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Abstract

In this paper, we introduce the concepts of length, distance,
eccentricity, radius, diameter, status, total status, median and
central vertex of a single valued neutrosophic graph. We
present the concept of self-centered single valued
neutrosophic graph. We investigated some properties of self-
centered single valued neutrosophic graphs.
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INTRODUCTION

Fuzzy set [19] theory plays a vital role in complex phenomena
which is not effortlessly described by classical set theory.
Atanassov introduced the concept of intuitionistic fuzzy
relations and intuitionistic fuzzy graphs(IFGs). Parvathi and
Karunambigai[13] introduced the concept of IFG elaborately
and analyzed its components. Authors of [9] introduced the
concept of self-centered IFG. Smarandache[6]-[7] introduced
the idea of neutrosophic sets by combining the non-standard
analysis. Neutrosophic set is a mathematical tool for dealing
real life problems having imprecise, indeterminacy and
inconsistent data. Neutrosophic set theory, as a generalization
of classical set theory, fuzzy set theory and intuitionistic fuzzy
set theory, is applied in a variety of fields, including control
theory, decision making problems, topology, medicines and in
many more real life problems. Wang et al.[16] presented the
notion of single-valued neutrosophic sets to apply
neutrosophic sets in real life problems more conveniently. A
single-valued neutrosophic set has three components: truth
membership degree, indeterminacy membership degree and
falsity membership degree. These three components of a
single-valued neutrosophic set are not dependent and their
values are contained in the standard unit interval [0, 1].

Single-valued neutrosophic sets are the generalization of
intuitionistic fuzzy sets. Single-valued neutrosophic sets have
been a new hot research topic and many researchers have
addressed this issue. Akram et al.[1-4] has discussed several
concepts related to single-valued neutrosophic graphs.
Majumdar and Samanta [10] studied similarity and entropy of
single-valued neutrosophic sets. Ye[18] proposed correlation
coefficients of single-valued neutrosophic sets, and applied it
to single-valued neutrosophic decision making problems.

In this paper, we introduce the concepts of length, distance,
radius, eccentricity, diameter, status, total status, median and
central vertex of a single valued neutrosophic graph. We
present the concept of self-centered single valued
neutrosophic graph. We also discuss some interesting
properties besides giving some examples.

Definition 1.1 [17] Let X be a space of points. A neutrosophic
set A in X is characterized by a truth-membership function
T ,(x), an indeterminacy membership function I ,(x) and a
falsity membership function F ,(x) . The functions
T ,(x),I ,(x)and F ,(x) are real standard or non standard
subsets of ]07,1°[ . That is, T ,(x):X —]07,17[ ,
I ,(x):X-]07,1°[ , F ,(x):X-]07,1*[ and 0~ <
T ,(x)+1 ,(x)+F ,(x)<3".

From philosophical point view, the neutrosophic set takes the
value from real standard or non standard subsets of ]J0~, 1*].
In real life applications in scientific and engineering
problems, it is difficult to use neutrosophic set with value
from real standard or non standard subset of J0~, 1*].

Definition 1.2 [3, 1] A single valued neutrosophic graph is a
pair G =(A,B) , where A:V - [0,1] is single valued
neutrosophic set in V and B:V xV — [0,1] is single valued
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neutrosophic relation on V such that T _(xy) <
min{T" , (), T ,0} . I z(xy) <min{l ,(x),I ,()} .
F o (xy) <max{F ,(x),F ,()} for all x,yeV. A is
called single valued neutrosophic vertex set of G and B is
called single valued neutrosophic edge set of G, respectively.
We note that B is symmetric single valued neutrosophic
relation on A. If B is not symmetric single valued
neutrosophic relation on A, then G = (4, B) is called a single
valued neutrosophic directed graph.

Definition 1.3 A single valued neutrosophic graph G = (4, B)
is said to be complete ifTB(vl-,vj) = min (TA(vi),TA(vj)),

IB(vi; v]) = min (IA(UL-), IA(UJ))and FB(vi' 'UJ) = max
(FA(UI:)! FA(Vj)) Vo, v eV.

SELF-CENTERED SINGLE VALUED NEUTROSOPHIC
GRAPHS

Definition 2.1 Let G = (4, B) be a single valued neutrosophic
graph. Then the order of G is defined to be 0(G) =
(07(G), 0,(G), 0p(G)) where0 (G) = Xyey Ta(w),

0 ,(G) = Xuev La(W),0r(G) = Xyev Fa(w).

Definition 2.2 The size of G is defined to be S(G) =
(57(6),5,(G),Sp(G))  where  Sp(G) = Xuvev Ts(w,v),
$1(G) = Yuvev (W, 1), Sp(G) = Xyvev Fp(u,u).

Definition 2.3 The neighbourhood of any vertex v is defined
as N(v) = (Ny(v), N;(v), Ng(v)) where

Nr(v) ={u € V:Tz(u,v) = min{T4(u), T,(v)}},

N,(v) = {u eEV:lz(u,v) = min{IA(u),IA(v)}},

Np(v) = {u € V: Fg(u, v) = max{F,(w), F,(v)}}

andN[v] = N(v) U {v} is called closed neighbourhood of v.

Definition 2.4 A path P in a single valued neutrosophic graph
G = (A,B) is a sequence of distinct vertices vy, v,,..., v,
such that either one of the following condition is satisfied

(i) Ts(vi, v;) > 0,15 (v;, v;) > 0andFy (v;, v;) = 0 for some i
and j. (ii) Tg (v;, vj) = 0,15 (v, v;) = 0 and Fz(v;, v;) > 0 for
some i and j.

Definition 2.5 Let G be a single valued neutrosophic graph.
(i) [13]The length of a path P: v;,v,,...,Vp (> 0)in G is
n. (i) [13]The path P: vy, v,,...,v,4q In G is called a cycle if
vy =v,yand n > 3. (iii) An single valued neutrosophic
graph G is connected if any two vertices are joined by path.

Definition 2.6 The strength of a path P:vy,v,,...,v,, iS
defined as S(P) = (S;(P),S;(P),Sz(P)) where, S;(P) =

min(Ts (v;, 7)), S;(P) = min(Ig(v;,v;))  and
max(Fg(v;, v;)) forall i and j.

Sp(P) =

Note 2.1 In other words, the strength of a path is defined to be
the weight of the weakest edge of the path. i.e the strength of
a path S(P).

Definition 2.7 A single valued neutrosophic graph G =
(A, B) is said to be a single valued neutrosophic bipartite if
the vertex set V' can be partitioned into two non empty sets V;
and V, such that (i) Tg(v;v;) =0,15(v;,v;) =0 and
Fg(v;,v;) =0, if v, v; €V or v, v; €V, (ii) Tp(v,vy) >
0,Ig(v;,v;) > 0 and Fg(v;,v;) > 0, if v; €V, or v; €V, for
some i and j (or) Tg(v,v;) =0,Ig(v;,v;) =0 and
Fg(v;,v;) >0, if v; €V, or v; €V, for some i and j (or)
T (v, v5) > 0,15(v;,v5) > 0and Fg(v;,v;) = 0, ifv; €V, or
v; € V, for some i and j.

Definition 2.8 A single valued neutrosophic bipartite graph
G = (A4, B) is said to be complete if Ty (v;, v;) =

min(T, (v;), T4 (v})), Ig (v, v;) = min(l4(v;), [, (v;)) and
Fg(v;,v;) = max(F,(v;), Fy(v))) forall v; € V; and v; € V5.
Itis denoted by Ky, v,

Definition 2.9 Let single valued neutrosophic graph H =
(A’,B") is said to be a single valued neutrosophic subgraph of
a connected single valued neutrosophic graph G = (4, B). If
T,(v) =Ta(v) , Lh(wy) = L(v) , Fa(v) = Fy(vp)Vv; €V’
and  Tp(v,vy) =Tg(vy,v)) ,  Ig(v,vy) = Ig(v,v)
Fg(v;,v;) = Fp(v;, vj)V(v;,v;) EE" .

Definition 2.10 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The T-length of a path P:vy,v,,...,v, in G, I(P) is
defined as [ (P) = Y=} !

Te(ViVit1)

(ii) The I-length of a path P:v,,v,,...,v, in G, [,(P) is
- _ \vn-1 1

defined as {; (P) = Xy (5o

(iii) The F-length of a path P:vy,v,,...,v, in G, ls(P) is
- _ yn-1 ;

defined as [p(P) = Y55 i)

The (T,1,F)-length of a path P: v, v,,..., v, In G, li7; gy (P) is
defined as 7 ;) (P) = (Iz(P), ;(P), lr(P)).

Definition 2.11 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The T-distance &7 (v;, v;) is the minimum of the T-length
of all the paths joining v; and v; in G, where v;,v; € V. i.e
07 (v;, v;) = min{l(P): P is a path between v; and v;},
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(ii) The I-distance &;(v;, v;) is the minimum of the I-length of
all the paths joining v; and v; in G, where v;,v; €V .
i.e6;(v;, v;) = min{l;(P): P is a path between v; and v;},

(iii) The F-distance 8 (v;, v;) is the minimum of the F-length
of all the paths joining v; and v; in G, where v;,v; €V.
i.80r(v;, v;) = min{l;(P): P is a path between v; and v;},
The distance &) (v;,vj) is defined as 8 (v, v)) =
(87,61, 6F).

Definition 2.12 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) For each v; € V, the T-eccentricity of v;, denoted by
er(v;) and is defined as er(v;) = max{6r(v;,v;):v; €
V,v; # vj}.

(ii) For each v; € V, the I-eccentricity of v;, denoted by e, (v;)
and is defined as e;(v;) = max{6,(v;,v;):v; € V,v; # v;}.
(iii) For each v; € V, the F-eccentricity of v;, denoted by
er(v;) and is defined as er(v;) = min{6p(v;,v;):v; €
V,v; # vj}.

For each v; € V, the eccentricity of v; denoted by e(v;) and is
defined as e(v;) = (er(v;), e;(vy), ep(v;)).

Definition 2.13 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The T-radius of G is denoted by r(G) and is defined as
rr(G) = min{e;(v;):v; € V}.

(if) The I-radius of G is denoted by r;(G) and is defined as
1;(G) = min{e;(v;): v; € V}.

(iii) The F-radius of G is denoted by r+(G) and is defined as
17(G) = min{ep(v;):v; € V}.

The radius of G is denoted by r(G) and is defined as r(G) =
(rr(G), 1 (G), 77 (G)).

Definition 2.14 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The T-diameter of G is denoted by dia ,(G) and is
defined as dia .(G) = max{e .(v;):v; € V}.

(i) The I-diameter of G is denoted by dia ,(G) and is
defined as dia ,(G) = max{e ,(v;):v; € V}.

(iii) The F-diameter of G is denoted by dia ,(G) and is
defined as dia ,(G) = max{e ,(v;):v; €V}

The diameter of G is denoted by dia(G) and is defined as
dia(G) = (dia ,(G),dia ,(G),dia ,(G)).

Example 2.1 Consider a single valued neutrosophic graph,
G = (A,B) suchthat V = {vy, v,,v3, 14, vs}, E = {(vy,7),

(v2,v3), (V3, 1), (V3,V4), (V4, Vs), (Vs, V2) }-

vy 'Li‘)
GEb b ddD
¢
4.3 &% 3
[
v 1 1 1 i
dtn 559 oty
U2
Path Vi —Vy (Vg — V3| Vg —Vy | Vg — Vs v
— V3
Distance | e 94y | (6.7.5) (11.12,10) (13.18.9)|(8.8.9)
6 (T,I,F)(vi'vj) o o o o o
2
Path Vy = V4 |V —VUs| V3=V | V3 — Vs — s

Distance

(13,13,10)| (7,9,5) | (5,5,5) |(13,14,10)/(8,9,5)

9 (T,LF) (vi' Vj )

Then the eccentricity of v;are e(v,) = (13,18,4), e(v,) =
(13,13,4), e(v3) = (13,14,5), e(vy) = (13,13,5) ,e(vs) =
(13,18,5). Radius of G is r(G) = (13,13,4) and Diameter of
Gisd(G) = (13,18,5).

Definition 2.15 A vertex v; € V is called a

(i) T-central vertex of a connected single valued neutrosophic
graph G, ifr (G) =e ,(v).

(ii) 1-central vertex of a connected single valued neutrosophic
graph G, ifr (G)=e ().

(iii) F-central wvertex of a connected single valued
neutrosophic graph G, if r _(G) = e . (v).

(iv) Central vertex of a connected single valued neutrosophic
graph G, if r (G)=e (v;), r ,(G)=e ,(v) and
r (G)=e .(v;) and the set of all central vertices of a
single valued neutrosophic graph is denoted by C(G).

Definition 2.16 < C(G) >=H:(A’,B") is a single valued
neutrosophic subgraph of G = (4, B) induced by the central
vertices of G is called the center of G.

Definition 2.17 Aconnected single valued neutrosophic graph
Gisa

(i) T- self-centered single valued neutrosophic graph, if every
vertex of G is a T- central vertex. (i.e) r .(G)=

e ,(v) Vv, eV.
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(ii) 1- self-centered single valued neutrosophic graph, if every
vertex of G is a I- central vertex. (i.e) r (G)=
e (v),Vv; €V.

(iif) F- self-centered single valued neutrosophic graph, if
every vertex of G is a F- central vertex. (i.e) r .(G) =
e (v), Vv, €V.

(iv) Single valued neutrosophic self-centered graph, if every
vertex of G is a central vertex. (ie) v (G) =e .(v;),
r (G)=e (v)andr (G)=e (v, Vv, EV.

Example 2.2 Consider a single valued neutrosophic graph,
G = (A, B) SUCh that V= {UI, Uy, V3, U4_},
E = {(v1,v2), (v2,V3), (V3,Vs), (V4, V1), (V1, V3)}-

<
W

'Ul
1 1 1 111 1 1 1
(5:3:3) (55 1) (5:5:38)
11 1 11 1
(5-5' %) (5.5 8)
o 1 1 1 vo
a foay es 1) 12
144 3'3'6
Path Vy—Vy| Vg — V3 |V — Uy

Distance & ., . (Vi, V)| (5,5,8) ((11,11,12)| (6,6,4)

Path Vy — V3| Vy—Vy (V3 — Uy

Distance & ., . (vi,V})| (6,6,4) (11,11,12) (5,5,8)

Then the eccentricity of v;are e(v;) = (11,11,4), e(v,) =
(11,11,4), e(v3) = (11,11,4), e(v,) = (11,11,4). Radius of
G is r(G) =(11,11,4) and Diameter of G is d(G) =
(11,11,4). Here r(G) = e(v;),Vv; € V. Hence G is a self-
centered single valued neutrosophic graph.

Definition 2.18 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The T-status of a node u of G is denoted by s .(u) and is
definedass . (u) = Yyev 0r(u,v),

(ii) The I-status of a node u of G is denoted by s ,(u) and is
definedas s ,(u) = Yper 6;(w,v),

(iii) The F-status of a node u of G is denoted by s . (u) and is
definedass (u) = Xyev 0r(u, v),

(iv) The status of a node u of G is defined as s(u) =

(s ;s ,(W),s (W)

Definition 2.19 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The minimum T-status of G is defined as m[s;(G)] =
min{sy(u):u € V},

(if) The minimum I-status of G is defined as m[s;(G)] =
min{s;(u):u € V},

(iii) The minimum F-status of G is defined as m[sz(G)] =
min{sp(u):u € V}.

(iv) The minimum status of G is denoted by m[s(G)] and is
defined as m[s(G)] = (m[s(G)], m[s;(G)], m[sg(G)]).

Definition 2.20 Let G = (4, B) be a connected single valued
neutrosophic graph.

(i) The maximum T-status of G is defined as M[s;(G)] =
max{sy(u):u € V},

(ii) The maximum I-status of G is defined as M[s;(G)] =
max{s;(u):u € V},

(iii) The maximum F-status of G is defined as M[sz(G)] =
max{sp(u):u € V}.

(iv) The maximum status of G is denoted by M[s(G)] and is
defined as M[s(G)] = (M[sr(G)], M[s;(G)], M[sr(G)]).

Definition 2.21 Let G = (4, B) be a connected single valued
neutrosophic graph.

The total T-status of a node u of G is denoted by ts .(u) and
isdefinedas ts (u) = Xyer s (W),

The total I-status of a node u of G is denoted by ts ,(u) and
isdefinedas ts (u) = Xper s (W),

The total F-status of a node u of G is denoted by ts . (u) and
isdefinedas ts ,(u) = Yyer s ,(w).

The total status of G is denoted by t[s(G)] and is defined as
t[s(@)] = (ts ,(w),ts ,(w),ts (w).

Definition 2.22 Let G = (4, B) be a connected single valued
neutrosophic graph. The median is defined as

M(G) = (M7 (G), M;(G), Mp(G)) , where Mr(G) = {v; €
Vimin{sr(v)}}, Mi(G) = {v; € Vimin{s;(v)}}, Mp(G) =
{v; € Vimin{sp(v;)}}.

Example 2.3 Consider a single valued neutrosophic -graph,
G =(A,B) such that V = {v,v,,v5,1,}, E =
{(v1,v2), (2, v3), (3, V1), (V3,V4), (V1, V4) }.

Here, status of the nodes are s(v;) = (22,19,17),s(v,) =
(27,28,23),s(v3) = (26,16,14),s(v,) = (29,27,20).  The
minimum status of G is m[s(G)] = (22,16,14) . The
maximum status of G is M[s(G)] = (29,28,23). The total
status of G is t[s(G)] = (104,90,74) . The median is

M(G) = ({v1}, {vs} {vs )
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1 1 1 1 1 1
(55 %) (L 11, (535 3)
vy 7 85 vy
1 1 1 11 1
& 5D (5.5 3)
Ve 1 1 1 v
a1y, &Tms W
479 842

Definition 2.23 A connected single valued neutrosophic
graph G = (4, B) is a self-median if all the nodes have the
same status. In other words, a connected single valued
neutrosophic graph G = (4, B) is self-median if and only if
m[s(G)] = M[s(G)].

Example 2.4 Consider a single valued neutrosophic graph,
G=(A,B) such that V ={v,v,vs 1.} E =
{(v1,v2), (V2,v3), (V3,V4), (V4 V1), (V1, V3), (V2, Va) }-

Here, status of the nodes are (v,) = (20,23,15),s(v,) =
(20,23,15), s(v3) = (20,23,15),s(v,) = (20,23,15) . The
minimum status of G is m[s(G)] = (20,23,15) . The
maximum status of G is M[s(G)] = (20,23,15). The total
status of G is t[s(G)] = (80,92,60).

—
e
=
wal=
—

£

s
—
Gl
=
ot =
—
=

—
1l
=
o=
1l
ol=
&=
—

—
Al
=
ot
~—

v3
1 1 1
(322 3)

U2
1
£ 5

W

—_
oY=

)

The median is M(G) = {{v1, V,, V3, Vs }, {V1, V2, V3, Uy},
{vi1,v2,v3,1,}}. Hence G = (4,B) is called the self-median

graph.
Theorem 2.1 If G = (A4,B) is a bipartite single valued
neutrosophic graph then it has no strong single valued

neutrosophic cycle of odd length.

Proof. Let G be a bipartite single valued neutrosophic graph
with bipartition V;and V,. Suppose that it contains a strong
cycle of odd length, say vy, v,,...,v,, v, for some odd
n(vertices). Without loss of generality, letv, € V;. Since

(v, vi41) is strong single valued neutrosophic for i =
1,2,...,n — 1 and the nodes are alternatively in V;and V,, we
have v, and v; € V;. But this implies that (v,, v,) is an edge
in V; which contradicts the assumption that G is a bipartite
single valued neutrosophic graph. Hence bipartite single
valued neutrosophic graph has no single valued neutrosophic
strong cycle of odd length.

Theorem 2.2 Every complete single valued neutrosophic
graph G is a self-centered single valued neutrosophic graph

_ 1 1
and r(G) = ( (x) T A(x)) where T ,(x) and

I ,(x) arethe least value and F, (x) is greatest value.

Proof. Let G be a complete single valued neutrosophic graph
G. To prove that G is a self-centered single valued
neutrosophic graph. That is we have to show that every vertex

is a central vertex. First we claim that G is a T- self-centered
1

RCHN
where T, (v;) is the least. Now fix a vertex v; € V such that

single valued neutrosophic graph and r _(G) =

T ,(vy) is least vertex membership value of G.

(1) Consider all the v; — v; paths P of length nin G, Vv; € V.
Case (i) : If n=1, then T ,(v;,v;) = min(T (vi,vj)) =
T ,(v;). Therefore, the T-lengthof P =1 _(P) = (vl)

Case (ii) : If n > 1, then one of the edges of P possesses the
T-strength T, (v;) and hence, T-length of a v; — v; path will

. That is T-length of P =1 _(P) >

T A(vi) (VL)

exceed

Hence

6 (vyv) =min(l (P)) = Vv, €V. (D)

T @)
(2) Let v, # v;inV. Consider aII v, — v;j paths Q of length n

inG, vv; € V.
Case (i) : Ifn=1, then T (v, v;) =min(T , (v, v))) =
T ,(v), sinceT ,(v;)is the least. Hence T-length of Q =
1 1
H(@=7 s@Wkv) T T @)
Case (ii) If n=2, then Q)=

(Vk Vi+1)
1
T gWikerv)) = T ()

Case (iii) : If n > 2, then {

,since T, (v;) is the least.

ROES

:(vi)' since T, (v;) is

the least. Hence

8 @) =min(l () < 7— -,

From Equations (1) and (2), we have
T(Ui) = max(8 T(vi'vj)) =

VR, v EV. 2

1
— Vv, EV. 3
T L)’ @)

15540



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 15536-15543
© Research India Publications. http://www.ripublication.com

Hence G is a T-self-centered single valued neutrosophic

graph.
Now, r .(G) =min(e .(v))
1 . .
= A(vi)' sincebyequation(3)
(G )— ( 5 whereT ,(v;) isleast.
Next, we claim that G is a I- self-centered single valued

neutrosophic graph and r (G) = A) is

A() s least

1
o,y
the least. Now fix a vertex v; € V such that I
vertex membership value of G.

(1) Consider all the v; — v; paths P of length n in G, Vv; € V.
Case (i) : Ifn=1, then I (vi,vj)) =
I ,(v;) . Therefore, the I-lengthof P =1 (P) =

B (Ul', U]) = mln(I

(Vz)
Case (ii) : If n > 1, then one of the edges of P possesses the |-
strength I ,(v;) and hence, I-length of a v; —v; path will

. That is I-length of P=1 (P)>

exceed
4Wi r,wy

Hence

1) I(vi' U]) = mln(l (P)) = —)

(2) Let vy, # v;inV. Consider all v, — v; paths Q of length n
inG, vv; € V.
Case (i) : If n=1, then I AV vp)) =
I ,(v), since I ,(v;)is the least. Hence I-length of Q@ =
1 1
<

l ,(Q) =7 kv T A(v,-)'
Case (ii): If n = 2, then | ,(Q) =

Vv €V. 4)

B(vk’ 'U]) = mln(]

1 1
I prvir1) 1 gWrerv))

IA%L-)’ since I, (v;) is the least.

Case (iii): If n>2, thenl ,(Q) <- A”(vi), since I, (v;) is
the least. Hence

§ ,(vi,vy) = min(l ,(Q)) <- v EV. (5)

From Equations (4) and (5), we have
e ,(Vi) = max(é 1(vi,vj))

() EV. (6)

Hence G is a I-self-centered smgle valued neutrosophic
graph.

Now, r ,(G) =min(e ,(v;))

= 1(17_), sincebyequation (6)
A L

1
G) = , Wwherel ;) isleast.
r ,(G) ) wherel | (v;) isleas

Next, we claim that G is a F - self-centered single valued

£(G) =

neutrosophic graph and r

1 .
ERen where F -, (v;) is

the greatest. Now fix a vertex v; € V such that F

A is
greatest vertex membership value of G.

(1) Consider all the v; — v; paths P of length nin G, Vv; € V.

Case (i): If n=1, then F _(v;,v;) = max(F (vi,vj)) =
F ,(v;). Therefore, the F - lengthof P =1 _(P) = (vz)

Case (ii): If n > 1, then one of the edges of P possesses the F-

strength I, (v;) and hence, F-length of a v; —v; path will
exceed . That is F-length of P=1 _(P) >

1, (vl)
Hence
6 (v, v) =min(l ,(P)) = Vv, €V, ©)

Fow)’
(2) Let v, # v;inV. Consider aII v, — v;j paths Q of length n
inG, vv; € V.

Case (i): If n=1, then F _(vy,v;) = max(F (v, v))) <
F ,(v), since F ,(v;) is the greatest. Hence F-length of
Q=1 ,(@=

Case  (ii):

1 1
F p(ugvy) — F A(”i).

If n=2 , then

Q)=

(Uka+1)
1
=
F pgWrervy) — F ()

Case (iii): If n > 2, then l

,since F, (v;) is the greatest.

ROEF

n - .
o since F,(v;) is

the greatest. Hence

6 (v, v) =min(l L(Q)) = ( 5 VR, v EV. (8)

From Equations (7) and (8), we have

e ;(v) =min(§ (v, v))) =7 1(v‘),Vvl- ev. 9)
ANL

Hence G is a F-self-centered single valued neutrosophic

graph.
Now, r .(G) =min(e .(v;))
=m, sincebyequation (9)
r F(G)=F 1(17i)' whereF ,(v;) isgreatest.

From equations (3),(6), and (9), every vertex of G is a central
vertex. Hence G is a self-centered single valued neutrosophic
graph.

Theorem 2.3 A single valued neutrosophic graph G =
(A, B) is a self-centered single valued neutrosophic graph iff
6 (vyv)<r _(G) , § ,(w,v) <7 (G) and
6 (vy,vp)=r (G)Vv,v EV.

Proof.= We assume that G is self-centered single valued
neutrosophic graph G. Thatise .(v;) =e ,(vj),e ,(v;) =
e ,(v),e (v)=e (vp)Vv,v;€V,r (G)=

e ,(v)r (G)=e H(G)=e (v) Vv, EV.
Now we wish to show that & _(v;,v) <

,(w)and r
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r (6),6 (v,v)<r .(G) and 6 (v,vy) =
r .(G),Yv;,v; €V. By the definition of eccentricity, we
§ (vpv)<e ()6 ,(vyv))<e ,(v)) and
6 (v,vp) =e (v),Vv,v EV. When e .(v)=
e ,(v),e (v)=e (vj),e (v;))=e .(v),Vv,v; EV.
Since G is self-centered single valued neutrosophic graph, the
above inequality becomes 6 (v,vp) <
r (6),6 (vyv)<r (G)andé§ ,(v,v)) =1 .(G).
< Assume that § (v, v) <1 .(G),6 ,(vyv) <71 ,(G)
andé (v, v)) =7 .(G),VYv;,v; € V.Then we have to prove
that G is self-centered single valued neutrosophic graph.
Suppose that G is not self-centered single valued neutrosophic
graph. Then r (G)=e (v),r (G)=e ,(v)
andr ,(G)=e ,(v;), for somev; € V. Let us assume that
e ,(v),e ,(v)ande
other eccentricity. That is
r (G)=e (v),r (G)=e (v andr .(G)=
e (v) (10)
Where e (v)<e .(v)e (v)<e ,(v)e .(v)<
e .(v)), forsome v;,v; € V and
6 (vpvp)=e (v)>e (v),6 (v,v)=¢e ,(vj)>
e ,(v;)and (11)
§ ;(wpv)=e (vj) >e (V)
Hence from equations (10) and (11), we have § . (v;,v;) >
r (6),6 (v,v;))>r (G)and § (v, v)) <7 (G), for
some v;, v; €V, which is a contradiction to the fact that
6 (vyv)=<r (G),6 ,(vyv)=<r .(G) and
6 (vi,v) =7 .(G),Vv;,v; €V.Hence G is a self-centered
single valued neutrosophic graph.

obtain,

(i) is the least value among all

forsomev;,v; EV.

Theorem 2.4 Let G = (4, B) be a single valued neutrosophic
graph. If the graph G is complete bipartite single valued
neutrosophic graph then the complement of G is self-centered
single valued neutrosophic graph.

Proof. A bipartite single valued neutrosophic graph G is said

to be complete, if

T B(vi,vj) = min (T L), T A(vj)),

I B(vi,vj) = min (1 RCHAN A(vj)),

F B(vi,vj) = max (F L), F A(vj)), Yv; € Vi, v € V.
And

T B(UL','U]') = 0, (12)
I B(vl’,vj) = 0,

F o (v,v) =0,Vy,v; €V, (or) v, v €V,

Now,

T ,(wuv) =min(T ,), T ,w))-T ,(w,v) (13)
I AL () -1 (v, v))

F s, v) =max(F ,(v),F ,(v))) —F ,(v;,v)).

By using equation (12)

5 Wi, v;) = min(/

T s v) =min(T ,(v), T ,(v})) (14)
I () =min(I ()1 ,(¥)) (15)
F B(vi,vj)zmax(F AW, F A(vj)),

vv,v €V; (or) v,v €V, (16)

From equations (12),(14), the complement of G has two
components and each is complete single valued neutrosophic
graph, which are self-centered single valued neutrosophic by
Theorem 2.2.Hence the proof.

Theorem 2.5 Every self-median SVN-graph is a self-
centered SVN-graph.

Proof. Let G = (4, B) be a connected self-median SVN-graph
with V = {v,v,,v5,..., v, }.

By definition,

sp(v) = sp(v2) = sp(v3) =...= sp(vp),
s;(v1) = 51(v2) = 5;(v3) =...= 5;(Vy),
Sp(v1) = sp(Vy) = sp(v3) =...= sp(vp).

Yviev 07 (v, 1) = Yvev 07 (V2, 1) = Xvev 07 (v3, 1) =

i#1 i#2 i#3
o= Yvev 07 (v, 11),
i#n
Yviev 8;(vy, ) = Yvev 6;(V3,v;) = Xvgev 6;(v3, 1) =...=
i#1 i#2 i#3
Yviev 61 (Vn, V),
i#n
Yviev Op(V1,v;) = Yviev Op (v, 1) = Xviev Op(v3, 1) =
i#1 i#2 i#3
= Yvev Op(Vn, vp).
i:tn
Z?;Elv TB(VI Vi) 217 EV TB(VZ Vi) Zv e TB(VB Vi) =T
1
Z;’;C;lv Tp(Wnvy)’
1 1 1
Z;’;ElV Ig(ivy) 21;;621/ Ip(wavy) Zl’;iv Igwsvy)
1
Z;’;C;lv Ig(wnvy)’
Z?flv ot v) Z” Y Faam) ot v0) Z” =V Fws ) ot w T
1
Zviev F(wnvy)’
ma = = max =...=
{TB(U Wi )} {TB(UZvVi)} {TB(V3rVi)}
max(
= = max =...=
{IB(Vl Vi )} {IB(Vz.Vi)} {IB(V&Vi)}
max{IB(Vn.Vi)}’
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1
Fp(v1,vy)

min{ } = min{

Fp (Vani)}.

max{6r(vy, v;))} = max{6r(v,, v;)} = max{6r(vs, v;)} =

FB(Uz.Vi)} - mm{FB(V&Ui)} T

min{

.= max{6r(vy, v;)},
max{6; (v, v;)} = max{; (v, v;)} = max{6;(vs, v;)} =
.= max{6;(v,, v;)},
min{6p(vy, v;)} = min{6p (v,, v;)} = min{6r(vs, v;)} =
.= min{8g(v,, v))}.

e(vy) = e(vy) = e(v3) =...= e(V).
Therefore G is self-centered.

CONCLUSION

In this paper, the concepts of length, distance, eccentricity,
radius, diameter, status, total status, median and central vertex
of a single valued neutrosophic graph have been investigated.
We have presented the concept of self-centered single valued
neutrosophic graph. Also some interesting properties of self-
centered single valued neutrosophic graphs followed by some
examples.
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