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Abstract: In rock mechanics, the study of shear strength on the structural surface is crucial to 

evaluating the stability of engineering rock mass. In order to determine the shear strength, a key 

parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have 

proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are 

obtained by the classical statistics and curve fitting in the current method. Although the JRC-NNs 

and JRC-NN functions contain much more information (partial determinate and partial 

indeterminate information) than the crisp JRC values and functions in classical methods, the JRC 

functions and the JRC-NN functions may also lose some useful information in the fitting process 

and result in the function distortion of JRC values. Sometimes, some complex fitting functions may 

also result in the difficulty of their expressions and analyses in actual applications. To solve these 

issues, we can combine the neutrosophic numbers with neutrosophic statistics to realize the 

neutrosophic statistical analysis of JRC-NNs for easily analyzing the characteristics (scale effect and 

anisotropy) of JRC values. In this study, by means of the neutrosophic average values and standard 

deviations of JRC-NNs, rather than fitting functions, we directly analyze the scale effect and 

anisotropy characteristics of JRC values based on an actual case. The analysis results of the case 

demonstrate the feasibility and effectiveness of the proposed neutrosophic statistical analysis of 

JRC-NNs and can overcome the insufficiencies of the classical statistics and fitting functions. The 

main advantages of this study are that the proposed neutrosophic statistical analysis method not 

only avoids information loss but also shows its simplicity and effectiveness in the characteristic 

analysis of JRC. 

Keywords: joint roughness coefficient (JRC); neutrosophic number; neutrosophic statistics; scale 

effect; anisotropy 

 

1. Introduction 

The engineering experience shows that rock mass may deform and destroy along the weak 

structural surfaces. The study of shear strength on the structural surface is crucial to evaluate the 

stability of engineering rock mass. In order to determine the shear strength in rock mechanics, a key 

parameter is the joint roughness coefficient (JRC). Since Barton [1] firstly defined the concept of JRC, 

a lot of methods had been proposed to calculate the JRC value and analyze its anisotropy and scale 

effect characteristics. Tse et al. [2] gave the linear regression relationship between the JRC value and 

the root mean square (Z2). Then, Zhang et al. [3] improved the root mean square (Z2) by considering 

the inclination angle, amplitude of asperities, and their directions, and then introduced a new 

roughness index (λ) by using the modified root mean square (Z2’) to calculate JRC values. To 



Symmetry 2017, 9, 208 2 of 14 

 

quantify the anisotropic roughness of joint surfaces effectively, a variogram function and a new 

index were proposed by Chen et al. [4] based on the digital image processing technique, and then 

they also studied the scale effect by calculating the JRC values of different sample lengths [5]. 

However, all of these traditional methods do not consider the uncertainties of JRC values in real rock 

engineering practice. 

Recently, Ye et al. [6] not only utilized the crisp average value to express JRC by using 

traditional statistical methods, but also considered its interval range (indeterminate range) to 

express the indeterminate information of JRC by means of the neutrosophic function/interval 

function. They [6] firstly applied the neutrosophic function to calculate JRC values and shear 

strength, and got the relations between the sampling length and the maximum JRC values and 

between the sampling length and the minimum JRC values, and then established the neutrosophic 

functions (thick/interval functions) of JRC and shear strength. However, these thick/interval 

functions cannot express such an indeterminate function containing the parameters of neutrosophic 

numbers (NNs) (i.e., indeterminate parameters), where NN is composed of its determinate part a 

and its indeterminate part bI with indeterminacy I and as denoted by z = a + bI for a, b   R (R is all 

real numbers) [7–9]. Obviously, NN is a very useful mathematical tool for the expression of the 

partial determinate and/or partial indeterminate information in engineering problems. After that, Ye 

et al. [10] further proposed two NN functions to express the anisotropic ellipse and logarithmic 

equations of JRC values corresponding to an actual case and to analyze the anisotropy and scale 

effect of JRC values by the derivative of the two NN functions, and then they further presented a NN 

function with two-variables so as to express the indeterminate information of JRC values 

comprehensively in the sample sizes and measurement orientations, and then they analyzed both 

the anisotropy and scale effect of JRC values simultaneously by the partial derivative of the NN 

function with two-variables. However, all of these NN functions are obtained by fitting curves of the 

measured values, where they may still lose some useful information between 3% and 16% in the 

fitting process and lack a higher fitting accuracy although the fitting degrees of these functions lie in 

the interval [84%, 97%] in actual applications [10]. Sometimes, some complex fitting functions may 

also result in the difficulty of their expressions and analyses in actual applications [10]. To 

overcome these insufficiencies, it is necessary to improve the expression and analysis methods for 

the JRC values by some new statistical method so that we can retain more vague, incomplete, 

imprecise, and indeterminate information in the expression and analysis of JRC and avoid the 

information loss and distortion phenomenon of JRC values. Thus, the neutrosophic interval 

statistical number (NISN) presented by Ye et al. [11] is composed of both NN and interval 

probability, and then it only expresses the JRC value with indeterminate information, but they lack 

the characteristic analysis of JRC values in [11]. 

However, determinate and/or indeterminacy information is often presented in the real world. 

Hence, the NNs introduced by Smarandache [7–9] are very suitable for describing determinate and 

indeterminate information. Then, the neutrosophic statistics presented in [9] is different from 

classical statistics. The former can deal with indeterminate statistical problems, while the latter 

cannot do them and can only obtain the crisp values. As mentioned above, since there exist some 

insufficiencies in the existing analysis methods of JRC, we need a new method to overcome the 

insufficiencies. For this purpose, we originally propose a neutrosophic statistical method of 

JRC-NNs to indirectly analyze the scale effect and anisotropy of JRC values by means of the 

neutrosophic average values and standard deviations of JRC-NNs (JRC values), respectively, to 

overcome the insufficiencies of existing analysis methods. The main advantages of this study are 

that the proposed neutrosophic statistical analysis method not only avoid information loss, but also 

show its simplicity and effectiveness in the characteristic analysis of JRC values. 

The rest of this paper is organized as follows. Section 2 introduces some basic concepts of NNs 

and gives the neutrosophic statistical algorithm to calculate the neutrosophic average value and 

standard deviation of NNs. Section 3 introduces the source of the JRC data and JRC-NNs in an actual 

case, where the JRC-NNs of 24 measurement orientations in each sample length and 10 sample 

lengths in each measurement orientation will be used for neutrosophic statistical analysis of 
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JRC-NNs in the actual case study. In Section 4, the neutrosophic average values and standard 

deviations of the 24 JRC-NNs of different measurement orientations in each sample length are given 

based on the proposed neutrosophic statistical algorithm and are used for the scale effect analysis of 

JRC values. In Section 5, the neutrosophic average values and standard deviations of the 10 JRC-NNs 

of different sample lengths in each measurement orientations are given based on the proposed 

neutrosophic statistical algorithm and used for the anisotropic analysis of JRC values. Finally, 

concluding remarks are given in Section 6. 

2. Basic Concepts and Neutrosophic Statistical Algorithm of NNs 

NNs and neutrosophic statistics are firstly proposed by Smarandache [7–9]. This section will 

introduce some basic concepts of NNs and give the neutrosophic statistical algorithm of NNs to 

calculate the neutrosophic average value and the standard deviation of NNs for the neutrosophic 

statistical analysis of JRC-NNs in the following study. 

A NN z = a + bI consists of a determinate part a and an indeterminate part bI, where a and b are 

real numbers and I   [IL, IU] is indeterminacy. It is clear that the NN can express the determinate 

and/or indeterminate information. Here is a numerical example. A NN is z = 5 + 6I for I   [0, 0.3]. 

Then, the NN is z   [5, 6.8] for I   [0, 0.3] and its possible range/interval is z = [5, 6.8], where its 

determinate part is 5 and its indeterminate part is 6I. For the numerical example, z = 5 + 6I for I   [0, 

0.3] can be also expressed as another form z = 5 + 3I for I   [0, 0.6]. Therefore, we can specify some 

suitable interval range [IL, IU] for the indeterminacy I according to the different applied demands to 

adapt the actual representation. In fact, NN is a changeable interval number depending on the 

indeterminacy I   [IL, IU]. 

As we know, data in classical statistics are determinate values/crisp values. On the contrary, 

data in neutrosophic statistics are interval values/indeterminate values/NNs, which contain 

indeterminacy. If there is no indeterminacy or crisp value in data, neutrosophic statistics is 

consistent with classical statistics. Let us consider an example of neutrosophic statistics in the 

following. 

Assume that four NNs are z1 = 1 + 2I, z2 = 2 + 3I, z3 = 3 + 4I, and z4 = 4 + 5I for I   [0, 0.2], then the 

average value of these four neutrosophic numbers can be obtained by the following calculational steps: 

Firstly, the average value of the four determinate parts is obtained by the following calculation: 

a = (1 + 2 + 3 + 4)/4 = 2.5.  

Secondly, the average value of the four coefficients in the indeterminate parts is yielded by the 

following calculation: 

b = (2 + 3 + 4 + 5)/4 = 3.5.  

Finally, the neutrosophic average value of the four NNs is given as follows: 

z  = 2.5 + 3.5I for I   [0, 0.2].  

This neutrosophic average value is also called the average NN [9], which still includes its 

determinate and indeterminate information rather than a crisp value. 

However, it is difficult to use the Smarandache’s neutrosophic statistics for engineering 

applications. Thus, Ye et al. [12] presented some new operations of NNs to make them suitable for 

engineering applications. 

Let two NNs be z1 = a1 + b1I and z2 = a2 + b2I for I   [IL, IU]. Then, Ye et al. [12] proposed their 

basic operations: 
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Then, these basic operations are different from the ones introduced in [9], and this makes them 

suitable for engineering applications. 

Based on Equation (1), we can give the neutrosophic statistical algorithm of the neutrosophic 

average value and standard deviation of NNs. 

Let zi = ai + biI (i = 1, 2,…, n) be a group of NNs for I   [IL, IU], then their neutrosophic average 

value and standard deviation can be calculated by the following neutrosophic statistical algorithm: 

Step 1: Calculate the neutrosophic average value of ai (i = 1, 2,…, n): 

1

1 n

i

i

a a
n 

   (2) 

Step 2: Calculate the average value of bi (i = 1, 2,…, n): 

1
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i

i
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Step 3: Obtain the neutrosophic average value: 
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Step 6: Calculate the neutrosophic standard deviation: 
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In the following sections, we shall apply the proposed neutrosophic statistical algorithm of 

NNs to the characteristic analysis of JRC data. 

3. JRC Values and JRC-NNs in an Actual Case 

As an actual case study in this paper, the original roughness profiles were measured by using 

profilograph and a roughness ruler [13] on a natural rock joint surface in Changshan County of Zhejiang 

Province, China. In the actual case, based on a classical statistical method we have obtained the average 

values μij and standard deviations σij (i = 1, 2,…, 24; j = 1, 2,…, 10) of actually measured data in different 

sample lengths and different measurement orientations, which are shown in Table 1. 

Then, we can use NNs zij = aij + bijI (i = 1, 2,…, 24; j = 1, 2,…, 10) to express the JRC values in each 

orientation θ and in each sample length L. Various NNs of the JRC values are indicated by the real 

numbers of aij and bij in zij (i = 1, 2,…, 24; j = 1, 2,…, 10). For convenient neutrosophic statistical 

analysis, the indeterminacy I is specified as the unified form I   [0, 1] in all the JRC-NNs. Thus, 

there is zij = aij + bijI = μij − σij + 2 σijI (i = 1, 2,…, 24; j = 1, 2,…, 10), where aij = μij − σij is the lower bound 

of the JRC value and zij may choose a robust range/confidence interval [μij − σij, μij + σij] for the 

symmetry about the average value μij (see the references [10,11] in detail), and then based on μij and 

σij in Table 1 aij and bij in zij (i = 1, 2,…, 24; j =1, 2,…, 10) are shown in Table 2. For example, when θ = 0° 

and L = 10 cm for i = 1 and j = 1, we can obtain from Table 2 that the JRC-NN is z11 = 8.3040 + 4.4771I 

for I   [0, 1]. 

According to the measurement orientation θ and the sample length L in Table 2, the data in the 

same column consists of a group of the data in each sample length L, and then there are 10 groups in 

the JRC-NNs. On the other hand, the data in each row are composed of a group of the data in each 

measurement orientation θ, and then there are 24 groups in the JRC-NNs. In the following, we shall 

give the neutrosophic statistical analysis of the JRC-NNs based on the proposed neutrosophic 

statistical algorithm to reflect their scale effect and anisotropy in the actual case. 
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Table 1. The average values μij and standard deviations σij of actually measured data in different sample lengths L and different measurement orientations θ. 

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm 

θ μi1 σi1 μi2 σi2 μi3 σi3 μi4 σi4 μi5 σi5 μi6 σi6 μi7 σi7 μi8 σi8 μi9 σi9 μi10 σi10 

0° 10.5425 2.2385 9.6532 1.7162 9.2733 1.5227 8.9745 1.7092 8.8222 1.6230 8.8016 1.6069 8.6815 1.6066 8.6009 1.5043 8.5681 1.3465 8.4630 1.2806 

15° 10.7111 2.2392 9.9679 1.7379 9.3433 1.5555 9.2708 1.2743 9.2299 1.2850 8.9729 1.3071 8.8332 1.1706 8.5868 0.9413 8.3604 0.7673 8.1404 0.6372 

30° 10.5943 2.3528 9.9289 2.0286 9.5715 1.6665 9.1209 1.4207 9.0920 1.4119 8.6006 0.9899 8.7596 1.1489 8.5713 1.0776 8.2927 1.0128 8.1041 0.9664 

45° 9.9244 2.3120 9.2005 1.7237 9.0081 1.6464 8.5078 1.1376 8.3336 1.431 8.6237 1.3427 8.3262 1.2184 8.0768 1.2717 7.8458 1.2096 7.5734 1.1294 

60° 9.0253 2.4592 8.4047 1.9813 7.8836 1.8199 7.7941 1.8829 7.1873 1.167 8.2678 1.7830 7.3595 1.5956 7.1381 1.4082 6.8722 1.2178 6.7131 0.9627 

75° 7.9352 2.1063 7.4604 1.7756 6.7725 1.4153 6.3056 1.0241 6.5446 1.2140 6.4993 1.3108 6.2440 1.1208 6.0933 0.9171 5.9499 0.7311 5.8317 0.5855 

90° 7.0467 2.4054 6.6915 1.8482 6.3378 1.4743 5.9993 1.1700 6.1481 1.1920 6.0893 1.1850 5.9543 1.1021 5.8932 0.9630 5.8259 0.9181 5.8219 0.8355 

105° 7.7766 2.4105 7.2221 1.7560 6.6770 1.2608 6.2318 0.985 6.4634 1.2288 6.4609 1.5029 6.1670 1.3236 5.9923 1.1016 5.8903 0.9868 5.8359 0.8479 

120° 9.1324 2.3250 8.5206 1.8963 8.1998 1.5792 7.9671 1.4094 7.3207 1.0418 7.8245 1.1807 7.2472 1.0637 7.0649 0.9507 6.8537 0.8122 6.6909 0.7715 

135° 9.2258 1.9104 8.5670 1.5412 8.0898 1.3452 7.8194 0.9910 7.3735 0.9848 7.6660 1.2845 7.3846 1.1608 7.0872 1.1589 6.9154 1.0345 6.7586 0.9157 

150° 10.4673 2.4365 9.5650 1.9065 8.9102 1.6863 8.9059 1.4562 8.3930 1.1855 8.8162 1.5870 8.2064 1.3432 8.0153 1.1287 7.6556 1.0101 7.4443 0.9080 

165° 10.6035 2.2090 9.9647 1.6606 9.5320 1.5695 8.8760 1.5994 8.6121 1.4899 8.6463 1.5942 8.3931 1.3637 8.1107 1.2203 7.9051 1.0893 7.7175 1.0050 

180° 9.8501 2.1439 9.0984 1.8556 8.7574 1.7300 8.6002 1.6753 8.2973 1.5862 8.1266 1.6278 7.9647 1.4864 7.8981 1.3395 7.8338 1.1935 7.8291 1.0616 

195° 9.9383 2.2254 9.2299 1.8331 8.6781 1.6791 8.7993 1.4556 8.5308 1.5551 8.1016 1.5598 7.9219 1.2559 7.6562 0.9674 7.4610 0.8060 7.3131 0.7402 

210° 9.5903 1.9444 8.9414 1.5298 8.6532 1.6227 8.2601 1.5626 8.2065 1.5438 7.3828 1.2507 7.7527 1.2989 7.5050 1.1484 7.2495 1.0876 7.0479 0.9558 

225° 8.9167 1.9764 8.2550 1.4256 8.1330 1.4751 7.7012 1.2124 7.6798 1.4502 7.4365 1.1748 7.3183 1.2086 7.1309 1.2749 6.8652 1.2190 6.6742 1.1571 

240° 7.8582 1.8456 7.3032 1.4385 6.8241 1.1626 6.7427 1.2022 6.3250 0.8971 6.8181 1.1123 6.3526 1.0430 6.1521 0.9953 5.9138 0.8906 5.7515 0.7329 

255° 7.2166 1.9341 6.8638 1.3901 6.3349 1.2705 6.1050 1.0350 6.0333 0.9671 6.0693 1.1394 5.8924 0.9417 5.7122 0.8153 5.7803 0.8598 5.3946 0.5627 

270° 6.8025 2.1165 6.3123 1.6374 6.0061 1.3786 5.8815 1.3700 5.7871 1.1783 5.9707 1.2858 5.8530 1.2711 5.7376 1.1886 5.8259 0.9181 5.5856 1.0273 

285° 7.0061 1.5474 6.4941 1.1183 6.1107 0.9586 5.8455 0.9821 5.7563 0.9033 6.0606 1.3603 5.8403 1.2714 5.6386 1.1359 5.4716 1.0374 5.3629 0.9501 

300° 8.4720 1.7448 7.8124 1.3531 7.5303 1.2127 7.2813 1.0247 6.9533 1.1089 7.0673 0.8880 6.8002 0.9202 6.6414 0.8727 6.4460 0.8434 6.3104 0.7904 

315° 10.1428 2.4790 9.4554 2.1149 8.9644 1.7308 8.5698 1.4949 8.1224 1.4089 8.6863 1.5162 8.3659 1.5934 7.6582 1.3811 7.4641 1.1563 7.3537 1.0960 

330° 9.8295 2.2844 9.0011 1.6139 8.3261 1.6005 8.3290 1.3232 7.8712 1.2376 8.0526 1.2755 7.9134 1.1209 7.6498 1.0157 7.3466 0.9740 7.0927 0.9342 

345° 9.6831 2.0192 9.1761 1.6305 8.7732 1.1686 8.4741 1.1887 7.8597 1.1436 7.8485 1.0332 7.7270 1.0174 7.4667 0.9254 7.1781 0.821 7.0038 0.7346 
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Table 2. The values of aij and bij in JRC neutrosophic numbers (JRC-NNs) zij (i = 1, 2,…, 24; j =1, 2,…, 10) for each orientation θ and each sample length L. 

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm 

θ ai1 bi1 ai2 bi2 ai3 bi3 ai4 bi4 ai5 bi5 ai6 bi6 ai7 bi7 ai8 bi8 ai9 bi9 ai10 bi10 

0° 8.3040 4.4771 7.9370 3.4325 7.7506 3.0454 7.2653 3.4184 7.1992 3.2459 7.1947 3.2138 7.0750 3.2132 7.0966 3.0085 7.2216 2.6930 7.1824 2.5612 

15° 8.4719 4.4784 8.2300 3.4759 7.7878 3.1110 7.9964 2.5487 7.9449 2.5700 7.6657 2.6142 7.6627 2.3412 7.6456 1.8825 7.5931 1.5347 7.5032 1.2745 

30° 8.2415 4.7057 7.9003 4.0572 7.9051 3.3330 7.7002 2.8414 7.6801 2.8239 7.6107 1.9798 7.6107 2.2977 7.4938 2.1552 7.2799 2.0256 7.1377 1.9328 

45° 7.6124 4.6240 7.4768 3.4474 7.3616 3.2929 7.3701 2.2753 6.9018 2.8636 7.2810 2.6853 7.1078 2.4369 6.8051 2.5434 6.6362 2.4192 6.4440 2.2589 

60° 6.5660 4.9185 6.4234 3.9627 6.0638 3.6397 5.9112 3.7658 6.0203 2.3341 6.4848 3.5660 5.7639 3.1912 5.7299 2.8163 5.6544 2.4355 5.7504 1.9253 

75° 5.8289 4.2126 5.6847 3.5513 5.3573 2.8306 5.2815 2.0483 5.3307 2.4279 5.1885 2.6216 5.1232 2.2416 5.1762 1.8342 5.2188 1.4622 5.2462 1.1710 

90° 4.6413 4.8108 4.8432 3.6965 4.8635 2.9486 4.8293 2.3399 4.9561 2.3841 4.9043 2.3701 4.8522 2.2043 4.9302 1.9260 4.9078 1.8362 4.9865 1.6709 

105° 5.3661 4.821 5.4661 3.5119 5.4162 2.5216 5.2460 1.9717 5.2346 2.4576 4.9580 3.0058 3.0054 2.6472 4.8907 2.2031 4.9034 1.9737 4.9881 1.6957 

120° 6.8074 4.6500 6.6243 3.7926 6.6206 3.1584 6.5577 2.8188 6.2789 2.0837 6.6438 2.3614 6.1834 2.1274 6.1142 1.9014 6.0415 1.6243 5.9194 1.5430 

135° 7.3153 3.8208 7.0258 3.0824 6.7446 2.6904 6.8283 1.9821 6.3887 1.9696 6.3815 2.5690 6.2238 2.3216 5.9283 2.3178 5.8810 2.0689 5.8429 1.8314 

150° 8.0308 4.8731 7.6585 3.8130 7.2240 3.3725 7.4497 2.9125 7.2075 2.3710 7.2292 7.2291 6.8633 2.6863 6.8866 2.2573 6.6454 2.0203 6.5363 1.8161 

165° 8.3945 4.4180 8.3040 3.3213 7.9625 3.1391 7.2766 3.1988 7.1222 2.9799 7.0521 3.1884 7.0294 2.7274 6.8904 2.4406 6.8158 2.1787 6.7124 2.0101 

180° 7.7062 4.2877 7.2427 3.7113 7.0273 3.4601 6.9249 3.3506 6.7111 3.1724 6.4988 3.2556 6.4782 2.9729 6.5586 2.6790 6.6403 2.3871 6.7675 2.1232 

195° 7.7130 4.4507 7.3968 3.6661 6.9990 3.3583 7.3437 2.9113 6.9757 3.1102 6.5419 3.1195 6.6660 2.5119 6.6888 1.9348 6.6550 1.6120 6.5729 1.4803 

210° 7.6459 3.8887 7.4116 3.0596 7.0305 3.2453 6.6975 3.1252 6.6628 3.0875 6.1321 2.5014 6.4538 2.5977 6.3566 2.2967 6.1619 2.1752 6.0921 1.9116 

225° 6.9402 3.9529 6.8294 2.8512 6.6580 2.9502 6.4888 2.4248 6.2296 2.9004 6.2617 2.3495 6.1097 2.4172 5.8560 2.5498 5.6462 2.4379 5.5170 2.3143 

240° 6.0125 3.6913 5.8648 2.8769 5.6615 2.3252 5.5405 2.4044 5.4280 1.7941 5.7058 2.2246 5.3096 2.0861 5.1568 1.9906 5.0231 1.7812 5.0186 1.4658 

255° 5.2825 3.8683 5.4738 2.7801 5.0644 2.5410 5.0700 2.0701 5.0662 1.9343 4.9300 2.2788 4.9507 1.8834 4.8968 1.6307 4.9204 1.7197 4.8319 1.1253 

270° 4.6859 4.2330 4.6748 3.2749 4.6275 2.7571 4.5115 2.7401 4.6088 2.3565 4.6849 2.5716 4.5820 2.5422 4.5490 2.3772 4.9078 1.8362 4.5584 2.0545 

285° 5.4587 3.0948 5.3757 2.2367 5.1521 1.9172 4.8634 1.9642 4.8530 1.8066 4.7003 2.7205 4.5688 2.5429 4.5027 2.2719 4.4341 2.0749 4.4128 1.9002 

300° 6.7272 3.4897 6.4594 2.7061 6.3176 2.4254 6.2566 2.0494 5.8444 2.2178 6.1793 1.7760 5.8800 1.8404 5.7687 1.7453 5.6025 1.6869 5.5200 1.5808 

315° 7.6638 4.9579 7.3405 4.2297 7.2336 3.4616 7.0749 2.9898 6.7135 2.8178 7.1701 3.0324 6.7725 3.1868 6.2771 2.7622 6.3079 2.3125 6.2577 2.1921 

330° 7.5450 4.5689 7.3872 3.2277 6.7256 3.2009 7.0058 2.6464 6.6335 2.4751 6.7770 2.5510 6.7925 2.2418 6.6340 2.0314 6.3726 1.9480 6.1586 1.8684 

345° 7.6639 4.0383 7.5456 3.2610 7.6046 2.3372 7.2854 2.3774 6.7161 2.2872 6.8153 2.0664 6.7096 2.0348 6.5413 1.8508 6.3570 1.6421 6.2692 1.4692 
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4. Scale Effect Analysis in Different Sample Lengths Based on the Neutrosophic Statistical 

Algorithm 

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each column in Table 

2 based on the neutrosophic statistical algorithm to reflect the scale effect of JRC-NNs in different 

sample lengths. 

In the neutrosophic statistical analysis of JRC-NNs, we need to calculate the neutrosophic 

average value and the standard deviation of each group of JRC-NNs in each column by using 

Equations (2)–(7). To show their calculational procedures in detail, we give the following example. 

For example, the neutrosophic average value and standard deviation of the JRC-NNs in L = 10 

cm is calculated. Then, we give the following calculational steps based on the neutrosophic 

statistical algorithm. 

Step 1: By Equation (2), calculate the average value of the determinate parts ai1 (i = 1, 2,…, 24) in 

the JRC-NNs corresponding to the first column as follows: 

24

1 1

1

1
(8.304+8.4719+8.2415+7.6124+6.566+5.8289+4.6413+5.3661

24

+6.8074+7.3153+8.0308+8.3945+7.7062+7.713+7.6459+6.9402+

6.0125+5.2825+4.6859+5.4587+6.7272+7.6638+7.545+7.6639)/24

6.9427.

i

i

a a


 





  

Step 2: By Equation (3), calculate the average value of the indeterminate coefficients bi1 (i = 1, 

2,…, 24) in the JRC-NNs: 

24

1 1

1

1
(4.4771+4.4784+4.7057+4.624+4.9185+4.2126+4.8108+4.821

24

+4.65+3.8208+4.8731+4.418+4.2877+4.4507+3.8887+3.9529+

3.6913+3.8683+4.233+3.0948+3.4897+4.9579+4.5689+4.0383)/24

4.3055.

i

i

b b


 





  

Step 3: By Equation (4), obtain the neutrosophic average value of the JRC-NNs in the first 

column: 

1 1 1
6.9427 4.3055 ,   [0,1]    z a b I I I .  

Step 4: By Equation (5), calculate the differences between zi1 (i = 1, 2,…, 24) and 1z : 

11 1 11 1 11 1

241 1 241 1 241 1

( ( 1.3613 0.1716 , ,

0.7212 0.2672    [0,1].

        

       

) )

( ) ( ) ,

z z a a b b I I

z z a a b b I I I

 

 

Step 5: By Equation (6), calculate the square of all the differences: 

2 2 2

11 1 11 1 11 1 11 1 11 1 11 1 11 1

2 2

11 1 11 1 11 1 11 1 11 1 11 1

2

11 1 1

( ) [min(( ) , ( )(( ) 1 ( )), (( ) 1 ( )) ),

                     max(( ) , ( )(( ) 1 ( )), (( ) 1 ( )) )]

                [( ) , ((

z z a a a a a a b b a a b b

a a a a a a b b a a b b

a a a

           

         

  2

1 1 11 1

2

241 1

) 1 ( )) ] [1.8530,2.3495], ,

( ) [0.2061,0.5202].

a b b

z z

     

 

 

 

Step 6: By Equation (7), calculate the neutrosophic standard deviation: 
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24 2

1 1 11

1 1 1
 ( ) (1.8530 0.2061), (2.3495 0.5202
24 24 24

   [1.0866,1.4375].

z ii
z z



 
     

 



   

Thus, the neutrosophic average value and the standard deviation of the JRC-NNs in the first 

column are obtained by the above calculational steps. By the similar calculational steps, the 

neutrosophic average values and standard deviations of JRC-NNs in other columns can be also 

obtained and all of the results are shown in Table 3. Then, the neutrosophic average values and 

standard deviations of JRC-NNs in different sample lengths are depicted in Figures 1 and 2. 

Table 3. The neutrosophic average values and standard deviations of JRC-NNs in different sample 

lengths. 

Sample Length L 
Average Value 

Standard Deviation zj  
ja  

jb  jz  (I   [0, 1]) 

10 cm 6.9427 4.3055 [6.9427, 11.2482] [1.0866, 1.4375] 

20 cm 6.7740 3.3761 [6.7740, 10.1501] [0.9894, 1.3176] 

30 cm 6.5483 2.9609 [6.5483, 9.5092] [0.9878, 1.3073] 

40 cm 6.4490 2.6322 [6.4490, 9.0812] [0.9607, 1.3257] 

50 cm 6.2795 2.5196 [6.2795, 8.7991] [0.8988, 1.2243] 

60 cm 6.2913 2.6582 [6.2913, 8.9495] [0.8594, 1.1493] 

70 cm 6.1505 2.4706 [6.1505, 8.6211] [0.8711, 1.1260] 

80 cm 6.0573 2.2253 [6.0573, 8.2826] [0.8352, 1.0883] 

90 cm 5.9928 1.9952 [5.9928, 7.9880] [0.7960, 1.0300] 

100 cm 5.9261 1.7990 [5.9261, 7.7251] [0.7644, 1.0553] 

 

Figure 1. The neutrosophic average values of JRC-NNs in different sample lengths L. 
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Figure 2. The neutrosophic standard deviations of JRC-NNs in different sample lengths L. 

Figure 1 shows that the neutrosophic average values (ranges) of JRC-NNs decrease with the 

sample length increases. It is obvious that they can reflect the scale effect in different lengths. In 

other words, the larger the length L is, the smaller the average value (range) of JRC-NNs is. Thus, the 

scale effect in different lengths is consistent with that of the literature [10]. 

In Figure 2, we can see that the neutrosophic standard deviations of JRC-NNs decrease with the 

sample length increases. Since the standard deviation is used to indicate the dispersion degree of 

data, the neutrosophic standard deviation in some length L means the dispersion degree of the 

JRC-NNs. The larger the standard deviation is, the more discrete the JRC-NNs is. Under some 

sample lengths, its standard deviation means the dispersion degree of the JRC-NNs in different 

orientations. The larger the neutrosophic standard deviation is, the more obvious the anisotropy of 

the JRC-NNs under this length is. Hence, the neutrosophic standard deviations of JRC-NNs can also 

indicate the scale effect of the anisotropy of JRC-NNs. What’s more, when the sample length is large 

enough, the anisotropy of the JRC values may decrease to some stable tendency. This situation is 

consistent with the tendency in [10]. 

Obviously, both neutrosophic average values and neutrosophic standard deviations of 

JRC-NNs can reflect the scale effect of JRC-NNs. Then, the neutrosophic average values reflect the 

scale effect of JRC values, while the neutrosophic standard deviations reflect the scale effect of the 

anisotropy of JRC values. 

5. Anisotropic Analysis in Different Measurement Orientations Based on the Neutrosophic 

Statistical Algorithm 

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each row in Table 2 

based on the neutrosophic statistical algorithm to reflect the anisotropy of JRC-NNs in different 

measurement orientations. 

To indicate the neutrosophic statistical process, we take the orientation of θ = 0° for i = 1 as an 

example to show the detailed calculational steps of the neutrosophic average value and the standard 

deviation of the JRC-NNs in the orientation based on the neutrosophic statistical algorithm. 

Step 1: By Equation (2), calculate the average value of the determinate parts a1j (j = 1, 2,…, 10) of 

the JRC-NNs in the first row (i = 1) as follows: 

10

1 1

1

1
(8.304+7.9370+7.7506+7.2653+7.1992+7.1947+7.0750+7.0966

10

+7.2216+7.1824)/10 7.4226.

j

j

a a


 




 

 

Step 2: By Equation (3), calculate the average value of b1j (j = 1, 2,…, 10) in the indeterminate 

parts of the JRC-NNs: 
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10

1 1

1

1
(4.4771+3.4325+3.0454+3.4184+3.2459+3.2138+3.2132+3.0085

10

+2.6930+2.5612)/10 3.2309.

j

j

b b


 




 

 

Step 3: By Equation (4), get the neutrosophic average value of the JRC-NNs in the first row: 

1 1 1 7.4226 3.2309 ,  [0,1]z a b I I I     .  

Step 4: By Equation (5), calculate the differences between z1j (j = 1, 2,…, 10) and 1z : 

11 1 11 1 11 1

110 1 110 1 110 1

 0.8814 1.2462 , ,

0.2402 0.6697    [0,1].

z z a a b b I I

z z a a b b I I I

       

       

( ) ( )

( ) ( ) ,

 

 

Step 5: By Equation (6), calculate the square of these differences: 

2 2 2

11 1 11 1 11 1 11 1 11 1 11 1 11 1

2 2

11 1 11 1 11 1 11 1 11 1 11 1

2

11 1 1

( ) [min(( ) , ( )(( ) 1 ( )), (( ) 1 ( )) ),

                     max(( ) , ( )(( ) 1 ( )), (( ) 1 ( )) )]

                [( ) , ((

z z a a a a a a b b a a b b

a a a a a a b b a a b b

a a a

           

         

  2

1 11 1

2

110 1

) 1 ( )) ] [0.7767,4.5263], ,

( ) [0.0577,0.8279].

a b b

z z

     

 

 

 

Step 6: By Equation (7), calculate the neutrosophic standard deviation: 

10 2

1 1 11

1 1 1
 ( ) (0.7767 0.0577), (4.5263 0.8279
10 10 10

   [0.3844,0.8420].

z jj
z z



 
     

 




  

By the similar calculational steps, the neutrosophic average values and standard deviations of 

JRC-NNs in other rows can be also obtained and all the results are shown in Table 4. Then, the 

neutrosophic average values and standard deviations of JRC-NNs in different orientations are 

depicted in Figures 3 and 4. 

Table 4. The average values and standard deviations in each orientation θ. 

Orientation 

θ 

Average Value 
Standard Deviation zi  

ia  ib  iz  (I   [0, 1]) 

0° 7.4226 3.2309 [7.4226, 10.6535] [0.3844, 0.8420] 

15° 7.8501 2.5831 [7.8501, 10.4332] [0.2843, 1.1698] 

30° 7.6560 2.8152 [7.6560, 10.4712] [0.3013, 1.1842] 

45° 7.0997 2.8847 [7.0997, 9.9844] [0.3385, 0.9850] 

60° 6.0368 3.2555 [6.0368, 9.2923] [0.3130, 1.1182] 

75° 5.3436 2.4401 [5.3436, 7.7837] [0.2130, 1.0704] 

90° 4.8714 2.6187 [4.8714, 7.4901] [0.0907, 0.8406] 

105° 5.1312 2.6809 [5.1312, 7.8121] [0.1902, 1.0122] 

120° 6.3791 2.6061 [6.3791, 8.9852] [0.2789, 1.2189] 

135° 6.4560 2.4654 [6.4560, 8.9214] [0.4636, 1.0067] 

150° 7.1731 2.9296 [7.1731, 10.1027] [0.4368, 1.2946] 

165° 7.3560 2.9602 [7.3560, 10.3162] [0.5843, 1.1961] 

180° 6.8556 3.1400 [6.8556, 9.9956] [0.3554, 0.9170] 

195° 6.9553 2.8155 [6.9553, 9.7708] [0.3640, 1.2298] 

210° 6.6645 2.7889 [6.6645, 9.4534] [0.5157, 1.0531] 

225° 6.2537 2.7148 [6.2537, 8.9685] [0.4522, 0.8612] 

240° 5.4721 2.2640 [5.4721, 7.7361] [0.3255, 0.9058] 
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255° 5.0487 2.1831 [5.0487, 7.2318] [0.1818, 0.8701] 

270° 4.6391 2.6743 [4.6391, 7.3134] [0.1003, 0.6426] 

285° 4.8322 2.2530 [4.8322, 7.0852] [0.3335, 0.6340] 

300° 6.0556 2.1518 [6.0556, 8.2074] [0.3653, 0.9042] 

315° 6.8812 3.1943 [6.8812, 10.0755] [0.4565, 1.2396] 

330° 6.8032 2.6760 [6.8032, 9.4792] [0.3983, 1.1377] 

345° 6.9508 2.3364 [6.9508, 9.2872] [0.5018, 1.1878] 

 

Figure 3. The neutrosophic average values of JRC-NNs in different orientations θ. 

 

Figure 4. The neutrosophic standard deviations of JRC-NNs in different orientations θ. 

Figure 3 shows that the neutrosophic average values (ranges) of JRC-NNs are very different in 

every orientation. Their changing curves look somewhat like trigonometric functions, which show 

the anisotropy of JRC-NNs. 

In Figure 4, the neutrosophic standard deviations indicate the dispersion degrees of JRC-NNs 

under different sample lengths in some orientation. The larger the neutrosophic standard deviation 

is, the more discrete the JRC-NNs is. This case indicates that the scale effect of JRC-NNs is more 

obvious in the orientation. Although the changing curves in Figure 4 are irregular, it is clear that the 

dispersion degree of each orientation is very different. For example, the neutrosophic standard 

deviation of θ = 270° is obviously smaller than that of other orientations. Especially, if the JRC-NNs 

of all rows have the same neutrosophic standard deviations in such a special case, then the two 
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curve area in Figure 4 will be reduced to the area between two parallel lines without the anisotropy 

in each sample scale. 

From the above analysis, it is obvious that the neutrosophic average values and standard 

deviations of JRC-NNs (JRC values) also imply the anisotropy in different orientations. Thus, the 

neutrosophic average values reflect the anisotropy of JRC values, while the neutrosophic standard 

deviations reflect the anisotropy of the scale effect. Obviously, this neutrosophic statistical analysis 

method is more detailed and more effective than existing methods and avoids the difficulty of the 

curve fitting and analysis in some complex cases. 

6. Conclusion Remarks 

According to the JRC data obtained in an actual case and the expressions and operations of 

JRC-NNs, we provided a new neutrosophic statistical analysis method based on the neutrosophic 

statistical algorithm of the neutrosophic average values and the standard deviations of JRC-NNs in 

different columns (different sample lengths) and different rows (different measurement 

orientations). It is obvious that the two characteristic analyses (scale effect and anisotropy) of JRC 

values were indicated in this study. For the first characteristic, we analyzed the scale effect of 

JRC-NNs in different sample lengths, where the neutrosophic average values reflect the scale effect 

of JRC-NNs, while the neutrosophic standard deviations reflect the scale effect of the anisotropy of 

JRC-NNs. For the second characteristic, we analyzed the anisotropy of JRC values in different 

measurement orientations, where the neutrosophic average values reflect the anisotropy of 

JRC-NNs, while the neutrosophic standard deviations reflect the anisotropy of the scale effect. 

Therefore, the neutrosophic statistical analysis of the actual case demonstrates that the neutrosophic 

average values and neutrosophic standard deviations of JRC-NNs can reflect the scale effect and 

anisotropic characteristics of JRC values reasonably and effectively. 

However, the obtained analysis results and the performance benefits of the presented 

neutrosophic statistical algorithm in this study are summarized as follows: 

(1) The neutrosophic statistical analysis method without fitting functions is more feasible and 

more reasonable than the existing method [10]. 

(2) The neutrosophic statistical analysis method based on the neutrosophic average values and 

neutrosophic standard deviations of JRC-NNs can retain much more information and reflect 

the scale effect and anisotropic characteristics of JRC values in detail. 

(3) The presented neutrosophic statistical algorithm can analyze the scale effect and the anisotropy 

of JRC-NNs (JRC values) directly and effectively so as to reduce the information distortion.  

(4) The presented neutrosophic statistical algorithm based on the neutrosophic statistical averages 

and standard deviations of JRC-NNs is more convenient and simpler than the existing curve 

fitting and derivative analysis of JRC-NN functions in [10]. 

(5) The presented neutrosophic statistical algorithm can overcome the insufficiencies of the 

existing method in the fitting and analysis process [10]. 

(6) This study can extend the existing related methods with JRC-NNs [10,11] and show its easy 

analysis advantage in complex cases. 

From what has been discussed above, the proposed neutrosophic statistical analysis method of 

JRC-NNs provides a more convenient and feasible new way for the scale effect and anisotropic 

characteristic analysis of JRC values in rock mechanics. 
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