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Abstract: In rock mechanics, the study of shear strength on the structural surface is crucial to
evaluating the stability of engineering rock mass. In order to determine the shear strength, a key
parameter is the joint roughness coefficient (JRC). To express and analyze JRC values, Ye et al. have
proposed JRC neutrosophic numbers (JRC-NNs) and fitting functions of JRC-NNs, which are
obtained by the classical statistics and curve fitting in the current method. Although the JRC-NNs
and JRC-NN functions contain much more information (partial determinate and partial
indeterminate information) than the crisp JRC values and functions in classical methods, the JRC
functions and the JRC-NN functions may also lose some useful information in the fitting process
and result in the function distortion of JRC values. Sometimes, some complex fitting functions may
also result in the difficulty of their expressions and analyses in actual applications. To solve these
issues, we can combine the neutrosophic numbers with neutrosophic statistics to realize the
neutrosophic statistical analysis of JRC-NNs for easily analyzing the characteristics (scale effect and
anisotropy) of JRC values. In this study, by means of the neutrosophic average values and standard
deviations of JRC-NNs, rather than fitting functions, we directly analyze the scale effect and
anisotropy characteristics of JRC values based on an actual case. The analysis results of the case
demonstrate the feasibility and effectiveness of the proposed neutrosophic statistical analysis of
JRC-NNs and can overcome the insufficiencies of the classical statistics and fitting functions. The
main advantages of this study are that the proposed neutrosophic statistical analysis method not
only avoids information loss but also shows its simplicity and effectiveness in the characteristic
analysis of JRC.

Keywords: joint roughness coefficient (JRC); neutrosophic number; neutrosophic statistics; scale
effect; anisotropy

1. Introduction

The engineering experience shows that rock mass may deform and destroy along the weak
structural surfaces. The study of shear strength on the structural surface is crucial to evaluate the
stability of engineering rock mass. In order to determine the shear strength in rock mechanics, a key
parameter is the joint roughness coefficient (JRC). Since Barton [1] firstly defined the concept of JRC,
a lot of methods had been proposed to calculate the JRC value and analyze its anisotropy and scale
effect characteristics. Tse et al. [2] gave the linear regression relationship between the JRC value and
the root mean square (Z2). Then, Zhang et al. [3] improved the root mean square (Z2) by considering
the inclination angle, amplitude of asperities, and their directions, and then introduced a new
roughness index (A) by using the modified root mean square (Z2’) to calculate JRC values. To
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quantify the anisotropic roughness of joint surfaces effectively, a variogram function and a new
index were proposed by Chen et al. [4] based on the digital image processing technique, and then
they also studied the scale effect by calculating the JRC values of different sample lengths [5].
However, all of these traditional methods do not consider the uncertainties of JRC values in real rock
engineering practice.

Recently, Ye et al. [6] not only utilized the crisp average value to express JRC by using
traditional statistical methods, but also considered its interval range (indeterminate range) to
express the indeterminate information of JRC by means of the neutrosophic function/interval
function. They [6] firstly applied the neutrosophic function to calculate JRC values and shear
strength, and got the relations between the sampling length and the maximum JRC values and
between the sampling length and the minimum JRC values, and then established the neutrosophic
functions (thick/interval functions) of JRC and shear strength. However, these thick/interval
functions cannot express such an indeterminate function containing the parameters of neutrosophic
numbers (NNs) (i.e., indeterminate parameters), where NN is composed of its determinate part a
and its indeterminate part bl with indeterminacy I and as denoted by z=a + bl fora, b € R (Ris all
real numbers) [7-9]. Obviously, NN is a very useful mathematical tool for the expression of the
partial determinate and/or partial indeterminate information in engineering problems. After that, Ye
et al. [10] further proposed two NN functions to express the anisotropic ellipse and logarithmic
equations of JRC values corresponding to an actual case and to analyze the anisotropy and scale
effect of JRC values by the derivative of the two NN functions, and then they further presented a NN
function with two-variables so as to express the indeterminate information of JRC values
comprehensively in the sample sizes and measurement orientations, and then they analyzed both
the anisotropy and scale effect of JRC values simultaneously by the partial derivative of the NN
function with two-variables. However, all of these NN functions are obtained by fitting curves of the
measured values, where they may still lose some useful information between 3% and 16% in the
fitting process and lack a higher fitting accuracy although the fitting degrees of these functions lie in
the interval [84%, 97%] in actual applications [10]. Sometimes, some complex fitting functions may
also result in the difficulty of their expressions and analyses in actual applications [10]. To
overcome these insufficiencies, it is necessary to improve the expression and analysis methods for
the JRC values by some new statistical method so that we can retain more vague, incomplete,
imprecise, and indeterminate information in the expression and analysis of JRC and avoid the
information loss and distortion phenomenon of JRC values. Thus, the neutrosophic interval
statistical number (NISN) presented by Ye et al. [11] is composed of both NN and interval
probability, and then it only expresses the JRC value with indeterminate information, but they lack
the characteristic analysis of JRC values in [11].

However, determinate and/or indeterminacy information is often presented in the real world.
Hence, the NNs introduced by Smarandache [7-9] are very suitable for describing determinate and
indeterminate information. Then, the neutrosophic statistics presented in [9] is different from
classical statistics. The former can deal with indeterminate statistical problems, while the latter
cannot do them and can only obtain the crisp values. As mentioned above, since there exist some
insufficiencies in the existing analysis methods of JRC, we need a new method to overcome the
insufficiencies. For this purpose, we originally propose a neutrosophic statistical method of
JRC-NNs to indirectly analyze the scale effect and anisotropy of JRC values by means of the
neutrosophic average values and standard deviations of JRC-NNs (JRC values), respectively, to
overcome the insufficiencies of existing analysis methods. The main advantages of this study are
that the proposed neutrosophic statistical analysis method not only avoid information loss, but also
show its simplicity and effectiveness in the characteristic analysis of JRC values.

The rest of this paper is organized as follows. Section 2 introduces some basic concepts of NNs
and gives the neutrosophic statistical algorithm to calculate the neutrosophic average value and
standard deviation of NNs. Section 3 introduces the source of the JRC data and JRC-NNs in an actual
case, where the JRC-NNs of 24 measurement orientations in each sample length and 10 sample
lengths in each measurement orientation will be used for neutrosophic statistical analysis of
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JRC-NNs in the actual case study. In Section 4, the neutrosophic average values and standard
deviations of the 24 JRC-NNs of different measurement orientations in each sample length are given
based on the proposed neutrosophic statistical algorithm and are used for the scale effect analysis of
JRC values. In Section 5, the neutrosophic average values and standard deviations of the 10 JRC-NNs
of different sample lengths in each measurement orientations are given based on the proposed
neutrosophic statistical algorithm and used for the anisotropic analysis of JRC values. Finally,
concluding remarks are given in Section 6.

2. Basic Concepts and Neutrosophic Statistical Algorithm of NNs

NNs and neutrosophic statistics are firstly proposed by Smarandache [7-9]. This section will
introduce some basic concepts of NNs and give the neutrosophic statistical algorithm of NNs to
calculate the neutrosophic average value and the standard deviation of NNs for the neutrosophic
statistical analysis of JRC-NNs in the following study.

A NN z =a + bl consists of a determinate part a and an indeterminate part bl, where a and b are
real numbers and I € [I%, IV] is indeterminacy. It is clear that the NN can express the determinate
and/or indeterminate information. Here is a numerical example. A NN is z=5+6I[ for I € [0, 0.3].
Then, the NN isz € [5, 6.8] for I € [0, 0.3] and its possible range/interval is z = [5, 6.8], where its
determinate part is 5 and its indeterminate part is 61. For the numerical example, z=5+6IforI € [0,
0.3] can be also expressed as another form z=5+3[ for I € [0, 0.6]. Therefore, we can specify some
suitable interval range [I*, IY] for the indeterminacy I according to the different applied demands to
adapt the actual representation. In fact, NN is a changeable interval number depending on the
indeterminacy I € [I%, IY].

As we know, data in classical statistics are determinate values/crisp values. On the contrary,
data in neutrosophic statistics are interval values/indeterminate values/NNs, which contain
indeterminacy. If there is no indeterminacy or crisp value in data, neutrosophic statistics is
consistent with classical statistics. Let us consider an example of neutrosophic statistics in the
following.

Assume that four NNsare zi=1+2[,22=2+3[,z3=3+4[, and z4=4 + 5] for I € [0, 0.2], then the
average value of these four neutrosophic numbers can be obtained by the following calculational steps:

Firstly, the average value of the four determinate parts is obtained by the following calculation:

a=(1+2+3+4)/4=25.

Secondly, the average value of the four coefficients in the indeterminate parts is yielded by the
following calculation:

b=Q+3+4+5)/4=35.

Finally, the neutrosophic average value of the four NNs is given as follows:

7 =25+35Iforl € [0,0.2].

This neutrosophic average value is also called the average NN [9], which still includes its
determinate and indeterminate information rather than a crisp value.

However, it is difficult to use the Smarandache’s neutrosophic statistics for engineering
applications. Thus, Ye et al. [12] presented some new operations of NNs to make them suitable for
engineering applications.

Let two NNs be z1 = a1 + bil and z2 = a2 + b2l for I € [I}, [V]. Then, Ye et al. [12] proposed their
basic operations:
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z,+2,=(a, +a,)+ (b +b,)l =[a+a,+b 1" +b,1", a +a,+b 1" +b,1"];
z,-2,=a,—-a, +(o,—b)l =[a,—-a, +b1"-b,I", a —a, +b1" -b,1"];
z,xz,=aa,+(ab, +a,b)l + (b, b)l?
_mqu+QP0@phJW&m+qPX%+mﬂm]'

(a +b17)(a,+b,1%), (& +b,17)(a,+b,17) ) |
max{(aﬁbllL)(a2+b2|L),(a1+b1IL)(a2+b2|“),] |
i (8, +by17)(a,+b,1"), (3, +by17)(a,+b,1")
z, _a+bl _[a+bl"a+bl"]

4 =
L U
z, a,tb,l [a, +b,1,a, +b,17]

_min[aﬁbllL a+bl" a+bIY a1+b1IUJj

U’ L’ U’ L
a,+b, 1~ a,+b,1- a,+b,I” a,+b,l

D

mw[%+@“ a+bl" a-+bl" %+qwj'
1

U’ L’ U’ L
a,+b,1~ a,+b,1~ a,+b,1” a,+b,l

Then, these basic operations are different from the ones introduced in [9], and this makes them
suitable for engineering applications.

Based on Equation (1), we can give the neutrosophic statistical algorithm of the neutrosophic
average value and standard deviation of NNs.

Letzi=ai+bil (i=1, 2,..., n) be a group of NNs for I € [I!, V], then their neutrosophic average
value and standard deviation can be calculated by the following neutrosophic statistical algorithm:

Step 1: Calculate the neutrosophic average value of ai (i=1, 2,..., n):

azlzn:ai ?)
[ oy

Step 2: Calculate the average value of bi (i=1, 2,..., n):

_ 1
b=-20 ®)
N5z
Step 3: Obtain the neutrosophic average value:
Z=a+bl, I[I1Y] )

Step 4: Get the differences between zi (i=1,2,..., n)and Z:
z-Z=a-a+(b-b)l, Ie[l"1"] ®)

Step 5: Calculate the square of all the differences between zi (i=1,2,...,n)and Z:
_min((ai +b1%)@+b1"), (a +b.1%)(@+Dl U),J_
(a +b1Y)(@+bl"),(a +b.1%)(@+b1Y)
ax((ai +b1%)@+blY), (a +b1%)(@+bi U),J '
(a +b1Y)@+bl"),(a +b1")(@+bl")

(z,-7) %= lel"17] (6)

Step 6: Calculate the neutrosophic standard deviation:
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1<
o, =\/ HZizl(zi -7)? 7)

In the following sections, we shall apply the proposed neutrosophic statistical algorithm of
NN to the characteristic analysis of JRC data.

3. JRC Values and JRC-NNs in an Actual Case

As an actual case study in this paper, the original roughness profiles were measured by using
profilograph and a roughness ruler [13] on a natural rock joint surface in Changshan County of Zhejiang
Province, China. In the actual case, based on a classical statistical method we have obtained the average
values i and standard deviations 0 (i=1, 2,..., 24; j =1, 2,..., 10) of actually measured data in different
sample lengths and different measurement orientations, which are shown in Table 1.

Then, we can use NNs zi=aij+ bil (i=1, 2,...,24; j=1, 2,..., 10) to express the JRC values in each
orientation 6 and in each sample length L. Various NNs of the JRC values are indicated by the real
numbers of a; and bj in zij (1 =1, 2,..., 24; j = 1, 2,..., 10). For convenient neutrosophic statistical
analysis, the indeterminacy I is specified as the unified form I € [0, 1] in all the JRC-NNs. Thus,
there is zij=aij+ byl = pj— o+ 2 04l (i=1,2,...,24; j=1, 2,..., 10), where a;j = p;j — 0 is the lower bound
of the JRC value and zij may choose a robust range/confidence interval [uij — oy, pii + oij] for the
symmetry about the average value pij (see the references [10,11] in detail), and then based on pij and
oijin Table 1 ajand bijin zij (i=1, 2,...,24;j=1, 2,..., 10) are shown in Table 2. For example, when 6 = 0°
and L =10 cm for i =1 and j = 1, we can obtain from Table 2 that the JRC-NN is z11 = 8.3040 + 4.47711
forI € [0, 1].

According to the measurement orientation 6 and the sample length L in Table 2, the data in the
same column consists of a group of the data in each sample length L, and then there are 10 groups in
the JRC-NNs. On the other hand, the data in each row are composed of a group of the data in each
measurement orientation 8, and then there are 24 groups in the JRC-NNs. In the following, we shall
give the neutrosophic statistical analysis of the JRC-NNs based on the proposed neutrosophic
statistical algorithm to reflect their scale effect and anisotropy in the actual case.
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Table 1. The average values uij and standard deviations oij of actually measured data in different sample lengths L and different measurement orientations 0.

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm

0 Hil il Hi2 oi2 i3 oi3 Hia ot His ois His Gi6 Hi7 oi7 His ois Hio ) Hi1o Gi10

0° 10.5425 2.2385 9.6532 1.7162 92733 15227 89745 1.7092 88222 1.6230 8.8016 1.6069 8.6815 1.6066 8.6009 15043 85681 13465 84630 1.2806
15° 107111 2.2392 99679 1.7379 93433 15555 92708 12743 92299 12850 89729 13071 88332 11706 85868 0.9413 83604 0.7673 8.1404 0.6372
30° 10.5943  2.3528 99289  2.0286 9.5715 1.6665 9.1209 14207 9.0920 14119 8.6006 0.9899 87596 1.1489 85713 1.0776 82927 1.0128 8.1041  0.9664
45° 9.9244 23120 9.2005 1.7237 9.0081 1.6464 85078 1.1376  8.3336 1.431 8.6237  1.3427 83262 1.2184 8.0768 12717 7.8458 1.2096 7.5734 1.1294
60° 9.0253 24592 84047 19813 78836 1.8199 77941 1.8829 7.1873 1.167 82678 1.7830 73595 15956 7.1381 14082 6.8722 12178 6.7131  0.9627
75° 7.9352 21063 74604 17756 6.7725 14153 63056 1.0241 6.5446 12140 64993 13108 6.2440 1.1208 6.0933 09171 59499 0.7311 58317  0.5855
90° 7.0467 24054 6.6915 1.8482 6.3378 14743 59993 1.1700 6.1481 1.1920 6.0893 11850 59543 1.1021 5.8932 0.9630 5.8259 09181 5.8219 0.8355
105° 7.7766 24105 72221 17560 6.6770 1.2608  6.2318 0.985 6.4634 12288 6.4609 15029 6.1670 1.3236 59923 1.1016 5.8903 09868 5.8359  0.8479
120° 9.1324 23250 85206 1.8963 8.1998 15792 7.9671 14094 73207 1.0418 7.8245 11807 7.2472 1.0637 7.0649 09507 6.8537 0.8122 6.6909 0.7715
135° 9.2258 19104 85670 15412 8.0898 1.3452 7.8194 0.9910 73735 09848 7.6660 12845 73846 1.1608 7.0872 1.1589 6.9154 1.0345 6.7586 0.9157
150° 10.4673 24365 9.5650 19065 8.9102 1.6863 89059 14562 83930 1.1855 8.8162 15870 8.2064 1.3432 8.0153 1.1287 7.6556 1.0101 7.4443  0.9080
165° 10.6035 22090 9.9647 1.6606 9.5320 15695 8.8760 1.5994 8.6121 14899 8.6463 15942 83931 13637 81107 12203 79051 1.0893 7.7175  1.0050
180° 9.8501 2.1439 9.0984 18556 8.7574 17300 8.6002 1.6753 82973 15862 81266 1.6278 7.9647 14864 7.8981 1.3395 7.8338 1.1935 7.8291 1.0616
195° 9.9383 22254 92299 18331 86781 1.6791 8.7993 14556 85308 1.5551 81016 15598 7.9219 12559 7.6562 09674 7.4610 0.8060 73131 0.7402
210° 9.5903 1.9444 89414 15298 8.6532 1.6227 82601 15626 82065 15438 7.3828 12507 7.7527 12989 75050 1.1484 72495 1.0876 7.0479  0.9558
225° 8.9167 19764 82550 14256 81330 14751 77012 12124 7.6798 14502 74365 1.1748 73183 12086 7.1309 12749 6.8652 12190 6.6742 1.1571
240° 7.8582 1.8456 7.3032 14385 6.8241 1.1626 6.7427 12022 6.3250 0.8971 6.8181 1.1123 6.3526 1.0430 6.1521 0.9953 59138 0.8906 5.7515 0.7329
255° 7.2166 19341 6.8638 1.3901 63349 12705 6.1050 1.0350 6.0333 09671 6.0693 1.1394 5.8924 09417 57122 0.8153 57803 0.8598 5.3946 0.5627
270° 6.8025 21165 6.3123 1.6374 6.0061 13786 5.8815 13700 57871 1.1783 59707 12858 5.8530 12711 5.7376 1.1886 5.8259 09181 55856  1.0273
285° 7.0061 1.5474 64941 1.1183 6.1107 09586 5.8455 0.9821 57563 09033 6.0606 13603 5.8403 12714 5.6386 1.1359 54716 1.0374 5.3629 0.9501
300° 8.4720 1.7448 7.8124 13531 7.5303 12127 72813 1.0247 6.9533 11089 7.0673 0.8880 6.8002 0.9202 6.6414 0.8727 6.4460 0.8434 6.3104 0.7904
315° 10.1428 24790 9.4554 21149 89644 1.7308 85698 14949 8.1224 14089 8.6863 15162 83659 15934 7.6582 13811 7.4641 1.1563 7.3537  1.0960
330° 9.8295 22844 9.0011 1.6139 83261 1.6005 83290 1.3232 7.8712 1.2376 8.0526 12755 79134 1.1209 7.6498 1.0157 73466 09740 7.0927 0.9342
345° 9.6831 20192 91761 1.6305 87732 1.1686 84741 1.1887 7.8597 1.1436 7.8485 1.0332 77270 1.0174 74667 0.9254 7.1781 0.821 7.0038  0.7346




Symmetry 2017, 9, 208

Table 2. The values of a; and bj in JRC neutrosophic numbers (JRC-NNs) zj (i=1, 2,..

., 24;j=1,2,...,10) for each orientation 6 and each sample length L.

7 of 14

L 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 70 cm 80 cm 90 cm 100 cm
0 ai ba a2 b2 ais bis aia bia ais bis aie bis air bir ais bis an bio aio bito
0° 8.3040 44771 79370  3.4325 77506  3.0454 72653 34184 71992 32459 71947 3.2138 7.0750 32132 7.0966 3.0085 7.2216 2.6930 7.1824 2.5612
15° 84719 44784 82300  3.4759 77878  3.1110 79964 25487 79449 25700 7.6657 2.6142 7.6627 23412 7.6456 1.8825 7.5931 1.5347 75032 1.2745
30° 82415 47057 79003 4.0572 79051 3.3330 7.7002 2.8414  7.6801 2.8239 76107 19798 7.6107 22977 7.4938 21552 7.2799 2.0256 7.1377 1.9328
45° 76124 46240 74768 34474 73616 32929  7.3701 22753 69018 28636 72810 26853 7.1078 24369 6.8051 25434 6.6362 24192 6.4440 2.2589
60° 6.5660 49185 64234 39627 6.0638 3.6397 59112 3.7658  6.0203  2.3341 6.4848 35660 5.7639 3.1912 5.7299 28163 5.6544 24355 5.7504 1.9253
75° 5.8289 42126 56847 35513 53573 28306 52815 2.0483 53307 24279 51885 26216 51232 22416 5.1762 1.8342 52188 14622 52462 1.1710
90° 4.6413 4.8108 4.8432 3.6965 4.8635 29486  4.8293 23399 49561 23841 49043 23701 4.8522 22043 49302 1.9260 4.9078 1.8362 4.9865 1.6709
105° 5.3661 4.821 5.4661 35119 54162 25216  5.2460 19717 52346 24576 49580 3.0058 3.0054 2.6472 4.8907 22031 49034 19737 49881 1.6957
120° 6.8074  4.6500 6.6243  3.7926  6.6206  3.1584 65577 2.8188 62789  2.0837 6.6438 23614 6.1834 21274 6.1142 19014 6.0415 1.6243 59194 1.5430
135° 73153  3.8208 7.0258 3.0824 6.7446 2.6904  6.8283 1.9821 6.3887 19696 6.3815 25690 6.2238 23216 59283 23178 5.8810 2.0689 5.8429 1.8314
150° 8.0308  4.8731 76585  3.8130 7.2240 3.3725  7.4497 29125 72075 23710 72292 72291 6.8633 2.6863 6.8866 22573 6.6454 2.0203 6.5363 1.8161
165° 8.3945 44180 83040 3.3213 79625  3.1391 72766 31988  7.1222 29799 7.0521 3.1884 7.0294 2.7274 6.8904 24406 6.8158 21787 6.7124 2.0101
180° 77062 42877 72427  3.7113 7.0273  3.4601 6.9249  3.3506  6.7111 3.1724 64988 3.2556 6.4782 29729 65586 2.6790 6.6403 2.3871 6.7675 2.1232
195° 77130 44507 7.3968  3.6661 6.9990 3.3583  7.3437 29113 69757  3.1102 6.5419 3.1195 6.6660 25119 6.6888 1.9348 6.6550 1.6120 6.5729 1.4803
210° 7.6459  3.8887 74116  3.0596  7.0305 3.2453  6.6975 3.1252  6.6628  3.0875 6.1321 25014 6.4538 25977 63566 22967 6.1619 21752 6.0921 1.9116
225° 6.9402 39529  6.8294 28512 6.6580 29502  6.4888 24248 62296 29004 62617 23495 6.1097 24172 58560 25498 5.6462 24379 55170 23143
240° 6.0125 3.6913 58648 2.8769 56615 23252 55405 24044  5.4280 1.7941 5.7058 22246 53096 2.0861 5.1568 1.9906 5.0231 1.7812 5.0186 1.4658
255° 52825  3.8683 54738  2.7801 5.0644 25410 5.0700 2.0701  5.0662 19343 49300 22788 49507 1.8834 4.8968 1.6307 4.9204 17197 4.8319 1.1253
270° 4.6859 42330 4.6748 32749  4.6275 2.7571 45115 27401  4.6088 23565 4.6849 25716 45820 25422 45490 23772 49078 1.8362 4.5584 2.0545
285° 54587  3.0948 53757 22367 5.1521 19172 48634 19642  4.8530 1.8066 4.7003 2.7205 4.5688 25429 45027 22719 44341 2.0749 4.4128 1.9002
300° 6.7272 34897  6.4594  2.7061 6.3176 24254 62566  2.0494 58444 22178 6.1793 1.7760 5.8800 1.8404 5.7687 1.7453 5.6025 1.6869 5.5200 1.5808
315° 7.6638 49579 73405 42297 72336 34616 7.0749 29898 6.7135 28178 71701 3.0324 6.7725 3.1868 6.2771 2.7622 6.3079 23125 6.2577 2.1921
330° 75450 45689 73872 32277 < 6.7256 32009 7.0058 2.6464  6.6335 24751 6.7770 25510 6.7925 22418 6.6340 2.0314 6.3726 1.9480 6.1586 1.8684
345° 7.6639  4.0383 75456 32610 7.6046 23372 72854 23774  6.7161 22872 6.8153 2.0664 6.7096 2.0348 6.5413 1.8508 6.3570 1.6421 6.2692 1.4692
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4. Scale Effect Analysis in Different Sample Lengths Based on the Neutrosophic Statistical
Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each column in Table
2 based on the neutrosophic statistical algorithm to reflect the scale effect of JRC-NNs in different
sample lengths.

In the neutrosophic statistical analysis of JRC-NNs, we need to calculate the neutrosophic
average value and the standard deviation of each group of JRC-NNs in each column by using
Equations (2)—-(7). To show their calculational procedures in detail, we give the following example.

For example, the neutrosophic average value and standard deviation of the JRC-NNs in L = 10
cm is calculated. Then, we give the following calculational steps based on the neutrosophic
statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate parts ai (i=1, 2,..., 24) in
the JRC-NNs corresponding to the first column as follows:

24
a = 2—142ai1 =(8.304+8.4719+8.2415+7.6124+6.566+5.8289+4.6413+5.3661
i=1

+6.8074+7.3153+8.0308+8.3945+7.7062+7.713+7.6459+6.9402+
6.0125+5.2825+4.6859+5.4587+6.7272+7.6638+7.545+7.6639)/24
=6.9427.

Step 2: By Equation (3), calculate the average value of the indeterminate coefficients bi (i = 1,
2,..., 24) in the JRC-NNs:

_ 24
b = 2—];1 Z b, = (4.4771+4.4784+4.7057+4.624+4.9185+4.2126+4.8108+4.821
i=1

+4.65+3.8208+4.8731+4.418+4.2877+4.4507+3.8887+3.9529+
3.6913+3.8683+4.233+3.0948+3.4897+4.9579+4.5689+4.0383)/24
=4.3055.

Step 3: By Equation (4), obtain the neutrosophic average value of the JRC-NNs in the first
column:

Z =a +b =6.9427+4.30551, 1€[0,1].

Step 4: By Equation (5), calculate the differences between zi1 (i=1,2,...,24) and Z,:

| N

N

1

2,-7Z =(a,—a)+ (b, —b)1 =1.3613+0.1716l,...,
2,0, — a,, —a)+(b,, —b)1 =07212-0.26721, 1<[0,1].
Step 5: By Equation (6), calculate the square of all the differences:
(2, -7) *=[min((a, - &), (8, ~&)((a, — &) +1x (b, ~0)), (&, — &) +1x (b, -0))?),
max((a,, -&,)? (8, —&)((&, - &) +1x (b, -b)), (&, —&) +1x (b, ~b,))*)]
=[(a, -&)°, (&, —&) +1x (b, —b))*] =[1.8530,2.3495],...,
(z,,, —Z,) °=[0.2061,0.5202].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:
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Thus, the neutrosophic average value and the standard deviation of the JRC-NNs in the first
column are obtained by the above calculational steps. By the similar calculational steps, the

neutrosophic average values and standard deviations of JRC-NNs in other columns can be also
obtained and all of the results are shown in Table 3. Then, the neutrosophic average values and
standard deviations of JRC-NNs in different sample lengths are depicted in Figures 1 and 2.

Table 3. The neutrosophic average values and standard deviations of JRC-NNs in different sample

lengths.
Average Value
Sample Length L a, EJ fj I € 0,1 Standard Deviation O 2
10 cm 6.9427 4.3055 [6.9427, 11.2482] [1.0866, 1.4375]
20 cm 6.7740 3.3761 [6.7740, 10.1501] [0.9894, 1.3176]
30 cm 6.5483 2.9609 [6.5483, 9.5092] [0.9878, 1.3073]
40 cm 6.4490 2.6322 [6.4490, 9.0812] [0.9607, 1.3257]
50 cm 6.2795 2.5196 [6.2795, 8.7991] [0.8988, 1.2243]
60 cm 6.2913 2.6582 [6.2913, 8.9495] [0.8594, 1.1493]
70 cm 6.1505 2.4706 [6.1505, 8.6211] [0.8711, 1.1260]
80 cm 6.0573 2.2253 [6.0573, 8.2826] [0.8352, 1.0883]
90 cm 5.9928 1.9952 [5.9928, 7.9880] [0.7960, 1.0300]
100 cm 5.9261 1.7990 [5.9261, 7.7251] [0.7644, 1.0553]
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Figure 1. The neutrosophic average values of JRC-NNss in different sample lengths L.
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Figure 2. The neutrosophic standard deviations of JRC-NNs in different sample lengths L.

Figure 1 shows that the neutrosophic average values (ranges) of JRC-NNs decrease with the
sample length increases. It is obvious that they can reflect the scale effect in different lengths. In
other words, the larger the length L is, the smaller the average value (range) of JRC-NNs is. Thus, the
scale effect in different lengths is consistent with that of the literature [10].

In Figure 2, we can see that the neutrosophic standard deviations of JRC-NNs decrease with the
sample length increases. Since the standard deviation is used to indicate the dispersion degree of
data, the neutrosophic standard deviation in some length L means the dispersion degree of the
JRC-NNs. The larger the standard deviation is, the more discrete the JRC-NNs is. Under some
sample lengths, its standard deviation means the dispersion degree of the JRC-NNs in different
orientations. The larger the neutrosophic standard deviation is, the more obvious the anisotropy of
the JRC-NNs under this length is. Hence, the neutrosophic standard deviations of JRC-NNs can also
indicate the scale effect of the anisotropy of JRC-NNs. What's more, when the sample length is large
enough, the anisotropy of the JRC values may decrease to some stable tendency. This situation is
consistent with the tendency in [10].

Obviously, both neutrosophic average values and neutrosophic standard deviations of
JRC-NNs can reflect the scale effect of JRC-NNs. Then, the neutrosophic average values reflect the
scale effect of JRC values, while the neutrosophic standard deviations reflect the scale effect of the
anisotropy of JRC values.

5. Anisotropic Analysis in Different Measurement Orientations Based on the Neutrosophic
Statistical Algorithm

In this section, we give the neutrosophic statistical analysis of JRC-NNs of each row in Table 2
based on the neutrosophic statistical algorithm to reflect the anisotropy of JRC-NNs in different
measurement orientations.

To indicate the neutrosophic statistical process, we take the orientation of 6 =0° for i =1 as an
example to show the detailed calculational steps of the neutrosophic average value and the standard
deviation of the JRC-NNs in the orientation based on the neutrosophic statistical algorithm.

Step 1: By Equation (2), calculate the average value of the determinate parts a1 (j =1, 2,..., 10) of
the JRC-NNs in the first row (i = 1) as follows:

10
_ %Z% = (8.304+7.9370+7.7506+7.2653+7.1992+7.1947+7.0750+7.0966
j=1

+7.2216+7.1824)/10 = 7.4226.

&

Step 2: By Equation (3), calculate the average value of by (j =1, 2,..., 10) in the indeterminate
parts of the JRC-NNs:
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_ 10
b = %Zblj =(4.4771+3.4325+3.0454+3.4184+3.2459+3.2138+3.2132+3.0085
j=L

+2.6930+2.5612)/10 = 3.2309.
Step 3: By Equation (4), get the neutrosophic average value of the JRC-NNis in the first row:
Z, =3 +b1 =7.4226+3.23091, 1 €[0,1].
Step 4: By Equation (5), calculate the differences between zi; (=1, 2,..., 10) and 71 :
z,-7,=(a,-a)+(b,—b)1 =08814+1.24621,...,
2,0 -7, =(a,, —a)+(b,, —b) 1 =0.2402-0.66971, 1 <[0,1].

Step 5: By Equation (6), calculate the square of these differences:

(2, - 71)2 =[min((a,, - a1)2: (3, —a)((a; —a) +1x (b, - 51)), ((a,—a)+1x(b, - 51))2),
max((a,; —&)%, (8, —&)((a,, —&) +1x (b, —b))), (8, — &) +1x (b, —0))*)]
=[(a, -a)° ((a, — @) +1x (b, —b))*]1=[0.7767,4.5263],...,
(2, —Z,)* =[0.0577,0.8279].

Step 6: By Equation (7), calculate the neutrosophic standard deviation:

1w 2 | |1 1
o, = Eijl(z1j -7)’ = Nﬁ (0.7767 +...+0.0577), \/E (4.5263+...+0.8279
=[0.3844,0.8420].

By the similar calculational steps, the neutrosophic average values and standard deviations of
JRC-NNs in other rows can be also obtained and all the results are shown in Table 4. Then, the
neutrosophic average values and standard deviations of JRC-NNs in different orientations are
depicted in Figures 3 and 4.

Table 4. The average values and standard deviations in each orientation 0.

; ; Average Valu
Orlenetatlon a eBi 8 : Z{elo1) Standard Deviation 0,

0° 7.4226 3.2309 [7.4226, 10.6535] [0.3844, 0.8420]
15° 7.8501 2.5831 [7.8501, 10.4332] [0.2843, 1.1698]
30° 7.6560 2.8152 [7.6560, 10.4712] [0.3013, 1.1842]
45° 7.0997 2.8847 [7.0997, 9.9844] [0.3385, 0.9850]
60° 6.0368 3.2555 [6.0368, 9.2923] [0.3130, 1.1182]
75° 5.3436 2.4401 [5.3436, 7.7837] [0.2130, 1.0704]
90° 4.8714 2.6187 [4.8714, 7.4901] [0.0907, 0.8406]
105° 5.1312 2.6809 [5.1312,7.8121] [0.1902, 1.0122]
120° 6.3791 2.6061 [6.3791, 8.9852] [0.2789, 1.2189]
135° 6.4560 2.4654 [6.4560, 8.9214] [0.4636, 1.0067]
150° 7.1731 2.9296 [7.1731,10.1027] [0.4368, 1.2946]
165° 7.3560 2.9602 [7.3560, 10.3162] [0.5843, 1.1961]
180° 6.8556 3.1400 [6.8556, 9.9956] [0.3554, 0.9170]
195° 6.9553 2.8155 [6.9553, 9.7708] [0.3640, 1.2298]
210° 6.6645 2.7889 [6.6645, 9.4534] [0.5157, 1.0531]
225° 6.2537 2.7148 [6.2537, 8.9685] [0.4522, 0.8612]
240° 5.4721 2.2640 [5.4721,7.7361] [0.3255, 0.9058]
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255° 5.0487 2.1831 [5.0487, 7.2318] [0.1818, 0.8701]
270° 4.6391 2.6743 [4.6391, 7.3134] [0.1003, 0.6426]
285° 4.8322 2.2530 [4.8322, 7.0852] [0.3335, 0.6340]
300° 6.0556 2.1518 [6.0556, 8.2074] [0.3653, 0.9042]
315° 6.8812 3.1943 [6.8812, 10.0755] [0.4565, 1.2396]
330° 6.8032 2.6760 [6.8032, 9.4792] [0.3983, 1.1377]
345° 6.9508 2.3364 [6.9508, 9.2872] [0.5018, 1.1878]
11 T T T T T T
M~
101~ -
gﬁ —
g r 7
<
6ﬁ —
57 —
4 [ [ [ L [ [
0 50 100 150 200 250 300 350
6()
Figure 3. The neutrosophic average values of JRC-NNs in different orientations 0.
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Figure 4. The neutrosophic standard deviations of JRC-NNss in different orientations 6.

Figure 3 shows that the neutrosophic average values (ranges) of JRC-NNs are very different in
every orientation. Their changing curves look somewhat like trigonometric functions, which show

the anisotropy of JRC-NNs.

In Figure 4, the neutrosophic standard deviations indicate the dispersion degrees of JRC-NNs
under different sample lengths in some orientation. The larger the neutrosophic standard deviation
is, the more discrete the JRC-NNs is. This case indicates that the scale effect of JRC-NNs is more
obvious in the orientation. Although the changing curves in Figure 4 are irregular, it is clear that the
dispersion degree of each orientation is very different. For example, the neutrosophic standard
deviation of 0 = 270° is obviously smaller than that of other orientations. Especially, if the JRC-NNs
of all rows have the same neutrosophic standard deviations in such a special case, then the two
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curve area in Figure 4 will be reduced to the area between two parallel lines without the anisotropy
in each sample scale.

From the above analysis, it is obvious that the neutrosophic average values and standard
deviations of JRC-NNs (JRC values) also imply the anisotropy in different orientations. Thus, the
neutrosophic average values reflect the anisotropy of JRC values, while the neutrosophic standard
deviations reflect the anisotropy of the scale effect. Obviously, this neutrosophic statistical analysis
method is more detailed and more effective than existing methods and avoids the difficulty of the
curve fitting and analysis in some complex cases.

6. Conclusion Remarks

According to the JRC data obtained in an actual case and the expressions and operations of
JRC-NNs, we provided a new neutrosophic statistical analysis method based on the neutrosophic
statistical algorithm of the neutrosophic average values and the standard deviations of JRC-NNs in
different columns (different sample lengths) and different rows (different measurement
orientations). It is obvious that the two characteristic analyses (scale effect and anisotropy) of JRC
values were indicated in this study. For the first characteristic, we analyzed the scale effect of
JRC-NNs in different sample lengths, where the neutrosophic average values reflect the scale effect
of JRC-NNs, while the neutrosophic standard deviations reflect the scale effect of the anisotropy of
JRC-NNSs. For the second characteristic, we analyzed the anisotropy of JRC values in different
measurement orientations, where the neutrosophic average values reflect the anisotropy of
JRC-NNs, while the neutrosophic standard deviations reflect the anisotropy of the scale effect.
Therefore, the neutrosophic statistical analysis of the actual case demonstrates that the neutrosophic
average values and neutrosophic standard deviations of JRC-NNs can reflect the scale effect and
anisotropic characteristics of JRC values reasonably and effectively.

However, the obtained analysis results and the performance benefits of the presented
neutrosophic statistical algorithm in this study are summarized as follows:

(1) The neutrosophic statistical analysis method without fitting functions is more feasible and
more reasonable than the existing method [10].

(2) The neutrosophic statistical analysis method based on the neutrosophic average values and
neutrosophic standard deviations of JRC-NNs can retain much more information and reflect
the scale effect and anisotropic characteristics of JRC values in detail.

(3) The presented neutrosophic statistical algorithm can analyze the scale effect and the anisotropy
of JRC-NNSs (JRC values) directly and effectively so as to reduce the information distortion.

(4) The presented neutrosophic statistical algorithm based on the neutrosophic statistical averages
and standard deviations of JRC-NNs is more convenient and simpler than the existing curve
fitting and derivative analysis of JRC-NN functions in [10].

(5) The presented neutrosophic statistical algorithm can overcome the insufficiencies of the
existing method in the fitting and analysis process [10].

(6) This study can extend the existing related methods with JRC-NNs [10,11] and show its easy
analysis advantage in complex cases.

From what has been discussed above, the proposed neutrosophic statistical analysis method of
JRC-NNs provides a more convenient and feasible new way for the scale effect and anisotropic
characteristic analysis of JRC values in rock mechanics.
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