
  ISSN: 2277-9655 

[Banerjee et al., Vol. 7(5): May, 2018]  Impact Factor: 5.164 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [454] 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 
SINGLE-OBJECTIVE LINEAR GOAL PROGRAMMING PROBLEM WITH 

NEUTROSOPHIC NUMBERS 
Durga Banerjee2, Surapati Pramanik *2 

1Ranaghat Yusuf Institution, Rathtala, P.O.- Ranaghat, District- Nadia, Pin Code -741201, West 

Bengal, India 
* Department of Mathematics, Nandalal Ghosh B. T. College, Panpur, P.O. Narayanpur, District. 

North 24 Parganas, West Bengal, India, Pin 743126. 

DOI: 10.5281/zenodo.1252834 

ABSTRACT 
This paper deals with single-objective linear goal programming problem with neutrosophic numbers. The 

coefficients of objective function and the constraints are considered as neutrosophic numbers of the form (p + 

qI), where p, q are real numbers and I denotes indeterminacy. In the solution process, the neutrosophic numbers 

are transformed into interval numbers. Then, the problem reduces to single-objective linear interval 

programming problem. Employing interval programming technique, the target interval of the objective function 

is determined. For the sake of achieving the target goals, the goal achievement function is constructed.  Three 

new goal programming models are developed to solve the reduced problem. Two numerical examples are solved 

to illustrate the proposed method. The obtained results are also compared with the existing methods. 

 

KEYWORDS: :  neutrosophic goal programming, goal programming, fuzzy goal programming, 

neutrosophic number, Smarandache neutrosophic number  

1. INTRODUCTION 
Goal programming is a branch of multi-objective optimization. GP can be viewed as an extension or a 

generalization of linear programming to handle multiple, normally conflicting objective measures. The basic 

idea of goal programming is found in the work of Charnes, Cooper and Ferguson [1]. Charnes and Cooper [2] 

first coined the term goal programming to deal with infeasible linear programming.  Charnes and Cooper [2]), 

Ijiri [3], Lee [4]), Ignizio [5], Romero [6], Schniederjans [7], Chang [8], Dey and Pramanik [9] and many 

pioneer researchers established different approaches to goal programming in crisp environment. Inuguchi and 

Kume [10] investigated interval goal programming.  

Narasimhan [11] proposed goal programming in fuzzy environment, which is called Fuzzy Goal Programming 

(FGP). FGP has been developed by several authors such as Hannan (12), Ignizio [13], Tiwari, Dharma, and Rao 

[14, 15], Mohamed [16], Pramanik [17, 18], Pramanik and Roy [19-24], Pramanik and Dey [25], Tabrizi, 

Shahanaghi, and Jabalameli [26], and other researchers. 

Pramanik and Roy [27] proposed goal programming in intuitionistic fuzzy environment called intuitionistic FGP 

(IFGP). Pramanik and Roy [28-29] presented some applications of IFGP in transportation and quality control 

problem. Pramanik, Dey, and Roy [30] presented IFGP approach to bi-level programming problem. Razmi, 

Jafarian, and Amin [31] presented Pareto-optimal solutions to multi-objective programming problems under 

intuitionistic fuzzy environment. 

Smarandache [32] introduced neutrosophic set based on neutrosophy, a new branch of philosophy. Wang, 

Smarandache, Zhang, and Sunderraman [33] proposed Single Valued Neutrosophic Set (SVNS) to deal realistic 

problems. SVNS has been applied in different areas such as multi-attribute decision making (MADM) [34-49] 

conflict resolution [50], educational problem [51-52], data mining [53], social problem [54- 55], etc.  

MADM has been further studied in different neutrosophic extension and hybrid neutrosophic environment such 

as interval neutrosophic set environment [56-59], neutrosophic soft set environment [60-65], rough neutrosophic 

environment [66-77], neutrosophic bipolar set environment [78-84], neutrosophic hesitant fuzzy set environment 

[85-92] neutrosophic refine set environment [93-98], linguistic refine set [99], neutrosophic cubic set 

environment [100-105], complex rough neutrosophic set environment [106-107], etc. In 2018, Pramanik, 

Mallick & Dasgupta [110] presented a brief survey of contribution of Indian researchers in MADM. Some 

applications of neutrosophic sets in MADM can be found in [109-111]. 

Optimization technique in neutrosophic environment has been recently introduced in the literature. Optimization 

technique in neutrosophic hybrid environment is yet to appear in the literature. Roy and Das [112] proposed 
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neutrosophic multi-objective linear programming problem (MOLPP). Das and Roy [113] presented multi-

objective non-linear programming problem using neutrosophic optimization technique. Hezam, Abdel-Baset, 

and Smarandache [114] proposed neutrosophic multi-objective programming problem using Taylor series 

approximation. Abdel-Baset et al. [115] proposed neutrosophic goal programming. In the studies [112-115], 

indeterminacy membership function was maximized. Following the studies [112-115] in the literature, Pramanik 

[116] contended that in real decision making situation, maximizing indeterminacy is not acceptable and the 

technique with minimizing indeterminacy and falsity is more realistic model.  Pramanik [116] presented 

framework of neutrosophic goal programming by introducing three neutrosophic goal programming models.  

Pramanik [117] also presented framework for neutrosophic multi-objective linear programming based on the 

same philosophy [116] of minimizing indeterminacy and falsity simultaneously. Sarkar and Roy [118] recently 

presented a single objective neutrosophic optimization algorithm where indeterminacy is maximized in one 

model and in another model indeterminacy is minimized but their difference and impact were not studied. The 

neutrosophic optimization models [112-125] need further modifications to reflect the real implication in 

optimization technique. 

Smarandache [126-127] developed Neutrosophic Number (NN) and established its basic properties. The NN is 

expressed in the form (p + qI), where p, q are real numbers and I represents indeterminacy. Smarandache [128] 

defined neutrosophic interval function (thick function). Some theoretical development and application of NNs 

have been reported in the literature [129-133]. Ye [134] presented some basic operations of NNs and NN 

function. In the same study, Ye [134] developed a linear programming method with NNs and discussed 

production planning problem.  In 2018, Ye et al. [135] formulated NN nonlinear programming. 

Goal programming with neutrosophic coefficient is yet to appear in the literature. To fill the gap, we initiate the 

single-objective linear programming problem based on goal programming approach. The coefficients of 

objective function and constraints are considered as neutrosophic number of the form (p + q I), where p, q are 

real number and I represents indeterminacy.  The NNs are converted into interval numbers. The entire 

programming problem reduces to linear interval programming problem. The target interval of the number 

functions is constructed using the technique of interval programming. Three new neutrosophic goal 

programming models are developed to solve the revised problem. Three numerical examples are solved to 

demonstrate the feasibility, applicability and effectiveness of the proposed models. 

The remainder of the paper is organized as follows: Section 2 presents some basic discussions regarding NNs, 

interval numbers.  Section 3 recalls interval linear programming. Section 4 devotes to formulate of single-

objective linear goal programming with NNs. Section 5 presents numerical example. Section 6 presents 

conclusion and future scope of research. 

 

II. SOME BASIC DISCUSSIONS 
Here we recall some basic definitions and properties of neutrosophic sets, single valued, neutrosophic sets, 

neutrosophic numbers, interval numbers. 
2.1 Neutrosophic numbers   

A neutrosophic number [126, 127]   = m + nI consists of its determinate part m and its indeterminate part 

nI.  Here, m, and n are real numbers and I is indeterminacy.  

  = p+ qI, where 
L UI [I , I ]     = [p + q

UI , p + q UI ] = 
L U[ , ]  (say). 

Example 1: 

Assume that  = 2+3I, where 2 is the determinate part and 3I is the indeterminate part. Suppose                    

I[0.1,0.2], then  becomes an interval  = [2.3, 2.6]. Thus for a given interval of the part I, NNs are 

converted into interval number.  

2.6 Some basic properties of interval number  

Here some basic properties of interval analysis are stated below. 

An interval is defined by   = 
L U[ , ]   = {x  L ≤ x ≤ U }, where 

L  and 
U are left and right 

limit of the interval  on the real line R. 

Let m ( ) and w (  ) be the midpoint and the width respectively of an interval  . 

Then, m ( ) L U(1/ 2)( )   and w ( ) )( LU  .                                                                    (1) 

The different operations [136] are defined as follows: 

The scalar multiplication of  is defined as: 
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L U

U L
[ , ], 0

[ , ], 0

    
   

    
                                                                                                                          (2) 

Absolute value of  is defined as 

L U L

L U L U

U L U

[ , ], 0

| | [0,  max(- , )],    0

[ , ],     0

    


       
    


                                          (3)                                                                                  

(iii)  The binary operation ‘*’ are defined between two interval numbers ],[and],[ ULUL   

as: {x y :x ,y }    where L Ux   , 
L Uy   .                                                   

‘*’ is designated as any of the operation of four conventional arithmetic operations. 

2.7 Some basic properties of NNs  

Here we define some properties of NNs [126, 127]. 

Let L U L U
1 1 1 1 2 2 2 2 1 1 1 2 2 2

p q I and p q I whereI [I , I ], I [I , I ]        then 

L U L U L U L U
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

[p q I ,p q I ] [ , ](say)and [p q I ,p q I ] [ , ](say).               

L L U U
1 2 1 2 1 2

[ , ]        

L U U L
1 2 1 2 1 2

[ , ]        

L L L U U L U U L L L U U L U U
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

[min( * , * , * , * ),max( * , * , * , * )]                    

L U
1 1 U L

2 2
L L L U U L U U L L L U U L U U

1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

2

1 1
[ , ] [ , ]or

(iv) .[min( / , / , / , / ),max( / , / , / , / ) ]if 0

Undefined if 0


  

 
                   






 

 
III. INTERVAL VALUED LINEAR PROGRAMMING 
In this section, first we recall the general model of interval linear programming. 

 Optimize
n

L U
p pj pj j

j 1

Z (Y) [c ,c ]y ,        p 1,2,...,P


                                                                                      (4)  

subject to              

A Y  b
 
 
  

,                                                                                                                                                  (5) 

  
1 2 n

Y (y ,y ,..., y ) 0                                                                                                                                 (6)  

 where Y  is a decision vector of order n x 1, 
L U
pj pj

[c , c ]  (j=1,2,...,n; p = 1,2,...,P) is interval coefficient of p-

th objective function, A  is q x n matrix, b  is q x 1 vector and 
L

pjc  and 
U

pjc  represent lower and upper 

bounds of the coefficients respectively. 

Again, the multi objective linear programming with interval coefficients in objective functions as well as 

constraints can be presented as: 

Optimize
n

L U
p pj pj j

j 1

Z (Y) [c ,c ]y ,        p 1,2,...,P


                                                                                      (7) 

subject to   
n

L U L U
kj kj j k k

j 1

[a ,a ]y [b ,b ],     k 1,2,...,q


       

 
j

y 0 , j = 1, 2, …, n                                                                               

where Y is a decision vector of order n x 1, 
L U
Pj Pj

[c ,c ] , L U
k k

[b ,b ]  (j = 1, 2, ..., n; k =1,2,...,q; p = 1, 2,..., P) 

are closed intervals. 
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According to Shaocheng [137] and Ramadan [138] the interval inequality of the form 
n

L U L U
j j j j j

j 1

[a y ,a y ] [b ,b ] y 0


   can be transformed into two inequalities  

n n
L U U L
j j j j j

j 1 j 1

a y b , a y b , y 0
 

                                                                                                           (8)  

Minimization problem [136]is stated as follows: 

Minimize
n

L U
p pj pj j

j 1

Z (Y) [c ,c ]y ,        p 1,2,...,P


                                                                                   (9) 

subject to   
n

L U L U
kj kj j k k

j 1

[a ,a ]y [b ,b ],     k 1,2,...,q


     

j
y 0 , j = 1, 2, …, n. 

For the best optimal solution, we solve the problem  

Minimize
n

L
p pj j

j 1

Z (Y) c y ,        p 1,2,...,P


                                                                                           (10) 

subject to    
n

U L

kj j k
j 1

a y b ,     k 1,2,...,q


                 

j
y 0 , j = 1, 2, …, n.                                                                                    

For the worst optimal solution, we solve the problem  

Minimize
n

U
p pj j

j 1

Z (Y) c y ,        p 1,2,...,P


                                                                                         (11) 

subject to    
n

L U
kj j k

j 1

a y b ,     k 1,2,...,q


   

j
y 0 , j = 1, 2, …, n.        

                                                                                                          
  

Suppose, the best solution point by solving (10) is 
B B B B

1 2 n
Y (y , y ,..., y ) 0                                            (12)           

n
B B L B
p pj j

j 1

with thebest objective value Z (Y ) c y ,        p 1,2,...,P


                                                          (13) 

Suppose, the worst solution point by solving (11) is 
W W W W

1 2 n
Y (y , y ,..., y ) 0 

                            
 (14)  

n
W W L W
p pj j

j 1

with the worst objective value Z (Y ) c y ,        p 1,2,...,P


                                                    (15)
 
 

Then the optimal value of the p-th objective function is
B B W W
p p

[Z (Y ), Z (Y )] .                                      (16) 

Now using the technique of goal programming we get the optimal solution of the problem.  

 

IV. FORMULATIO OF SINGLE –OBJECTIVE LINEAR GOAL PROGRAMMING 

WITH NNS 
Let us consider the minimization problem as follows:  

n

j j j j
j 1

Minimize Z(Y) (a I b )y


                                                                                                             (17) 

n

kj kj kj j K k k
j 1

subject to (c I d )y I


      ,  
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j
y 0 , j = 1, 2, …, n,    

where L U
j j j

I [I , I ] and L U
kj kj kj

I [I , I ]
L U

k k k
I [I , I ]       q,...,2,1kandn,...,2,1j  .

                           
 

Now, 
n n

L U
j j j j j j j j j j j j

j 1 j 1
n n

L U L U
j j j j j j j j

j 1 j 1

Z(Y) (a I b )y [(a I b )y , (a I b )y ]

[ (a I b )y , (a I b )y ] [Z , Z ](say)

 

 

     

      

n n
L L U U

j j j j j j j j
j 1 j 1

where, (a I b )y Z (Y)and (a I b )y Z (Y)
 

                                                   (18) 

The constraints reduce to                                                                                   

]I,I[]y)dIc(,y)dIc([

Iy)dIc(

k

U

kkk

L

kkj

n

1j
kj

U

kjkjj

n

1j
kj

L

kjkj

kkkj

n

1j
kjkjkj













                                     

 

L L
k k k k

Let I b ,    U U
k k k k

I b     

n n
L U L U

kj kj kj j kj kj kj j k k
j 1 j 1

Then[ (c I d )y , (c I d )y ] [b ,b ],k 1,2,...,q.
 

                                                           (19) 

Assume that the decision maker fixes *L *U[Z , Z ] as the target interval of the objective function Z . 

Applying the procedure discussed in the Section 3, we find out the target level of the objective function Z. 

 Thus we have,  
U *L L *UZ Z and Z Z  .                                                                                                                        (20) 

The goal achievement functions are written as:  

U U *LZ d Z   
L L *Uand Z d Z  .                                                                                                 (21) 

Here 
L Ud 0,and d 0  are negative deviational variables.  

 GOAL PROGRAMMING MODEL I                                                                                                              (22) 

Min 
U L(d d )  

subject to 
U U *LZ (Y) d Z    , 

L L *UZ (Y) d Z  , 

n
L U

kj kj kj j k
j 1

(c I d )y b ,


    

n
U L

kj kj kj j k
j 1

(c I d )y b ,


   

L U
j

d 0,d 0, y 0, j 1,2,..., n,and k 1,2,...,q.      

GOAL PROGRAMMING MODEL II                                                                                 (23) 

Min  
U U L L(w d w d )  

subject to 
U U *LZ (Y) d Z    , 

L L *UZ (Y) d Z  , 
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n
L U

kj kj kj j k
j 1
n

U L
kj kj kj j k

j 1
L U L U

j

(c I d )y b ,

(c I d )y b ,

d 0,d 0, w , w , y 0,and j 1,2,..., n ;k 1,2,...,q.





 

 

    
 

Here, 
U Lw , w are the numerical weight of corresponding negative deviational variables Ld and 

Ud  

respectively prescribed by decision makers. 

GOAL PROGRAMMING MODEL III                                                                                                        (24) 

Min  

subject to 
U U *LZ (Y) d Z    , 

L L *UZ (Y) d Z  , 
Ld  , 
Ud  , 

n
L U

kj kj kj j k
j 1
n

U L
kj kj kj j k

j 1
L U

j

(c I d )y b ,

(c I d )y b ,

d 0,d 0, y 0,and j 1,2,..., n ;k 1,2,...,q.





 

 

    

 

V. NUMERICAL EXAMPLES 
Example I 

We consider an application in production planning studied by Ye [134]. 

“A company manufactures two types of products: Types A and B. To manufacture Type A, its each product 

needs 9-kgmaterial, 3 + 0.3I working hours, and 4 + 0.4I kW power on the machine 1, and then, each product 

in Type A can obtain 60 + 6I$ profits, where the indeterminacy I may be 

Considered as a possible range within the interval [0,1] under some specified situation. In Type B,each product 

needs 4-kg material, 10 working hours, and 5kW power on the machine 2, and then, each product  

in Types B can obtain 120$ profits. If the company can provide 360-kg material, 300 working hours, and 200kW 

power per day, then the company needs how much products in Types A and B must be manufactured, 

respectively, for each day so as to obtain the maximum profit”. 

Let the two types A and B manufacture per day be x1 and x2 pieces, respectively. For this case, the NN linear 

programming model is presented as follows: 

Max Z( X , I) =
1 2

(60 6I)x 120x )  ,                                                                                                

Subject to 

9x1 +4x2 360 ,  

(3+0.3I) x1 + 10 x2 300,  

(4+0.4I) x1+5x2 200, 

x1 0, x2 0, I [0,1] .  

The problem can be presented as follows: 

Max Z( X ) = [ ]x120x66,x120x60
2121

 ,                                                                                          

Subject to 

9x1 +4x2 360 ,  

[3x1 + 10x2, 3.3x1+10x2] 300,  

[4x1+5x2, 4.4x1+5x2] 200, 

x1 0, x2 0, I [0,1] .  

The problem can be transformed into minimization type as follows: 

http://www.ijesrt.com/
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-Z( X ) = [
1 2 1 2

66x 120x , 60x 120x ]    = [
L UZ , Z ]                                                                    

Subject to 

-9x1 -4x2 360  ,  

[-3.3x1-10x2,-3x1 - 10x2]  300,  

[-4.4x1-5x2,-4x1-5x2]  200, 

x1 0, x2 0. 

For best solution: 

Min 
L

1 2
Z (X) ( 66x 120x )    

-9x1 -4x2 360 ,  

-3x1 - 10x2  300,  

-4x1-5x2  200, 

x1 0, x2 0,  

Solving the above model, the obtained solution is Min 
UZ 4200  at (20, 24). 

For worst solution: 

Min 
U

1 2
Z (X) ( 60x 120x )    

-9x1 -4x2 360  ,  

-3.3x1-10x2  300,  

-4.4x1-5x2  200,   x1 0, x2 0,  

Solving the above model, the obtained solution is Min 
UZ 3970.91  at (18.18, 24). 

Then the optimal value would be between [-4200, -3970.91]. The optimal value of the original maximization 

problem would be between [3970.91, 4200]. 

The objective functions with targets can be written as: 

1 2
66x 120x 4000,    ,4200x120x60

21


 
The goal functions with targets can be written as: 

,4000dx120x66 L

21


 

,4200dx120x60 U

21
  

L Ud 0,d 0  .
 

Using the goal programming model (22) for single objective, the GP Model I is presented as follows: 

GP Model I 
L UMin (d d )

 
L

1 2
66x 120x d 4000,    

 
U

1 2
60x 120x d 4200,    

-9x1 -4x2 360  ,  

-3.3x1-10x2  300,  

-4.4x1-5x2  200,    

-3.3x1-10x2  300,  

-4.4x1-5x2  200,   

 x1 0, x2 0,  
L Ud 0,d 0 

 
Using the goal programming model (23) for single objective, the GP Model II  is presented as follows: 

GP Model II 
L L U UMin (w d w d )

 
L

1 2
66x 120x d 4000,    

 
U

1 2
60x 120x d 4200,    
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-9x1 -4x2 360  ,  

-3.3x1-10x2  300,  

-4.4x1-5x2  200,    

-3.3x1-10x2  300,  

-4.4x1-5x2  200,   

 x1 0, x2 0,  
L Ud 0,d 0  , ,0w L  Uw 0.  

Using the goal programming model (24) for single objective, the GP Model III is presented as follows: 

GP Model III
 

Min
 

L
1 2

66x 120x d 4000,    
 

U
1 2

60x 120x d 4200,    

-9x1 -4x2 360  ,  

-3.3x1-10x2  300,  

-4.4x1-5x2  200,    

-3.3x1-10x2  300,  

-4.4x1-5x2  200,   

 x1 0, x2 0,  
L Ud 0,d 0  L Ud , d .     

The obtained optimal solutions from the proposed three GP Models are shown in Table 1.  

Table 1: Optimal solution for ]1,0[I  

Goal Programming model Z *X  

Goal programming Model I [3909.12, 4000.032] (15.152, 25) 

Goal programming Model II [3909.12, 4000.032] (15.152, 25) 

Goal programming Model III [3970.92, 4080.012] (18.182, 24) 

 

For I = 0, the problem reduces to 

Max 
1 2

Z(X) (60x 120x )   

9x1 +4x2 360 ,  

3x1+10x2 300,  

4x1+5x2 200,   x1 0, x2 0,  

Solving the above model, the obtained solution is Max Z 4080 at (20, 24). 

The comparison between proposed model and the existing model of Ye [134] is shown in the Table 2. 

Table 2: Comparison between the proposed models and Ye [134] I [0,1]  

Method Max Z 

Proposed model I [3909.12, 4000.032]  

Proposed model II [3909.12, 4000.032]  

Proposed model III [3970.92, 4080.012] 

Ye [132] [3971,4080] 

 

Example III 

Consider a NNLP problem studied by Ye [134] with two variables (unknowns) x1 and x2 which is stated as 

follows: 

Max Z( X ) =
1 2

5x (4 I)x  ,                                                                                                         

Subject to 

x1 +3x2 90 ,  

2x1 + (1+I) x2 80,  

x1+x2 45, 
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x1 0, x2 0, I [0,0.1] .  

 Z( X ) = [ ]x1.4x5,x4x5
2121

 ,                                                                                                   

Subject to 

x1 +3x2 90 ,  

[2x1 + x2, 2x1+1.1x2] 80,  

x1+x2 45, 

x1 0, x2 0, I [0,0.1] .  

- Z( X ) = [ L U
1 2 1 2 1 1

5x 4.1x , 5x 4x ] [Z , Z ]     ,                                                                          

Subject to 

-x1 -3x2 90 ,  

[- 2x1-1.1x2, -2x1 - x2]  80,  

-x1-x2 -45, x1 0, x2 0. 

For worst solution: 

Min 
U

1 2
Z (X) ( 5x 4x )    

-x1 -3x2 90  ,  

- 2x1-1.1x2  80,  

-x1-x2 -45, x1 0, x2 0. 

Solving the above model, the obtained solution is Min 
UZ 213  at (33.89, 11.11). 

For best solution: 

Min 
L

1 2
Z (X) ( 5x 4.1x )    

-x1 -3x2 90  ,  

- 2x1-x2  80,  

-x1-x2 -45, x1 0, x2 0. 

Solving the above model, the obtained solution is Min 
LZ 216  at (35, 10). 

Then the optimal value would be between [-216, -213]. The optimal value of the original maximization problem 

would be between [213, 216]. 

The objective functions with targets can be written as: 

,213x1.4x5
21

 ,216x4x5
21


 

The goal functions with targets can be written as: 

,213dx1.4x5 L

21


 

,216dx4x5 U

21
  

L Ud 0,d 0  .
 

Using the goal programming model (22) for single objective, the GP Model I has been described as follows: 

GP Model I 
L UMin (d d )

 

,213dx1.4x5 L

21


 

,216dx4x5 U

21


 
-x1 -3x2 90 ,  

- 2x1-x2  80,  

- 2x1-1.1x2  80 

-x1-x2 -45, 

 x1 0, x2 0. 
L Ud 0,d 0 

 
Using the goal programming model (23) for single objective, the GP Model II  is presented as follows: 

GP Model II 
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L L U UMin (w d w d )
 

,213dx1.4x5 L

21


 

,216dx4x5 U

21


 

-x1 -3x2 90 ,  

- 2x1-x2  80,  

- 2x1-1.1x2  80 

-x1-x2 -45, 
L Ud 0,d 0  , ,0w L  Uw 0,  x1 0, x2 0. 

Using the goal programming model (24) for single objective, the GP Model III is presented as follows: 

GP Model III
 

Min
 

,213dx1.4x5 L

21


 

,216dx4x5 U

21


 
-x1 -3x2 90 ,  

- 2x1-x2  80,  

- 2x1-1.1x2  80 

-x1-x2 -45, 

 
L Ud , d ,     

L Ud 0,d 0  , x1 0, x2 0. 

The obtained optimal solutions from the proposed three GP Models are shown in Table 3.  

Table 3: Optimal solution for ]1.0,0[I  

Goal programming model Z *X  

Goal programming Model I [212.02, 212.983] (34.70, 9.63) 

Goal programming Model II [212.02, 212.983] (34.70, 9.63) 

Goal programming Model III [213.89, 215.001] (33.89, 11.11) 

 

The comparison between proposed model and the existing model of Ye [134] is shown in the Table 4. 

Table 4: Comparison between the proposed GP Models and Ye [134]. 

Method Max Z 

Proposed model I [212.02, 212.983] 

Proposed model II [212.02, 212.983] 

Proposed model III [213.89, 215.001] 

Ye [134] [170, 270] 

 

VI. CONCLUSION 
This paper has presented single-objective linear goal programming problem with neutrosophic numbers as 

coefficients of both objective functions and constraints. The neutrosophic coefficient of the form p+ qI is 

converted into interval coefficient with the prescribed range of I. Adopting the concept of solving linear interval 

programming problem, three new neutrosophic goal programming models have been developed and solved by 

considering two numerical examples. Comparative analysis with the existing models has been provided. 

We hope that the proposed method for solving single-objective linear goal programming with neutrosophic 

coefficients will open up a new way for the future research work on neutrosophic optimization technique. Using 

this approach many areas involving neutrosophic number of the form p + qI can be explored. The proposed 

model can be extended to multi-objective programming problem with neutrosophic numbers.  
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