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Abstract: This paper studied the single-valued neutrosophic linguistic distance measures based on 
the induced aggregation method. Firstly, we proposed a single-valued neutrosophic linguistic-
induced ordered weighted averaging distance (SVNLIOWAD) measure, which is a new extension of 
the existing distance measures based on the induced aggregation view. Then, based on the proposed 
SVNLIOWAD, a novel induced distance for single-valued neutrosophic linguistic sets, namely the 
single-valued neutrosophic linguistic weighted induced ordered weighted averaging distance 
(SVNLWIOWAD), was developed to eliminate the defects of the existing methods. The relationship 
between the two proposed distance measures was also explored. A multiple attribute group decision 
making (MAGDM) model was further presented based on the proposed SVNLWIOWAD measure. 
Finally, a numerical example concerning an investment selection problem was provided to 
demonstrate the usefulness of the proposed method under a single-valued neutrosophic linguistic 
environment and, then, a comparison analysis was carried out to verify the flexibility and 
effectiveness of the proposed work. 

Keywords: single-valued neutrosophic linguistic set; distance measure; weighted induced 
aggregation; MAGDM; investment selection 

 

1. Introduction 

The growing uncertainties and complexities in multiple attribute decision making (MADM) make it 
increasingly difficult for people to judge their attributes accurately. Accordingly, how to measure 
such complex and uncertain information effectively has become a key issue during the process of 
decision making. Several tools, such as fuzzy set [1], intuitionistic fuzzy set (IFS) [2], picture fuzzy set 
[3-4], linguistic term [5], and neutrosophic set [6], have been introduced to deal with inaccurate and 
uncertain information. The single-valued neutrosophic linguistic set (SVNLS), introduced by Ye [7], 
is an up-to-date tool to measure uncertainty or inaccuracy of information by combining the 
advantages of single-valued neutrosophic set [8] and linguistic terms [5]. The basic element of the 
SVNLS is the single-valued neutrosophic linguistic number (SVNLN), which makes it more suitable 
for solving uncertain and imprecise information than the existing tools. Ye [7] extended the 
conventional the technique for order preference by similarity to ideal solutions (TOPSIS) [9] approach 
to SVNLS environment and explored its application in investment selection problems. Wang et al. 
[10] studied the operational laws for SVNLS and presented the SVNL Maclaurin symmetric mean 
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aggregation operator. Chen et al. [11] studied the ordered weighted distance measure between 
SVNLSs. Wu et al. [12] studied the application of the SVNLS in a 2-tuple MADM environment. 
Kazimieras et al. [13] presented a weighted aggregated sum product assessment approach for SVN 
decision making problems. Garg and Nancy [14] proposed some SVNLS aggregation operators based 
on the prioritized method to solve the attributes’ priority in MADM problems. Cao et al. [15] studied 
the SVNL decision making approach based on a combination of ordered and weighted distances 
measures. 

Distance measure is one of the most popular tools to express the deviation degree between two 
sets or variables. Consequently, many types of distance measures have been investigated and 
proposed in the existing literature, such as the weighted distance (WD) measure [16], ordered 
weighted averaging distance (OWAD) measure [17], combined weighted distance (CWD) measure 
[18], and induced OWAD (IOWAD) measure [19]. Among them, the IOWAD measure is a widely 
used one, recently proposed by Merigó and Casanovas [19]. The key advantage of the IOWAD is that 
it summarizes the minimun and maximum distance measures and can use induced-ordering 
variables to depict the intricate attitudinal characteristics. Now, the IOWAD operator has been widely 
used in MADM problems and extended to accommodate several fuzzy environments, such as fuzzy 
IOWAD (FIOWAD) [20], fuzzy linguistic IOWAD [21], intuitionistic fuzzy IOWAD (IFIOWAD) [22], 
and 2-tuple linguistic IOWAD (2LIOWAD) [23]. 

However, as far as we know, there is no research on the application of the SVNLS with the 
IOWAD method. In accordance with the previous analysis, the SVNLS is an excellent method to 
describe fuzzy and uncertain information, while the IOWAD is a new tool that can be well integrated 
into the complex attitudes of decision makers. In order to develop and enrich the measure theory of 
SVNLS, this study explored the usefulness of the IOWAD measure in SVNL environments. For this 
purpose, the rest of the article is set out as follows: in Section 2, we briefly introduce some basic 
concepts. Section 3 firstly develops the single-valued neutrosophic linguistic induced ordered 
weighted averaging distance (SVNLIOWAD) operator, which is the extension of the IOWAD 
operator with SVNL information. Furthermore, the single-valued neutrosophic linguistic weighted 
induced ordered weighted averaging distance (SVNLWIOWAD) is then introduced to overcome the 
defects of the SVNLIOWAD operator and other existing induced aggregation distances. In Section 4, 
a MAGDM model based on the SVNLWIOWAD operator is formulated and a financial decision 
making problem is also provided to demonstrate the usefulness of the proposed method. Finally, 
Section 5 gives a conclusion for the paper. 

2. Preliminaries 

In this section, we mainly recap some basic concepts of the SVNLS and the IOWAD operator. 

2.1. The Single-Valued Neutrosophic Set (SVNS) 

Definition 1 [24]. Letu be an element in a finite set U . A single-valued neutrosophic set (SVNS) A  
in U  can be defined as in (1): 

{ }, ( ), ( ), ( )= ∈A A AA u T u I u F u u U , (1) 

where ( )AT u , ( )AI u , and ( )AF u  are called the truth-membership function, indeterminacy-
membership function, and falsity-membership function, respectively, which satisfy the following 
conditions: 

0 ( ), ( ), ( ) 1A A AT u I u F u≤ ≤ , 0 ( ) ( ) ( ) 3A A AT u I u F u≤ + + ≤ . (2) 

A single-valued neutrosophic number (SVNN) is expressed as ( ( ), ( ), ( ))A A AT u I u F u  and is 

simply termed as ( , , )u u uu T I F= . The mathematical operational laws between SVNNs ( , , )u u uu T I F=  

and ( , , )v v vv T I F=  are defined as follows: 
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(1) ( , , );u v u v u v u vu v T T T T I T F F⊕ = + − ∗ ∗ ∗  

(2) (1 (1 ) , ( ) , ( ) ),u u uu T I Fλ λ λλ = − −  0;λ >  

(3) (( ) ,1 (1 ) ,1 (1 ) )u u uu T I Fλ λ λ λ= − − − − , 0.λ >  

2.2. The Linguistic Set 

Let { }1,...,S s lα α= =  be a finite and totally ordered discrete term set, where sα  indicates 

a possible value for a linguistic variable (LV) and l  is an odd value. For instance, given 7l = , then 
a linguistic term set S could be specified 1 2 3 4 5 6 7{ , , , , , , }S s s s s s s s=  = {extremely poor, very poor, 

poor, fair, good, very good, extremely good}. Then, for any two LVs, is  and js in S , should satisfy rules 

(1)–(4) [24]: 

(1) i js s i j≤ ⇔ ≤ ; 

(2) ( )i iNeg s s−=  ; 
(3) max( , )i j js s s= , if i j≤ ;  

(4) min( , ) =i j is s s , if i j≤ . 

The discrete term set S  is also extended to a continuous set { }S s Rα α= ∈  for reducing 

the loss of information during the operational process. The operational rules for LVs ,s s Sα β ∈  are 

defined as follows [25]: 

(1) s s sα β α β+⊕ = ; 

(2) s sα μαμ = , 0μ ≥ . 

2.3. The Single-Valued Neutrosophic Linguistic Set (SVNLS) 

Definition 2 [7]. Let U  be a finite universe set and S
 
be a continuous linguistic set, a SVNLS B  

in U  is defined as in (3): 

{ }( ),[ , ( ( ), ( ), ( ))]u B B BB u s T u I u F u u Uθ= ∈ , (3) 

where ( )us Sθ ∈ , the truth-membership function ( )BT u , the indeterminacy-membership function 

( )BI u , and the falsity-membership function ( )BF u  satisfy condition (4): 

0 ( ), ( ), ( ) 1B B BT u I u F u≤ ≤ , 0 ( ) ( ) ( ) 3.B B BT u I u F u≤ + + ≤  (4) 

For an SVNLS B  in U , the SVNLN ( ) , ( ( ), ( ), ( ))u B B Bs T u I u F uθ  is simply termed as 

( ) , ( , , )u u u uu s T I Fθ= . The operational rules for SVNLNs ( ) , ( , , ) ( 1, 2)
i i i ii u u u uu s T I F iθ= =  are 

defined as follows: 

(1) 
1 2 1 2 1 2 1 2 1 21 2 ( ) ( ) , ( , , ) ;u u u u u u u u u uu u s T T T T I T F Fθ θ+⊕ = + − ∗ ∗ ∗  

(2) 
1 1 1 11 ( ) , (1 (1 ) , ( ) , ( ) ) ,u u u uu s T I Fλ λ λ

λθλ = − −  0;λ >  

(3) 1 1 1 11( )
, (( ) ,1 (1 ) ,1 (1 ) )u u uu

u s T I Fλ
λ λ λ λ

θ= − − − − , 0.λ >  

Definition 3 [7]. Given two SVNLNs ( ) , ( , , ) ( 1, 2)
i i i ii u u u uu s T I F iθ= = , their distance measure is 

defined using the following formula: 
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1 2 1 2 1 2

1

1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )
ll l l

u u u u u ud u u u T u T u I u I u F u Fθ θ θ θ θ θ = − + − + −  
, (5) 

where ).,0( +∞∈l  If we consider different weights associated with individual distances of 
SVNLVs, then we can get the single-valued neutrosophic linguistic weighted distance (SVNLWD) 
measure [10]. 

Definition 4. Let ),...,2,1(, ' njuu jj =  be the two collections of SVNLNs, a single-valued 

neutrosophic linguistic weighted distance measure is defined as following formula: 

( )' ' '
1 1

1
( , ),..., ( , ) ( , ),

n

n n j j j
j

SVNLWD u u u u w d u u
=

=  (6) 

where the associated weighting vector jw  satisfies [0,1]jw ∈ and
1

1
n

j
j

w
=

= . 

2.4. The Single-Valued Neutrosophic Linguistic Set (SVNLS) 

Motivated by the induced ordered weighted averaging (IOWA) operator [26], Merigó and 
Casanovas [19] developed the IOWAD operator. For two crisp sets 1( ,.., )nX x x=  and 

1( ,..., )nY y y= , the IOWAD operator be easily obtained as follows: 

Definition 5. An IOWAD operator is defined by a weight vector 1( , ..., )TnW w w=  with 

0 1jw≤ ≤ and 
1

1
n

j
j

w
=

=  and an order-inducing vector 1( ,..., )nT t t= , such that: 

( )1 1 1
1

, , ,..., , ,
n

n n n j j
j

IOWAD t x y t x y w D
=

= , (7) 

where 1( ,..., )nD D  is recorded 1( ,..., )nd d , induced by the decreasing order of 1( ,..., )nt t , and 

( , )= = −i i i i id d x y x y  is the distance between ix  and iy . 

3. Single-Valued Neutrosophic Linguistic-Induced Aggregation Distance Measures 

3.1. SVNLIOWAD Measure 

Previous analysis has shown that the IOWAD is a very practical tool to measure deviation in 
many fields, such as clustering analysis and decision making. In this section, we explore the 
application of the IOWAD operator in an SVNL situation and develop the SVNLIOWAD operator. 

Definition 6. Let ),...,2,1(, ' njuu jj =  be two sets of SVNLNs, then the SVNLIOWAD operator is 

defined by a weight vector 1( ,..., )TnW w w=  with 0 1jw≤ ≤ and 
1

1
n

j
j

w
=

=  and an order-

inducing vector 1( ,..., )nT t t= , such that: 

( )' '
1 1 1

1
, , ,..., , ,

n

n n n j j
j

SVNLIOWAD t u u t u u w D
=

= , (8) 

where 1( ,..., )nD D  is recorded 1( , ..., )nd d ,induced by the decreasing order of 1( ,..., )nt t , 

( , ' ) '= = −i i i i id d u u u u  is the distance between SVNLNs, defined in Equation (5).  
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Using a similar analysis with the IOWAD operator [18, 19, 27, 28], it is easy to derive the 
following useful properties for the SVNLIOWAD operator: 

Theorem 1 (Idempotency). If ( , ' ) '= = − =i i i i id d u u u u d  for all i , then 

( )' '
1 1 1, , ,..., , , =n n nSVNLIOWAD t u u t u u d . (9) 

Theorem 2 (Boundedness). Let 
'min( )i ii

u u x− =  and 'max( )i i
i
u u y− = , then 

( )' '
1 1 1, , ,..., , ,≤ ≤n n nx SVNLIOWAD t u u t u u y . (10) 

Theorem 3 (Monotonicity). If ' '
i i i iu u v v− ≥ −  for all i , then 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , , , ,..., , ,≥n n n n n nSVNLIOWAD t u u t u u SVNLIOWAD t v v t v v . (11) 

Theorem 4 (Commutativity-IOWA operator aggregation). Let ( )' '
1 1 1, , ,..., , ,n n nt u u t u u

( 1,2,..., )i n=  be any possible permutation of the argument vector ( )' '
1 1 1, , ,..., , ,n n nt v v t v v , then 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , = , , ,..., , ,n n n n n nSVNLIOWAD t u u t u u SVNLIOWAD t v v t v v

. 
(12) 

We can also illustrate the property of commutativity by considering the distance measure: 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , = , , ,..., , ,n n n n n nSVNLIOWAD t u u t u u SVNLIOWAD t u u t u u . (13) 

By considering different cases of the weighted vector in the SVNLIOWAD operator, we can get 
several special distance measures. For example:  

 If 1
1= ,nw w
n

= =  we obtain the SVNLWD; 

 If the ordering of weight jw  is same as the order-inducing jt  for all j , then the 

SVNLIOWAD reduces to the SVNLOWAD measure [15]; 
 If ( ,0, ,0)T t=  , then  

( )' '
1 1 1 1, , ,..., , , =n n nSVNLIOWAD t u u t u u D . (14) 

Next, a numerical example is given to show the aggregation process of the SVNLIOWAD 
operator. 

Example 1. Assuming that:  

1 2 3 4 5( , , , , )U u u u u u=  

( )2 5 5 7 2= ,(0.5,0.3,0.4) , ,(0.3,0.3,0.6) , ,(0.5,0.2,0.2) , ,(0.5,0.8,0.2) ,(0.1,0.4,0.6)s s s s s，  
 

and 
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1 2 3 4 5( , , , , )V v v v v v=  

( )3 5 3 3 4= ,(0.7,0.8,0) , ,(0.4,0.4,0.5) , ,(0.5,0.7,0.2) ,(0.4,0.2,0.6) , ,(0.5,0.7,0.2)s s s s s，
, 

are two SVNLNs defined in linguist term set 1 2 3 4 5 6 7{ , , , , , , }S s s s s s s s=  and suppose 

(0.20,0.30,0.15,0.10,0.25)Tw =  and (5,8,4,2,7)T =  are the weight vector and order-inducing 
variable vector of the SVNLIOWAD operator, respectively. Then, the calculation steps of the 
SVNLIOWAD are displayed as follows:  

(1) Calculate the individual distances ( , )i id u v ( 1,2,...,5)i = (let 1λ = ) according to Equation (5): 

1 1( , ) 2 0.5 3 0.7 + 2 0.3 3 0.8 + 2 0.4 3 0 3.7d u v = × − × × − × × − × = .  

Similarly, we get 

2 2( , ) 1.5d u v = , 3 3( , ) 2.4d u v = , 4 4( , ) 7.7d u v = , 5 5( , ) 3.2d u v = ; 
 

(2) Sort the ( , )i id u v ( 1,2,...,5)i =  according to the decreasing order of the order-inducing 
variable: 

1 2 2( , ) 1.5D d u v= = , 2 5 5( , ) 3.2D d u v= = , 3 1 1( , ) 3.7D d u v= = , 

4 3 3( , ) 2.4D d u v= = , 4 4( , ) 7.7d u v = ; 
 

(3) Utilize the SVNLIOWAD operator defined in Equation (8) to perform the following aggregation: 
( , )SVNLIOWAD U V  

0.20 1.5 0.30 3.2 0.15 3.7 0.10 2.4 0.25 7.7= × + × + × + × + × =3.71 . 
 

From the aggregation process of the SVNLIOWAD operator, as well as the existing other 
induced aggregation distances, we see that the order-inducing variables are not really infused in the 
aggregation results, which fail to express the variation caused by the change of order-inducing 
variables. Thus, we needed to develop a new induced aggregation distance operator for SVNLSs to 
overcome this defect. 

3.2. SVNLWIOWAD Measure 

The special feature of the SVNLWIOWAD operator is that its induced ordering-variables play a 
dual role in the aggregation process. One role is, as the previous SVNLIOWAD operator, to induce 
the order of the arguments and the other is to adjust the associated weights. Thus it can better reflect 
the influence of the induced variables on the ensemble results. The SVNLWIOWAD operator can be 
defined as follows. 

Definition 7. Let ),...,2,1(, ' njuu jj =  be two sets of SVNLNs, the SVNLWIOWAD operator is 

defined by a weight vector 1( ,..., )TnW w w=  with 0 1jw≤ ≤ and 
1

1
n

j
j

w
=

= ; and an order-

inducing vector 1( ,..., )nT t t= , such that: 

( )' '
1 1 1

1
, , ,..., , ,

n

n n n j j
j

SVNLWIOWAD t u u t u u Dϖ
=

= , (15) 

where 1( ,..., )nD D  is recorded 1( , ..., )nd d  induced by the decreasing order of 1( ,..., )nt t , 

'i i id u u= −  is the distance between SVNLNs, defined in Equation (5). ( 1, 2, ..., )j j nϖ = is a 
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moderated weight that is relatively determined by the weight jw W∈
 
and order-inducing variable 

jt T∈ : 

( )

( )
1

j j
j n

j j
j

w t

w t

σ

σ

ϖ

=

=


, 
(16) 

where ( (1),..., ( ))nσ σ  is a permutation of (1,..., )n  such that ( 1) ( )j jt tσ σ− ≥  for all 1j> . Example 

2 illustrates the performance of the SVNLWIOWAD operator. 

Example 2 (Example 1 continuation). To utilize the SVNLWIOWAD operator, we calculated the 
moderated weight jϖ  defined in Equation (16): 

1 (1)
1 5

( )
1

0.20 8 0.274.
0.20 8 0.30 7 0.15 5 0.10 4 0.25 4

j j
j

w t

w t

σ

σ

ϖ

=

×= = =
× + × + × + × + ×

 
 

Similarly, 

2 0.359,ϖ =  3 0.128,ϖ =  4 0.068,ϖ =  5 0.171.ϖ =  
 

Thus, based on the results of Example 1, we can get the aggregation result of the SVNLWIOWAD 
operator:  

( , )SVNLWIOWAD U V  

0.274 1.5 0.359 3.2 0.128 3.7 0.068 2.4 0.171 7.7= × + × + × + × + × =3.462  
 

Obviously, we got a different result compared with the SVNLIOWAD operator in Example 1. 
The main reason for the difference is that the order-inducing variables in the SVNLIOWAD operator 
(including the existing IOWAD and its numerous extensions) only act as inducers for the arguments, 
and do not participate in the actual calculation process. However, the SVNLWIOWAD’s order-
inducing variables can not only act as the inducer, but also participate in the actual calculation 
progress by adjusting the associated weights. Therefore, it can measure the effect of order-inducing 
variables on the aggregation results. Consequently, the SVNLWIOWAD can achieve a more 
reasonable and scientific measurement over the SVNLIOWAD operator. 

The following theorems show some useful properties of the SVNLWIOWAD operator: 

Theorem 5 (Idempotency). Let Q  be the SVNLWIOWAD operator, if all '
i i id u u d= − =  for all i , 

then: 

( )' '
1 1 1, , ,..., , ,n n nQ t u u t u u d= . (17) 

Proof. Because '
i i id u u d= − = , then jD d= for 1,2,...,j n= , and we have:  

( )' '
1 1 1

1 1
, , ,..., , ,

n n

n n n j j j
j j

Q t u u t u u D dϖ ϖ
= =

= =  .  

Note that 
1

1,
n

j
j

ϖ
=

=  thus we obtain ( )' '
1 1 1

1
, , ,..., , , .

n

n n n j
j

Q t u u t u u d dϖ
=

= = □ 
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Theorem 6 (Boundedness). Let 'min( )i ii
u u x− =  and 'max( )i i

i
u u y− = , then:  

( )' '
1 1 1, , ,..., , ,n n nx Q t u u t u u y≤ ≤ . (18) 

Proof. Because [0,1]jϖ ∈  and 
1

1
n

j
j

ϖ
=

= , then:  

( )' '
1 1 1

1 1 1
, , ,..., , , .

n n n

n n n j j j j
j j j

Q t u u t u u D y y yϖ ϖ ϖ
= = =

= ≤ = =     

Similarly,  

( )' '
1 1 1

1 1 1

, , ,..., , , .
n n n

n n n j j j j
j j j

Q t u u t u u D x x xϖ ϖ ϖ
= = =

= ≥ = =     

Thus, we get  

( )' '
1 1 1, , ,..., , ,n n nx Q t u u t u u y≤ ≤ .  

□ 

Theorem 7 (Monotonicity). If ' '
i i i iu u v v− ≥ −  for all i , then: 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , , , ,..., , ,n n n n n nQ t u u t u u Q t v v t v v≥ . (19) 

Proof. Let  

( )' '
1 1 1

1
, , ,..., , , ,

n

n n n j j
j

Q t u u t u u Dϖ
=

=   

( )' '
1 1 1

1
, , ,..., , , ϖ

=

′=
n

n n n j j
j

Q t v v t v v D .  

As ' '
i i i iu u v v− ≥ −  for all i , it follows j jD D′≥  for all ,j  therefore  

( ) ( )' ' ' '
1 1 1 1 1 1

1 1
, , ,..., , , , , ,..., , ,

n n

n n n j j j j n n n
j j

Q t u u t u u D D Q t v v t v vϖ ϖ
= =

′= ≥ =  .  

□ 

Theorem 8 (Commutativity-IOWA operator aggregation). Let ( )' '
1 1 1, , ,..., , ,n n nt u u t u u

( 1,2,..., )i n=  be any possible permutation of the argument vector ( )' '
1 1 1, , ,..., , ,n n nt v v t v v , then: 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , = , , ,..., , ,n n n n n nQ t u u t u u Q t v v t v v . (20) 
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Proof. The permutation between ( )' '
1 1 1, , ,..., , ,n n nt u u t u u  and ( )' '

1 1 1, , ,..., , ,n n nt v v t v v

( 1,2,..., )i n=  follows that the corresponding rearranged arguments j jD D′=  for all ,j  

therefore  

( ) ( )' ' ' '
1 1 1 1 1 1

1 1
, , ,..., , , = , , ,..., , ,

n n

n n n j j j j n n n
j j

Q t u u t u u D D Q t v v t v vϖ ϖ
= =

′= =    

We can also illustrate the property of commutativity by considering the distance measure: 

( ) ( )' ' ' '
1 1 1 1 1 1, , ,..., , , = , , ,..., , ,n n n n n nQ t u u t u u Q t u u t u u . (21) 

Note that ' '=i i i iu u u u− −  for all i , thus the Equation (20) is easy to prove. □ 

In light of the similar analysis methods in [29-34], some particular cases of the SVNLWIOWAD 
operator can be achieved by exploring the weight vector and order-inducing values.  

4. A New MAGDM Approach Based on the SVNLWIOWAD Operator 

4.1. Steps of the MAGDM Method Based on the SVNWIOWAD Operator 

On the basis of the analysis reviewed in the Introduction, it is customary for decision makers to 
express their opinions on alternatives over attributes by SVNLNs because of their cognition with 
uncertainty and vagueness. Therefore, it is well worth investigating the application of the proposed 
SVNLWIOWAD under the SVNL framework. For an MAGDM problem with n alternatives 

{ }1 2, ,..., nA A A A=  assessed by decision makers with respect to m schemes (attributes) 

{ }1 2, ,..., mC C C C= , the decision steps based on the SVNLWIOWAD are listed as follows: 

Step 1: Each expert ( 1,2,..., )kd k l= (whose weight is kε , meeting 0kε ≥ and 
1

1
l

k
k

ε
=

= ) 

provides his or her performance of attributes by the SVNLNs. Afterwards, the individual decision 
matrix ( )( )

ij

k k

m n
U u

×
= is obtained, where ( )

ij

ku  is the k-th expert’s evaluation of the alternative jA  

with respect to the attribute iC ; 
Step 2: Aggregate all performances of the individual experts into a collective one and then form 

the group decision matrix: 

( )
11 1

1

,
ij

n

m n

m mn

u u

U u

u u
×

 
 = =  
 
 


  


 (22) 

where 

( )

1
ij ij

l
k

k
k

u uε
=

=
; 

Step 3: Find the ideal levels for each attribute to construct the ideal scheme, listed in the table 1; 

Table 1. Ideal scheme. 

 1C  2C    nC  

I  1I  2I    nI  
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Step 4: Utilize Equation (15) to calculate the distance ( , )iSVNLWIOWAD A I  between 

different alternatives ( 1,2,..., )iA i m=  and the ideal scheme I ; 

Step 5: Rank the alternatives and identify the best one(s) according to ( , )iSVNLWIOWAD A I

, where the smaller the value of ( , )iSVNLWIOWAD A I , the better the alternative 

( 1,2,..., )iA i m= . 

4.2. An Illustrative Example: Investment Selection 

We explored the application of the proposed approach in an investment selection problem 
where three decision makers were invited to assess a suitable strategy. There were four companies 
(alternatives) considered as potential investment options, chemical company ( 1A ), food company (

2A ), car company ( 3A ) and furniture company ( 4A ), according to following possible situations 

(attributes) for the next year: 1C was the risk, 2C  was the growth, 3C  was the environmental 

impact, and 4C  was other impacts. The evaluation presented by the decision makers with respect 
to the four attributes formed individual SVNL decision matrices under the linguistic term set S = {

1s  = extremely poor, 2s  = very poor, 3s  = poor, 4s  = fair, 5s  = good, 6s  = very good, and 7s  = 
extremely good}, as shown in Tables 2–4. 

Table 2. Single-valued neutrosophic linguistic (SVNL) decision matrix 1U . 

 1C  2C  3C  4C  

1A  4

(1) , (0.3,0.2,0.3)s  
3

(1) , (0.5,0.3,0.1)s  
4

(1) , (0.5,0.2,0.3)s (1)
5 , (0.3,0.5,0.2)s  

2A  6

(1) , (0.6,0.1,0.2)s  
4

(1) , (0.5,0.2,0.2)s  
5

(1) , (0.6,0.1,0.2)s  (1)
3 , (0.6, 0.2, 0.4)s  

3A  5

(1) , (0.7,0.0,0.1)s  
3

(1) , (0.3,0.1,0.2)s  (1)
4 , (0.6,0.1,0.2)s  (1)

6 , (0.6,0.1,0.2)s  

4A  5

(1) , (0.4,0.2,0.3)s  (1)
3 , (0.3,0.2,0.5)s  

5

(1) , (0.4,0.2,0.3)s  (1)
4 , (0.5,0.3,0.3)s  

Table 3. SVNL decision matrix 2U . 

 1C  2C  3C  4C  

1A  6

(2) , (0.4,0.2,0.4)s  (2)
4 , (0.6,0.1,0.3)s  

6

(2) , (0.6,0.3,0.4)s (2)
5 , (0.4,0.4,0.1)s  

2A  6

(2) , (0.7,0.2,0.3)s  (2)
5 , (0.6,0.2,0.2)s  

6

(2) , (0.7,0.2,0.3)s  ( 2 )
4 , (0.5, 0.4, 0.2)s  

3A  4

(2) , (0.8,0.1,0.2)s  (2)
4 , (0.4,0.2,0.2)s  

5

(2) , (0.7,0.2,0.3)s  
6

( 2 ) , (0.6, 0.3, 0.3)s  

4A  5

(2) , (0.4,0.3,0.4)s  (2)
5 , (0.3,0.1,0.6)s  

6

(2) , (0.5,0.1,0.2)s  (2)
3 , (0.7,0.1,0.1)s  

Table 4. SVNL decision matrix 3U . 

 1C  2C  3C  4C  

1A  6

(3) , (0.5,0.1,0.3)s  (3)
4 , (0.6,0.2,0.1)s  (3)

5 , (0.6,0.1,0.3)s ( 3)
4 , (0.3, 0.6, 0.2)s  

2A  5

(3) , (0.5,0.2,0.3)s  (3)
5 , (0.7,0.2,0.1)s  (3)

4 , (0.7,0.2,0.2)s  (3)
6 , (0.4,0.6,0.2)s  

3A  4

(3) , (0.6,0.1,0.2)s  (3)
3 , (0.4,0.1,0.1)s  (3)

4 , (0.5,0.2,0.2)s  ( 3)
5 , (0.7, 0.2, 0.1)s  

4A  6

(3) , (0.5,0.2,0.3)s  (3)
5 , (0.2,0.1,0.6)s  (3)

6 , (0.6,0.2,0.4)s  ( 3)
4 , (0.5, 0.2, 0.3)s  

Assuming that the weights of the experts were 1 0.30ε = , 2 0.37ε = , and 3 0.33ε = , 
respectively, then the group SVNL decision matrix could be obtained through aggregating the three 
individual decision matrices. The results are listed in the table 5. 
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Table 5. Group SVNL decision matrix U . 

 1C  2C  3C  4C  

1A  5.26
,(0.399,0.163,0.330)s  3.37,(0.566,0.185,0.144)s  4.96,(0.566,0.186,0.330)s 4.70,(0.335,0.491,0.159)s  

2A  5.70
,(0.611,0.155,0.258)s  2.37,(0.602,0.200,0.162)s  4.70,(0.666,0.155,0.229)s  4.23,(0.514,0.350,0.258)s  

3A  4.37
,(0.714,0.000,0.155)s  3.67,(0.365,0.128,0.163)s  4.33,(0.611,0.155,0.229)s  5.70,(0.633,0.180,0.186)s  

4A  5.30
,(0.432,0.229,0.330)s  2.37,(0.271,0.129,0.561)s  5.63,(0.450,0.159,0.286)s  3.67,(0.578,0.185,0.209)s  

The ideal scheme (Table 6) determined by experts represents the optimal results that a supplier 
should satisfy, which further serves as a reference point in the aggregation process. 

Table 6. Ideal scheme. 

 1C  2C  3C  4C  

I  7
, (0.9,0,0)s  7 , (0.9,0,0.1)s  

7
, (1,0,0.1)s  

6
, (0.9, 0.1, 0)s  

We assumed that the weight and the order-inducing vectors of the SVNLWIOWAD were 
(0.2,0.15,0.3,0.35)Tw =  and (5,9,7,4)T = , respectively. Based on the available information, 

we utilized the SVNLWIOWAD to calculate the distances between the alternative iA  and the ideal 

scheme I : 

   

  

Therefore, the ordering of the alternatives through the values of 
( , )( 1,2,3,4)iSVNLWIOWAD A I i =  was 4123 AAAA  , which implies that the optimal 

company 3A  is the best choice for investment. 
To conduct a comparative analysis with the existing methods, in this example we utilized the 

SVNLWD, SVNLOWAD, and SVNLIOWAD to measure the relative performance of all alternatives 
to the ideal scheme, and the aggregation results are listed in the Table 7. 

Table 7. Aggregation results. 

 1A  2A  3A  4A  Ranking 

),( IASVNLWD i  6.828 5.836 5.048 6.444 1423 AAAA   
),( IASVNLOWAD i  6.466 5.652 4.802 6.460 1423 AAAA   
),( IASVNLIOWAD i  6.770 5.788 4.833 6.460 4123 AAAA   

 
From the Table 7, it is easy to see that the most desirable alternative was 3A for the different 

distance measures used, which was the same as the result obtained from the SVNLWIOWAD 
operator. We also found that the ranking of alternatives may change for the different distance 
measures used because the different operators include different information. The SVNLWD uses the 
importance of attributes and the SVNLOWD focuses on the ordered location of the arguments. The 
SVNLIOWAD considers the attitudinal character of the decision-makers, while the SVNLIOWAD 
operator includes more information than the SVNLIOWAD as its design function of the order-
induced variables. It is worth pointing out that the SVNLWIOWAD operator not only combines the 

1( , ) 6.440,SVNLWIOWAD A I = 2( , ) 5.713,SVNLWIOWAD A I =

3( , ) 5.323,SVNLWIOWAD A I = 4( , ) 6.810.SVNLWIOWAD A I =
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advantages of the existing methods, but also overcomes some of their shortcomings, so that it can 
achieve a more scientific and reasonable result. 

5. Conclusions 

With the help of SVNLNs, decision makers may easily evaluate alternatives by linguistic terms 
as well as uncertainty degrees, which is very close to human cognition. In order to highlight the 
theory and application of SVNLS, in this paper, we explored some distance measures for SVNLSs 
from an induced aggregation point of view. Firstly, we put forward the SVNLIOWAD operator, 
which is a useful extension of the existing IOWAD operator. Then, a novel induced aggregation 
distance, namely the single valued neutrosophic linguistic weighted IOWAD (SVNLWIOWAD) 
operator, was developed to overcome the defects of the existing methods. The key feature of the 
SVNLWIOWAD is that it extends the functions of the order-inducing variables, which not only 
induce the order of arguments, but also moderate the associated weights. Compared with the existing 
methods, wherein the order-inducing variables just play the induced function, this dual role enables 
the SVNLWIOWAD operator to effectively measure the intrinsic variation of the induced variables 
on the integration results. Therefore, it can consider the complex attitudinal characteristics as well as 
reflect the influence of the induced variables on the aggregation results by moderating the associated 
weights. An MAGDM method, based on the SVNLWIOWAD operator, was further presented, which 
turned out to be a very powerful approach to handle decision making problems under SVNL 
situation. Finally, a numerical example on investment selection and comparative analysis were 
utilized to demonstrate the feasibility and effectiveness of the proposed method.  

For future research, we will consider some methodological extensions and application of the 
proposed method with other decision making approaches, such as moving averaging and probability 
information. 
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