following four potential al-
ternatives: (1) car company a1; (2) food company a2; (3)
computer company a3; (4) arms company a4. The invest
problem must perform a decision making according to the
following three attributes: c1 (risk analysis); c2 (growth anal-
ysis); c3 (environmental impact analysis). Among the three
attributes, both c1 and c2 are benefit attributes, and c3 is a
cost attribute. The four possible alternatives are evaluated by
three decision makers denoted by d1, d2 and d3 (whose weight
vector is λ = [0.5 0.3 0.2]T ). Meanwhile, assume that the
attribute weight vector is w = [0.35 0.25 0.40]T . Under the
three aforementioned attributes, all the simplified neutrosophic
decision making matrices are listed as follows:

D1 =




{0.4, 0.2, 0.3} {0.4, 0.2, 0.3} {0.2, 0.2, 0.5}
{0.6, 0.1, 0.2} {0.6, 0.1, 0.2} {0.5, 0.2, 0.2}
{0.3, 0.2, 0.3} {0.5, 0.2, 0.3} {0.5, 0.3, 0.2}
{0.7, 0, 0.1} {0.6, 0.1, 0.2} {0.4, 0.3, 0.2}




D2 =




{0.5, 0.2, 0.2} {0.6, 0.2, 0.3} {0.3, 0.2, 0.4}
{0.6, 0.1, 0.2} {0.7, 0.2, 0.3} {0.5, 0.2, 0.3}
{0.4, 0.1, 0.3} {0.5, 0.3, 0.3} {0.6, 0.2, 0.2}
{0.7, 0.3, 0.1} {0.6, 0.3, 0.2} {0.5, 0.1, 0.2}




D3 =




{0.5, 0.1, 0.2} {0.5, 0.2, 0.2} {0.3, 0.1, 0.3}
{0.5, 0.3, 0.2} {0.7, 0.1, 0.3} {0.5, 0.3, 0.3}
{0.6, 0.2, 0.3} {0.5, 0.1, 0.3} {0.5, 0.1, 0.2}
{0.5, 0.3, 0.2} {0.7, 0.2, 0.2} {0.7, 0.2, 0.2}




The decision making process is as follows.
Step 1. Calculate the transformed matrices R1, R2 and R3.

Since c1 and c2 belong to benefit attributes, it is clear that
R1 = D1 and R2 = D2. We obtain R3 as

R3 =




{0.2, 0.1, 0.5} {0.2, 0.2, 0.5} {0.3, 0.1, 0.3}
{0.2, 0.3, 0.5} {0.3, 0.1, 0.7} {0.3, 0.3, 0.5}
{0.3, 0.2, 0.6} {0.3, 0.1, 0.5} {0.2, 0.1, 0.5}
{0.2, 0.3, 0.5} {0.2, 0.2, 0.7} {0.2, 0.2, 0.7}




Step 2. Based on (19), we get the matrix of ∆k =
[ξk

ij ]4×3 (k = 1, 2, 3) as below.

∆1 =




0.4647 0.4647 0.5332
0.4631 0.4640 0.4683
0.4663 0.4664 0.4647
0.4654 0.4647 0.4658




∆2 =




0.3139 0.3128 0.3630
0.3156 0.3137 0.3129
0.3270 0.3135 0.3154
0.3156 0.3129 0.3158




∆3 =




0.2213 0.2225 0.1038
0.2213 0.2223 0.2225
0.2167 0.2201 0.2199
0.2190 0.2224 0.2184




Step 3. Based on SNNPWA operator, we get

R=




{0.4558, 0.1716, 0.2415} {0.4925, 0.2000, 0.2741}
{0.4468, 0.2364, 0.3108}

{0.5798, 0.1275, 0.2000} {0.6572, 0.0418, 0.2486}
{0.2558, 0.2154, 0.5000}

{0.3525, 0.1569, 0.3000} {0.5000, 0.1950, 0.3000}
{0.8000, 0.2073, 0.5296}

{0.6645, 0, 0.1164} {0.6248, 0.1645, 0.2000}
{0.2000, 0.1941, 0.4855}




Step 4. Based on SNNWA operator, we get the overall
preference value ri (i = 1, 2, 3, 4) for the alternative xi (i =
1, 2, 3, 4) as follows.

r1 = {0.4622, 0.2027, 0.2757}
r2 = {0.4980, 0.1184, 0.3047}
r3 = {0.6206, 0.1852, 0.3766}

r4 = {0.5116, 0, 0.2360}
Step 5. Based on the score function of SNSs, we get

s(r1) = 0.6613, s(r2) = 0.6916, s(r3) = 0.6863 and
s(r4) = 0.7585.

Step 6. Since s(r4) > s(r2) > s(r3) > s(r1), the ranking
order of all the alternatives is a4 Â a2 Â a3 Â a1 and the
most desirable one is a4.

By applying the method of [14] to the example, the ranking
order of all the alternatives is a4 Â a2 Â a1 Â a3 and the
most desirable one is a4. By applying the method of [16] to
the example, the ranking result is the same as the one proposed
in this paper.

B. Analysis

In this section, we have proposed a method to solve the
MAGDM problem expressed with SNSs. From the above
example and comparison with the methods in reference
[14,16], we see that the main advantages of the proposed
aggregation operators provide various choices for addressing
different decision making situations. In order to validate the
feasibility of our method, an example is conducted to compare
with the method of Reference [14,16].

Example. Let

A1 = {〈0.4, 0.2, 0.3〉, 〈0.6, 0.2, 0.1〉},
A2 = {〈0.5, 0.2, 0.3〉, 〈0.5, 0.1, 0.3〉},
A3 = {〈0.4, 0.1, 0.2〉, 〈0.7, 0.2, 0.3〉}

be three alternatives with two attributes, we conduct two
methods to choose the best alternative.

Method of Reference [14].
Let

A1 = {〈T11, I11, F11〉, 〈T12, I12, F12〉},
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A2 = {〈T21, I21, F21〉, 〈T22, I22, F22〉},
A3 = {〈T31, I31, F31〉, 〈T32, I32, F32〉}

be three alternatives with two attributes, w = (w1, w2) be the
weight vector of the two attributes. The ideal point of SNSs
is defined by

A∗ = {T ∗, I∗, F ∗}
= {〈max{T11, T21, T31},min{I11, I21, I31},

min{F11, F21, F31}〉,
〈max{T12, T22, T32},min{I12, I22, I32},
min{F12, F22, F32}〉}.

Here suppose w = (0.5, 0.5) is the weight of the
attribute values. The ideal point of SNSs is A∗ =
{〈0.5, 0.1, 0.2〉, 〈0.7, 0.1, 0.1〉}.
We use Eq. (9) in Reference [14]:

S(A,A∗)=
n∑

i=1

wi
TiT

∗+IiI
∗+FiF

∗
√

T 2
i +I2

i +F 2
i

√
(T ∗)2+(I∗)2+(F ∗)2

(20)

to calculate the similarity measure between Ai, (i = 1, 2, 3)
and A∗. The bigger the similarity measure, the better the
alternative.
By Eq. (20), we get

S(A1, A
∗)=0.9668, S(A2, A

∗)=0.9503, S(A3, A
∗)=0.9782

since
S(A3, A

∗) > S(A1, A
∗) > S(A2, A

∗)

which means that the similarity measure between A3 and A∗

is the biggest, so A3 is the best alternative.

Method of Reference [16].
Here, still suppose w = (0.5, 0.5) is the weight vector of the
attribute values.
Step 1. Utilise the SNNWA operator to aggregate the attribute
value.

SNNWA(A1, A2, . . . , An)

= {1−∏n
j=1(1− Tj)wj ,

∏n
j=1(Ij)wj ,

∏n
j=1(Fj)wj}

(21)
By Eq. (21), we get

Ã1 = {0.5101, 0.2000, 0.1732},
Ã2 = {0.5000, 0.1414, 0.3000},
Ã3 = {0.5757, 0.1414, 0.2449}

Step 2. Calculate the score function of the alternatives.
According to Eq. (1), we get

s(Ã1) = 0.7123, s(Ã2) = 0.6862, s(Ã3) = 0.7293

Step 3. Rank the alternatives. Since

s(Ã3) > s(Ã2) > s(Ã1)

then A3 is the best alternative.

The proposed method.
For convenience, we denote

r1
11 = 〈0.4, 0.2, 0.3〉, r1

12 = 〈0.6, 0.2, 0.1〉,
r2
11 = 〈0.5, 0.2, 0.3}, r2

12 = 〈0.5, 0.1, 0.3〉,
r3
11 = 〈0.4, 0.1, 0.2〉, r3

12 = 〈0.7, 0.2, 0.3〉.
Step 1. Calculate the supports.

Sup(r1
11, r

2
11) = 0.9424,Sup(r1

11, r
3
11) = 0.9184,

Sup(r2
11, r

3
11) = 0.9000,Sup(r1

12, r
2
12) = 0.8586,

Sup(r1
12, r

3
12) = 0.8709,Sup(r2

12, r
3
12) = 0.8709.

Step 2. Calculate the weight ξk
ij of each value rk

ij , i, j =
1, 2, k = 1, 2, 3.

ξ1
11 = 0.3357, ξ1

12 = 0.3324, ξ2
11 = 0.3335,

ξ2
12 = 0.3324, ξ3

11 = 0.3308, ξ3
12 = 0.3352.

Step 3. Based on (9), we get

Å1 = SNNPWA(r1
11, r

1
12, r

1
13) = {0.3788, 0.3412, 0.3105},

Å2 = SNNPWA(r2
11, r

2
12, r

2
13) = {0.3697, 0.2720, 0.4485},

Å3 = SNNPWA(r3
11, r

3
12, r

3
13) = {0.4360, 0.2722, 0.3922}.

Step 4. Rank the alternatives. By Eq. (1), we get

s(Å1) = 0.5757, s(Å2) = 0.5497, s(Å3) = 0.5905,

since
s(Å3) > s(Å1) > s(Å2),

then A3 is the best alternative.

We see the above methods have the same result that the
best alternative is A3. Considering the methods of reference
[14,16], the weights of the attributes were determined subjec-
tively by the decision makers who have different knowledge
structures and experiences. It is sometimes difficult for the
decision makers to give the weight of the attribute correctly.
The subjective weight only reflects the preference of the
decision maker and ignores the objective information included
in the decision matrix. In reference [14], in the decision
making process, the ideal alternative is defined first, then
similarity measures between each alternative and the ideal
alternative were calculated, respectively. At last, the final
rankings of the alternatives can be determined by the similarity
measures. In reference [16], the decision making method based
on the SNNWA operator is given, where the weight of the
attribute value is given by the decision makers first. They use
the SNNWA operator to aggregate the attribute values, and
use the score function to rank the alternatives. In fact, with
regard to the proposed method, the weight of each attribute
is calculated by the attribute information and is allowed the
values being aggregated to support and reinforce each other.
The weight vector we obtained is more objective which not
only benefits from the decision maker’ expertise but also the
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relative importance of attribute information. In the decision
making process, we apply the SNNPWA operator to aggregate
the data of the attributes on the alternative, then, we use the
score function to rank the alternatives.

VI. CONCLUSION

We have proposed SNNPWA operator, SNNPWG operator,
SNNPOWA operator and SNNPOWG operator on the basis
of PA operator, PG operator and OWA operator in this pa-
per. Moreover, we have developed a method for addressing
the MAGDM problem expressed with SNSs. The prominent
characteristic of the proposed aggregation operators is that
they take into account not only the supporting degree between
attributes but also the ordered weight of aggregation process.
The particular emphasis is that these operators provide various
choices concerning different MAGDM problems. Moreover,
we present the MAGDM models within the framework of
SNSs. Finally, a practical numerical example is given to
verify the developed MAGDM method and to demonstrate
its capacity in dealing with practical and uncertain decision
making problems. In the future, we want to further study the
power aggregation operators of the interval-valued simplified
neutrosophic set and apply them to solve more decision
making problems.
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