
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=teta20

Download by: [183.144.124.57] Date: 07 June 2017, At: 04:08

Journal of Experimental & Theoretical Artificial
Intelligence

ISSN: 0952-813X (Print) 1362-3079 (Online) Journal homepage: http://www.tandfonline.com/loi/teta20

Projection and bidirectional projection measures
of single-valued neutrosophic sets and their
decision-making method for mechanical design
schemes

Jun Ye

To cite this article: Jun Ye (2017) Projection and bidirectional projection measures of
single-valued neutrosophic sets and their decision-making method for mechanical design
schemes, Journal of Experimental & Theoretical Artificial Intelligence, 29:4, 731-740, DOI:
10.1080/0952813X.2016.1259263

To link to this article:  http://dx.doi.org/10.1080/0952813X.2016.1259263

Published online: 23 Nov 2016.

Submit your article to this journal 

Article views: 31

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=teta20
http://www.tandfonline.com/loi/teta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/0952813X.2016.1259263
http://dx.doi.org/10.1080/0952813X.2016.1259263
http://www.tandfonline.com/action/authorSubmission?journalCode=teta20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=teta20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/0952813X.2016.1259263
http://www.tandfonline.com/doi/mlt/10.1080/0952813X.2016.1259263
http://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2016.1259263&domain=pdf&date_stamp=2016-11-23
http://crossmark.crossref.org/dialog/?doi=10.1080/0952813X.2016.1259263&domain=pdf&date_stamp=2016-11-23


Journal of Experimental & Theoretical Artificial Intelligence, 2017
VOL. 29, NO. 4, 731–740
https://doi.org/10.1080/0952813X.2016.1259263

Projection and bidirectional projection measures of single-
valued neutrosophic sets and their decision-making method for 
mechanical design schemes

Jun Ye

Department of Electrical and Information Engineering, Shaoxing University, Shaoxing, P.R. China

ABSTRACT
Projection measure is one of important tools for handling decision-making 
problems. First, the paper proposes projection and bidirectional projection 
measures between single-valued neutrosophic sets, and then the comparison 
of numerical examples shows that the bidirectional projection measure is 
superior to the general projection measure in measuring closeness degree 
between two vectors. Next, we develop their decision-making method for 
selecting mechanical design schemes under a single-valued neutrosophic 
environment. Through the projection measure or bidirectional projection 
measure between each alternative and the ideal alternative with single-
valued neutrosophic information, all the alternatives can be ranked and 
the best one can be selected as well. Finally, the proposed decision-making 
method is applied to the selection of design schemes of punching machine 
and its effectiveness and advantages are demonstrated by comparison with 
relative methods.

1.  Introduction

Projection measure is a suitable tool for dealing with decision-making problems because it can con-
sider not only the distance but also the included angle between objects evaluated (Xu, 2005; Xu & Da, 
2004; Yue, 2012). Therefore, some researchers have successfully applied projection measures to deci-
sion-making. For example, Xu and Hu (2010) presented the projection model-based approaches for 
multiple attribute decision-making problems with intuitionistic and interval-valued intuitionistic fuzzy 
information. Xu and Cai (2012) proposed projection model-based approaches for intuitionistic fuzzy 
multiple attribute decision-making problems. Yue (2013) and Zeng, Balezentis, Chen, and Luo (2013) 
developed projection methods for multiple attribute group decision-making problems with intuition-
istic and interval-valued intuitionistic fuzzy information. Yue and Jia (2015) put forward a projection 
measure for handling a group decision-making problem with hybrid intuitionistic fuzzy information.

As the generalisation of an intuitionistic fuzzy set (IFS) (Atanassov, 1986) and an interval-valued 
intuitionistic fuzzy (IVIFS) (Atanassov & Gargov, 1989), single-valued neutrosophic sets (SVNSs) (Wang, 
Smarandache, Zhang, & Sunderraman, 2010) and interval neutrosophic sets (INSs) (Wang, Smarandache, 
Zhang, & Sunderraman, 2005) are the subclasses of the neutrosophic sets introduced by Smarandache 
(1998) and are very suitable for describing and handling indeterminate and inconsistent information, 
which IFSs and IVIFSs cannot describe and deal with, in science and engineering areas. Recently, many 
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researchers have applied SVNSs and INSs to decision-making problems. Some methods have been 
developed to solve the multiple attribute decision-making problems with SVNS and INS information. 
For example, the correlation coefficients of SVNSs were used for multiple attribute decision-making 
(Ye, 2013). A TOPSIS method was extended to interval neutrosophic multiple attribute decision-making 
problems to rank alternatives (Chi & Liu, 2013). Various similarity measures of SVNSs and INSs were 
presented and applied to multicriteria (group) decision-making (Ye, 2014a, Ye, 2014b, Ye, 2014c). Single-
valued and interval neutrosophic cross-entropy measures were developed for multiple attribute deci-
sion-making problems (Tian, Zhang, Wang, Wang, & Chen, 2016; Ye, 2014d). Some neutrosophic number 
aggregation operators were proposed and applied to multiple attribute decision-making problems 
(Liu, Chu, Li, & Chen, 2014; Liu & Wang, 2014). Outranking approaches were applied to multicriteria 
decision-making problems with simplified neutrosophic sets (including SVNSs and INSs) (Peng, Wang, 
Zhang, & Chen, 2014; Zhang, Wang, & Chen, 2016). Then, a multicriteria group decision-making method 
was introduced under a simplified neutrosophic environment (Peng, Wang, Wang, Zhang, & Chen, 
2016). A multiple attribute decision-making method was proposed based on the possibility degree 
ranking method and ordered weighted aggregation operators of interval neutrosophic numbers (Ye, 
2015). Zhang, Ji, Wang, and Chen (2015) proposed an improved weighted correlation coefficient based 
on integrated weight for INSs and applied it to multicriteria decision-making problems with interval 
neutrosophic information. Zavadskas, Baušys, and Lazauskas (2015) introduced the sustainable assess-
ment of alternative sites for the construction of a waste incineration plant by the weighted aggregated 
sum product assessment method with SVNSs. Bausys, Zavadskas, and Kaklauskas (2015) presented a 
multicriteria decision-making method with SVNSs based on the complex proportional assessment 
method. A ranking method of single-valued neutrosophic numbers was applied to multiple attribute 
decision-making problems (Deli & Şubaş, in press). Furthermore, neutrosophic soft sets (Deli, in press), 
neutrosophic soft multi-sets (Deli, Broumi, & Ali, 2014), and power aggregation operators of multi-valued 
neutrosophic sets (Peng, Wang, Wu, Wang, & Chen, 2015) were applied to decision-making problems.

However, the existing projection methods cannot deal with decision-making problems with inter-
val neutrosophic information and single-valued neutrosophic information. Furthermore, SVNSs and 
INSs are scarcely applied in mechanical engineering fields (Ye, in press). Therefore, it is essential to 
do the research on neutrosophic projection measures and their decision-making method of the 
mechanical design schemes. Therefore, this paper firstly presents a general projection between SVNSs 
as a generalisation of the projection measure of IFSs, and then proposes a bidirectional projection 
measure as an improvement of the general projection measure of SVNSs to overcome the drawback 
of the general projection in some case. Furthermore, their decision-making method is developed for 
selecting problems of mechanical design schemes (alternatives) under a single-valued neutrosophic 
environment.

The rest of the paper is organised as follows. Section 2 briefly describes some basic concepts of 
neutrosophic sets and SVNSs. Section 3 proposes general projection and bidirectional projection meas-
ures between SVNSs and gives their comparison of numerical examples. In Section 4, we develop the 
general projection and bidirectional projection measures-based decision-making method for selecting 
mechanical design schemes under a single-valued neutrosophic environment. In Section 5, the pro-
posed decision-making method is applied to the selection of the design schemes of punching machine 
and its effectiveness and advantages are demonstrated by comparison with relative methods. Finally, 
Section 6 contains conclusions and future work.

2.  Basic concepts of neutrosophic sets and SVNSs

The neutrosophic set proposed by Smarandache (1998) is a part of neutrosophy and extends the concept 
of fuzzy sets, interval valued fuzzy set, IFS, and IVIFS from a philosophical point of view. Smarandache 
(1998) originally gave the definition of a neutrosophic set.

Definition 1. (Smarandache, 1998). Let X be a space of points (objects), with a generic element in 
X denoted by x. A neutrosophic set N in X is characterised by a truth-membership function TN(x), an 
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indeterminacy-membership function IN(x), and a falsity-membership function FN(x). The functions TN(x), 
IN(x) and FN(x) are real standard or nonstandard subsets of ]−0, 1+[, such that TN(x): X → ]−0, 1+[, IN(x): X → 
]−0, 1+[, and FN(x): X → ]−0, 1+[. Hence, the sum of TN(x), IN(x) and FN(x) is no restriction and −0 ≤ sup TN(x) 
+ sup IN(x) + sup FN(x) ≤ 3+.

However, it is difficult to directly apply the neutrosophic set in real science and engineering fields 
(Wang et al., 2010) due to the nonstandard interval ]−0, 1+[. Hence, Wang et al. (2010) introduced a SVNS 
in the real standard interval [0, 1] as a subclass of a neutrosophic set to suit its engineering applications 
under an indeterminate and inconsistent environment and gave the definition of a SVNS.

Definition 2. (Wang et al., 2010). Let X be a space of points (objects) with generic elements in X 
denoted by x. A SVNS N in X is characterised by a truth-membership function TN(x), an indetermina-
cy-membership function IN(x), and a falsity-membership function FN(x). Then, a SVNS N can be expressed 
as N =

{⟨
x, TN(x), IN(x), FN(x)

⟩|x ∈ X
}

, where the sum of TN(x), IN(x), FN(x) ∈ [0, 1] is 0 ≤ TN(x) + IN(x) + 
FN(x) ≤ 3 for each point x in X.

For convenience, a basic element 
⟨
x, TN(x), IN(x), FN(x)

⟩
 in N =

{⟨
x, TN(x), IN(x), FN(x)

⟩|x ∈ X
}

 is 
denoted by e = (T, I, F) for short, which is called a single-valued neutrosophic value (SVNV).

Assume that e1 = (T1, I1, F1) and e2 = (T2, I2, F2) are two SVNVs. Then, the inclusion, equality, comple-
ment, union and intersection for SVNVs e1 and e2 are defined, respectively, as follows (Wang et al., 2010):

(1) � �  Inclusion: e1 ⊆ e2 if and only if T1 ≤ T2, I1 ≥ I2, F1 ≥ F2;
(2) � �  Equality: e1 = e2 if and only if e1 ⊆ e2 and e2 ⊆ e1;
(3) � �  Complement: ec1 = (F1, 1 − I1, T1);
(4) � �  Union: e1 ∪ e2 = (T1 ∨ T2, I1 ∧ I2, F1 ∧ F2);
(5) � �  Intersection: e1 ∩ e2 = (T1 ∧ T2, I1 ∨ I2, F1 ∨ F2).

3.  Projection and bidirectional projection measures of SVNSs

This section proposes a general projection measure and a bidirectional projection measure for SVNSs.
Based on the projection measure of IFSs (Xu & Hu, 2010) and the cosine measure of SVNSs (Ye, 2014c), 

we firstly give the definitions of a cosine measure and a general projection measure between SVNSs.
Definition 3. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 

and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then
 

is called the inner product between SVNSs N1 and N2,
 

 

are called the modules of N1 and N2, respectively, and then
 

is called the cosine of the included angle between N1 and N2.

(1)N1 ⋅ N2 =

n∑
j=1

(
T1jT2j + I1j I2j + F1jF2j

)

(2)||N1
|| =

√√√√ n∑
j=1

(
T 2
1j + I21j + F2

1j

)
,

(3)||N2
|| =

√√√√ n∑
j=1

(
T 2
2j + I22j + F2

2j

)

(4)Cos(N1,N2) =
N1 ⋅ N2

||N1
||||N2

||
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Definition 4. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 
and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then

 

is called the projection of N1 on N2.
The projection measure ProjN2

(N1) can include both the distance and the included angle between 
N1 and N2. In general, the larger the value of ProjN2

(N1) is, the closer N1 is to N2.
Based on the extension of the above projection measure of SVNSs, we further propose a bidirectional 

projection measure between SVNSs below.
Definition 5. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 

and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then
 

is called the bidirectional projection between N1 and N2, where ��N1
�� =

�∑n

j=1 (T
2
1j + I21j + F2

1j) 

and ��N2
�� =

�∑n

j=1 (T
2
2j + I22j + F2

2j) are the modules of N1 and N2, respectively, and 

N1 ⋅ N2 =
∑n

j=1

�
T1jT2j + I1j I2j + F1jF2j

�
 is the inner product between N1 and N2.

The bidirectional projection measure can include not only both the distance and the included angle 
between N1 and N2 but also the bidirectional projection magnitudes between N1 and N2. Obviously, 
the closer the value of BProj(N1, N2) is to 1, the closer the SVNS N1 is to N2. The bidirectional projection 
measure is a normalised measure, i.e., 0 ≤ BProj(N1, N2) ≤ 1.

For the comparison between the general projection measure and the bidirectional projection meas-
ure, we consider an example below to show their measuring performance.

Example 1. Let us consider the following two cases:
Case 1: Let N1 = {(0, .5, .5), (.2, 0, .8)} and N2 = N3 = {(.2, .4, .4), (.3, .3, .4)} be three SVNSs.
According to Equation (5), since N1⋅N2 = .78 and |N2| = 

√
.7, we have that ProjN2

(N1) = .78/
√
.7 = .9323 

and ProjN2

(N3) = .7/
√
.7 = .8367. In this case, since ProjN2

(N1) is larger than ProjN2

(N3), N1 is much closer to 
N2 than N3. In fact, since N3 = N2, N3 should be much closer to N2 than N1, and then ProjN2

(N3) should be 
equal to 1. Obviously, the closeness degree between two vectors indicated by the projection measure 
is not reasonable in this case.

According to Equation (6), since N1⋅N2 =  .78, |N1| = 
√
1.18 and |N2| = 

√
.7, we have that BProj(N1, 

N2) = 1/(1+|.78/
√
1.18 – .78/

√
.7|) = .8236 and BProj(N3, N2)=1/(1 + .7/

√
.7 – .7/

√
.7) = 1. Since BProj(N3, 

N2) > BProj(N1, N2), N3 is much closer to N2 than N1 and BProj(N3, N2) = 1 if and only if N2 = N3. So, the 
bidirectional projection measure is reasonable and effective.

Case 2: Let N1 ={e11, e12, … , e1n}, N2 = {e21, e22, … , e2n}, and N3 = {e31, e32, … , e3n} be three SVNSs. If 
e1j = e2j = (T1j, I1j, F1j) and e3j = (2T1j, 2I1j, 2F1j) (j = 1, 2, … , n) are the j-th SVNVs in N1, N2 and N3 respectively, 
then their measures are as follows:

According to Equation (5), there are PN2

(N1) =
||N1

|| ≤ PN2

(N3) = 2||N1
||. In this case, N3 is much closer 

to N2 than N1. In fact, since N1 = N2, N1 should be much closer to N2 than N3, and then PN2

(N1) should be 
equal to 1. Therefore, the results are not reasonable in this case.

According to Equation (6), we have that BProj(N1, N2) = 1/(1+|N1| −|N1|) = 1 and BProj(N3, N2) = 1/
(1 + 2|N1| − |N1|) = 1/(1 + |N1|). In this case, N1 is much closer to N2 than N3. Since N1 = N2, BProj(N1, N2) is 
equal to 1. Therefore, the results are reasonable and effective in this case.

From the example, we can see that the general projection measure is not always reasonable in some 
cases, while the bidirectional projection measure is reasonable and effective. Therefore, the proposed 

(5)ProjN2

(N1) =
��N1

��Cos(N1,N2) =
N1 ⋅ N2

��N2
��

=

∑n

j=1

�
T1jT2j + I1j I2j + F1jF2j

�
�∑n

j=1

�
T 2
2j + I22j + F2

2j

�

(6)
BProj(N1,N2) =

1

1 +
||||
N1⋅N2|N1| −

N1⋅N2|N2|
||||
=

||N1
||||N2

||
||N1

||||N2
|| + ||||N1

|| − ||N2
||||N1 ⋅ N2
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bidirectional projection measure is superior to the general projection measure and more suitable for 
pattern recognition, fault diagnosis, and decision-making.

If we consider the importance of each element in SVNSs, the weight of each element wj (j = 1, 2, 
…, n) can be introduced with wj ∈ [0, 1] and 

∑n

j=1 wj = 1. Thus, we introduce the following definitions:
Definition 6. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 

and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then
 

is called the weighted inner product between SVNSs N1 and N2,
 

 

are called the weighted modules of N1 and N2 respectively, and then
 

is called the weighted cosine measure between N1 and N2.
Definition 7. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 

and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then
 

is called the weighted projection of N1 on N2.
Definition 8. Let N1 = {e11, e12, … , e1n} and N2 = {e21, e22, … , e2n} be two SVNSs, where e1j = (T1j, I1j, F1j) 

and e2j = (T2j, I2j, F2j) (j = 1, 2, … , n) are the j-th SVNVs of N1 and N2 respectively. Then
 

is called the weighted bidirectional projection between N1 and N2, where ��N1
��w =

�∑n

j=1 w
2
j (T

2
1j + I21j + F2

1j) 

and ��N2
��w =

�∑n

j=1 w
2
j (T

2
2j + I22j + F2

2j) are the weighted modules of N1 and N2 respectively, and 

(N1 ⋅ N2)w =
∑n

j=1 w
2
j (T1jT2j + I1j I2j + F1jF2j) is the weighted inner product between N1 and N2.

4.  Decision-making method of mechanical design schemes

In this section, the projection measure and the bidirectional projection measure are used for the multiple 
attribute decision-making problems of mechanical design schemes with single-valued neutrosophic 
information.

(7)(N1 ⋅ N2)w =

n∑
j=1

w2
j

(
T1jT2j + I1j I2j + F1jF2j

)

(8)||N1
||w =

√√√√ n∑
j=1

w2
j

(
T 2
1j + I21j + F2

1j

)
,

(9)||N2
||w =

√√√√ n∑
j=1

w2
j

(
T 2
2j + I22j + F2

2j

)

(10)Cosw(N1,N2) =
(N1 ⋅ N2)w
||N1

||w||N2
||w

(11)ProjwN2

(N1) =
��N1

��wCosw(N1,N2) =
(N1 ⋅ N2)w
��N2

��w
=

∑n

j=1 w
2
j

�
T1jT2j + I1j I2j + F1jF2j

�
�∑n

j=1 w
2
j

�
T 2
2j + I22j + F2

2j

�

(12)
BProjw(N1,N2) =

1

1 +
||||
(N1⋅N2)w|N1|w −

(N1⋅N2)w|N2|w
||||
=

||N1
||w||N2

||w
||N1

||w||N2
||w + ||||N1

||w − ||N2
||w||(N1 ⋅ N2)w
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In the conceptual design stage, designers usually propose various mechanical design schemes 
(alternatives) according to the function requirements of users and designers. The primal mechanical 
design schemes can be structured as a set of m alternatives S = {S1, S2, … , Sm}, which must satisfy the 
requirements of a set of attributes (criteria) R = {R1, R2, … , Rn} by their suitability assessments for fuzzy 
concept “excellence”. The weight wj of the attribute Rj (j = 1, 2, … , n) is entered by the decision-maker 
with wj ∈ [0, 1] and 

∑n

j=1 wj = 1. In this case, the characteristic of the alternative Si (i = 1, 2, … , m) with 
respect to each attribute Rj (j = 1, 2, … , n) is expressed by a SVNS form:

where 0 ≤ TSi
(Rj) + ISi

(Rj) + FSi
(Rj) ≤ 3, TSi

(Rj), ISi
(Rj), FSi

(Rj) ≥ 0 for j = 1, 2, … , n and i = 1, 2, … , m. For 
convenience, a basic element in a SVNS Si is denoted by a SVNV eij = (Tij, Iij, Fij) for short. Here, the SVNV 
is usually obtained from the suitability evaluation to which an alternative Si satisfies or does not satisfy 
an attribute Rj by means of a score law or appropriate membership functions in practical applications. 
Therefore, we can establish an single-valued neutrosophic decision matrix D = (eij)m×n.

In multiple attribute decision-making environments, the concept of an ideal alternative has been 
used to help identify the best alternative in the decision set (Ye, 2014c). Hence, we define the ideal 
alternative (ideal solution) denoted by the following SVNS:

where an ideal SVNV is determined by e∗j = (T ∗

j , I
∗

j , F
∗

j ) = (max
i
(Tij), min

i
(Iij), min

i
(Fij)) for j = 1, 2, …, n.

Then, by applying Equation (11) or Equation (12) the weighted projection measure or weighted 
bidirectional projection measure between an alternative Si and the ideal alternative S* is given by

 

where ��Si��w =

�∑n

j=1 w
2
j (T

2
ij + I2ij + F2

ij ) and �S∗�w =

�∑n

j=1 w
2
j [(T

∗

j )
2
+ (I∗j )

2
+ (F∗

j )
2
], and 

(Si ⋅ S
∗
)w =

∑n

j=1 w
2
j (TijT

∗

j + Iij I
∗

j + FijF
∗

j ).
The projection measure or the bidirectional projection measure provides the global evaluation for 

each alternative regarding all attributes. The bigger the measure value of ProjwS*(Si) or Bprojw(Si, S
*) (i = 1, 

2, … , m), the better the alternative Si. According to the measure values between the ideal alternative 
and alternatives, all alternatives can be ranked and the best alternative can be easily selected as well.

5.  Decision-making example of the design schemes of punching machine

This section provides a decision-making example about the selection of the design schemes (alterna-
tives) of punching machine to demonstrate the application and effectiveness of the proposed deci-
sion-making method.

In the conceptual design stage, the designers usually need to give a group of primal design schemes 
to select a better one corresponding to some suitability evaluation for all the primal design schemes. 
The punching machine generally consists of the reducing mechanism, punching mechanism and feed 
intermittent mechanism to structure its motion scheme. Therefore, according to its motion scheme, 
designers propose a set of four potential design schemes (alternatives) S = {S1, S2, S3, S4} by their knowl-
edge and experiences, which are shown in Table 1. The chief designer (decision-maker) must take a 
decision according to the five attributes (criteria): (1) R1 is the manufacturing cost; (2) R2 is the structure 
complexity; (3) R3 is the transmission effectiveness; (4) R4 is the reliability; (5) R5 is the maintainability. The 

Si = {⟨Rj , TSi (Rj), ISi (Rj), FSi (Rj)⟩�Rj ∈ R},

S∗ = {⟨Rj , e∗j ⟩�Rj ∈ R},

(13)ProjwS∗ (Si) =
(Si ⋅ S

∗
)w

|S∗|w
,

(14)
or BProjw(Si , S

∗
) =

1

1 +
||||
(Si ⋅S

∗
)w|Si|w −

(Si ⋅S
∗
)w

|S∗|w
||||
=

||Si||w|S∗|w
||Si||w|S∗|w + ||||Si||w − |S∗|w||(Si ⋅ S∗)w

,
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weight vector of the five attributes is w = (.25, .2, .25, .15, .15)T. The four possible alternatives of Si (i = 1, 
2, 3, 4) are to be evaluated by the chief designer under the five attributes according to fuzzy concept 
“excellence” (suitability evaluation), and then the evaluation values are represented by the form of SVNVs.

To indicate the evaluation of an alternative Si (i = 1, 2, 3, 4) with respect to an attribute Rj (j = 1, 2, 3, 
4, 5), it can be obtained from the questionnaire or score law of a domain expert. For example, when 
we ask the opinion of the chief designer about an alternative S1 with respect to an attribute R1, he/she 
may say that the possibility in which the statement is suitable is .75 and the statement is unsuitable is 
.4 and the degree in which he/she is not sure is .1. By the neutrosophic notation, it can be expressed 
as e11 = (.75, .1, .4). Thus, when the four possible alternatives with respect to the above five attributes 
are evaluated by the chief designer, Thus, the single-valued neutrosophic decision matrix D = (eij)4×5 
can be obtained as follows:

Then, we utilise the developed approach to obtain the most desirable alternative(s).
Firstly, according to e∗j = (T ∗

j , I
∗

j , F
∗

j ) = (max
i
(Tij), min

i
(Iij), min

i
(Fij)) for j = 1, 2, 3, 4, 5 in the decision 

matrix D = (eij)4×5, we determine the ideal alternative (ideal solution) as follows:

Secondly, according to Equation (13) or Equation (14), the measure values between an alternative Si 
(i = 1, 2, 3, 4) and the ideal alternative S* are shown in Table 2.

For convenient comparison of the example, we introduce the vector similarity measures of SVNSs 
in (Ye, 2014c) for the decision-making example to show the effectiveness of the proposed projection 
measures.

Firstly, the proposed projection measures for the decision-making problem are replaced by the 
cosine measure of Equation (10):

 

D =

⎡
⎢⎢⎢⎢⎣

(.75, .1, .4) (.8, .1, .3) (.85, .1, .2) (.85, .1, .3) (.9, .1, .2)

(.7, .1, .5) (.75, .1, .1) (.75, .2, .1) (.8, .1, .1) (.8, .2, .3)

(.8, .2, .3) (.78, .1, .2) (.8, .1, .2) (.8, .2, .2) (.75, .1, .3)

(.9, .1, .2) (.85, .1, .1) (.9, .1, .2) (.85, .1, .3) (.85, .2, .3)

⎤
⎥⎥⎥⎥⎦
.

S∗ = {(0.9, 0.1, 0.2), (0.85, 0.1, 0.1), (0.9, 0.1, 0.1), (0.85, 0.1, 0.1), (0.9, 0.1, 0.2)}.

(15)

Cosw(Si , S
∗
) =

(Si ⋅S
∗
)w�Si�w �S∗�w

=

∑n

j=1 w
2
j (Tij T

∗

j +Iij I
∗

j +Fij F
∗

j )�∑n

j=1 w
2
j

�
(Tij)

2
+(Iij)

2
+(Fij)

2
��∑n

j=1 w
2
j

�
(T ∗

j )
2
+(I∗j )

2
+(F∗j )

2
�

.

Table 1. Four alternatives of punching machine.

Alternative S1 S2 S3 S4

Reducing mechanism Gear reducer Gear head motor Gear reducer Gear head motor
Punching mechanism Crank-slider 

mechanism
Six bar punching 

mechanism
Six bar punching 

mechanism
Crank-slider 

mechanism
Dial feed intermittent 

mechanism
Sheave mechanism Ratchet feed mechanism

Table 2. Various measure values and ranking orders.

S1 S2 S3 S4 Ranking order
Cosw(Si, S

*) .9785 .9685 .9870 .9942 S4 > S3 > S1 > S2
Cw(Si, S

*) .9798 .9750 .9875 .9929 S4 > S3 > S1 > S2
Dw(Si, S

*) .9787 .9696 .9845 .9927 S4 > S3 > S1 > S2
Jw(Si, S

*) .9586 .9427 .9694 .9857 S4 > S3 > S1 > S2
ProjwS*(Si) .3933 .3632 .3806 .4158 S4 > S1 > S3 > S2
BProjw(Si, S

*) .9883 .9636 .9728 .9958 S4 > S1 > S3 > S2
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Then, the proposed projection measures for the decision-making problem are replaced by another 
cosine measure, the Dice and Jaccard measures introduced by Ye (2014c):
 

 

 

Using Equations (15)–(18), we calculate the vector measures between an alternative Si (i = 1, 2, 3, 4) 
and the ideal alternative S*, and then all results are also shown in Table 2 for comparative convenience.

In Table 2, obviously the ranking orders based on the projection and bidirectional projection meas-
ures are identical, the ranking orders based on the cosine, Dice, and Jaccard measures are identical, 
and then the ranking orders between the projection and bidirectional projection measures and the 
cosine, Dice, and Jaccard measures only indicate the difference between S1 and S3. However, for all these 
measures, S4 is their optimal choice among all alternatives (mechanical design schemes). In fact, from 
intuitional viewpoint, the alternative S4 should also satisfy practical requirements from the designers’ 
experience. Therefore, the proposed projection methods are effective.

Generally, the cosine measures defined in vector space are also not always reasonable in some 
cases. For example, when e1 = (T1, I1, F1) and e2 = (2T1, 2I1, 2F1) (e1 ≠ e2), the values of the cosine measures 
between e1 and e2 are equal to 1. Then, if e1 = e2 = (T1, I1, F1), the cosine measure values of e1 and e2 are 
also equal to 1. Clearly, the cosine measures of Equations (15) and (16) are not reasonable with respect 
to the decision-making or pattern recognition problems in this case.

However, the bidirectional projection method is superior to the general projection method and 
the cosine, Dice, Jaccard measures (Ye, 2014c). The reason is the bidirectional projection method for 
decision-making reveals the following main advantages:

(1) � �  The bidirectional projection method is more reasonable than the general projection method 
because the former can overcome the shortcoming of the latter, then the bidirectional pro-
jection measure value is bounded within [0, 1], which is a normalised measure.

(2) � �  The bidirectional projection method is more comprehensive than the general projection, 
cosine, Dice, Jaccard measures because the bidirectional projection can consider not only 
the distance and the included angle between objects evaluated but also the bidirectional 
projection magnitudes.

(3) � �  The bidirectional projection-based decision-making method provides an effective way for 
the decision-making of mechanical design schemes under a single-valued neutrosophic 
environment.

6.  Conclusion

This paper proposed projection and bidirectional projection measures between two SVNSs. Then, the 
analysis of a numerical example demonstrated that the bidirectional projection measure is superior 
to the general projection measure in measuring closeness degree between two vectors. Further, a 

(16)Cw(Si , S
∗
) =

n∑
j=1

wj

TijT
∗

j + Iij I
∗

j + FijF
∗

j√(
Tij
)2

+
(
Iij
)2

+
(
Fij
)2 √(

T ∗

j

)2
+
(
I∗j
)2

+
(
F∗j
)2 ,

(17)Dw(Si , S
∗
) =

n∑
j=1

wj

2
(
TijT

∗

j + Iij I
∗

j + FijF
∗

j

)
(
Tij
)2

+
(
Iij
)2

+
(
Fij
)2

+
(
T ∗

j

)2
+
(
I∗j
)2

+
(
F∗j
)2 ,

(18)Jw(Si , S
∗
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n∑
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TijT
∗

j + Iij I
∗

j + FijF
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j((
Tij
)2

+
(
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+
(
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+
(
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)2
+
(
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)2

+
(
F∗j
)2)

−
(
TijT

∗

j + Iij I
∗

j + FijF
∗

j

) .
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decision-making method based on the weighted projection or bidirectional project measure was devel-
oped and applied to the decision-making problem of mechanical design schemes (alternatives) under 
a single-valued neutrosophic environment. Through the projection measure or bidirectional projection 
measure between the ideal alternative and each alternative, we can determine the ranking order of 
all alternatives and the best one. Finally, a decision-making example on choosing mechanical design 
schemes of punching machine was provided to demonstrate the applications and effectiveness of the 
developed approach. Similarly, these proposed projection measures can be also extended to INSs. In 
the future, we shall further apply the projection and bidirectional projection measures of SVNSs and 
INSs to group decision-making, medical diagnosis and fault diagnosis problems.
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