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Abstract.
We introduce the concept of a single valued neutrosophic reflexive, sym-
metric and transitive relation. And we study single valued neutrosophic
analogues of many results concerning relationships between ordinary re-
flexive, symmetric and transitive relations. Next, we define the concepts of
a single valued neutrosophic equivalence class and a single valued neutro-
sophic partition, and we prove that the set of all single valued neutrosophic
equivalence classes is a single valued neutrosophic partition and the sin-
gle valued neutrosophic equivalence relation is induced by a single valued
neutrosophic partition. Finally, we define an α-cut of a single valued neu-
trosophic relation and investigate some relationships between single valued
neutrosophic relations and their α-cuts.
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1. Introduction

In 1965, Zadeh [28] had introduced the concept of a fuzzy set as the generalization
of a crisp set. In 1971, he [27] defined the notions of similarity relations and fuzzy
orderings as the generalizations of crisp equivalence relations and partial orderings
playing basic roles in many fields of pure and applied science. After that time,
many researchers [5, 6, 7, 8, 9, 10, 13, 14, 18] studied fuzzy relations. In particular,
Chakraborty et al. [5, 6, 7, 8] defined a fuzzy relation over a fuzzy set and obtained
many properties. Furthermore, Dib and Youssef [9] defined the fuzzy Cartesian
product of two ordinary sets X and Y as the collection of all L-fuzzy sets of X ×Y ,
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where L = I × I and I denotes the unit closed interval. In 2009, Lee [14] obtained
many results by using the notion of fuzzy relations introduced by Dib and Youssef.

In 1968, Atanassov [1] defined an intutionistic fuzzy set as a generalization of
a fuzzy set. After then, Atanassov and Gargov [2, 3] introduced the concept of
an interval-valued intuitionistic fuzzy set an dealt with intuitionistic fuzzy logics.
Moreover, Hur et al. [11] studied the category of intuitionistic H-fuzzy relation in
the sense of a topological universe. Recently, Liu et al. [15, 16, 17] applied the
concepts of an intuitionistic fuzzy set and an interval-valued intuitionistic fuzzy set
to multi-attribute group decision making and group decision making, respectively.

In 1998, Smarandache [23] defined the concept of a neutrusophic set as the gen-
eralization of an intuitionistic fuzzy set. Also he introduced neutrosophic logics,
neutrosophic sets, neutrosophic probabilities, neutrosophic statistics and its appli-
cations in [21, 22] . Furthermore, Salama et al. [19, 20] introduced the concept of
a neutrusophic relation and studied its some properties. Recently, Bhowmik and
Pal [4] introduced the concept of a neutrosophic relation and studied some of its
properties. In particular, Wang et al. [24] introduced the notion of a single valued
neutrosophic set. Moreover, Yang et al. [25] defined a single valued neutrosophic
relation and investigated some of its properties.

In this paper, first, we introduce a single valued neutrosophic relation from a set
X to Y and the composition of two single valued neutrosophic relations. Also we
introduce some operations between single valued neutrosophic relations and obtain
some of their properties. Second, we introduce the concept of a single valued neu-
trosophic reflexive, symmetric and transitive relation. And we study single valued
neutrosophic analogues of many results concerning relationships between ordinary
reflexive, symmetric and transitive relations. Third, we define the concepts of a sin-
gle valued neutrosophic equivalence class and a single valued neutrosophic partition,
and we prove that the set of all single valued neutrosophic equivalence classes is a
single valued neutrosophic partition and the single valued neutrosophic equivalence
relation is induced by a single valued neutrosophic partition. Finally, we define an
α-cut of a single valued neutrosophic relation and investigate some relationships
between single valued neutrosophic relations and their α-cuts.

2. Preliminaries

In this section, we introduce the concept of single valued neutrosophic set, the
complement of a single valued neutrosophic set, the inclusion between two single
valued neutrosophic sets, the union and the intersection of two single valued neu-
trosophic sets.

Definition 2.1 ([22]). Let X be a non-empty set. Then A is called a neutrosophic
set (in sort, NS) in X, if A has the form A = (TA, IA, FA), where

TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.
Since there is no restriction on the sum of TA(x), IA(x) and FA(x), for each x ∈ X,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X, TA(x) [resp.,IA(x) and FA(x)] represent the degree of
membership [resp.,indeterminacy and non-membership] of x to A.
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From Example 2.1.1 in [19], we can see that every IFS (intutionistic fuzzy set) A
in a non-empty set X is an NS in X having the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 2.2 ([22]). Let A and B be two NSs in X. Then we called A is contained
in B, denoted by A ⊂ B, if for each x ∈ X, inf TA(x) ≤ inf TB(x), sup TA(x) ≤
sup TB(x), inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x), inf FA(x) ≥ inf FB(x)
and sup FA(x) ≥ sup FB(x).

Definition 2.3 ([24]). Let X be a space of points (objects) with a generic element
in X denoted by x. Then A is called a single valued neutrosophic set (in sort, SVNS)
in X, if A has the form A = (TA, IA, FA), where TA, IA, FA : X → [0, 1].

In this case, TA, IA, FA are called truth-membership function, indeterminacy-
membership function, falsity-membership function, respectively and we will denote
the set of all SVNSs in X as SV NS(X).

Furthermore, we will denote the empty SVNS [resp. the whole SVNS] in X as
0N [resp. 1N ] and define by 0N (x) = (0, 1, 1) [resp. 1N = (1, 0, 0)], for each x ∈ X.

Definition 2.4 ([24]). Let A ∈ SV NS(X). Then the complement of A, denoted by
Ac, is a SVNS in X defined as follows: for each x ∈ X,

TAc(x) = FA(x), IAc(x) = 1− IA(x) and FAc(x) = TA(x).

Definition 2.5 ([26]). Let A, B ∈ SV NS(X). Then
(i) A is said to be contained in B, denoted by A ⊂ B, if for each x ∈ X,

TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x),

(ii) A is said to be equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.

Definition 2.6 ([25]). Let A, B ∈ SV NS(X). Then
(i) the intersection of A and B, denoted by A ∩B, is a SVNS in X defined as:

A ∩B = (TA ∧ TB , IA ∨ IB , FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∨ TB(x), (FA ∨ FB) = FA(x) ∨ FB(x), for each x ∈ X,
(ii) the union of A and B, denoted by A ∪B, is an SVNS in X defined as:

A ∪B = (TA ∨ TB , IA ∧ IB , FA ∧ FB).

Result 2.7 ([25], Proposition 2.1). Let A, B ∈ NS(X). Then
(1) A ⊂ A ∪B and B ⊂ A ∪B,
(2) A ∩B ⊂ A and A ∩B ⊂ B,
(3) (Ac)c = A,
(4) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

3. Single valued neutrosophic relations

In this section, we introduce the concepts of single valued neutrosophic relation,
the composition of two single valued neutrosophic relations and the inverse of a
single valued neutrosophic relation, and study some properties of each concept.

Let X,Y, Z be ordinary non-empty sets.
3
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Definition 3.1. R is called a single valued neutrosophic relation (in short, SVNR)
from X to Y , if it is a SVNS in X × Y having the form:

R = (TR, IR, FR),

where TR, IR, FR : X × Y → [0, 1] denote the truth-membership function, indeter-
minacy membership function, falsity-membership function, respectively.

For each (x, y) ∈ X×Y , TR(x, y) [resp.,IR(x, y) and FR(x, y)] represent the degree
of membership [resp., indeterminacy and non-membership] of (x, y) to R.

In particular, a SVNR from from X to X is called a SVNR in X (See [25]).
The empty SVNR[resp. the whole SVNR] in X is denoted by φN [resp. XN ] and

defined as follows: for each (x, y) ∈ X ×X,

φN (x, y) = (0, 1, 1) [resp. XN (x, y) = (1, 0, 0)].

We will denote the set of all SVNRs in X [resp. from X to Y ] as SV NR(X)
[resp. SV NR(X × Y )] .

Let X = {x1, x2, ..., xm} and let Y = {y1, y2, ..., yn}. Then R = (TR, IR, FR) ∈
SV NR(X × Y ) can be expressed by m× n matrix. This kind of matrix expressing
a SVNR will be called a single valued neutrosophic matrix.

Definition 3.2 (See [25]). Let R ∈ SV NR(X × Y ). Then
(i) the inverse of R, denoted by R−1, is a SVNR from Y to X defined as follows:

for each (y, x) ∈ Y ×X, R−1(x, y) = R(y, x), i.e.,

T−1
R (y, x) = TR(x, y), I−1

R (y, x) = IR(x, y), F−1
R (y, x) = FR(x, y).

(ii) the complement of R, denoted by Rc, is a SVNR from X to Y defined as
follows: for each (x, y) ∈ X × Y ,

T cR(x, y) = FR(x, y), IcR(x, y) = 1− IR(x, y), F cR(x, y) = TR(x, y).

Example 3.3. Let X = {a, b, c} and let R be a SVNR in X given by the single
valued neutrosophic matrix:

R =

(0.2, 0.4, 0.3) (1, 0.2, 0) (0.4, 1, 0.7)
(0, 0, 0) (0.6, 0.2, 0.1) (0.3, 0.2, 0.6)
(0, 0, 0) (0, 0, 0) (0.2, 0.4, 0.1)

 .

Then the inverse and the complement of R are given as below:

R−1 =

(0.2, 0.4, 0.3) (0, 0, 0) (0, 0, 0)
(1, 0.2, 0) (0.6, 0.2, 0.1) (0, 0, 0)

(0.4, 1, 0.7) (0.3, 0.2, 0.6) (0.2, 0.4, 0.1)

 ,

Rc =

(0.3, 0.6, 0.2) (0, 0.8, 1) (0.7, 0, 0.4)
(0, 1, 0) (0.1, 0.8, 0.6) (0.6, 0.8, 0.3)
(0, 1, 0) (0, 1, 0) (0.1, 0.6, 0.2)

 .

Remark 3.4. For each R ∈ SV NR(X), R ∩ Rc = φN and R ∪ Rc = XN do not
hold, in general.
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Consider the SVNR R in Example 3.3. Then

R ∩Rc =

(0.2, 0.6, 0.3) (0, 0.8, 1) (0.4, 1, 0.7)
(0, 1, 0) (0.1, 0.8, 0.6) (0.3, 0.8, 0.6)
(0, 1, 0) (0, 1, 0) (0.1, 0.6, 0.2)

 6= φN ,

R ∪Rc =

(0.3, 0.4, 0.2) (1, 0.2, 0) (0.7, 0, 0.4)
(0, 0, 0) (0.6, 0.2, 0.1) (0.6, 0.2, 0.3)
(0, 0, 0) (0, 0, 0) (0.2, 0.4, 0.1)

 6= XN .

Definition 3.5 (See [25]). Let R, S ∈ SV NR(X × Y ). Then
(i) R is said to be contained in S, denoted by R ⊂ S, if

TR(x, y) ≤ TS(x, y), IR(x, y) ≥ IS(x, y) and FR(x, y) ≥ FS(x, y), for each
(x, y) ∈ X × Y ,

(ii) R is said to equal to S, denoted by R = S, if R ⊂ S and S ⊂ R,
(iii) the intersection of R and S, denoted by R ∩ S, is a SVNR from X to Y

defined as:

A ∩B = (TA ∧ TB , IA ∨ IB , FA ∨ FB),

where (TA ∧ TB)(x, y) = TA(x, y)∧ TB(x, y), (FA ∨ FB)(x, y) = FA(x, y)∨ FB(x, y),
for each (x, y) ∈ X × Y ,

(iv) the union of R and S, denoted by R ∪ S, is a SVNR in X to Y defined as:

A ∪B = (TA ∨ TB , IA ∧ IB , FA ∧ FB).

Proposition 3.6 (See [25], Theorem 3.1). Let R, S, P ∈ SV NR(X × Y ). Then
(1) (Rc)−1 = (R−1)c,
(2) (R−1)−1 = R, (Rc)c = R,
(3) R ⊂ R ∪ S and S ⊂ R ∪ S,
(4) R ∩ S ⊂ R and R ∩ S ⊂ S,
(5) if R ⊂ S, then R−1 ⊂ S−1,
(6) if R ⊂ P and S ⊂ P , then R ∪ S ⊂ P ,
(7) if P ⊂ R and P ⊂ S, then P ⊂ R ∩ S,
(8) if R ⊂ S, then R ∪ S = S and R ∩ S = R,
(9) (R ∪ S)−1 = R−1 ∪ S−1, (R ∩ S)−1 = R−1 ∩ S−1,
(10) (R ∪ S)c = Rc ∩ Sc, (R ∩ S)c = Rc ∪ Sc.

Proof. The proofs are similar to Theorem 3.1 in [25]. �

From Definitions 3.2 and 3.5, we can easily obtain the following results.

Proposition 3.7. Let R,S, P ∈ SV NR(X × Y ). Then
(1) (Idempotent laws): R ∪R = R, R ∩R = R,
(2) (Commutative laws): R ∪ S = S ∪R, R ∩ S = S ∩R,
(3) (Associative laws): R ∪ (S ∪ P ) = (R ∪ S) ∪ P , R ∩ (S ∩ P ) = (R ∩ S) ∩ P ,
(4) (Distributive laws): R ∪ (S ∩ P ) = (R ∪ S) ∩ (R ∪ P ),

R ∩ (S ∪ P ) = (R ∩ S) ∪ (R ∩ P ),
(5) (Absorption laws): R ∪ (R ∩ S) = R, R ∩ (R ∪ S) = R.

Definition 3.8. Let (Rj)j∈J ⊂ SV NR(X × Y ). Then
5
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(i) the the intersection of (Rj)j∈J , denoted by
⋂
j∈J Rj (simply,

⋂
Rj), is a SVNR

from X to Y defined as: ⋂
Rj = (

∧
TRj

,
∨
IRj

,
∨
FRj

),

(ii) the the union of (Rj)j∈J , denoted by
⋃
j∈J Rj (simply,

⋃
Rj), is a SVNR

from X to Y defined as: ⋃
Rj = (

∨
TRj ,

∧
IRj ,

∧
FRj ).

The followings are the immediate result of Definitions 3.2, 3.5 and 3.8

Proposition 3.9. Let R ∈ SV NR(X×Y ) and let (Rj)j∈J ⊂ SV NR(X×Y ). Then
(1) (

⋂
Rj)

c =
⋃
Rcj , (

⋃
Rj)

c =
⋂
Rcj ,

(2) R ∩ (
⋃
Rj) =

⋃
(R ∩Rj), R ∪ (

⋂
Rj) =

⋂
(R ∪Rj).

Definition 3.10. Let R ∈ SV NR(X × Y ) and let S ∈ SV NR(Y × Z). Then the
composition of R and S, denoted by S ◦R, is a SVNR from X to Z defined as:

S ◦R = (TS◦R, IS◦R, FS◦R),

where for each (x, z) ∈ X × Z,
TS◦R(x, z) =

∨
y∈Y (TR(x, y) ∧ TS(y, z)),

IS◦R(x, z) =
∧
y∈Y (IR(x, y) ∨ IS(y, z)),

FS◦R(x, z) =
∧
y∈Y (FR(x, y) ∨ FS(y, x)).

Proposition 3.11. (1) P ◦ (S ◦ R) = (P ◦ S) ◦ R), where R ∈ SV NR(X × Y ),
S ∈ SV NR(Y × Z) and P ∈ SV NR(Z ×W ).

(2) P ◦ (R ∪ S) = (P ◦ R) ∪ (P ◦ S), where R,S ∈ SV NR(X × Y ) and P ∈
SV NR(Y × Z).

(3) If R ⊂ S, then P ◦ R ⊂ P ◦ S, where R,S ∈ SV NR(X × Y ) and P ∈
SV NR(Y × Z).

(4) (S ◦R)−1 = R−1 ◦ S−1, where R ∈ SV NR(X × Y ) and S ∈ SV NR(Y × Z).

Proof. (1) Let R ∈ SV NR(X × Y ), S ∈ SV NR(Y × Z) and P ∈ SV NR(Z ×W )
and let (x,w) ∈ (X × Z). Then

TP◦(S◦R)(x,w) =
∨
z∈Z(TS◦R(x, z) ∧ TP (z, w))

=
∨
z∈Z([

∨
y∈Y (TR(x, y) ∧ TS(y, z)] ∧ TP (z, w))

=
∨
y∈Y (TR(x, y) ∧ [

∨
z∈Z(TS(y, z) ∧ TP (z, w))])

=
∨
y∈Y (TR(x, y) ∧ TP◦S(y, w))

= T(P◦S)◦R)(x,w).
Similarly, we can prove that IP◦(S◦R)(x,w) = I(P◦S)◦R)(x,w) and FP◦(S◦R)(x,w) =
F(P◦S)◦R)(x,w). Thus the result holds.

(2) Let R,S ∈ SV NR(X × Y ) and P ∈ SV NR(Y × Z) and let (x, z) ∈ X × Z.
Then

TP◦(R∪S)(x, z) =
∨
y∈Y (TR∪S(x, y) ∧ TP (y, z))

=
∨
y∈Y ([TR(x, y) ∨ TS(x, y)] ∧ TP (y, z))

= [
∨
y∈Y (TR(x, y) ∧ TP (y, z)] ∨ [

∨
y∈Y (TS(x, y) ∧ TP (y, z)]

= TP◦R(x, z) ∨ TP◦S(x, z)
6
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= T(P◦R)∪(P◦S)(x, z).
Similarly, we can see that IP◦(R∪S)(x, z) = I(P◦R)∪(P◦S)(x, z) and FP◦(R∪S)(x, z) =
F(P◦R)∪(P◦S)(x, z). Thus the result holds.

(3) Let R,S ∈ SV NR(X × Y ) and P ∈ SV NR(Y × Z). Suppose R ⊂ S and let
(x, z) ∈ X × Z. Then

TP◦R(x, z) =
∨
y∈Y (TR(x, y) ∧ TP (y, z))

≤
∨
y∈Y (TS(x, y) ∧ TP (y, z))

[Since R ⊂ S, TR(x, y) ≤ TS(x, y)]
= TP◦S(x, z).

Similarly, we can prove that IP◦R(x, z) ≥ IP◦S(x, z) and FP◦R(x, z) ≥ FP◦S(x, z).
Thus the result holds.

(4) Let R ∈ SV NR(X×Y ) and S ∈ SV NR(Y ×Z) and let (x, z) ∈ X×Z. Then
T(S◦R)−1(z, x) = T(S◦R)(x, z)

=
∨
y∈Y (TR(x, y) ∧ TS(y, z))

=
∨
y∈Y (TS−1(z, y) ∧ TR−1(y, x))

= TR−1◦S−1(z, x).
Similarly we can see that I(S◦R)−1(z, x) = IR−1◦S−1(z, x) and F(S◦R)−1(z, x) =
FR−1◦S−1(z, x). Thus the result holds. �

Remark 3.12. (1) For any SVNRs R and S, S ◦R 6= R ◦ S, in general.
(2) For any R,S ∈ SV NR(X × Y ) and P ∈ SV NR(Y × Z), P ◦ (R ∩ S) 6=

(P ◦R) ∩ (P ◦ S), in general.

Example 3.13. Let X = Y = {a, b}, Z = {x, y}. Consider two SVNRs R and S
in X, and an SVNR P from X to Z given by following single valued neutrosophic
matrices:

R =

(
(0.6, 0.3, 0.4) (0.7, 0.2, 0.1)
(0.4, 0.6, 0.3) (0.6, 0.4, 0.2)

)
,

S =

(
(0.7, 0.4, 0.2) (0.4, 0.6, 0.4)
(0.5, 0.2, 0.6) (0.3, 0.6, 0.5)

)
and

P =

(
(0.7, 0.2, 0.3) (0.4, 0.6, 0.4)
(0.4, 0.6, 0.2) (0.8, 0.2, 0.3)

)
.

Then TP◦(R∩S)(a, x) = 0.6 6= 0.4 = T(P◦R)∩(P◦S)(a, x). Thus P ◦ (R∩S) 6= (P ◦R)∩
(P ◦ S).

4. Single valued neutrosophic reflexve, smmetric and ansitive
relations

In this section, we introduce single valued neutrosophic reflexve, smmetric and
ansitive relations and obtain some properties related to them.

Definition 4.1 ([25]). The single valued neutrosophic identity relation in X, de-
noted by IX (simply, I), is a SVNR in X defined as: for each (x, y) ∈ X ×X,

TIX (x, y) =

{
1 if x = y
0 if x 6= y,

IIX (x, y) =

{
0 if x = y
1 if x 6= y,

FIX (x, y) =

{
0 if x = y
1 if x 6= y.

It is clear that I = I−1 and Ic = (Ic)−1.
7
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Definition 4.2 ([25]). R ∈ SV NR(X) is said to be:
(i) reflexive, if for each x ∈ X, TR(x, x)1, IR(x, x) = FR(x, x) = 0,
(ii) anti-reflexive, if for each x ∈ X, TR(x, x) = 0, IR(x, x) = FR(x, x) = 1.

From Definitions 4.1 and 4.2, it is obvious that R is neutrosophic reflexive if and
only if I ⊂ R.

The followings are the immediate results of the above definition.

Proposition 4.3 (See [19], Theorem 2.5.2). Let R ∈ SV NR(X).
(1) R is reflexive if and only if R−1 is reflexive.
(2) If R is reflexive, then R ∪ S is reflexive, for each S ∈ SV NR(X).
(3) If R is reflexive, then R ∩ S is reflexive if and only if S ∈ SV NR(X) is

reflexive.

The followings are the immediate result of Definitions 3.2, 3.5 and 4.2.

Proposition 4.4. Let R ∈ SV NR(X).
(1) R is anti-reflexive if and only R−1 is anti-reflexive.
(2) If R is anti-reflexive, then R∪S is anti-reflexive if and only if S ∈ SV NR(X)

is anti-reflexive.
(3) If R is anti-reflexive, then R ∩ S is anti-reflexive, for each S ∈ SV NR(X).

Proposition 4.5. Let R,S ∈ SV NR(X). If R and S are reflexive, then S ◦ R is
reflexive.

Proof. Let x ∈ X. Since R and S are reflexive,

TR(x, x) = 1, IR(x, x) = FR(x, x) = 0

and

TS(x, x) = 1, IR(x, x) = FS(x, x) = 0.

Thus
TS◦R =

∨
y∈X(TR(x, y) ∧ TS(y, x))

= [
∨
x 6=y∈X(TR(x, y) ∧ TS(y, x))] ∨ (TR(x, x) ∧ TS(x, x))

= [
∨
x 6=y∈X(TR(x, y) ∧ TS(y, x))] ∨ (1 ∧ 1)

= 1.
On the other hand,

IS◦R =
∧
y∈X(IR(x, y) ∨ IS(y, x))

= [
∧
x 6=y∈X(IR(x, y) ∨ IS(y, x))] ∧ (IR(x, x) ∨ IS(x, x))

= [
∧
x 6=y∈X(IR(x, y) ∨ IS(y, x))] ∧ (0 ∨ 0)

= 0.
Similarly, FS◦R = 0. So S ◦R is reflexive. �

Definition 4.6. Let R = (TR, IR, FR) ∈ SV NR(X). Then
(i)[19, 25] R is said to be symmetric, if for each x, y ∈ X,

TR(x, y) = TR(y, x), IR(x, y) = IR(y, x), FR(x, y) = FR(y, x),

(ii)[19] R is said to be anti-symmetric, if for each (x, y) ∈ X ×X with x 6= y,

TR(x, y) 6= TR(y, x), IR(x, y) 6= IR(y, x), FR(x, y) 6= FR(y, x),
8
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From Definitions 4.2 and 4.6, it is obvious that φN is a symmetric and anti-
reflexive SVNR, XN and I are symmetric and reflexive SVNRs and Ic is an anti-
reflexive SVNR.

The following is the immediate result of Definitions 3.5 and 4.6.

Result 4.7 ([25], Theorem 3.1). Let R ∈ SV NR(X). Then R is symmetric iff
R = R−1.

Proposition 4.8. Let R ∈ SV NR(X). If R is symmetric, then R−1 is symmetric.

Proposition 4.9. Let R,S ∈ SV NR(X). If R and S are symmetric, then R ∪ S
and R ∩ S are symmetric.

Proof. Let (x, y) ∈ X ×X. Since R and S and are symmetric,

TR(x, y) = TR(y, x), IR(x, y) = IR(y, x), FR(x, y) = FR(y, x)

and
TS(x, y) = TS(y, x), IS(x, y) = IS(y, x), FS(x, y) = FS(y, x).

Thus TR∪S(x, y) = TR(x, y) ∨ SR(x, y) = TR(y, x) ∨ SR(y, x) = TR∪S(y, x).
Similarly, we can see that IR∪S(x, y) = IR∪S(y, x) and FR∪S(x, y) = FR∪S(y, x).
So R ∪ S is symmetric.

Similarly, we can prove that R ∩ S is symmetric. �

Remark 4.10. R and S are nsymmetric, but S ◦R is not symmetric, in general.

Example 4.11. Let X = {a, b, c} and consider two NRs R and S in X given by the
following single valued neutrosophic matrices:

R =

(0.2, 0.4, 0.3) (1, 0.2, 0) (0.4, 1, 0.7)
(1, 0.2, 0) (0.6, 0.2, 0.1) (0.3, 0.2, 0.6)

(0.4, 1, 0.7) (0.3, 0.2, 0.6) (0.2, 0.4, 0.1)


and

S =

(0.2, 0.4, 0.3) (0, 0.2, 0.6) (0.2, 0.6, 0.3)
(0, 0.2, 0.6) (0.6, 0.2, 0.1) (0.3, 0.2, 0.6)

(0.2, 0.6, 0.3) (0.3, 0.2, 0.6) (0.2, 0.4, 0.1)

 .

Then clearly, R and S are symmetric. But

TS◦R(a, b) = 0.6 6= 0.2 = TS◦R(b, a).

Thus S ◦R is not nsymmetric.

The following gives the condition for its being symmetric.

Proposition 4.12. Let R,S ∈ SV NR(X). Let R and S be symmetric. Then S ◦R
is symmetric if and only if S ◦R = R ◦ S.

Proof. Suppose S ◦ R is symmetric. Since R and S and are symmetric, by Result
4.7, R = R−1 and S = S−1. Thus

S ◦R = (S ◦R)−1 [By the hypothesis and Result 4.7]
= R−1 ◦ S−1 [By Proposition 3.11]
= R ◦ S.

Conversely, suppose S ◦R = R ◦ S. Then
(S ◦R)−1 = R−1 ◦ S−1 [By Proposition 3.11]

9
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= R ◦ S
[Since R and S and are symmetric, R = R−1 and S = S−1]
= S ◦R. [By the hypothesis]

This completes the proof. �

The following is the immediate result of Proposition 4.12.

Corollary 4.13. If R is symmetric, then Rn is symmetric, for all positive integer
n, where Rn = R ◦R ◦ ... n times.

Definition 4.14. (See [25]) R ∈ SV NR(X) is said to be transitive, if R ◦ R ⊂ R,
i.e., R2 ⊂ R.

Proposition 4.15. Let R ∈ SV NR(X). If R is transitive, then R−1 is so.

Proof. Let (x, y) ∈ X ×X. Then
TR−1(x, y) = TR(y, x) ≥ TR◦R(y, x)

=
∨
z∈X(TR(y, z) ∧ TR(z, x))

=
∨
z∈X(TR−1(z, y) ∧ TR−1(x, z))

=
∨
z∈X(TR−1(x, z) ∧ TR−1(z, y))

= TR−1◦R−1(x, y).
Similarly, we can prove that

IR−1(x, y) ≤ IR−1◦R−1(x, y) and FR−1(x, y) ≤ FR−1◦R−1(x, y).
Thus the result holds. �

Proposition 4.16. Let R ∈ SV NR(X). If R is transitive, then so is R2.

Proof. Let (x, y) ∈ X ×X. Then
TR2(x, y) =

∨
z∈X(TR(x, z) ∧ TR(z, y))

≥
∨
z∈X(TR2(x, z) ∧ TR2(z, y))

= TR2◦R2(x, y).
Similarly, we can see that IR2(x, y) ≤ IR2◦R2(x, y) and FR2(x, y) ≤ FR2◦R2(x, y).
Thus the result holds. �

Proposition 4.17. Let R,S ∈ SV NR(X). If R and S are transitive, then R ∩ S
is transitive.

Proof. Let (x, y) ∈ X ×X. Then
T(R∩S)◦(R∩S)(x, y) =

∨
z∈X(TR∩S(y, z) ∧ TR∩S(z, x))

=
∨
z∈X([TR(x, z) ∧ TS(x, z)] ∧ [TR(z, y) ∧ TS(z, y)])

=
∨
z∈X([TR(x, z) ∧ TR(z, y)] ∧ [TS(x, z) ∧ TS(z, y)])

= (
∨
z∈X [TR(x, z) ∧ TR(z, y)]) ∧ (

∨
z∈X [TS(x, z) ∧ TS(z, y)])

= TR◦R(x, y) ∧ TS◦S(x, y)
≤ TR(x, y) ∧ TS(x, y) [Since R and S are transitive]
= TR∩S(x, y).

Similarly, we can prove that
I(R∩S)◦(R∩S)(x, y) ≥ IR∩S(x, y) and F(R∩S)◦(R∩S)(x, y) ≥ FR∩S(x, y).

Thus the result holds. �

Remark 4.18. For two single valued neutrosophic transitive relation R and S in
X, R ∪ S is not transitive, in general.

10
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Example 4.19. Let X = {a, b} and consider two SVNRs R and S in X given by
following single valed neutrosophic matrices:

R =

(
(0.8, 0.5, 0.4) (0.6, 0.4, 0.5)
(0.7, 0.6, 0.2) (0.7, 0.6, 0.3)

)
and

S =

(
(0.7, 0.4, 0.2) (0.4, 0.6, 0.4)
(0.5, 0.4, 0.3) (0.5, 0.4, 0.4)

)
.

Then we can easily see that R and S are transitive. On the other hand,

R ∪ S =

(
(0.8, 0.4, 0.2) (0.6, 0.4, 0.4)
(0.7, 0.4, 0.2) (0.7, 0.4, 0.3)

)
.

Then T(R∪S)◦(R∪S)(a, b) = 0.7 ≥ 0.6 = TR∪S(a, b). Thus R ∪ S is not transitive.

5. Single valurd neutrosophic transitive closure

In this section, we define the concept of the single valued neutrosophic transitive
closure of an SVNR and study some of its properties.

Definition 5.1. Let R ∈ SV NR(X). Then the single valued neutrosophic transitive

closure of R, denoted by R̂, is defined as:

R̂ = R ∪R2 ∪ ....

The following is the immediate result of Definition 5.1.

Proposition 5.2. Let R ∈ SV NR(X). Then

(1) R̂ is transitive.

(2 ) R is transitive iff R = R̂.

Proposition 5.3. Let R, S ∈ SV NR(X). If R ⊂ S, then R̂ ⊂ Ŝ.

Proof. By Definition 5.1, R̂ = R ∪ R2 ∪ ... and Ŝ = S ∪ S2 ∪ .... Since R ⊂ S, by
Proposition 3.11, R ◦R ⊂ S ◦R ⊂ S ◦ S. Then R2 ⊂ S2. Thus R3 ⊂ S3 and so on.
So R̂ ⊂ Ŝ. �

Proposition 5.4. Let R,S ∈ SV NR(X). If R is symmetric, then R̂ is symmetric.

Proof. By Corollary 4.13, R2, R3, ..., are symmetric. Then by Proposition 4.9, R̂ is
symmetric. �

Proposition 5.5. Let R ∈ SV NR(X). Then (R̂)−1 = ˆR−1.

Proof. (Rn)−1 = (R ◦R ◦ ... ◦R)−1 ntimes
= R−1 ◦R−1 ◦ ... ◦R−1 = (R−1)n = (R−1)n.

Then
(R̂)−1 = (R ∪R2 ∪ ...)−1

= R−1 ∪ (R2)−1 ∪ ...
= R−1 ∪ (R−1)2 ∪ ...
= ˆR−1. �

Proposition 5.6. For any R ∈ SV NR(X), Then R̂ is the intersection of all single
valued neutrosophic transitive relations containing R.

11
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Proof. Let R ∈ SV NR(X) and let
R∗ =

⋂
{RT : RT is a transitive relation containing R}.

Then clearly, R∗ is the smallest transitive relation containing R. Since R̂ is a tran-
sitive relation containing R, R∗ ⊂ R̂.

Conversely, let RT be any transitive relation containing R. Then by Proposition

5.3, R̂ ⊂ R̂T . Since RT is transitive, by Proposition 5.2, R̂T = RT . Thus R̂ ⊂ R̂T ,
for each RT . So R̂ ⊂ R∗. This completes the proof. �

6. Single valued neutrosophic equivalence relation

In this section, we define the concept of a single valued neutrosophic equivalence
class and a single valued neutrosophic partition, and we prove that the set of all
single valued neutrosophic equivalence classes is a neutrosophic partition and induce
the single valued neutrosophic equivalence relation from a single valued neutrosophic
partition.

Definition 6.1. R ∈ SV NR(X ×X) is called a:
(i) tolerance relation on X, if it is reflexive and symmetric,
(ii) similarity (or equivalence) relation on X, if it is reflexive, symmetric and

transitive.
(iii) order relation on X, if it is reflexive, anti-symmetric and transitive.
We will denote the set of all tolerance [resp., equivalence and order] relations on

X as SV NT (X) [resp., SV NE(X) and SV NO(X)].

The following is the immediate result of Propositions 4.3, 4.9 and 4.17.

Proposition 6.2. Let (Rj)j∈J ⊂ SV NT (X) [resp., SV NE(X) and SV NO(X)].
Then

⋂
Rj ∈ SV NT (X) [resp., SV NE(X) and SV NO(X)].

Proposition 6.3. Let R ∈ SV NE(X). Then R = R ◦R.

Proof. From Definition 4.14, it is clear that R ◦R ⊂ R.
Let (x, y) ∈ X ×X. Then
TR◦R(x, y) =

∨
z∈X(TR(x, z) ∧ TR(z, y))

≥ TR(x, x) ∧ TR(x, y)
= 1 ∧ TR(x, y) [Since R is reflexive]
= TR(x, y)

and
IR◦R(x, y) =

∧
z∈X(IR(x, z) ∨ IR(z, y))

≤ IR(x, x) ∨ IR(x, y)
= 0 ∨ IR(x, y) [Since R is reflexive]
= IR(x, y).

Similarly, FR◦R(x, y) ≤ FR(x, y). Thus R ◦R ⊃ R. So R ◦R = R. �

Definition 6.4. Let A ∈ SV NS(X). Then A is said to be normal, if
∨
x∈X TA(x) =

1,
∧
x∈X IA(x) =

∧
x∈X FA(x) = 0.

Definition 6.5. Let R ∈ SV NE(X) and let x ∈ X. Then the single valued
neutrosophic equivalence class of x by R, denoted by Rx, is a SVNS in X defined
as:

Rx = (TRx
, IRx

, FRx
),

12
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where TRx , IRx , FRx : X → [0, 1] are mappings
and

TRx
(y) = TR(x, y), IRx

(y) = IR(x, y), FRx
(y) = FR(x, y), for each y ∈ X.

We will denote the set of all single valued neutrosophic equivalence class by R as
X/R and it will be called the single valued neutrosophic quotient set of X by R.

Proposition 6.6. Let R ∈ SV NE(X) and let x, y ∈ X. Then
(1) Rx is normal, in fact, Rx 6= 0N ,
(2) Rx ∩Ry = 0N iff R(x, y) = (0, 1, 1),
(3) Rx = Ry iff R(x, y) = (1, 0, 0).

Proof. (1) Since R is reflexive,
TR(x, x) = TRx

(x) = 1, IR(x, x) = IRx
(x) = 0 and FR(x, x) = FRx

(x) = 0.
Thus

∨
y∈X TRx

(y) = 1,
∧
y∈X IRx

(y) = 0 and
∧
y∈X FRx

(y) = 0. So Rx is normal.

Moreover, Rx = (1, 0, 0) 6= (0, 1, 1) = 0N (x). Hence Rx 6= 0N .
(2) Suppose Rx ∩Ry = 0N and let z ∈ X. Then

0 = TRx∩Ry (z)
= TRx(z) ∧ TRy (z)
= TR(x, z) ∧ TR(y, z) [By Definition 6.5]
= TR(x, z) ∧ TR(z, y) [Since R is symmetric]

and
1 = IRx∪Ry

(z)
= IRx(z) ∨ IRy (z)
= IR(x, z) ∨ IR(y, z) [By Definition 6.5]
= IR(x, z) ∨ FIR(z, y). [Since R is symmetric]

Thus
0 =

∨
z∈X(TR(x, z) ∧ TR(z, y))

= TR◦R(x, y)
= TR(x, y) [By Proposition 6.3]

and
1 =

∧
z∈X(IR(x, z) ∨ IR(z, y))

= IR◦R(x, y)
= IR(x, y) [By Proposition 6.3].

Similarly, FR(x, y) = 1. So R(x, y) = (0, 1, 1).
The sufficient condition is easily proved.
(3) Suppose Rx = Ry and let z ∈ X. Then R(x, z) = R(y, z). In particular,

R(x, y) = R(y, y). Since R is reflexive, R(x, y) = (1, 0, 0).
Conversely, suppose R(x, y) = (1, 0, 0) and let z ∈ X. Since R is transitive,

R ◦R ⊂ R. Then
TR(x, y) ∧ TR(y, z) ≤ TR(x, z),

IR(x, y) ∨ IR(y, z) ≥ IR(x, z),

FR(x, y) ∨ FR(y, z) ≥ FR(x, z).

Since R(x, y) = (1, 0, 0), TR(x, y) = 1 and IR(x, y) = FR(x, y) = 0. Thus

TR(y, z) ≤ TR(x, z), IR(y, z) ≥ IR(x, z), FR(y, z) ≥ FR(x, z).

So TRy
(z) ≤ TRx

(z), IRy
(z) ≥ IRx

(z), FRy
(z) ≥ FRx

(z). Hence Ry ⊂ Rx.
Similarly, we can see that Rx ⊂ Ry. Therefore Rx = Ry. �

13
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Definition 6.7. Let Σ = (Aj)j∈J ⊂ SV NS(X). Then Σ is called a single valued
neutrosophic partition of X, if it satisfies the followings:

(i) Aj is normal, for each j ∈ J ,
(ii) either Aj = Ak or Aj 6= Ak, for any j, k ∈ J ,
(iii)

⋃
j∈J Aj = 1N .

The following is the immediate result of Proposition 6.6 and Definition 6.7.

Corollary 6.8. Let R ∈ SV NE(X). Then X/R is a single valued neutrosophic
partition of X.

Proposition 6.9. Let Σ be a single valued neutrosophic partition of X. We define
R(Σ) = (TR(Σ), IR(Σ), FR(Σ)) as: for each (x, y) ∈ X ×X,

TR(Σ)(x, y) =
∨
A∈Σ

[TA(x) ∧ TA(y)],

IR(Σ)(x, y) =
∧
A∈Σ

[IA(x) ∨ IA(y)],

FR(Σ)(x, y) =
∧
A∈Σ

[FA(x) ∨ FA(y)],

where TR(Σ), IR(Σ), FR(Σ) : X ×X → [0, 1] are mappings.
Then R(Σ) ∈ SV NE(X).

Proof. Let x ∈ X. Then by Definition 6.7 (iii),

TR(Σ)(x, x) =
∨
A∈Σ

(TA(x) ∧ TA(x) =
∨
A∈Σ

(TA(x) = 1

and

IR(Σ)(x, y) =
∧
A∈Σ

(IA(x) ∨ IA(y) =
∧
A∈Σ

(IA(x) = 0 = FR(Σ)(x, y).

Thus R(Σ) is reflexive.
From the definition of R(Σ), it is clear that R(Σ) is symmetric.
Let (x, y) ∈ X ×X. Then

TR(Σ)◦R(Σ)(x, y)
=
∨
z∈X [TR(Σ)(x, z) ∧ TR(Σ)(z, y)]

=
∨
z∈X [

∨
A∈Σ(TA(x) ∧ TA(z)) ∧

∨
B∈Σ(TB(z) ∧ TB(y))]

=
∨
z∈X [(

∨
A∈Σ TA(z) ∧

∨
B∈Σ TB(z)) ∧ (TA(x) ∧ TB(y))]

=
∨
z∈X [(1 ∧ 1) ∧ (TA(x) ∧ TB(y))] [Since A and B are normal]

=
∨
z∈X [TA(x) ∧ TB(y)]

= TR(Σ)(x, y).
Similarly, we can prove that IR(Σ)◦R(Σ)(x, y) = IR(Σ)(x, y) and FR(Σ)◦R(Σ)(x, y) =
FR(Σ)(x, y). Thus R(Σ) is transitive. So R(Σ) ∈ SV NE(X). �

Proposition 6.10. Let R,S ∈ SV NE(X). Then R ⊂ S iff Rx ⊂ Sx, for each
x ∈ X.

Proof. Suppose R ⊂ S and let x ∈ X. Let y ∈ X. Then by the hypothesis,

TRx
(y) = TR(x, y) ≤ TS(x, y) = TSx

(y),
14
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IRx(y) = IR(x, y) ≥ IS(x, y) = ISx(y),

FRx
(y) = FR(x, y) ≥ FS(x, y) = FSx

(y).

Thus Rx ⊂ Sx.
The converse can be easily proved. �

Proposition 6.11. Let R,S ∈ SV NE(X). Then S ◦R ∈ NE(X) iff S ◦R = R◦S.

Proof. Suppose S ◦R = R◦S. Since R and S are reflexive, by Proposition 4.5, S ◦R
is reflexive. Since R and S are symmetric, by the hypothesis and Proposition 4.12,
S ◦R is symmetric. Then it is sufficient to show that S ◦R is transitive.

(S ◦R) ◦ (S ◦R) = S ◦ (R ◦ S) ◦R [By Proposition 3.11 (2)]
= S ◦ (S ◦R)◦)
= (S ◦ S) ◦ (R ◦R)
⊂ S ◦R.

Thus S ◦R is transitive. So S ◦R ∈ SV NE(X).
The converse is immediate. �

Proposition 6.12. Let R,S ∈ SV NE(X). If R ∪ S = S ◦ R, then R ∪ S ∈
SV NE(X).

Proof. Suppose R ∪ S = S ◦ R. Since R and S are reflexive, by Result 4.3 (2),
R∪S is neutrosophic reflexive. Since R and S are symmetric, by the hypothesis and
Proposition 4.8, R ∪ S is symmetric. Then by the hypothesis, S ◦ R is symmetric.
Thus by Proposition 4.12, S◦R = R◦S. So by Proposition 6.11, S◦R ∈ SV NE(X).
Hence R ∪ S ∈ SV NE(X). �

7. Relationships between a neutrosophic relation and its α-cut

For Tα, Iα, Fα ∈ [0, 1], α = (Tα, Iα, Fα) will be called a single valued neutrosophic
value. For two single valued neutrosophic values α and β,

(i) α ≤ β iff Tα ≤ Tβ , Iα ≥ Iβ and Fα ≥ Fβ .
(ii) α < β iff Tα < Tβ , Iα > Iβ and Fα > Fβ .
In particular, the form α = (α, 1−α, 1−α) is called a single valued neutrosophic

constant and denoted by α∗.
We will denote that set of all single valued neutrosophic values [resp. constant]

as SVNV [resp. SVNC].

Definition 7.1. Let R ∈ SV NR(X × Y ) and let α ∈ SVNV.
(i) The strong α-level subset or strong α-cut of R, denoted by [R]ᾱ, is an ordinary

relation from X to Y defined as:

[R]ᾱ = {(x, y) ∈ X × Y : TR(x, y) > Tα, IR(x, y) < Iα, FR(x, y) < Fα}.

(ii) The α-level subset or α-cut of R, denoted by [R]α, is an ordinary relation
from X to Y defined as:

[R]α = {(x, y) ∈ X × Y : TR(x, y) ≥ Tα, IR(x, y) ≤ Iα, FR(x, y) ≤ Fα}.

Definition 7.2. Let R ∈ SV NR(X × Y ) and let α∗ ∈ SVNC.
15
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(i) The strong α∗-level subset or strong α∗-cut of R, denoted by [R]ᾱ∗ , is an
ordinary relation from X to Y defined as:

[R]ᾱ∗ = {(x, y) ∈ X × Y : TR(x, y) > α, IR(x, y) < 1− α, FR(x, y) < 1− α}.
(ii) The α∗-level subset or α∗-cut of R, denoted by [R]α∗ , is an ordinary relation

from X to Y defined as:

[R]α∗ = {(x, y) ∈ X × Y : TR(x, y) ≥ α, IR(x, y) ≤ 1− α, FR(x, y) ≤ 1− α}.
Example 7.3. In Example 3.3,

[R] ¯(0.2,0.3,0.1)

= {(x, y) ∈ X ×X : TR(x, y) ≥ 0.2, IR(x, y) ≥ 0.3, FR(x, y) ≤ 0.1} = φ,
[R](0.2,0.3,0.1) = {(c, c)}, and [R] ¯(0.2,0.3,0.1) = φ,

[R] ¯(0.2,0.3,0.8) = {(c, c)},
[R](0.2,0.3,0.8) = {(a, a), (a, c), (c, c)}.
[R]0.2∗ = [R](0.2,0.2,0.9) = {(a, a), (c, c)} = [R] ¯0.2∗ .

Proposition 7.4. Let R,S ∈ SV NR(X × Y ) and let α, β ∈ SVNV.
(1) If R ⊂ S, then [R]α ⊂ [S]α and [R]ᾱ ⊂ [S]ᾱ.
(2) If α ≤ β, then [R]β ⊂ [R]α and [R]β̄ ⊂ [R]ᾱ.

Proof. (1) Let (x, y) ∈ [R]α. Then TR(x, y) ≥ Tα, IR(x, y) ≤ Iα and FR(x, y) ≤ Fα.
Since R ⊂ S, TR(x, y) ≤ TS(x, y), IR(x, y) ≥ IS(x, y) and FR(x, y) ≥ FS(x, y). Thus
SR(x, y) ≥ Tα, IS(x, y) ≤ Iα and FS(x, y) ≤ Fα. Hence [R]α ⊂ [S]α.

The proof of the second part is similar.
(2) Let (x, y) ∈ [R]β . Then TR(x, y) ≥ Tβ , IR(x, y) ≤ Iβ and FR(x, y) ≤ Fβ .

Since α ≤ β, Tα ≤ Tβ , Iα ≥ Iβ and Fα ≥ Fβ . Thus TR(x, y) ≥ Tα, IR(x, y) ≤ Iα
and FR(x, y) ≤ Fα. So (x, y) ∈ [R]α. Hence [R]β ⊂ [R]α.

The proof of the second part is similar. �

The following is the particular case of the above Proposition.

Corollary 7.5. Let R,S ∈ SV NR(X × Y ) and let α∗, β∗ ∈ SVNC.
(1) If R ⊂ S, then [R]α∗ ⊂ [S]α∗ and [R]ᾱ∗ ⊂ [S]ᾱ∗ .
(2) If α∗ ≤ β∗, then [R]β∗ ⊂ [R]α∗ and [R]β̄∗ ⊂ [R]ᾱ∗ .

Proposition 7.6. Let R ∈ SV NR(X × Y ).
(1) [R]r is an ordinary relation from X to Y , for each r ∈ SVNV.
(2) [R]r̄ is an ordinary relation from X to Y , for each r ∈ SVNV, where Tr ∈

[0.1) and Ir, Fr ∈ (0, 1].
(3) [R]r =

⋂
s<r[R]s, for each r ∈ SVNV, where Tr ∈ (0, 1] and Ir, Fr ∈ [0, 1).

(4) [R]r̄ =
⋃
s>r[R]s̄, for each r ∈ SVNV, where Tr ∈ [0, 1) and Ir, Fr ∈ (0, 1].

Proof. The proofs of (1) and (2) are clear from Definition 7.1.
(3) From Proposition 7.4, it is obvious that {[R]r : r ∈ SVNV} is a descending

family of ordinary relations from X to Y . Let r ∈ SVNV such that Tr ∈ (0, 1] and
Ir, Fr ∈ [0, 1). Then clearly, [R]r ⊂

⋂
s<r[R]s. Assume that (x, y) /∈ [R]r. Then

TR(x, y) < Tr or IR(x, y) > Ir or FR(x, y) > Fr.
Suppose TR(x, y) < Tr. Then there exists Ts ∈ (0, 1] such that TR(x, y) < Ts <

Tr. Thus (x, y) /∈ [R]s, i.e. , (x, y) /∈
⋂
s<r[R]s. So

⋂
s<r[R]s ⊂ [R]r. Hence

[R]r =
⋂
s<r[R]s.
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Suppose IR(x, y) > Ir or FR(x, y) > Fr. Then each case can be similarly proved.
(4) Also from Proposition 7.4, it is obvious that {[R]r̄ : r ∈ SVNV]} is a descend-

ing family of ordinary relations from X to Y . Let r ∈ SVNV such that Tr, Ir ∈ [0, 1)
and Fr ∈ (0, 1]. Then clearly, [R]r̄ ⊃

⋃
s>r Rs̄. Assume that (x, y) /∈ [R]r̄. Then

TR(x, y) ≤ Tr or IR(x, y) ≤ Ir or FR(x, y) ≥ Fr.
Suppose TR(x, y) ≤ Tr. Then there exists Ts ∈ [0, 1) such that TR(x, y) ≤

Tr < Ts. Thus (x, y) /∈ [R]s̄, i.e., (x, y) /∈
⋃
s>r[R]s̄. So

⋃
s>r[R]s̄ ⊂ [R]r̄. Hence

[R]r̄ =
⋃
s>r[R]s̄.

Suppose IR(x, y) ≤ Ir or FR(x, y) ≥ Fr. Then each case can be similarly proved.
�

The following is the particular case of the above Proposition.

Corollary 7.7. Let R ∈ SV NR(X × Y ).
(1) [R]r∗ is an ordinary relation from X to Y , for each r∗ ∈ SVNC.
(2) [R]r̄∗ is an ordinary relation from X to Y , for each r∗ ∈ SVNC, where

r ∈ [0, 1).
(3) [R]r∗ =

⋂
s∗<r∗ [R]s∗ , for each r∗ ∈ SVNV, where r ∈ (0, 1].

(4) [R]r̄∗ =
⋃
s∗>r∗ [R]s̄∗ , for each r∗ ∈ SVNC, where r ∈ [0, 1).

Proposition 7.8. Let X,Y be non-empty sets and let {Rr : r ∈ [0, 1]} be a non-
empty descending family of ordinary relations from X to Y such that R0 = X × Y .

(1) We define TR, IR, FR : X × Y → [0, 1] as follows: for each (x, y) ∈ X × Y ,
TR(x, y) =

∨
{r ∈ [0, 1] : (x, y) ∈ Rr},

IR(x, y) = FR(x, y)
=
∧
{r ∈ [0, 1] : (x, y) /∈ Rr}

=
∧
{(1− r) ∈ [0, 1] : (x, y) ∈ Rr}

= 1−
∨
{r ∈ [0, 1] : (x, y) ∈ Rr}.

Then R ∈ SV NR(X × Y ).
(2) For each r ∈ (0, 1], if Rr =

⋂
s<r R

s, then [R]r∗ = Rr.
(3) For each r ∈ [0, 1), if Rr =

⋃
s>r R

s, then [R]r̄∗ = Rr.

In the above proposition, R is called the single valued neutrosophic relation from
X to Y induced by {Rr : r ∈ [0, 1]}.

Proof. (1) It is obvious from the definition of R.
(2) Suppose Rr =

⋂
s<r R

s, for each r ∈ (0, 1] and let (x, y) ∈ Rr. Then
TR(x, y) =

∨
{r ∈ [0, 1] : (x, y) ∈ Rr} ≥ r

and
IR(x, y) = FR(x, y) = 1−

∨
{r ∈ [0, 1] : (x, y) /∈ Rr} ≤ 1− r.

Thus (x, y) ∈ Rr. So Rr ⊂ [R]r∗ , for each r ∈ (0, 1].
Now let (x, y) ∈ [R]r∗ . Then TR(x, y) ≥ r, IR(x, y) ≤ 1− r, FR(x, y) ≤ 1− r, say

TR(x, y) ≥ r. Thus by the definition of R,
TR(x, y) =

∨
{k ∈ [0, 1] : (x, y) ∈ Rk} = s ≥ r.

Let ε > 0. Then there exists k ∈ (0, 1] such that s − ε < k and (x, y) ∈ Rk. Thus
r − ε < s − ε < k and (x, y) ∈ Rk. So (x, y) ∈ Rr−ε. Since ε > 0 is arbitrary,
by the hypothesis, (x, y) ∈ Rr. Hence [R]r∗ ⊂ Rr. Therefore [R]r∗ = Rr, for each
r ∈ (0, 1].

(3) By the similar argument of the proof of (2), it is proved. �
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The following is the immediate result of Corollary 7.7 and Proposition 7.8

Corollary 7.9. Let X,Y be non-empty sets, let R ∈ SV NR(X×Y ) and let {[R]r∗ :
r ∈ [0, 1]} be a family of all ordinary relations from X to Y . We define mappings
TS , IS , FS : X × Y →]−0, 1+[ as follows: for each (x, y) ∈ X × Y ,

TS(x, y) =
∨
{r ∈ [0, 1] : (x, y) ∈ [R]r∗},

IS(x, y) = FS(x, y) = 1−
∨
{r ∈ [0, 1] : (x, y) ∈ [R]r∗}.

Then S ∈ SV NR(X × Y ) and R = S.

From the above corollary, we have the following.

Corollary 7.10. Let X,Y be non-empty sets and let , R, S ∈ SV NR(X×Y ). Then
R = S iff [R]r∗ = [S]r∗ , for each r ∈ [0, 1], or alternatively, iff [R]r̄∗ = [S]r̄∗ , for
each r ∈ [0, 1].

Definition 7.11. Let X,Y be non-empty sets, let R be an ordinary relation from
X to Y and let RN ∈ SV NR(X × Y ). Then RN is said to be compatible with R, if
R = S(RN ), where S(RN ) = {(x, y) : TRN

(x, y) > 0, IRN
(x, y) < 1, FRN

(x, y) < 1}.
Example 7.12. (1) Let X,Y be non-empty sets, let φX×Y be the ordinary empty
relation from X to Y and let 0N,X×Y be the single valued neutrosophic empty
relation from X to Y defined by 0N,X×Y = (0, 1, 1), for each x ∈ X. Then clearly,
S(0N,X×Y ) = φX×Y . Thus 0N,X×Y is compatible with φX×Y .

(2) Let X,Y be non-empty sets, let X×Y be the whole ordinary relation from X
to Y and let 1N,X×Y be the single valued neutrosophic whole relation from X to Y
defined by 0N,X×Y = (1, 0, 0), for each x ∈ X. Then clearly, S(1N,X×Y ) = X × Y .
Thus 1N,X×Y is compatible with X × Y .

(3) Let X,Y be non-empty sets, let r ∈ (0, 1) be fixed. We define the mappings
TR, IR, FR : X × Y → [0, 1] as follows: for each (x, y) ∈ X × Y ,

TR(x, y) = r, IR(x, y) = FR(x, y) = 1− r.
Then clearly, R ∈ SV NR(X × Y ) and S(R) =

⋂
r∗∈SV NC [R]r∗ . Thus R is compat-

ible with
⋂
r∗∈SV NC [R]r∗ .

From the following result, every ordinary relation can be consider as a single
valued neutrosophic relation.

Proposition 7.13. Let X,Y be non-empty sets, let R be an ordinary relation from
X to Y and let r ∈ (0, 1]. Then there exists Rr∗ ∈ SV NR(X × Y ) such that Rr∗ is
compatible with R and [Rr∗ ]r∗ = R.

In this case, Rr∗ will be called an r∗-th single valued neutrosophic relation from
X to Y .

Proof. We define the mappings TR, IR, FR : X × Y → [0, 1] as follows: for each
(x, y) ∈ X × Y ,

TRr∗ (x, y) =

{
r if (x, y) ∈ R
0 if (x, y) /∈ R,

IRr∗ (x, y) = FRr∗ (x, y) =

{
1− r if (x, y) ∈ R
1 if (x, y) /∈ R.

Then clearly, Rr∗ ∈ SV NR(X × Y ) and [Rr∗ ]r∗ = R. Moreover, by the definition
of Rr∗ , S(Rr∗) = R. Thus Rr∗ is compatible with R. �
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The following is the immediate result of Definitions 3.5 and 7.1.

Proposition 7.14. Let R,S ∈ SV NR(X × Y ) and let α ∈ SVNV. Then
(1) [R ∪ S]α = [R]α ∪ [S]α, [R ∪ S]ᾱ = [R]ᾱ ∪ [S]ᾱ,
(2) [R ∩ S]α = [R]α ∩ [S]α, [R ∩ S]ᾱ = [R]ᾱ ∩ [S]ᾱ.

The following is the immediate result of Definition 7.2 and Proposition 7.14.

Corollary 7.15. Let R,S ∈ SV NR(X × Y ) and let α∗ ∈ SVNC. Then
(1) [R ∪ S]α∗ = [R]α∗ ∪ [S]α∗ , [R ∪ S]ᾱ∗ = [R]ᾱ∗ ∪ [S]ᾱ∗ ,
(2) [R ∩ S]α∗ = [R]α∗ ∩ [S]α∗ , [R ∩ S]ᾱ∗ = [R]ᾱ∗ ∩ [S]ᾱ∗ .

From Definitions 4.2, 4.6 and 7.1 it is clear that R ∈ SV NR(X) is reflexive [resp.
symmetric], then [R]α and [R]ᾱ are ordinary reflexive [resp. symmetric] on X, for
each α ∈ SVNV.

Proposition 7.16. Let R ∈ SV NR(X×Y ) and let α ∈ SVNV. If R is transitive,
then [R]α and [R]ᾱ are ordinary transitive on X.

Proof. Suppose R is transitive. Then R ◦ R ⊂ R, i.e., TR◦R ⊂ TR, IR◦R ⊃ IR
and FR◦R ⊃ FR. Let (x, z) ∈ [R]α ◦ [R]α. Then there exists y ∈ X such that
(x, z), (z, y) ∈ [R]α. Thus

TR(x, z) ≥ Tα, IR(x, z) ≤ Iα, FR(x, z) ≤ Fα

and

TR(z, y) ≥ Tα, IR(z, y) ≤ Iα, FR(z, y) ≤ Fα.

So TR(x, z) ∧ TR(z, y) ≥ Tα, IR(x, z) ∨ IR(z, y) ≤ Iα, FR(x, z) ∨ FR(z, y) ≤ Fα.
Since R ◦R ⊂ R, TR(x, y) ≥ TR(x, z) ∧ TR(z, y), IR(x, y) ≤ IR(x, z) ∨ IR(z, y),
FR(x, y) ≤ FR(x, z) ∧ FR(z, y). Hence TR(x, y) ≥ Tα, IR(x, y) ≤ Iα, FR(x, y) ≤ Fα,
i.e., (x, y) ∈ [R]α. Therefore [R]α is ordinary transitive.

The prof of the second part is similar. �

From Definitions 4.2, 4.6 and 7.2 it is clear that R ∈ NR(X) is reflexive [resp.
symmetric], then [R]α∗ and [R]ᾱ∗ are ordinary reflexive [resp. symmetric] on X, for
each α∗ ∈ NCV. Moreover, we obtain the following from Proposition 7.16.

Corollary 7.17. Let R ∈ NR(X × Y ) and let α∗ ∈ NCV. If R is transitive, then
[R]α∗ and [R]ᾱ∗ are ordinary transitive on X.

The followings are the immediate results of 4.2, 4.6, Proposition 7.16 and Corol-
lary 7.17.

Corollary 7.18. Let R ∈ SV NE(X) and let α ∈ SVNV. Then [R]α and [R]ᾱ are
ordinary equivalence relation on X

Corollary 7.19. Let R ∈ SV NE(X) and let α∗ ∈ SVNC. Then [R]α∗ and [R]ᾱ∗

are ordinary equivalence relation on X
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8. Conclusions

From now on, we dealt with properties of single valued neutrosophic reflexive,
symmetric, transitive relations and single valued neutrosophic equivalence relations.
In particular, we defined a single valued neutrosophic equivalence class of a point
in a set X modulo a single valued neutrosophic equivalence relation R and a single
valued neutrosophic partition of a set X. And we proved that the set of all single
valued neutrosophic equivalence classes is a single valued neutrosophic partition
and induced the single valued neutrosophic equivalence relation by a single valued
neutrosophic partition. However, we did not deal with the quotient of S by R, for
any SVNRs R and S such that R ⊂ S and decomposition of a mapping f : X → Y by
Vneutrosophic relations. Furthermore, we defined α-cut of a SVNR and investigated
some relationships between SVNRs and their α-cuts.

In the future, we will solve by the above two problems and deal with single valued
neutrosophic relations in a fixed SVNS A.
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