
Asia Mathematika
Volume: 5 Issue: 1 , (2021) Pages: 103 – 112

Available online at www.asiamath.org

Some new classes of neutrosophic minimal open sets

Selvaraj Ganesan1∗, Florentin Smarandache2

1PG & Research Department of Mathematics,
Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.

(Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India). Orchid iD: 0000-0002-7728-8941
2 Mathematics & Science Department,

University of New Maxico, 705 Gurley Ave,
Gallup, NM 87301, USA. ORCID iD: 0000-0002-5560-5926

Received: 14 Feb 2021 • Accepted: 19 Mar 2021 • Published Online: 28 Apr 2021

Abstract: This article focuses on Nm -β -open, β -interior and β -closure operators using neutrosophic minimal struc-

tures. We investigate properties of such concepts and we introduced the concepts of Nm -β -continuous, Nm -β -closed

graph, Nm -β -compact and almost Nm -β -compact. Finally, we introduced the concepts of Nm -regular-open sets and

Nm -π -open sets and investigate some properties.
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1. Introduction

Zadeh’s [17] Fuzzy set laid the foundation of many fields such as intuitionistic fuzzy, neutrosophic set, rough

sets. Later, researchers developed K. T. Atanassov’s [4] intuitionistic fuzzy set theory in many fields such

as differential equations, topology, computerscience and so on. F. Smarandache [15, 16] found that some

objects have indeterminacy or neutral other than membership and non-membership. So he coined the notion

of neutrosophy. V. Popa & T. Noiri [12] introduced the notions of minimal structure which is a generalization

of a topology on a given nonempty set. We introduced the concepts of M -continuous maps. M. Karthika

et al [11] studied neutrosophic minimal structure spaces. S. Ganesan and F. Smarandache [9] studied Nm -

semi-open in neutrosophic minimal structure spaces. S. Ganesan et al [10] studied Nm -pre-continuous maps.

This article focuses on Nm -β -open, β -interior and β -closure operators using neutrosophic minimal structures.

We investigate properties of such concepts and we introduced the notions of Nm -β -continuous, Nm -β -closed

graph, Nm -β -compact and almost Nm -β -compact and investigate some properties for such concepts. Finally,

we introduced Nm -regular-open, Nm -π -open sets and investigate fundamental properties.

2. Preliminaries

Definition 2.1. [15, 16] Neutrosophic set (in short ns) K on a set G 6= ∅ is defined by K = {≺ a, PK (a),

QK (a), RK (a) � : a ∈ G}, where PK : G → [0,1], QK : G → [0,1] and RK : G → [0,1] denotes the

membership of an object, indeterminacy and non-membership of an object, for each a on G to K, respectively

and 0 ≤ PK (a) + QK (a) + RK (a) ≤ 3 for each a ∈ G.

Proposition 2.1. [13] For any ns S, then the following conditions are holds:
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1. 0∼ ≤ S, 0∼ ≤ 0∼ .

2. S ≤ 1∼ , 1∼ ≤ 1∼ .

Definition 2.2. [13] Let K = {≺ a, PK (a), QK (a), RK (a) � : a ∈ G} be a ns.

1. A ns K is an empty set i.e., K = 0∼ if 0 is membership of an object and 0 is an indeterminacy and 1 is an

non-membership of an object respectively. i.e., 0∼ = {g, (0, 0, 1) : g ∈ G}

2. A ns K is a universal set i.e., K = 1∼ if 1 is membership of an object and 1 is an indeterminacy and 0 is an

non-membership of an object respectively. 1∼ = {g, (1, 1, 0) : g ∈ G}

3. K1 ∪ K2 = {a, max {PK1
(a), PK2

(a)}, max {QK1
(a), QK2

(a)}, min {RK1
(a), RK2

(a)} : a ∈ G}

4. K1 ∩ K2 = {a, min {PK1 (a), PK2 (a)}, min {QK1 (a), QK2 (a)}, max {RK1 (a), RK2 (a)} : a ∈ G}

5. KC
1 = {≺ a, RK (a), 1 − QK (a), P=PK (a) � : a ∈ G}

Definition 2.3. [13] Neutrosophic topology (nt) in Salama’s sense on a nonempty set G is a family τ of ns in

G satisfying three conditions:

1. Empty set (0∼ ) and universal set (1∼ ) are members of τ .

2. K1 ∩ K2 ∈ τ where K1 , K2 ∈ τ .

3. ∪Kδ ∈ τ for every {Kδ : δ ∈ ∆} ≤ τ .

Definition 2.4. [11] The neutrosophic minimal structure space over a universal set G be denoted by Nm . Nm

is said to be neutrosophic minimal structure space (in short, nms) over G if it satisfying following the axiom:

0∼ , 1∼ ∈ Nm . A family of neutrosophic minimal structure space is denoted by (G, NmG ).

Note that neutrosophic empty set and neutrosophic universal set can form a topology and it is known as

neutrosophic minimal structure space.

Remark 2.1. [11] Each ns in nms is neutrosophic minimal open set (in short, nmo).

Complement of nmo is neutrosophic minimal closed set (in short, nmc).

Definition 2.5. [11] A is Nm -closed if and only if Nm cl(A) = A. Similarly, A is a Nm -open if and only if

Nm int(A) = A.

Definition 2.6. [11] Let Nm be any nms and A be any neutrosophic set. Then

1. Every A ∈ Nm is open and its complement is Nm closed.

2. Nm -closure of A = min {F : F is a nmc and F ≥ A} and it is denoted by Nm cl(A).

3. Nm -interior of A = max {F : F is a nmo and F ≤ A} and it is denoted by Nm int(A).

In general Nm int(A) is subset of A and A is a subset of Nm cl(A).

Proposition 2.2. [11] Let R and S are any ns of nms Nm over G. Then

1. NC
m = {0, 1, RCi } where RCi is a complement of ns Ri .
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2. G − Nm int(S) = Nm cl(G − S).

3. G − Nm cl(S) = Nm int(G − S).

4. Nm cl(RC ) = (Nm cl(R))C = Nm int(R).

5. Nm closure of an empty set is an empty set and Nm closure of a universal set is a universal set. Similarly,

Nm interior of an empty set and universal set respectively an empty and a universal set.

6. If S is a subset of R then Nm cl(S) ≤ Nm cl(R) and Nm int(S) ≤ Nm int(R).

7. Nm cl(Nm cl(R)) = Nm cl(R) and Nm int(Nm int(R)) = Nm int(R).

8. Nm cl(R ∨ S) = Nm cl(R) ∨ Nm cl(S).

9. Nm cl(R ∧ S) = Nm cl(R) ∧ Nm cl(S).

Definition 2.7. Let (G, NmG ) be a nms and S ≤ G is said to be

1. Nm -semi-open set ( in short, Nm -so) [9] if S ≤ Nm cl(Nm int(S)).

2. Nm -pre-open set (in short, Nm -po) [10] if S ≤ Nm int(Nm cl(S)).

The complement of above Nm -open set is called an Nm -closed set.

Definition 2.8. [11] Let (G, NmG ) be nms.

1. Arbitrary union of nmo in (G, NmG ) is nmo. (Union Property).

2. Finite intersection of nmo in (G, NmG ) is nmo. (intersection Property).

Definition 2.9. [11] A function f: (G, NmG ) → (H, NmH ) is called neutrosophic minimal continuous map iff

f−1 (V) ∈ NmG whenever V ∈ NmH .

Definition 2.10. [11] let A be a ns in nms (G, NmG ). Then Y is said to be neutrosophic minimal subspace if

(H, NmH ) = {A ∩ U : U ∈ NmH }.

3. Nm -β -open sets

Definition 3.1. (G, NmG ) be a nms & S ≤ G is said to be Nm -β -open set (in short, Nm -β o ) if S ≤
Nm cl(Nm int(Nm cl(S))).

The complement of an Nm -β o is called an Nm -β -closed set(in short, Nm -β c)

Remark 3.1. (G, T ) be a nt & S ≤ G is said to be N -β -open set [3] if S ≤ N cl(N int(N cl(S))). If the

nms NmG is a topology, clearly an Nm -βo is N -β -open.

Above definition of 3.1, trivially the following statement are obtained.

Lemma 3.1. Consider (G, NmG ) be a nms.

1. Every Nm -open is Nm -βo.

2. S is an Nm -βo iff S ≤ Nm cl(Nm int(Nm cl(S))).
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3. Every Nm -closed set is Nm -β -closed.

4. S is an Nm -β -closed set iff Nm int(Nm cl(Nm int(S)) ≤ S.

Theorem 3.1. (G, NmG ) be a nms. Any union of Nm -βo is Nm -βo.

Proof. Suppose Aδ be an Nm -β o for δ ∈ ∆. Above definition 3.1 and Proposition 2.2(6), Aδ ≤ Nm cl(Nm int(Nm cl(Aδ )))

≤ Nm cl(Nm int(Nm cl(
⋃

Aδ ))). This implies
⋃

Aδ ≤ Nm cl(Nm int(Nm cl(
⋃

Aδ ))). Hence
⋃

Aδ is an Nm -

β o.

Remark 3.2. Consider (G, NmG ) be a nms. Intersection of any 2 Nm -βo may not be Nm -βo.

Example 3.1. Consider G = {a} with Nm = {0∼ , P, Q, R, S, 1∼} and NC
m = {1∼ , I, J, K, L, 0∼} where

P = ≺ (0.5, 0.6, 0.6)� ; Q = ≺ (0.4, 0.6, 0.8)�
R = ≺ (0.4, 0.7, 0.9)� ; S = ≺ (0.5, 0.7, 0.6)�
I = ≺ (0.6, 0.4, 0.5)� ; J = ≺ (0.8, 0.4, 0.4)�
K = ≺ (0.9, 0.3, 0.4)� ; L = ≺ (0.6, 0.3, 0.5)�
We know that 0∼ = {≺ g, 0, 0, 1 � : g ∈ G}, 1∼ = {≺ g, 1, 1, 0 � : g ∈ G} and 0C∼ = {≺ g, 1, 1, 0 �
: g ∈ G}, 1C∼ = {≺ g, 0, 0, 1 � : g ∈ G}.
Now we define the two Nm -βos as follows:

A = ≺ (0.6, 0.7, 0.9)� ; B = ≺ (0.5, 0.8, 0.4)�
Here Nm cl(A) = 0C∼ , Nm int(Nm cl(A)) = 1∼ , Nm cl(Nm int(Nm cl(A))) = 0C∼ and

Nm cl(B) = 0C∼ , Nm int(Nm cl(B)) = 1∼ , Nm cl(Nm int(Nm cl(A))) = 0C∼ . But A ∧ B = ≺ (0.5, 0.7, 0.9)�
is not a Nm -βo in G.

Proposition 3.1. Let (G, NmG ) be a nms.

1. If S is a Nm so then it is a Nm -βo.

2. If S is a Nm -po then it is a Nm -βo.

Proof. (1) The proof is straightforward from the definitions.

(2) The proof is straightforward from the definitions.

Definition 3.2. Let (G, NmG ) be a nms.

1. Nm -β -closure of A = min {S : S is Nm -β -closed set and S ≥ A} and it is denoted by Nm -β cl (A).

2. Nm -β -interior of A = max {V : V is Nm -β o and V ≤ A} and it is denoted by Nm -β int(A).

Theorem 3.2. Suppose (G, NmG ) be a nms and R, S ≤ G. Then

1. Nm -β int(0∼ ) = 0∼ .

2. Nm -β int(1∼ ) = 1∼ .

3. Nm -β int(R) ≤ R.

4. If R ≤ S, then Nm -β int(R) ≤ Nm -β int(S).
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5. R is Nm -βo iff Nm -β int(R) = R.

6. Nm -β int(Nm -β int(R)) = Nm -β int(R).

7. Nm -β cl (G − R) = G −Nm -β int(R).

Proof. (1), (2) are Obvious.

(3), (4) are Obvious.

(5) It follows from Theorem 3.1.

(6) It follows condition from (5).

(7) For R ≤ G, G − Nm -β int(R) = G − max {U : U ≤ R, U is Nm -β o} = min { G − U : U ≤ R, U is

Nm -β o} = min {G - U : G - R ≤ G - U}, U is Nm -β o} = Nm -β cl (G − R).

Theorem 3.3. Let (G, NmG ) be a nms and R, S ≤ G. Then

1. Nm -β cl (0∼ ) = 0∼ .

2. Nm -β cl (1∼ ) = 1∼ .

3. R ≤ Nm -β cl (R).

4. If R ≤ S, then Nm -β cl (R) ≤ Nm -β cl (S).

5. R is Nm -β c iff Nm -β cl (R) = R.

6. Nm -β cl (Nm -β cl (R)) = Nm -β cl (R).

7. Nm -β int(G − R) = G −Nm -β cl (R).

Proof. It is similar to the proof of above Theorem 3.2.

Theorem 3.4. Let (G, NmG ) be a nms and S ≤ G. Then

1. g ∈ Nm -β cl (S) iff S ∩ V 6= ∅ for every Nm -βo V containing g.

2. g ∈ Nm -β int(S) iff there exists an Nm -βo U such that U ≤ S.

Proof. (1) Suppose there is an N m - β o V containing g such that S ∩ V = ∅ . Then G − V is an Nm -β c such

that S ≤ G − V, g /∈ G − V. This implies g /∈ Nm -β cl (S).

The reverse relation is obvious.
(2) Obvious.

Lemma 3.2. Let (G, NmG ) be a nms and S ≤ G. Then

1. Nm int(Nm cl(Nm int(S))) ≤ Nm int(Nm cl(Nm int(Nm -β int(S))) ≤ Nm -β int(S).

2. Nm -β cl (S) ≤ Nm cl(Nm int(Nm cl(Nm -β cl(S))) ≤ Nm cl(Nm int(Nm cl(S))).

Proof. (1) For S ≤ G, by Theorem 3.3, Nm -β cl (S) is an Nm -β c set. Hence from Lemma 3.1, we have

Nm int(Nm cl(Nm int(S))) ≤ Nm int(Nm cl(Nm int(Nm -β int(S)))) ≤ Nm -β int(S).

(2) It is similar to the proof of (1).
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4. Nm -β -continuous map

Definition 4.1. Map f : (G, NmG ) → (H, NmH ) is said to be Nm -β -continuous if f−1 (O) is a Nm -β o in G,

for each Nm -open O in H.

Theorem 4.1.1. Every neutrosophic minimal continuous is Nm -β -continuous but not conversely.

2. Every Nm -semi-continuous is Nm -β -continuous but not conversely.

3. Every Nm -pre-continuous is Nm -β -continuous but not conversely.

Proof. (1) The proof follows from [Lemma 3.1 (1)].

(2) The proof follows from [Proposition 3.1 (1)].

(3) The proof follows from [Proposition 3.1 (2)].

Theorem 4.2. Map f : G → H be a function on 2 nms (G, NmG ) and (H, NmH ). Then the following

statements are equivalent:

1. f is Nm -β -continuous.

2. f−1 (O) is an Nm -βo, for each Nm -open set O in H.

3. f−1 (S) is an Nm -β c set, for each Nm -closed S in H.

4. f(Nm -β cl (R)) ≤ Nm cl(f(R)), for R ≤ G.

5. Nm -β cl (f−1 (S)) ≤ f−1 (Nm cl(S)), for S ≤ H.

6. f−1 (Nm int(S)) ≤ Nm -β int(f−1 (S)), for S ≤ H.

Proof. (1) ⇒ (2) Let O be an Nm -open in H and g ∈ f−1 (O). By hypothesis, there exists an Nm -β o Ug

containing g such that f(U) ≤ O. This implies g ∈ Ug ≤ f−1 (O) for all g ∈ f−1 (O). Hence by Theorem 3.1,

f−1 (O) is Nm -β o.

(2) ⇒ (3) Obvious.

(3) ⇒ (4) For R ≤ G, f−1 (Nm cl(f(R))) = f−1 (min {F ≤ H : f(R) ≤ F and F is Nm -closed}) = min {f−1 (F)

≤ G : R ≤ f−1 (F) and F is Nm -β c} ≥ min {K ≤ G : R ≤ K and K is Nm -β c} = Nm -β cl (R). Hence

f(Nm -β cl (R)) ≤ Nm cl(f(R)).

(4) ⇒ (5) For R ≤ G, from (4), it follows f(Nm -β cl (f−1 (R))) ≤ Nm cl(f(f−1 (R))) ≤ Nm cl(R). Hence we get

(5).

(5) ⇒ (6) For S ≤ H, from Nm int(S) = Y − Nm cl(H − S) and (5), it follows: f−1 (Nm int(S)) = f−1 (Y −
Nm cl(H − S)) = G − f−1 (Nm cl(H − S)) ≤ G − Nm -β cl (f−1 (H − S)) = Nm -β int(f−1 (S)). Hence (6) is

obtained.
(6) ⇒ (1) Let g ∈ G and O an Nm -open set containing f(g). Then from (6) and Proposition 2.2, it follows g ∈
f−1 (O) = f−1 (Nm int(O)) ≤ Nm -β int(f−1 (O)). So from Theorem 3.4, we can say that there exists an Nm -β o

U containing g such that g ∈ U ≤ f−1 (O). Hence f is Nm -β -continuous.

Theorem 4.3. Map f : G → H be a function on 2 nms (G, NmG ) and (H, NmH ). Then the following

statements are equivalent:
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1. f is Nm -β -continuous.

2. f−1 (O) ≤ Nm cl(Nm int(f−1 (O))), for each Nm -open O in H.

3. Nm int(Nm cl(f−1 (F))) ≤ f−1 (F), for each Nm -closed set F in H.

4. f(Nm int(Nm cl(R))) ≤ Nm cl(f(R)), for R ≤ G.

5. Nm int(Nm cl(f−1 (S))) ≤ f−1 (Nm cl(S)), for S ≤ H.

6. f−1 (Nm int(S)) ≤ Nm cl(Nm int(f−1 (S))), for S ≤ H.

Proof. (1) ⇔ (2) It follows from Theorem 4.2 and Definition of Nm -β os.

(1) ⇔ (3) It follows from Theorem 4.2 and Lemma 3.1.

(3) ⇒ (4) Let R ≤ X. Then from Theorem 4.2(4) and Lemma 3.2, it follows Nm int(Nm cl(R)) ≤ Nm -β cl (R))

≤ f−1 (Nm cl(f(R))). Hence f(Nm int(Nm cl(R))) ≤ Nm cl(f(R)).

(4) ⇒ (5) Obvious.

(5) ⇒ (6) From (5) and Proposition 2.2, it follows: f−1 (Nm int(S)) = f−1 (H − Nm cl(H − S)) = G

− f−1 (Nm cl(H − S)) ≤ G − Nm int(Nm cl(f−1 (H − S)))

= Nm cl(Nm int(f−1 (S))). Hence, (6) is obtained.

(6) ⇒ (1) Let O be an Nm -open in H. Then by (6) and Proposition 2.2, we have f−1 (O) = f−1 (Nm int(O)) ≤
Nm cl(Nm int(f−1 (O))). This implies f−1 (O) is an Nm -β o. Hence by (2), f is Nm -β -continuous.

Definition 4.2. [10] (G, NmG ) be a nms. Then G is said to be Nm -T2 if for each distinct points g and h of

G, there exist two disjoint Nm -open U, V such that g ∈ U and h ∈ V.

Definition 4.3. (G, NmG ) be a nms. Then G is said to be Nm -β -T2 if for any distinct points g and h of G,

there exist disjoint Nm -β o C, D such that g ∈ C and h ∈ D.

Theorem 4.4. Map f : G → H be a map on two nms (G, NmG ) and (H, NmH ). If f is an injective and

Nm -β continuous map and if H is Nm -T2 , then G is Nm -β -T2 .

Proof. Obvious.

Theorem 4.5. Map f : G → H be a map on two nms (G, NmG ) and (H, NmH ). If f is an injective and

Nm -β continuous map with an Nm -β -closed graph, then G is Nm -β -T2 .

Proof. Suppose g1 and g2 be any distinct points of G. Then f(g1 ) 6= f(g2 ), so (g1 , f(g2 )) ∈ (G × H) − L(f).

Since the graph L(f) is Nm -β c, there exist an Nm -β o containing g1 and D ∈ NmH containing f(g2 ) such that

f(C) ∩ D = ∅ . Since f is Nm -β continuous, f−1 (D ) is an Nm -β o containing g2 such that C ∩ f−1 (D) = ∅ .

Hence G is Nm -β -T2 .

Definition 4.4. [10] (G, NmG ) be a nms and S ≤ G, S is called Nm -compact (respectively, almost Nm -

compact) relative to S if every collection {U i : i ∈ ∆} of Nm -open subsets of G such that S ≤ max {U i :

i ∈ ∆}, there exists a finite subset ∆ 0 of ∆ such that S ≤ max {U j : j ∈ ∆ 0 } (respectively, S ≤ max

{Nm cl(U j ) : j ∈ ∆ 0 }). (G, NmG ) be a nms and S ≤ G, S is said to be Nm -compact (respectively, almost

Nm -compact) if S is Nm -compact (respectively, almost Nm -compact) as a neutrosophic minimal subspace of

G.
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Definition 4.5. (G, NmG ) be a nms and S ≤ G, S is called Nm -β -compact (respectively, almost Nm -β -

compact) relative to S if every collection {Uδ : δ ∈ ∆} of Nm -β -open subsets of G such that S ≤ max {Uδ

: δ ∈ ∆}, there exists a finite subset Ω of ∆ such that S ≤ max {Uω : ω ∈ Ω} (respectively, S ≤ max

{Nm β cl (Uω ) : ω ∈ Ω}). (G, NmG ) be a nms and S ≤ G, S is said to be Nm -β -compact (respectively, almost

Nm -β -compact) if S is Nm -β -compact (resp. almost Nm -β -compact) as a neutrosophic minimal subspace of

G.

Theorem 4.6. Map f : G → H be a map on 2 nms (G, NmG ) and (H, NmH ). If S is an Nm -β -compact set,

then f(S) is Nm -compact.

Proof. Obvious.

5. Nm -regular open

We introduce following definitions

Definition 5.1. (G, NmG ) be a nms and A ≤ G, A is called Nm -regular open (in short, Nm -ro) if A =

Nm int(Nm cl(A)).

Theorem 5.1. Any Nm -ro is Nm -open.

Proof. If A is Nm -ro in (G, NmG ), A = Nm int(Nm cl(A)). Then Nm int(A) = Nm int(Nm int(Nm cl(A))) =

Nm int(Nm cl(A)) = A. That is, Ais Nm -open in (G, NmG ).

Example 5.1. G = {a} with Nm = {0∼ , P, 1∼ } and NC
m = {1∼ , Q, 0∼} where

P = ≺ (0.5, 0.5, 0.5)� ; Q = ≺ (0.5, 0.5, 0.5)�
Now we define the Nm -ro sets as follows:

A = ≺ (0.5, 0.5, 0.5)�
Here Nm cl(A) = Q, Nm int(Nm cl(A)) = P is a Nm -ro in G.

Definition 5.2. (G, NmG ) be a nms and S ≤ G, S is said to be Nm -π -open set if S is the finite union of

Nm -ro.

Remark 5.1. For a subset of A of an nms (G, NmG ), we have following implications:

Nm -regular open ⇒ Nm -π -open ⇒ Nm -open

Diagram-I

Example 5.2. G = {a} with Nm = {0∼ , P, L, 1∼} and NC
m = {1∼ , M, N, 0∼} where

P = ≺ (0.1, 0.5, 0.1)� ; L = ≺ (0.5, 0.5, 0.5)�
M = ≺ (0.1, 0.5, 0.1)� ; N = ≺ (0.5, 0.5, 0.5)�
Now we define the two Nm -ro sets as follows:

A = ≺ (0.1, 0.5, 0.1)�
B = ≺ (0.5, 0.5, 0.5)�
Here Nm cl(A) = M, Nm int(Nm cl(A)) = P ; Nm cl(B) = N, Nm int(Nm cl(B)) = L is a Nm -ro set in G. Here,

A ∨ B = ≺ (0.5, 0.5, 0.1)� is a Nm -π -open sets but it is not a Nm -ro.
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Example 5.3. G = {a} with Nm = {0∼ , A, 1∼} and NC
m = {1∼ , B, 0∼} where

A = ≺ (0.6, 0.7, 0.3)� ; B = ≺ (0.3, 0.3, 0.6)�
Now we define the Nm -ro sets as follows:

R = ≺ (0, 0, 1)� ; S = ≺ (1, 1, 0)�
Here R ∨ S ≺ (1, 1, 0)� is a Nm -π -open set in G. Here, A = ≺ (0.6, 0.7, 0.3)� is Nm -open but it is not

a Nm -π -open.

Conclusion

We presented several definitions, properties, explanations and examples inspired from the concept of Nm -β -

open, Nm -regular-open and Nm -π -open. The results of this study may be help in many reserches.
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