

Asia Mathematika

Volume 2 Issue 2 (2018) page: 41-48
Available online at www.asiamath.org

Semi-Compact and Semi-*Lindelöf* Spaces via Neutrosophic Crisp Set Theory

 $A.A.\ Salama^*,\ I.M. Hanafy\ and\ M.\ S.\ Dabash$ Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt.

Abstract

The aim of this paper is devoted to introduce and study the concepts of semi-compact (resp. semi-Lindelöf, locally semi-compact) spaces in a neutrosophic crisp topological space. Several properties, functions properties of neutrosophic crisp semi-compact spaces are studied. In addition to these, we introduce and study the definition of neutrosophic crisp semi-Lindelöf spaces and neutrosophic crisp locally semi-compact spaces. We show that neutrosophic crisp semi-compact spaces is preserved under neutrosophic crisp irresolute function and neutrosophic crisp pre-semi-closed function with neutrosophic crisp semi-compact point inverses.

Keywords: Neutrosophic crisp semi-compact spaces, Neutrosophic crisp semi-Lindelöf spaces, Neutrosophic crisp locally semi-compact spaces. Neutrosophic topological spaces

1. Introduction and preliminaries

Neutrosophic Crisp Sets were introduced by Salama & Smarandache in 2015. Neutrosophic topological spaces and many applications have been investigated by Salama et al. [5, 7, 8, 9] and [11-21]. The notions and terminologies not explained in this paper may be found in [9]. Some definitions and results which will be needed in this paper are recalled here. *In this paper, we generalize the crisp semi-compact spaces* [1] and some notions in [2, 3, 4, 6] to the notion of neutrosophic crisp semi-compact spaces.

Definition 1.1 [9] For any non-empty fixed set X, a neutrosophic crisp set (NC-set, for short) A is an object having the form $A = \langle A_1, A_2, A_3 \rangle$, where A_1, A_2 and A_3 are subsets of X satisfying $A_1 \cap A_2 = \emptyset$, $A_1 \cap A_3 = \emptyset$ and $A_3 \cap A_2 = \emptyset$.

Several relations and operations between *NC*-sets were defined in [8].

Definition 1.2 [9] A neutrosophic crisp topology (*NCT*, for short) on a non-empty set X is a family Γ of neutrosophic crisp subsets of X satisfying the following axioms

- i) $\emptyset_N, X_N \in \Gamma$.
- ii) $A_1 \cap A_2 \in \Gamma$ for any A_1 and $A_2 \in \Gamma$.
- iii) $\bigcup A_i \in \Gamma$ for any $\{A_i, j \in J\} \subseteq \Gamma$.
- * Corresponding author: drsalama44@gmail.com
- Received: 18 June 2018; Accepted: 06 July 2018.

©Asia Mathematika

In this case the pair (X, Γ) is called a neutrosophic crisp topological space (NCTS, for short) in X. The elements in Γ are called neutrosophic crisp open sets (NC-open sets for short) in X. A NC-set F is said to be neutrosophic crisp closed set (NC-closed set, for short) if and only if its complement F^c is a NC-open set.

Definition 1.3 [8] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NC*-set in X. Then the neutrosophic crisp closure of A (*NCcl*(A) for short) and neutrosophic crisp interior (*NCint*(A) for short) of A are defined by:

- (i) $NCcl(A) = \bigcap \{K: K \text{ is a } NC\text{-closed set in } X \text{ and } A \subseteq K\}$
- (ii) $NCint(A)=\bigcup \{G: G \text{ is a } NC\text{-open set in } X \text{ and } G\subseteq A\}$

It can be also shown that NCcl(A) is a NC-closed set, and NCint(A) is a NC-open set in X.

Definition 1.4 [7] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NCS* in X, then A is called:

- i) Neutrosophic crisp α -open set iff $A \subseteq NCint(NCcl(NCint(A)))$.
- ii) Neutrosophic crisp semi-open set iff $A \subseteq NCcl$ (NCint (A)).
- iii)Neutrosophic crisp pre-open set iff $A \subseteq NCint(NCcl(A))$.

Definition 1.5 [3,10] A subset A of space X is called semi-compact relative to X if any semi-open cover of A in X has a finite subcover of A.

Definition 1.6 [10] A subset A of a space X is called semi-Lindelöf in X if any semi-open cover of A in X has a countable subcover of A.

Definition 1.7 [5] Let (X, Γ) be a *NCTS* and $A = \langle A_1, A_2, A_3 \rangle$ be a *NCS* in X, then $f: X \longrightarrow X$ is *NC*semi-continuous if the inverse image of *NC*semi-open set is *NC*semi-open.

2. Neutrosophic Crisp Semi-compact Spaces.

Definition 2.1 Let (X, Γ) be a *NCTS*.

- (i) If a family $\{(G_{i_1},G_{i_2},G_{i_3}): i\in I\}$ of NC-semiopen sets in X satisfies the condition $X_N = \bigcup\{(G_{i_1},G_{i_2},G_{i_3}): i\in I\}$, then it is called a NC-semiopen cover of X.
- (ii) A finite subfamily of a NC-semiopen cover $\{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i=1,2,3,...,n\}$ on X, which is also a NC-semiopen cover of X, is called a finite sub cover of NC-semiopen sets.

Definition 2.2A *NCTS* (X, Γ) is called neutrosophic crisp semi-compact spaces (NC-semi-compact, for short) if any NC-semiopen cover of X has a finite subcover.

Definition 2.3

A family $\{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle : i \in I\}$ of *NC*-semiclosed sets in *X* satisfies the finite intersection property (*FIP* for short) iff every finite subfamily $\{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle : i = 1, 2, 3, \ldots, n\}$ of the family satisfies the condition $\bigcap_i \{\langle k_{i_1}, k_{i_2}, k_{i_3} \rangle : i = 1, 2, 3, \ldots, n\} \neq \Phi_N$.

Theorem 2.4 A *NCTS* (X, Γ) is *NC*-semi-compact iff every family $\{(G_{i_1}, G_{i_2}, G_{i_3}): i \in I\}$ of *NC*-semiclosed sets in *X* having the *FIP* has a nonempty intersection.

Proof. Let *X* be a *NC*-semi-compact space and $\mathcal{G} = \{ \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I \}$ be a cover of *NC*-semiopen sets of *X* having the *FIP*. Suppose that $\bigcap \{ \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I \} = \Phi_N$, then $\{X \setminus \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I \}$ is a

NC-semiopen cover of *X* and must contain a finite subcover $\{X \setminus (G_{i_1}, G_{i_2}, G_{i_3}): i=1,2,3,\ldots,n\}$ for *X*. This implies that $\bigcap \{(G_{i_1}, G_{i_2}, G_{i_3}): i=1,2,3,\ldots,n\} = \Phi_N$ this contradicts our assumption

that G has a FIP. Conversely, assume that X is not NC-semi-compact. Then there exists a NC-semiopen cover $\{\langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I\}$ for X, which contain a finite subcover for X. Thus, $\{X \setminus \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I\}$ is a family of NC-semiclosed sets of X having the FIP. Moreover, we have $\bigcap \{X \setminus \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I\} = \Phi_N$. This complete the proof.

Definition 2.5A subset $u=\langle u_1,u_2,u_3\rangle$ of a *NCTS* (X,Γ) is called *NC*-semi-compact relative to X if any *NC*-semiopen cover of u in X has a finite subcover of u. By *NC*-semi-compact in X, we will mean *NC*-semi-compact relative to X.

Definition 2.6 A subset $u=\langle u_1,u_2,u_3\rangle$ of a *NCTS* (X,Γ) is called *NC*-semi-Lindelöf in X if any *NC*-semiopen cover of u in X has a countable subcover of u.

Remark 2.7

Since the family of all $NC\alpha$ -open subset of a NCTS (X, Γ) , denoted by Γ^{α} is NCT on X finer that Γ , then the family of all NC-semiopen subsets of (X,Γ^{α}) is equal to the family of all NC-semiopen subsets of (X,Γ^{α}) . Hence, it easily to see that a NC-set u of (X,Γ) is NC-semi-compact (respNC-semi-Lindelöf) in X iff it is NC-semi-compact (resp. NC-semi-Lindelöf) in (X,Γ^{α}) .

Theorem 2.8 The finite (resp. countable) union of *NC*-semi-compact (resp. *NC*-semi-Lindelöf) sets in a *NCTSX* is a *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in *X*.

Proof. obvious.

Lemma 2.9 Let $u \subseteq v \subseteq X$, where X is a *NCTS*. Then u is *NC*-semiopen set in v, if u is *NC*-semiopen set in X.

Theorem 2.10 Let v be a NC-preopen subset of a NCTSX and $u \subseteq v$. If u is NC-semi-compact (resp. NC-semi-Lindelöf) in X, then u is NC-semi-compact (resp. NC-semi-Lindelöf) in v.

Proof. Suppose that $G = \{ \langle G_{i_1}, G_{i_2}, G_{i_3} \rangle : i \in I \}$ is a cover of u by NC-semiopen sets in v. Using lemma 2.9, $G_{i_j} = S_{i_j} \cap v$ for each $i \in I$, j = 1,2,3, where S_{i_j} is NC-semiopen set in X for each $i \in I$, j = 1,2,3. Thus $\xi = \{ \langle S_{i_1}, S_{i_2}, S_{i_3} \rangle : i \in I \}$ is a cover of u by NC-semiopen set in X, but u is NC-semi-compact in X, so there exists $i = 1,2,3,\ldots,n$, j = 1,2,3. Such that $u \subseteq \bigcup_{i=1}^n S_{i_j}$ and thus $u \subseteq \bigcup_{i=1}^n (S_{i_j} \cap v)$

 $=\bigcup_{i=1}^{n} G_{i_j}$. Hence u is NC-semi-compact in v.

The other case is similar.

Corollary 2.11 Let v be NC-open ($NC\alpha$ -open) set of NCTS and $u \subseteq v$, if u is NC-semi-compact (resp. NC-semi-Lindelöf) in X, then u is NC-semi compact (resp. NC-semi-Lindelöf) in v.

Proof. It is obviously, since each NC-open set is $NC\alpha$ -open set and also NC-preopen set.

Lemma 2.12 Let $u \subseteq v \subseteq X$, where X is a NCTS and v is a NC-preopen set in X, then u is NC-semiopen (resp. NC-semiclosed) in viff $u = S \cap v$, where S is NC-semiopen (resp. NC-semiclosed) in X.

Proof. Obvious.

Theorem 2.13 Let v be a NC-preopen subset of NCTSX and $u \subseteq v$. Then u is NC-semi compact (resp. NC-semi-Lindelöf) in X iff u is NC-semi compact (resp. NC-semi-Lindelöf) in v.

Proof. Necessity. It follows from Theorem 2.8 sufficiency. Suppose that $\xi = \{\langle S_{i_1}, S_{i_2}, S_{i_3} \rangle : i \in I \}$ is a cover of u be NC-semiopen sets in X. Then $G = \{S_{i_j} \cap v : i \in I, j = 1, 2, 3\}$ is a cover of u. Since S_{i_j} is NC-semiopen in X for each $i \in I$ and v is NC-preopen in X, it follows from Lemma 2.12 that $S_{i_j} \cap v$ is NC-semiopen set in v for each $i \in I$, j = 1, 2, 3, but u is NC-semi-compact in v, so there exists $i \in I$, j = 1, 2, 3 that $u \subseteq \bigcup_{i=1}^n S_{i_j} \cap v \subseteq \bigcup_{i=1}^n S_{i_j}$. Hence, u is v-semi-compact in v.

The other case is similar.

Corollary 2.14 A NC-preopen subset u of X is NC-semi compact (resp. NC-semi-Lindelöf) iff u is NC-semi compact (resp. NC-semi-Lindelöf) in X.

Corollary 2.15 A NC-open ($NC\alpha$ -open) subset u of X is NC-semi compact (resp. NC-semi-Lindelöf) if u is NC-semi compact (resp. NC-semi-Lindelöf) in X.

Theorem 2.16 Let v be a NC-semi-compact (resp. NC-semi-Lindelöf) set in a NCTSX and v be is NC-semiclosed of X. Then $u \cap v$ is NC-semi-compact (resp. NC-semi-Lindelöf) in X.

Proof. Suppose that $G = \{G_{i_j} : i \in I, j=1,2,3\}$ is a cover of $u \cap v$ by NC-semiopen set in X. Then $G = \{G_{i_j} : i \in I, j=1,2,3\} \cup \{X \setminus v\}$ is a cover of u by NC-semiopen sets in X, but u is NC-semi-compact in X, so there exists $i = 1,2,3,\ldots,n$, j = 1,2,3 such that $u \subseteq (\bigcup_{i=1}^n S_{i_j}) \cup \{X \setminus v\}$. Thus $u \cap v \subseteq \bigcup_{i=1}^n (S_{i_j} \cap v) \subseteq \bigcup_{i=1}^n S_{i_j}$. Hence, $u \cap v$ is NC-semi-compact in X.

The other case is similar.

Corollary 2.17A NC-semiclosed subset u of a NC-semi-compact (resp. NC-semi-Lindelöf) space X is NC-semi-compact (resp. NC-semi-Lindelöf) in X.

Remark 2.18 From the Definition 2.1 of NC-semi-compact space, one may deduce that: NC-semi-compact space $\Rightarrow NC$ -compact space, but the inverse direction may not be true in general as show by the following example.

Example 2.19 Let (X, Γ) be a *NCTS*, where X is infinite, and $\Gamma = \{X_N, \Phi_N\} \cup \{P\}$ where $P = \langle \{p_1\}, \{p_2\}, \{p_3\} \rangle$ be a *NC*-point in X. Then (X, Γ) is *NC*-compact but not *NC*-semi-compact, since $\{\langle \{x, p_1\}, \{x, p_2\}, \{x, p_3\} \rangle : x \in X\}$ is *NC*-semiopen cover of X which has no finite subcover.

3. Functions and Neutrosophic Crisp Semi-compact Spaces

Definition 3.1 A function f from a NCTSX into a NCTSY is called NC-irresolute if the inverse image of each NC-semiopen set in X, is a NC-semiopen set in Y.

Theorem 3.2Let $f:(X,\Gamma_1) \longrightarrow (Y,\Gamma_2)$ be a *NC*-irresolute function. Then

- (i) If u is NC-semi-Lindelöf in X, then f(A) is NC-semi-Lindelöf in Y.
- (ii) If u is NC-semi-compact in X, then f(A) is NC-semi-compact in Y.

Proof. We will proof (i) and (ii) is similar.

Suppose that $G = \{\langle G_{i_j} \rangle : i \in I, j=1, 2, 3\}$ is a cover of f(A) by NC-semiopen sets in Y. Then $\mathfrak{F} = \{\langle f^{-1}(G_{i_j}) \rangle : i \in I, j=1,2,3\}$ is a cover of u, but f is NC-irresolute function, so $\langle f^{-1}(G_{i_j}) \rangle$ is NC-semiopen sets in X for each $i \in I$, j=1,2,3. Since u is NC-semi-Lindelöf in X, there exists $i_1,i_2,i_3,\ldots,\in I$ such that $u \subseteq \bigcup_{i=1}^{\infty} \langle f^{-1}(G_{i_j}) \rangle$. Thus $f(u) \subseteq \bigcup_{i=1}^{\infty} \langle f(f^{-1}(G_{i_j})) \rangle \subseteq \bigcup_{i=1}^{\infty} \langle G_{i_j} \rangle$. Hence, f(A) is NC-semi-Lindelöf in X.

Corollary 3.3If a function $f:(X,\Gamma_1) \longrightarrow (Y,\Gamma_2)$ is a *NC*-irresolute (resp. *NC*-semi continuous) surjective and *X* is *NC*-semi-compact, then *Y* is *NC*-semi-compact (resp. *NC*-compact).

Definition 3.4 A function f from a NCTSX into a NCTSY is called NC-pre-semiopen (resp. NC-pre-semiclosed) if the image of each NC-semiopen (resp. NC-semiclosed) subsets of X is NC-semiopen (resp. NC-semiclosed) subsets of Y.

Theorem 3.5Let $f:(X,\Gamma_1) \to (Y,\Gamma_2)$ be a *NC*-pre-semiclosed surjection. If for each *NC*-point $y = (\{y_1\},\{y_2\},\{y_3\})$ in Y, $f^{-1}(y) = (f^{-1}\{y_1\},f^{-1}\{y_2\},f^{-1}\{y_3\})$ is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X, then $f^{-1}(u)$ is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in X, where u is *NC*-semi-compact (resp. *NC*-semi-Lindelöf) in Y.

Proof. Will show the case when u is NC-semi-compact in X, the other case is similar. Let $G = \{\langle f^{-1}(G_{i_j}) \rangle : i \in I, j=1,2,3 \}$ is a cover of $f^{-1}(u)$ by NC-semiopen sets in X. Then it follows by assumption that for each NC-point $y = \langle \{y_1\}, \{y_2\}, \{y_3\} \rangle$ in Y, there exists a finite subcollection G_j^Y of G such that $f^{-1}(y) \subseteq \bigcup G_j^Y$. Let $H_{y_j} = \bigcup G_j^Y$. Then H_y is NC-semiopen in X where any union of NC-semiopen sets is NC-semiopen. Let $F_{y_j} = Y \setminus f(X \setminus H_{y_j})$. Then F_{y_j} is NC-semiopen in Y where f is NC-pre-semiclosed, also $y_i \in F_{y_j}$; for each $y_i \in u$, since $f^{-1}(y) \subseteq H_{y_j}$. Thus the family $\{H_{y_j}: y_j \in u\}$ is a cover of u by NC-semiclosed sets in Y, but u is NC-semi-compact in

Y, so there exists $y_1, y_2, \dots, y_n \in u$ such that $u \subseteq \bigcup_{i=1}^n F_{y_{ij}}, j=1,2,3$. Thus $f^{-1}(u) \subseteq \bigcup_{i=1}^n f^{-1}(F_{y_{ij}}) \subseteq F_{y_{ij}}$.

Since $\mathcal{G}_j^{y_i}$ is a finite sub collection of \mathcal{G} for each $i=1,2,\ldots,n, j=1,2,3$, it follows that $\bigcup_{i=1}^n \mathcal{G}_j^{y_i}$ is a finite sub collection of \mathcal{G} . Hence, $f^{-1}(u)$ is NC-semi-compact in X.

Corollary 3.6 Let $f:(X,\Gamma_1) \to (Y,\Gamma_2)$ be a *NC*-pre-semiclosed surjection. and $f^{-1}(y)$ is *NC*-semicompact in X, for each *NC*-point $y = (\{y_1\}, \{y_2\}, \{y_3\})$ in Y. If Y is *NC*-semi-compact, so is X.

Definition 3.7 A *NCTS* (X, Γ) is called *NC*-Hausdorff space if for each distinct *NC*-points x and y of X, there exists two disjoint *NC*-open sets u and v of X containing x and y, respectively.

Theorem 3.8Let $f:(X,\Gamma_1) \longrightarrow (Y,\Gamma_2)$ is a *NC*-irresolute function from a *NC*-semi-compact space *X* into a *NC*-Hausdorff space *Y*, then

- (i) f is NC-pre-semiclosed.
- (ii) f is NC-semi-homomorphism if it is bijective.

Proof. Let u be a NC-semiclosed set of X. Then u is NC-semi-compact in X, (by Corollary 2.17). By Theorem 3.2, f(u) is NC-semi-compact in Y and hence it is NC-semi-compact. Since Y is NC-Hausdorff, then f(A) is NC-closed set in Y and NC-semiclosed. hence f is NC-presemiclosed.

(ii) Obvious.

4. Locally Neutrosophic Crisp Semi-compact Spaces

Definition 4.1 A NCTSX is said to be locally neutrosophic crisp semi-compact (LNC-semi-compact, for short) if each NC-point of X has a NC-open neighborhood which is a NC-semi-compact X.

Remark 4.2 It is obvious that every *NC*-semi-compact space is L*NC*-semi-compact but the converse may not be true as show by the following example.

Example 4.3Let (X, Γ) be an infinite discrete *NCTS*. It is obvious that (X, Γ) is *LNC*-semicompact but not *NC*-semi-compact.

Remark 4.4 Every *LNC*-semi-compact space is *LNC*-compact, but the converse may not be true as shown by the following example.

Example 4.5 By Example 2.19 shows that a *NCTS* (X, Γ) is *LNC*-compact but not *LNC*-semicompact.

Remark 4.6 From the above discussion one can draw the following diagram:

Theorem 4.7 A NCTSX is LNC-semi-compact iff for each NC-point $x \in X$, there exists a NC-open setu in X which is LNC-semi-compact containing x.

Proof. Let $u = \{\langle u_{i_1}, u_{i_2}, u_{i_3} \rangle : i \in I\}$ be a *NC*-open set in *X* containing $x = \langle \{x_1\}, \{x_2\}, \{x_3\} \rangle$ which is *LNC*-semi-compact. Then there exists a *NC*-open neighbourhood $v = \{\langle v_{i_1}, v_{i_2}, v_{i_3} \rangle : i \in I\}$ of x in u which is a *NC*-semi-compact in u. Since u is *NC*-open in x, so is v and by Corollary 2.11, v is *NC*-semi-compact in x. This shows that x is *LNC*-semi-compact.

The proof of the converse is obvious.

Theorem 4.8 A NCTSX is LNC-semi-compact iff for each NC-point of X has a NC-open neighbourhood which is LNC-semi-compact in X.

Proof. This follows from Corollary 2.15.

Theorem 4.9 Let $f:(X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ be a *NC*-open, *NC*-semi continuous surjection. and *X* is *LNC*-semi-compact space, then *Y* is *LNC*-semi-compact.

Proof. For any NC-point $y \in Y$, there exists NC-point $x \in X$ such that f(x) = y. Since X is LNC-semi-compact, there exists a NC-open neighborhood U_x of x which is NC-semi-compact in X. Hence $f(U_x)$ is NC-open neighborhood of y which is NC-semi-compact in Y. Therefore, by Theorem 4.8 is LNC-semi-compact.

Theorem 4.10 Let $f:(X, \Gamma_1) \rightarrow (Y, \Gamma_2)$ be a *NC*-pre-semiclosed, *NC*-continuous surjection. and $f^{-1}(y)$ is *NC*-semi-compact in X, for each *NC*-point $y \in Y$. If Y is *LNC*-semi-compact, so is X.

Proof. Let x is NC-point of X, by Theorem 4.8, there exists a NC-open neighborhood v of f(x) such that v is NC-semi-compact in X. Then $f^{-1}(v)$ is a NC-open neighborhood of X. By Theorem 3.5, $f^{-1}(v)$ is NC-semi-compact in X. This shows that X is LNC-semi-compact.

5. Conclusion

The paper deals with the concept of semi-compact ness (resp. semi-Lindelöf) in the generalized setting of a neutrosophic crisp topological space. We achieve a number of a neutrosophic crisp semi-compact (resp. neutrosophic crisp semi-Lindelöf) space. Also, we introduce and study the concept of neutrosophic crisp locally semi-compact spaces.

References

- [1] M. C. Cueva and J. Dontchev, "On spaces with hereditarily compact α-topologies," *ActaMathematicaHungarica*, vol. 82, no. 1-2, pp. 121–129, 1999.
- [2] J. Dontchev and M. Ganster, "On covering spaces with semi-regular sets," *Ricerche di Matematica*, vol. 45, no. 1, pp. 229–245, 1996.
- [3] C. Dorsett, "Semi-compactness, semiseparation axioms, and product spaces," *Bulletin of the Malaysian Mathematical Sciences Soceity*, vol. 4, no. 1, pp. 21–28, 1981.
- [4] M. Ganster, "On covering properties and generalized open sets in topological spaces," *Mathematical Chronicle*, vol. 19, pp. 27–33, 1990.
- [5] I.M.Hanafy, A.A.Salama, Hewayda ElGhawalby and M.S.Dabash, "Some GIS Topological Concepts via Neutrosophic Crisp Set Theory", To be published in the book titled "New Trends in Neutrosophic Theories and Applications", Publisher: Europa Nova, Brussels, 2016.
- [6] I. L. Reilly and M. K. Vamanamurthy, "On α-continuity in topological spaces, "Acta Mathematica Hungarica", vol. 45, no. 1-2, pp. 27–32, 1985.
- [7] A.A.Salama, "Fuzzy Hausdorff spaces and fuzzy irresolute functions via fuzzy ideals", *V Italian-Spanish Conference on General Topology and its Applications* June 21-23, 2004 Almeria, Spain.
- [8] A.A.Salama, F. Smarandache and ValeriKroumov. "Neutrosophic crisp Sets & Neutrosophic crisp Topological Spaces", *Neutrosophic Sets and System*, Vol. (2), (2014), 25-30

- [9] A.A.Salama and Florentin Smarandache,"Neutrosophic crisp set theory", *Educational Publisher, Columbus*, (2015).USA.
- [10] Mohammad S. Sarsak, "On Semi-compact Set and Associated Properties", *International Journal of Mathematics and mathematical sciences*, vol. 3, pp. 8, (2009).
- [11] A. A. Salama, F. Smarandache, S. A Alblowi, New neutrosophic crisp topological concepts, Neutrosophic Sets and Systems 2 (2014) 50 54.
- [12] A. A. Salama, Hewayda ElGhawalby, Asmaa.M.Nasr, Retract Neutrosophic Crisp System for Gray Scale Image, Asian Journal of Mathematics and Computer Research, ISSN No.: 2395-4205 (Print), 2395-4213 (Online), Vol.: 24, Issue.: 3, pp104-117
- [13] Eman.M.El-Nakeeb, Hewayda ElGhawalby, A. A. Salama, S.A. El-Hafeez. (2017). Neutrosophic Crisp Mathematical Morphology, Neutrosophic Sets and Systems, Vol. 16, 57-69. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispMathematicalMorphology.pdf
- [14] A.A. Salama, Hewayda, ElGhawalby and Shimaa Fathi Ali. (2017). Topological Manifold Space via Neutrosophic Crisp Set Theory, Neutrosophic Sets and Systems, Vol.15, 18-21. http://fs.gallup.unm.edu/NSS/TopologicalManifoldSpace.pdf
- [15] A. A. Salama, I. M. Hanafy, Hewayda Elghawalby, M. S. Dabash. (2016). Neutrosophic Crisp α-Topological Spaces, Neutrosophic Sets and Systems, vol. 12, 92-96. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispAlphaTopologicalSpaces.pdf
- [16] A. A. Salama, Said Broumi and Florentin Smarandache. (2014). Introduction to Neutrosophic Topological Spatial Region, Possible Application to GIS Topological Rules. I.J. Information Engineering and Electronic Business, 6, pp15-21. http://www.gallup.unm.edu/~smarandache/IntroductionToNeutrosophicTopological.pdf
- [17] A. A. Salama. (2013). Neutrosophic Crisp Points & Neutrosophic Crisp Ideals, Neutrosophic Sets and Systems, Vol. 1, 50-53. http://fs.gallup.unm.edu/NSS/NeutrosophicCrispPointsNeutrosophic.pdf
- [18] A. A. Salama, Florentin Smarandache. (2013). Filters via Neutrosophic Crisp Sets, Neutrosophic Sets and Systems, vol. 1, 34-37. http://fs.gallup.unm.edu/NSS/FiltersViaNeutrosophicCrispSets.pdf
- [19] A.A. Salama, S.A. Alblowi. (2012). Generalized neutrosophic set and generalized neutrosophic topological spaces. Computer Science and Engineering. 2, 129-132. http://article.sapub.org/10.5923.j.computer.20120207.01.html
- [20] A.A. Salama and S.A. Alblowi. (2012). Neutrosophic Set and Neutrosophic Topological Space, ISOR J. mathematics (IOSR-JM), 3 (4), 31-35. http://www.gallup.unm.edu/~smarandache/NeutrosophicSetAndNeutrosophic.pdf
- [21] A. A. Salama. (2015). Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to GIS Topology, Neutrosophic Sets and Systems, vol. 7, pp. 18-22. http://fs.gallup.unm.edu/NSS/BasicStructureOfSomeClasses.pdf