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Abstract— In this research paper, a new approach is 

proposed for computing the shortest path length from source 

node to destination node in a neutrosophic environment. The 

edges of the network are assigned by trapezoidal fuzzy 

neutrosophic numbers. A numerical example is provided to show 

the performance of the proposed approach.  
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                                        I. INTRODUCTION  

Smarandache [1] proposed the concept of neutrosophic 
sets (in short NSs) as a means of expressing the 
inconsistencies and indeterminacies that exists in most real-
life problems. The proposed concept generalized fuzzy sets 
and intuitionistic fuzzy set theory [3, 4]. The notion of NSs is 
described with three functions: truth, an indeterminacy and a 
falsity, where the functions are totally independent, the three 
functions are inside the unit interval  ]

−
0, 1

+
[. To practice NSs 

in real life situations efficiently. A new version of NSs named 
Single valued Neutrosophic Sets (in short SVNSs) was 
defined by Smarandache in [1]. Subsequently Wang et al. [5] 
defined various operations and operators for the SVNS model. 
Additional literature on single valued neutrosophic sets can be 
found in [6-14, 16]. Also later on, Smarandache extended the 
neutrosophic set to neutrosophic overset, underset, and offset 
[15]. Ye [17] presented the concept of trapezoidal fuzzy 
neutrosophic set (in short TrFNSs) and studied some 
interesting results with proofs and examples. In TrFNSs, the 
truth, the indeterminate and the false membership degrees are 
expressed with Trapezoidal Fuzzy Numbers (TrFN) instead of 
real numbers. Smarandache and Kandasamy [25, 28-29] 
introduced the concept of neutrosophic graph based on the 
indeterminacy component (I). Later on, in [18-23, 26-27] 
Broumi et al. introduced different types of neutrosophic graph 
based on the neutrosophic values (T, I, F) including single 
valued neutrosophic graphs, interval valued neutrosophic 
graphs and bipolar neutrosophic graphs. In graph theory, the 
shortest path problems (in short SPP) is one of the known 

famous problems studied in the numerous discipline including 
operation research, computer science, communication network 
and so on. In the literature, many research papers have been 
focused seriously on fuzzy shortest path problems and their 
extensions [30-39]. Till now, few research papers deal with 
shortest path problems in neutrosophic environment. In [40-
44], Broumi et al. presented some algorithms for solving the 
shortest path problems in neutrosophic environment. All these 
algorithms are based on the score functions. In this paper, the 
addition operation and the order relation have been given by 
Ye [17]. In this research paper, our main objective is to 
solving the shortest path problems in a network, where the 
edges weight are represented by trapezoidal fuzzy 
neutrosophic numbers. 

  
This paper is constructed as follows: In Section 2, some 

basic definitions of neutrosophic sets, SVN-sets and 
trapezoidal fuzzy neutrosophic sets are introduced. In section 
3, a new proposed algorithm for computing the trapezoidal 
fuzzy neutrosophic shortest path problem on a network is 
presented. In Section 4, a numerical example is given for 
computing the shortest path and shortest distance from the 
source node to destination node. We conclude the paper in 
Section 5.  

II. PRELIMINARIES 

 
 In this section, some definitions related to the concept of 

neutrosophic sets, single valued neutrosophic and trapezoidal 
fuzzy neutrosophic sets are taken from [2, 5, 17] 

 

Definition 2.1 [2] Let ζ   be a universal set. The 

neutrosophic set A on the universal set ζ  categorized into 

three membership functions called the true ( )AT x , 

indeterminate ( )AI x  and false ( )AF x contained in real 
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standard or non–standard subset of  ]
-
0, 1

+
[ respectively and 

denoted as following  

A= {<x: ( )AT x , ( )AI x , ( )AF x > x ζ∈ }        (1) 

Definition 2.2 [5]  Let ζ   be a universal set. The single 

valued neutrosophic sets (in short SVNS) A on the universal  is 
denoted as following: 

A= {<x: ( )AT x , ( )AI x , ( )AF x >, x ζ∈ }        (2) 

The function ( )AT x ∈   [0, 1], ( )AI x   ∈  [0, 1]   and  ( )AI x  

∈  [0, 1] are named “degree of truth, indeterminacy and falsity 
membership of x in A”, satisfy the following condition: 

0 ≤  ( )AT x + ( )AI x + (x)AF ≤ 3              (3) 

 

   Definition 2.3 [17]. Let ζ  be a universal set and  ψ  [0, 1] 

be the sets of all trapezoidal fuzzy numbers on [0, 1]. The 

trapezoidal fuzzy neutrosophic sets ( in short TrFNSs) A
(

 on 
the universal is denoted as following: 

           A
(

= {<x: ( )AT x
(

, ( )AI x
(

, ( )AF x
(

>, x ζ∈ }        (4) 

 

 Where [ ](x) : 0,1AT ζ ψ→
(

,  [ ](x) : 0,1AI ζ ψ→
(

  and 

[ ](x) : 0,1AF ζ ψ→
(

. The trapezoidal fuzzy numbers 

(x)AT
(

= (
1T ( )A x ,

2T ( )A x ,
3T ( )A x ,

4T ( )A x ),                    (5)                            

( )AI x
(

= (
1
(x)AI ,

2
(x)AI ,

3
(x)AI ,

4
(x)AI ) and                  (6)              

( )AF x
(

= (
1(x)AF ,

2 (x)AF ,
3 (x)AF ,

4 (x)AF ), respectively 

denotes   degree of truth, indeterminacy and falsity  

membership  of x in A
(

   x ζ∀ ∈ . 

 

            0 ≤ 
4T ( )A x + 

4 ( )AI x + 
4 ( )AF x ≤ 3.                     (7)   

 

For notational convenience, the trapezoidal fuzzy 

neutrosophic value (TrFNV) A%  is denoted by 

1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , , , ), ( , , , )A t t t t i i i i f f f f=
(

where,  

 

( 1T (x)A , 2T (x)A , 3T (x)A ,
4T (x)A ) = 1 2 3 4( , , , )t t t t ,        (8)                      

( 1 (x)AI , 2 (x)AI , 3 (x)AI ,
4 (x)AI ) = 1 2 3 4( , , , )i i i i , and    (9)                            

( 1 (x)AF , 2 (x)AF , 3 (x)AF ,
4 (x)AF ) = 1 2 3 4( , , , )f f f f      (10)  

with 1 2 3 4t t t t≤ ≤ ≤ ,  1 2 3 4i i i i≤ ≤ ≤    and 1 2 3 4f f f f≤ ≤ ≤     

 

where, the truth membership function is given as bellow: 

1
1 2

2 1

2 3

1
3 4

2 1

1
( )

0

A

x t
t x t

t t

t x t
T x

x t
t x t

t t

otherwise

− ≤ ≤ −


≤ ≤
=  − ≤ ≤
 −



(
                  (11) 

 The indeterminacy membership  is given as below: 

 

1
1 2

2 1

2 3

4
3 4

4 3

1
(x)

0

A

x i
i x i

i i

i x i
I

i x
i x i

i i

otherwise

− ≤ ≤ −


≤ ≤
=  − ≤ ≤
 −



(
           (12) 

 

And the falsity membership function is given as below: 

1
1 2

2 1

2 3

4
3 4

4 3

1
( )

0

A

x f
f x f

f f

f x f
F x

f x
f x f

f f

otherwise

− ≤ ≤ −


≤ ≤
=  − ≤ ≤
 −



(
         (13)     

 

Definition 2.4 [17].  The trapezoidal fuzzy neutrosophic 

number 1 2 3 4 1 2 3 4 1 2 3 4( , , , ),( , , , ), ( , , , )A t t t t i i i i f f f f=
(

 is said 

to be trapezoidal fuzzy neutrosophic zero if and only if   

1 2 3 4( , , , )t t t t =  (0, 0, 0, 0),  1 2 3 4( , , , )i i i i  = ( 1, 1, 1, 1) and 

1 2 3 4( , , , )f f f f =( 1, 1, 1, 1)                                            (14)                                                  

                                                                                             

Definition 2.5 [17]. Let 1A
(

  and  2A
(

 two TrFNVs defined on 

the set of real numbers,  denoted as : 

 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), (c , , , )A a a a a b b b b c c c=
(

 and 

2 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A e e e e f f f f g g g g=
(

 and 0η > . 

Hence , the operations rules are defined as following:  

(i) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 2 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( ), ( ),
,

( ), ( )

((b ), (b ), (b ), (b )),

( ), ( ), ( ), ( ))

a e a e a e a e

a e a e a e a e

A A f f f f

c g c g c g c g

+ − + − 
 + − + − 

⊕ =
( ( (15) 
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(ii) 

1 1 2 2 3 3 4 4

1 1 1 1 2 2 2 2
1 2

3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , , ),

( ) , (b ),
,

( ), (b )

( ), (c ),

( ), (c )

a e a e a e a e

b f b f f b f
A A

b f b f f b f

c g c g g c g

c g c g g c g

+ − + − 
⊗ =  + − + − 

+ − + − 
 + − + − 

( (
 

 

                                                                                          (16) 

(iii) 

1 2

3 4

1 2 3 4 1 2 3 4

(1 (1 ) ), (1 (1 ) ),

(1 (1 ) ), (1 (1 ) )

( , , , ), ( , c , c ,c )

a a

A a a

b b b b c

η η

η η

η η η η η η η η

η

 − − − −
 
 = − − − − 

(

     

 

                                                                                          (17) 

(iv) 

( )
( )

1 2 3 4

1 2 3 41

1 2 3 4

( , , , ),

(1 (1 ) ),(1 (1 ) ),(1 (1 ) ),1 (1 ) ) ,

(1 (1 ) ),(1 (1 ) ),(1 (1 ) )), (1 (1 ) )

a a a a

A b b b b

c c c c

η η η η

η η η η η

η η η η

= − − − − − − − −

− − − − − − − −

(
 

where 0η >                                                                         (18) 

 

Ye [17] gave the definition of score function 1( )s A
(

 and 

accuracy  function 1( )H A
(

to compare the grades of TrFNS. 

These functions shows that greater is the value, the greater is 
the TrFNS and by using these concept paths can be ranked. 

 

Definition 2.6. Let 1A
(

  be  a TrFNV denoted as 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A t t t t i i i i f f f f=
(

 Hence , the 

score function and  the  accuracy function   of  TrFNV are 

denoted as  below: 

(i)  

1 2 3 4 1 2 3 4
1

1 2 3 4

8 ( ) ( )1
( )

( )12

t t t t i i i i
s A

f f f f

+ + + + − + + + 
=  − + + + 

(

 

                                                                                          (19)                                                                                                                            

(ii) 1 1 2 3 4 1 2 3 4

1
( ) ( ) ( )

4
H A t t t t f f f f= + + + − + + +  

(
     (20)                

In order to make a comparisons between two TrFNV, Ye [17], 

presented the order relations between two TrFNVs.  

Definition 2.7 Let 1A
(

   and 2A
(

 be  two  TrFNV defined on 

the set of real numbers ,  denoted as 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A t t t t i i i i f f f f=
(

 and 

2 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A p p p p q q q q r r r r=
(

. Hence , the 

ranking method  is  defined as follows:  

i. If 1 2( ) ( )s A s A
( (

f , then 1A
(

 is greater than 2A
(

, that is, 

1A
(

is superior to 2A
(

, denoted by 1 2A A
( (
f  

ii. If  1 2( ) ( )s A s A=
( (

, and  1 2( ) (A )H A H
( (

f then 1A
(

 is 

greater than 2A
(

, that is, 1A
(

is superior to 2A
(

, denoted 

by 1 2A A
( (
f .                      

 

III. TRFN- SHORTEST PATH PROBLEM 

 
In this section, the edge length in a network is considered 

to be trapezoidal fuzzy neutrosophic number. To find the 
shortest path in a network , where the edges are characterized  
by trapezoidal fuzzy neutrosophic number. We present the 
following procedure : 

Step 1 Suppose 1d% = <(0, 0, 0, 0) (1, 1, 1, 1), (1, 1, 1, 1)> and 

label the source node1 as [ 1d% = < (0, 0, 0, 0),(1, 1, 1,1), (1, 1, 

1, 1)>, -] 

 

Let  n is the destination node. 

 

 Step 2:   Select jd% = min { i ijd d⊕% % } for all j= 2,3,…,n. 

 

Step 3:  If the minimum provided correspond to one value of i  

then label node j as [ jd% , i]. If the minimum provided 

correspond to several values of i, then it indicate that there 

exist more than one TrFN-path between the source node and 

the node j. Hence the TrFN-distance along path is jd% , so 

select any value of  i. 

 

 Step 4: Set the destination node n be labeled as  [ nd% ,l], then 

the TrFN-shortest path distance from source node to 

destination node is nd% . 

 

Step 5:  Since the destination node n is labeled [ nd% , l]. In 

order to find the TrFN-shortest path connecting the source 

node and the destination node, identify the label of the node l. 

Set it as [ ld% ,p], Repeat step 2 and step 3 until the node 1 is 

obtained.  

 

Step 6: To obtain the TrFN-shortest path, we should joining  

all the nodes provided by the step 5.  

IV. ILLUSTRATIVE EXAMPLE 

Consider a small network shown in the following figure 1 in 

which each edge length is represented by a trapezoidal fuzzy 

neutrosophic number (see table 1). This network includes 6 

nodes and 8 directed edges. This problem is to compute the 
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shortest path between source node and destination node in the 

given network.  

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.1. Trapezoidal fuzzy neutrosophic network. 

 

The edges weight of the trapezoidal fuzzy neutrosophic 

network are represented by trapezoidal fuzzy neutrosophic 

numbers.  

 
TABLE 1. THE EDGES WEIGHT OF THE TRAPEZOIDAL FUZZY 

NEUTROSOPHIC GRAPHS 

 

Edges Trapezoidal fuzzy neutrosophic distance 

1-2 <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)> 

1-3 <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)> 

2-3 <(0.3, 0.4, 0.6, 0.7), (0.1, 0.2, 0.3, 0.5), (0.3, 0.5, 0.7, 0.9)> 

2-5 <(0.1, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)> 

3-4 <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 0.6, 0.7), (0.4, 0.5, 0.6, 0.8)> 

3-5 <(0.3, 0.6, 0.7, 0.8), (0.1, 0.2, 0.3, 0.4), (0.1, 0.4, 0.5, 0.6)> 

4-6 <(0.4, 0.6, 0.8, 0.9), (0.2, 0.4, 0.5, 0.6), (0.1, 0.3, 0.4, 0.5)> 

5-6 <(0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6), (0.1, 0,3, 0.5, 0.6)> 

  
Using the algorithm proposed in section 2, we can 

determine the shortest path between any two nodes. Let node 
1 is the source node and node 6 is the destination node. 

Suppose  1d%  = <(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1)> and label 

the source node 1 as [<(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1)> ,-],  

the value 2d% , 3d% , 4d% , 5d% and 5d%  can be computed following 

the iterations described below:  

     

 Iteration1: The node 2 has on predecessor, which is node 2. 

Following the step 2 in the proposed algorithm, we put i=1and 

j=2, hence the value of   2d%  can be computed as follows: 

2d% = min{ 1 12d d⊕% % } = min{<(0, 0, 0), (1, 1, 1), (1, 1, 1)> ⊕  

<(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>= 

<(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)> 

 

So, the minimum provided  correspond to the node 1.Hence, 

the node 2 is labeled as 

[<(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>, 

1] 

2d% = <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 

0.8)> 

 

 Iteration 2: The node 3 has two predecessors, which are node 

1 and node 2. Following the step 2 in the proposed algorithm, 

we put i=1, 2and j=3, hence the value of  3d%   can be computed 

as follows: 

 

3d% =min { 1 13 2 23,d d d d⊕ ⊕% % % % }= min {<((0, 0, 0, 0), (1, 1, 1, 1), 

(1, 1, 1, 1)> ⊕  <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 

0.2, 0.3, 0.4)> , <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 

0.5, 0.6, 0.8)> ⊕  <(0.3, 0.4, 0.6, 0.7), (0.1, 0.2, 0.3, 0.5), (0.3, 

0.5, 0.7, 0.9)>} = min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), 

(0.1, 0.2, 0.3, 0.4)> ,  <(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 

0.15, 0.3), (0.12, 0.25, 0.42, 0.72)>} 

 

S (<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)>) 

using Eq.19, we have 

1 2 3 4 1 2 3 4
1

1 2 3 4

8 ( ) ( )1
( )

( )12

t t t t i i i i
s A

f f f f

+ + + + − + + + 
=  − + + + 

% =0.54 

S (<(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 0.15,0.3), (0.12, 0.25, 

0.42, 0.72)>) = 0.70 

Since S (<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 

0.4)>) < S (<(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 0.15,0.3), 

(0.12, 0.25, 0.42, 0.72)>) 

So, min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 

0.4)> ,  <(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 0.15, 0.3), (0.12, 

0.25, 0.42, 0.72)>} 

3d%  = <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 

0.4)> 

 

So, the minimum provided correspond to the node 1.Hence, 

the node 3 is labeled as [(<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 

0.9), (0.1, 0.2, 0.3, 0.4)>) , 1] 

3d% = <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 

0.4)> 

 

 Iteration 3: The node 4 has one predecessor, which is node 3. 

Following the step 2 in the proposed algorithm, we put i=1and 

j=4, hence the value of  4d%    can be computed as follows: 

4d% = min{ 3 34d d⊕% % }= min {<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 

0.9), (0.1, 0.2, 0.3,0.4)> ⊕  <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 0.6, 

0.7), (0.4, 0.5, 0.6, 0.8 )>} = <(0.36, 0.58, 0.75, 0.88), (0.06, 

0.25, 0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> 

So min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 

0.3,0.4)> ⊕  <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 0.6, 0.7), (0.4, 0.5, 

0.6, 0.8 )>}= <(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 0.36, 0.63), 

(0.04, 0.1, 0.18, 0.32)> 

 

 

 

 
 

 
 

 

 

1 

 

3 4 

6 

2 

5 
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So, the minimum provided correspond to the node 3.Hence, 

the node 4 is labeled as [<(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 

0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> ,3] 

4d% =<(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 0.36, 0.63), (0.04, 

0.1, 0.18, 0.32)> 

 

Iteration 4: The node 5 has two predecessors, which are node 

2 and node 3. Following the step 2 in the proposed algorithm, 

we put i=2, 3 and j=5, hence the value of 5d%   can be 

computed as follows: 

5d% = min{ 2 25 3 35,d d d d⊕ ⊕% % % % } = min{<(0.1, 0.2, 0.3, 0.5), 

(0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)> ⊕  <(0.1, 0.3, 0.4, 0.5), 

(0.3, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)>,   <(0.2, 0.4, 0.5, 0.7), 

(0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)> ⊕  <(0.3, 0.6, 0.7, 0.8), 

(0.1, 0.2, 0.3, 0.4), (0.1, 0.4, 0.5, 0.6)>} =  

min{<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 

0.06, 0.18, 0.56)> , <(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 0.18, 

0.36), (0.01, 0.08, 0.15, 0.42)>} 

S (<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 

0.06, 0.18, 0.56)>) = 0.69 

S (<(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 0.18, 0.36), (0.01, 0.08, 

0.15, 0.42)>) = 0.81 

Since S (<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), 

(0.02, 0.06, 0.18, 0.56)>)  S (<(0.44, 0.76, 0.85, 0.94), (0.03, 

0.1, 0.18, 0.36), (0.01, 0.08, 0.15, 0.42)>) 

min{<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 

0.06, 0.18, 0.56)> , <(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 0.18, 

0.36), (0.01, 0.08, 0.15, 0.42)>} 

= <(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 

0.06, 0.18, 0.56)>  

So, the minimum provided correspond to the node 2.Hence, 

the node 5 is labeled as [<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 

0.25, 0.42), (0.02, 0.06, 0.18, 0.56)>, 2] 

 5d% = <(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25,0.42), (0.02, 

0.06, 0.18, 0.56)> 

  Iteration 5: The node 6 has two predecessors, which are 

node 4 and node 5. Following the step 2 in the proposed 

algorithm, we put i=4, 5 and j=6, hence the value of  6d% can be 

computed as follows: 

6d% = min{ 4 46 5 56,d d d d⊕ ⊕% % % % }= min{<(0.36, 0.58, 0.75,0.88), 

(0.06, 0.25, 0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> ⊕  <(0.4, 0.6, 

0.8, 0.9), (0.2, 0.4, 0.5, 0.6), (0.1, 0.3, 0.4, 0.5)>,  <(0.19, 0.44, 

0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 0.06, 0.18, 0.56)> 

⊕  <(0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6), (0.1, 0.5,0.3, 

0.6)>} = min{<(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 0.18, 

0.37), (0.004, 0.03, 0.072, 0.16)>, <(0.352, 0.608, 0.748, 

0.88), (0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 

} 

S ( <(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 0.18, 0.37), (0.004, 

0.03, 0.072, 0.16)> ) = 0.87 

S (<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 0.25), 

(0.002, 0.03, 0.054, 0.34)> ) = 0.81  

Since S (<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 

0.25), (0.002, 0.03, 0.054, 0.34)>) <  S (<(0.616, 0.832, 0.95, 

0.98), (0.012, 0.1, 0.18, 0.37), (0.004, 0.03, 0.072, 0.16)>) 

min{<(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 0.18, 0.37), 

(0.004, 0.03, 0.072, 0.16)>, <(0.352, 0.608, 0.748, 0.88), 

(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> }= 

<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 0.25), 

(0.002, 0.03, 0.054, 0.34)>  

6d% = <(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 0.25), 

(0.002, 0.03, 0.054, 0.34)> 

So, the minimum provided correspond to the node 5.Hence, 

the node 6 is labeled as [<(0.352, 0.608, 0.748, 0.88), (0.018, 

0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)>, 5] 

Since the destination node of the proposed network is the node 

6. Hence, the TrFN- shortest distance between source node 1 

and destination node is  <(0.352, 0.608, 0.748, 0.88), (0.018, 

0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 

 
So, the TrFN-shortest path between the source node 1 and 

the destination node 6 can be determined using the following 
method:  

 
The node 6 takes the label [<(0.352, 0.608, 0.748, 0.88), 

(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)>, 5], 
which indicate that we are moving from node 5. The node 5 
takes the label [<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 
0.25,0.42), (0.02, 0.06, 0.18, 0.56)>, 2] , which indicate that 
we are moving from node 2. The node 2 takes the label [<(0.1, 
0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>, 1] which 
indicate that we are moving from node 1.So,  joining all the 
provided nodes, we get the TrFN-shortest path between the 
source node 1 and the destination node 6. Hence the TrFN-

shortest path is given as follows: 1 2 5 6→ → →  

 
Following the algorithm described in section 2, the 

computational results for finding the TrFN-shortest path from 
source node 1 to destination node  6 are summarized in table 
2. 

TABLE II. SUMMARIZE OF TRAPEZOIDAL FUZZY NEUTROSOPHIC 

DISTANCE AND SHORTEST PATH. 

 

N

o

de  

id%  
shortest path 

between the i-th 

and 1st node 

2 <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), 

(0.4, 0.5, 0.6, 0.8)> 

1 2→  

3 <(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 

0.2, 0.3)> 

1 3→  

4 <(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 

0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> 
 

1 3 4→ →  

5 <(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 

0.25,0.42), (0.02, 0.06, 0.18, 0.56)> 

1 2 5→ →  

6 <(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 

0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 
1 2 5 6→ → →
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Fig. 2. TrFN-shortest path from source node 1 to destination node 6.  

 

V. CONCLUSION  

 
 In this research paper, a new algorithm based on 

trapezoidal fuzzy neutrosophic numbers is presented for 
finding the shortest path problem in a network where the 
edges weight are represented by TrFNN. A numerical example 
is introduced to show the efficacy of the proposed algorithm. 
So in the next work, we plan to implement this approach 
practically.   
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