SPECIAL TYPES OF INTERVAL VALUED NEUTROSOPHIC GRAPHS

M. A. MALIK', A. HASSAN?

ABSTRACT. Neutrosophic theory has many applications in graph theory, interval val-
ued neutrosophic graph (IVNG) is the generalization of fuzzy graph, intuitionistic fuzzy
graph and single valued neutrosophic graph. In this paper, we introduced some types of
IVNGs, which are subdivision IVNGs, middle IVNGs, total IVNGs and interval valued
neutrosophic line graphs (IVNLGs), also discussed the isomorphism, co weak isomor-
phism and weak isomorphism properties of subdivision IVNGs, middle IVNGs, total
IVNGs and IVNLGs.

Keywords: Interval valued neutrosophic line graph, Subdivision IVNG, middle IVNG,
total IVNG.

1. INTRODUCTION

Neutrosopic sets were introduced by Smarandache in [1], which are the generalization
of fuzzy sets and intuitionistic fuzzy sets. The single valued neutrosophic graphs were
introduced by Broumi, Talea, Bakali and Smarandache in [3] and recently in [8, 9, 10]
proposed some algorithms. A graph is a way to represent information between objects.
The objects are represented by vertices and the relations by edges. When there is vagueness
in the description of the objects or in its relationships or in both, it is natural that we
need to design a fuzzy graph Model. The perception of fuzzy graph was introduced by
Rosenfeld in [6] and the some remarks on fuzzy graphs were explained by Bhattacharya
in [5]. The special types and its truncations of fuzzy graphs were paid the way by Gani in
[7]. The IVNGs have many applications in path problems, networks and computer science.
The strong IVNG and complete IVNG are the special types of IVNG. In this paper, we
introduce the another types of IVNGs, which are subdivision IVNGs, middle IVNGs, total
IVNGs and IVNLGs. These are all the strong IVNGs, also we discuss their relations based
on isomorphism, co weak isomorphism and weak isomorphism.

2. PRELIMINARIES

Let G denotes IVNG and G* = (V, E)) denotes its underlying crisp graph.
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Definition 2.1. [1, 2] Let X be a crisp set, the single (interval) valued neutrosophic set
(SVNS) A is characterized by three membership functions Ta(x),Ia(x) and Fa(x), such
that for every x € X, the membership values Ta(x),14(z), Fa(x) € [0,1] (Ta(z),Ia(x), Fa(z) C
0,1])
Definition 2.2. [3] Let C' and D be a SVNSs of V and E, respectively. Then D is said
to be single valued neutrosophic relation (SVNR) on C, whenever

Tp(zy) < min(Te(x), Te(y))

Ip(zy) > max(Ic(z), Io(y))

Fp(zy) 2 max(Fo(x), Fo(y))
Ve,y e V.

Definition 2.3. [4] Let C and D be IVNSs of a V and E, respectively. Then D is said
to be interval valued neutrosophic relation (IVNR) on C, whenever
Tpr(zy) < min(Tor(z), Ter(y)), Ipn(zy) = max(Iop(z), Ion(y))
Fpr(ry) > max(Fer(z), For(y)), Tpu(ry) < min(Tey(z), Tou (y))
Ipu(zy) 2 max(Icu(z), Iou(y)), Fpu(wy) = max(Fou(z), Fou(y))
Ve, y e V.
Definition 2.4. [4] The interval valued neutrosophic graph (IVNG) is a pair G = (C, D)
of G* = (V,E), where C is IVNS on 'V and D is IVNS on E, such that
Tpr(aB) <min(Ter(a), Tor(B)), Ipr(aB) > max(Iorn(a), IcL(B))
Fpr(ap) > max(For(a), For(8)), Tpu(af) < min(Tey(a), Tou (6))
Ipy(aB) > max(Icy (), Iov(8)), Fpu(af) > max(Fey (o), Fou(8))
whenever
0<Tpr(af) + Ipr(af) + Fpr(af) <3
0 < Tpy(ap) + Ipu(apf) + Fpu(aB) <3
V a,8€V. The IVNG G is said to be complete (strong) IVNG, if
Tpr(zy) = min(Ter(z), Ter(y)), Ipn(zy) = max(Iop(z), Ior(y))
Fpr(ry) = max(Fer(z), FoL(y)), Tpu(ry) = min(Teu (z), Tou (y))
Ipu(zy) = max(Icu(z), Iou(y)), Fpu(wy) = max(Fou(z), Fou(y))
Va,y e V(Vaey € E). The order and size of G and also degree of vertex defined below

O(G) = (OrL(G), Oru (G)), [O1L(G), O (G)), [OFL(G), Opu (G)))

where
Ori(G) =Y Tor(e), O1(G) =Y ler(a), Orr(G) =) For(a),
aegV aegV acV
Oru(G) =Y Tov(@), Ow(G) =) Iev(a), Opu(G) = Fou(a).
acV acV acV
S(G) = ([S72(G), Stu(G)], [S12.(G), S1u(G)], [SFL(G), SFu(G)))
where
Sri(G) = Y Tpr(aB), Sin(G) = > Ipr(ap), Spr(G)= > Fpr(ap),

afer apfekE apBek

Sru(G) = Y Tou(aB), Sw(@) = Y Inv(aB), Sru(G) = Fou(aps).

apfek afelE afeFE
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dg(a), is defined by
da(a) = ([drr(a), dru (o)), [drr(a), dio ()], [drL (@), dru(a))),

where
drr(a Z Tpr(apf), drp(a Z Ipr(af), drr(a Z Fpr(af),
afer afelE apBel
dru(e) = > Tou(ap), dy(a) =Y Ipu(af), dru(a) = Y Fpu(ap).
afek apBeE afeE

3. SPECIAL TYPES OF IVNGS

Definition 3.1. Let G = (C1,D1) and Gg = (Co, D) be two IVNGs of G} = (Vi, Ey)
and G5 = (Va, E3), respectively. Then the homomorphism x : Vi — Va is a mapping from
V1 into Vo satisfying following conditions

Te,n(p) < Teor(x()), Iovn(p) = Ic,n(x(P), Fo,r(p) > Foorn(x(p))
Teww(p) < Teou(x(p), Icwu(p) = Io,u(x(p)), Fou(p) > Fo,u(x(p))
Vp € V.
Tp,(pq) < Tp,o(x(P)x(2): Ip,e(Pq) = Ip,(X(P)X (), Fpi(Pq) = Fp,r(x(P)x(q))

Tp,v(pq) < Tp,u(x(P)x(q)); Ipyu(pg) > Ip,u(x(P)x(q)), Fp,u(ra) > Fp,u(x(p)x(q))

Vpq € Eq. The weak isomorphism v : Vi — Va is a bijective homomorphism from Vi into
Vo satisfying following conditions

Tey(p) = Toon(v(p), IoyL(p) = oy (v(p)), Foo(p) = Fe,n(v(p))

Tovw(p) = Topu (v(p)), Iow(p) = lo,w (v(p)), Feyw(p) = Fo,u(v(p))

Vp € V1. The co-weak isomorphism k : Vi — Vs is a bijective homomorphism from Vi into
Vo satisfying following conditions

Tp,(pq) = Tp,.(k(P)k(q)), IpiL(Pq) = ID,r(K(P)K(q)), FpiL(Pq) = Fp,o(k(p)k(q))

Tp,v(pq) = Tp,u(k(p)k(q)), Ip,u(pq) = Ip,u(K(p)K(q)), Fp,u(pe) = Fp,u(k(p)k(q))

Vpq € E1. An isomorphism ¢ : Vi — Vs is a bijective homomorphism from Vi into Vs
satisfying following conditions

Teyn(p) = T, (¥(p)), IoyL(p) = Loy (v(p)), Foyn(p) = Fo,o(¥(p))

Teyu(p) = To,u (Y(p): Ieyu (p) = Ic,u (v(p)), Fo,u(p) = Foou (¥(p)
Vp € V1.

Tp,L(pq) = (W(P)¥(9)), Ip,n(pq) = Ip,r.(V(P)(q)), Fp,r(pq) = Fp,r((p)¥(q))

Tp,rL
Tp,u(pq) = Tp,u(¥(p)¥(q)), Ip,u(pq) = Ip,u(V(P)¥(q)), Fp,u(pe) = Fp,u(¥(p)v(q))
Vpq € Ey.

Remark 3.1. The weak isomorphism between two IVNGs preserves the orders.
Remark 3.2. The weak isomorphism between IVNGs is a partial order relation.
Remark 3.3. The co-weak isomorphism between two IVNGs preserves the sizes.
Remark 3.4. The co-weak isomorphism between IVNGSs is a partial order relation.
Remark 3.5. The isomorphism between two IVNGSs is an equivalence relation.

Remark 3.6. The isomorphism between two IVNGs preserves the orders and sizes.



Figure 1: Crisp Graph of IVNG.

Remark 3.7. The isomorphism between two IVNGSs preserves the degrees of their vertices.

Definition 3.2. The subdivision IVNG sd(G) = (C,D) of IVNG G = (A, B), where C is
a IVNS on VUE and D is a IVNR on C, such that

1)C=AonV and C =B on E.

(2) If veV lie on edge e € E, then

Tpr(ve) = min(Tar(v), Ter(e)), Ipr(ve) = max(Iar(v), IpL(e))
Fpr(ve) = max(Far(v), Fpr(e)), Tpy(ve) = min(Tay(v), Tpu(e))

Ipy(ve) = max(Lay(v), Ipu(e)), Fpu(ve) = max(Fay(v), Fpu(e))
else
D(ve) = 0 = ([0,0], 0, 0], [0,0)).

Proposition 3.1. Let G be a IVNG and sd(G) be the subdivision IVNG of a IVNG G,
then

(1) O(sd(G)) = O(G) + S(G).

(2) S(sd(@)) =25(G).

Proposition 3.2. If G is complete IVNG, then sd(G) need not to be complete IVNG.

Example 3.1. Consider the crisp graph G* = (V, E) of IVNG G = (A, B), which is shown
in Figure 1. The IVNSs A and B over V = {a,b,c} and E = {p = ab,q = be,r = ac},
which are defined in Table 1.

Al Ta Ta Fa | B| Tg Is Tp

a | [0.2,0.3] [0.1,0.2] | [0.,0.5] | p | [0-2,0.5] | [0.4,0.5] | [0.5,0.6]
b | [0.3,0.4]] [0.2,0.3] | [0.5,0.6] | q | [0.3,0.4] | [0.8,0.9] | [0.6,0.7]
¢ | [0.4,0.5]] [0.7,0.8] | [0.6,0.7] | v+ | [0.1,0.2] | [0.7,0.8] | [0.9,1.0]

The crisp graph of SDIVNG sd(G) = (C,D) of a IVNG G, which is shown in Figure 2.

Table 1: IVNSs of IVNG.

By calculations the IVNSs C' and D, which are defined in Table 2.
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c q

a p
Figure 2: Crisp Graph of SDIVNG.

Tc Ic I. | D| 1p Ip Tp
[0.2,0.3] | [0.1,0.2] | [0.4,0.5] | ap | [0.2,0.5] | [0.4,0.5] | [0.5,0.6]
[0.2,0.3] | [0.4,0.5] | [0.5,0.6] | pb | [0.2,0.3] | [0.4,0.5] | [0.5,0.6]
[0.8,0.4] | [0.2,0.3] | [0.5,0.6] | bq | [0.3,0.4] | [0.8,0.9] | [0.6,0.7]
[0.3,0.4] | [0.8,0.9] | [0.6,0.7] | qc | [0.3,0.4] | [0.8,0.9] | [0.6,0.7]
[0.4,0.5] | [0.7,0.8] | [0.6,0.7] | er | [0.1,0.2] | [0.7,0.8] | [0.9,1.0]
[0.1,0.2] | [0.7,0.8] | [0.9,1.0] | ra | [0.1,0.2] | [0.7,0.8] | [0.9,1.0]

S o o Q)

Table 2: IVNSs of SDIVNG.

Definition 3.3. The total interval valued neutrosophic graph (TIVNG) T(G) = (C, D) of
G = (A, B), where C is a IVNS on VUE and D is a IVNR on C, such that

(1) C=AonV and C =B on E.

(2) If v eV lie on edge e € E, then

Tpr(ve) = min(Tar(v), Tsr(e)), Ipr(ve) = max(Iar(v), IpL(e))
Fpr(ve) = max(Far(v), Fpr(e)), Tpy(ve) = min(Tay (v), Teu(e))

Ipy(ve) = max(Lay(v), Ipu(e)), Fpu(ve) = max(Fay(v), Fpu(e))
else
D(ve) = O = ([0,0], [0,0],[0,0]).
(3) If a, B € E, then

Tpr(aB) =Tpr(ap), IpL(af) =Ipr(af), Fpr(aB) = Fpr(ap),

Tpy(ap) = Tpu(af), Ipy(aB) = Ipy(aB), Fpu(ap) = Fpy(af).
(4) If e, f € E have a common vertex, then

Tpr(ef) = min(Tpr(e), Tor(f)), Iprlef) =max(IpL(e),IpL(f))

Fpr(ef) = max(Fpr(e), Fpr(f)), Toulef)=min(Tpu(e), Tpu(f))

Ipu(ef) = max(Ipu(e), Ipu(f)), Fpu(ef) =max(Fpu(e), Fsu(f))

else
D((:’f) =0= ([0’0]7 [Oa O]a [070])'



D Tp [D Fp D Tp ID Fp
ab [ 0.2,0.3] | [0.4,0.5] | [0.5,0.6] | ap | [0.2,0.3] | [0.4,0.5] | [0.5,0.6]
be | [0.3,0.4] | [0.8,0.9] | [0.6,0.7] | pb | [0.2,0.3] | [0.4,0.5] | [0.5,0.6]
ca | 0.1,0.2] | [0.7,0.8] | [0.9,1.0] | bq | [0.3,0.4] | [0.8,0.9] | [0.6,0.7]
pq | [0.2,0.3] | [0.8,0.9] | [0.6,0.7] | qc | [0.3,0.4] | [0.8,0.9] | [0.6,0.7]
qr | 0.1,0.2] | [0.8,0.9] | [0.9,1.0] | er | [0.1,0.2] | [0.7,0.8] | [0.9,1.0]
rp | [0.1,0.2] | [0.7,0.8] | [0.9,1.0] | ra | [0.1,0.2] | [0.7,0.8] | [0.9,1.0]

Table 3: IVNS of TIVNG.

Example 3.2. In Ezample 3.1, the crisp graph for TIVNG T(G) = (C,D), which is
shown in Figure 3. Here C' is defined in Example 3.1. By calculations the IVNS D, which
is defined in Table 3.

Proposition 3.3. Let G be a IVNG and T(G) be the TIVNG of G, then
(1) O(T(G)) = O(G) + 5(G) = O(sd(G)).
(2) S(sd(G)) =25(G).
Proposition 3.4. If G is a IVNG, then sd(G) is weak isomorphic to T'(Q).
Definition 3.4. The middle interval valued neutrosophic graph (MIVNG) M (G) = (C, D)
of G = (A, B), where C is a IVNS on VUE and D is a IVNR on C, such that
(1)C=AonV and C =B on E, else C = O = ([0,0],[0,0],[0,0]).
(2) IfveV lie on edge e € E, then
TDL(UG) = TBL(B), IDL(’UG) = IBL(G), FDL(UG) = FBL(B)

TDU(UG) = TBU(B), IDU(’UG) = IBU(G), FDU(UG) = FBU(B)
else
D(ve) = O = ([0,0], [0, 0], [0,0]).
(3) If u,v €V, then
D(w) = 0 = ([0,0], 0,0, [0,0]).
(4) If e, f € E such that e and f are adjacent in G, then
TDL(ef) = TBL(UU), IDL(ef) = IBL(UU), FDL(ef) = FBL(’LL’U),
Tpy(ef) = Tpu(w), Ipu(ef) = Ipy(uv), Fpy(ef) = Fpy(uv).

Remark 3.8. If G is a IVNG and M(G) is a MIVNG of G, then
O(M(G)) =0(G) + S(G).
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Figure 4: Crisp Graph of IVNG.
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Figure 5: Crisp Graph of MIVNG.

Remark 3.9. If G is a IVNG, then M(QG) is a strong IVNG.

Remark 3.10. If G is complete IVNG, then M(G) need not to be complete IVNG.

Example 3.3. Consider the IVNG G = (A, B) of a G*, which is shown in Figure 4. The
IVNSs A and B are defined in Table 4. The crisp graph of MIVNG M (G) = (C, D), which
is shown in Figure 5. By calculations, the IVNSs C and D are defined in Table 5.

A Tx 14 Fy

a | [0.3,0.4] | [0.4,0.5] | [0.4,0.5]

b | [0.7,0.8] | [0.6,0.7] | [0.5,0.4]

c | [0.9,1.0]| [0.7,0.8] | [0.2,0.5]

B Tg Ip Fgp

e1 ] [0.2,0.3] | [0.6,0.7] | [0.6,0.7]

es | [0.4,0.5] | [0.8,0.9] | [0.7,0.8]

Table 4: IVNSs of IVNG.

C Teo Ic Fe D Tp Ip Fp
a | [0.3,0.4] | [0.4,0.5] | [0.5,0.6] | e1es | [0.2,0.3] | [0.8,0.9] | [0.7,0.8]
b | [0.7,0.8] | [0.6,0.7] | [0.3,0.4] | aey | [0.2,0.3] | [0.6,0.7] | [0.6,0.7]
c | [0.9,1.0] | [0.7,0.8] | [0.2,0.58] | bey | [0.2,0.8]| [0.6,0.7] | [0.6,0.7]
e1 ] [0.2,0.3] | [0.6,0.7] | [0.6,0.7] | bey | [0.2,0.3] | [0.6,0.7] | [0.6,0.7]
es | [0.4,0.5] | [0.8,0.9] | [0.7,0.8] | cea | [0.4,0.5] | [0.8,0.9] | [0.7,0.8]




Table 5: ITVNSs of MIVNG.

Proposition 3.5. If G is a IVNG, then sd(G) is weak isomorphic with M(QG).
Proposition 3.6. If G is a IVNG, then M(G) is weak isomorphic with T(Q).
Proposition 3.7. If G is a IVNG, then T'(G) is isomorphic with G U M(G).

Definition 3.5. Let the intersection graph be P(X) = (X,Y) of a G*, let Cy and D,
be IVNSs over V and E. Also let Coy and Do be IVNSs over X and Y. Then the interval
valued neutrosophic intersection graph (IVNIG) of a IVNG G = (C1,D;) is a IVNG
P(G) = (Cy, Ds), such that

TCzL( ) TC1L(UZ) ICzL(XZ)
To,v(Xs) = Teyu (vi), Iopu (Xi)
Tp,(XiX;) = Tp, 1(viv), LD, (XiX;)
Tp,u(XiX;) = Tp,u(vivy), Ip,u(XiX;) =
VX, X;€X and X;X; €Y.
Proposition 3.8. Let G = (A1, B1) be a IVNG of G* = (V,E) and let P(G) = (A2, Ba)
be a IVNIG, then

(1) The IVNIG is a IVNG.
(2) The IVNG is isomorphic to IVNIG.

Proof. (1) By the definition of IVNIG

Ic ( )7FC'2L(XZ') :FC1L(UZ')
Icyu(vi), Fo,u(Xi) = Foyu (i)
Ip, 1(vivj), Fp,.(XiX;) = Fp,1(v;v;)
Ip,v(vivg), Fp,u(X;X;) = Fp,u(viv;)

Tp,(8iS;) = Tpr(vivy) < min(Ta,r(v:), Ta,£(v;)) = min(Ta,1(5:), Ta,£(S;))
Ip,(SiS;) = Ipr(viv;) > max(La,1(vi), La,L(vj)) = max(La,.(5:), 1a,1(5;))
Fp,1(8iS;) = Fp,r(vivj) > max(Fa,(v;), Fa,1(vj)) = max(Fa,£(Si), Fa,£(S5))
Tp,u(8:S;) = Tpw(vvy) <min(Ta,u(vi), Ta,u(vy)) = min(Ta,u(Si), Ta,u (S5))
Ip,u(SiS;) = Ipw(vivy) > max(la,u(vi), La,u(vy)) = max(La,u (i), La,u(S;5))
Fp,u(8iSj) = Fpu(vivj) = max(Fa,u(vi), Fa,u(vs)) = max(Fa,u(5:), Fa,u(S)))

this shows that IVNIG is a IVNG.
(2) Define f : V. — X by f(v;) = S; for i = 1,2,3,...,n clearly f is bijective. Next
viv; € E if and only if S;5; € T and T = {f(v;) f(vj) : viv; € E}, also
Tapr(f(vi)) = Tapr(Si) = Tayn(vi), Laorn(f (i) = La,(Si) = La,L(vi)
Faor.(f(vi)) = Fa,1.(8i) = Fa,n(vi), Ta,o(f(vi)) = Taou(Si) = Ta,u(vi)
Layu (f(vi)) = La,0 (i) = La,u(vi), Fasu(f(vi)) = Faou(Si) = Fau(vi)

Vo eV
T, (f(vi)f(vj)) = TB,r(S:iS;) = T, r(vivy)
I, (f(vi) f(v))) = IB,L(SiSj) = Ip,(vivy)
Fp,.(f(vi)f(vj)) = Fp,.(5:S;) = Fp,1(vivj)
Tp,u(f(vi) f(v))) = Ty (SiS;) = Tsyu(vivy)
IBQU(f(UZ)f(UJ)) = QU(SiSj) = IBlU(UZUJ)
Fp,u(f(vi) f(v;)) = Fp,u(SiS;) = Fp,u(vivj)

v ViV € FE. O



Definition 3.6. Let G* = (V,E) and L(G*) =
B1 be IVNSs over V and E. Let Ay and By be IVNSs over X and Y. The interval valued
neutrosophic line graph (IVNLG) of IVNG G =

that

TAQL(SSC)
FAQL(Sm)

=Tp () =
= Fp,(z) =

M. A. MALIK, A. HASSAN

T (Sz) = Ipyu(z) =
vV Sz, Sy € X and

TBzL(SxSy)
Fp,1(S:5y)
Ip,u(SzSy)

Y 5,8, €Y.

Example 3.4. Consider the G* = (V, E
a1, Ty = 23,3 — (304, T4 — a4a1} and G =
which is defined in in Table 6. Consider the L(G*) =
andY = {13, T4y, Toylay, Loy lay, Ta Ty . Let Ag and By be IVNSs over X and Y. Then

= min(Tg, (), T, L(y)), IB,1(SzSy) = max
= max(Fp,(7), FB,L(Y)), TBu(SeSy) =
=max(Ip,u(z),Ip,u(Y)), FB,u(S:Sy) = max(Fp,u

by calculations, IVNLG L(G) is defined in Table 7.

min(Tg, v

(Al,Bl) is IVNG L(G) =

(
(

(X,Y) be its line graph, where A1 and

= TBlL(ul‘USL‘) IAQL(S ) = IB1L(x) = IBlL(u:cvx)
FBlL(um'Um) TAQU( )
1U(uxvx) FAQU(S )

Tpv(z) =Tpvu(uzvs)
Fp,u(x) = Fp,u(uzvs)

(I, L(2),1B,L(y))

l'),TBlU(y))
l'), FB1U(y))

), where V.= {aq, a9, a3,a4} and E = {x; =
(A1, By) be a IVNG of G* = (V, E),
(X,Y), such that X = {T'y,, Ty, Ty, Ty b

(Ag, Bs), such

Aq TA1 [Al FA1 B; T31 IB1 F31
aq | [0.2,0.3] | [0.5,0.6] | [0.5,0.6] | x1 | [0.1,0.2] | [0.6,0.7] | [0.7,0.8]
ag | [0.4,0.5] | [0.3,0.4] | [0.8,0.4] | xo | [0.8,0.4] | [0.6,0.7] | [0.7,0.8]
ag | [0.4,0.5] | [0.5,0.6] | [0.5,0.6] | x5 | [0.2,0.3] | [0.7,0.8] | [0.8,0.9]
ay | [0.8,0.4] | [0.2,0.3] | [0.2,0.5] | x4 | [0.1,0.2] | [0.7,0.8] | [0.8,0.9]
Table 6: IVNSs of IVNG.
Ag Ty, 14, Fa, By Tp, Ip, Fp,
Ty, | /0.1,0.2] | [0.6,0.7] | [0.7,0.8] | T, Ty, | [0.1,0.2] | [0.6,0.7] | [0.7,0.8]
Ty, | [0.3,0.4] ) [0.6,0.7] | [0.7,0.8] | T2, L0y | [0.2,0.8] | [0.7,0.8] | [0.8,0.9]
Ty, | [0.2,0.3] ) [0.7,0.8] | [0.8,0.9] | T2, T, | [0.1,0.2] | [0.7,0.8] | [0.8,0.9]
Ty, | [0.1,0.2] | [0.7,0.8] | [0.8,0.9] | T, Ty, | [0.1,0.2] | [0.7,0.8] | [0.8,0.9]

Table 7: IVNSs of IVNLG.

Proposition 3.9. FEvery IVNLG is a strong IVNG.

Proposition 3.10. The L(G) = (Ag2,B2) is a IVNLG corresponding to IVNG G =

(A1, By).
Proposition 3.11. The L(G) =
only if
TB,1(S2Sy) = min(Ta, (S
Fp,1.(S:8y) = max(Fa,r(Sz),

IBQU(S:vSy) = maX(IAzU(

Y 8,8, €Y.

Fa, (S

2)s Ta,0.(Sy)), IB,1(SxSy) = max
)) TBQU(SmSy) =

(Az2, B3) is a IVNLG of some IVNG G =

(A1, By) if and

(IAzL(Sw)7]A2L(Sy))
Y min(TA2U(Sw)7TA2U(Sy))
)7 IA2U( y)) FBzU(SSDSy) = maX(FAzU(Sw)v FA2U(S?J))
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Proof. Assume that
TB,1.(SeSy) = min(Ta,1.(Se), Tay(Sy)), 1B,0(S2Sy) = max(La,(Se), La,L(Sy))
Fp,0(S:5y) = max(Fa,(52), Fa,.(Sy)), Tp,u(S2Sy) = min(Ta,u(Sz), Ta,v(Sy))
IB,u(S2Sy) = max(La,u(S2), La,U(Sy)), Fpou(S2Sy) = max(Fa,v(Se), Fa,u(Sy))
V 8.5, € Y. Next define
Ta,n(x) = Tayr(Sz), 1a,0(z) = 14,0(S2), Fa,n(x) = Fa,1(Sz)
Tayu(w) = Tau(Sz), 1au(x) = Ia, Fau(z) = Fa,u(Sz)
Y x € FE, then
TB,1(S2Sy) = min(Ta,1,(Sz), Tas1.(Sy
Ig,1.(5:Sy) = max(L4,1(Sz)
Fp,1(5:5y) = maX(FAZL(
Ty (S2Sy) = min(Ta,u (Sz), Tasu
IB,u(55Sy) = max(La,u(
Fp,u(S2Sy) = max(Fa,u(Sz),
The IVNS A; that yields the property

X
&

Tp,(ry) < min(Ta, (), Ta, L(y)), Ip,L(2y) > max(La,r(z),14,L(y))
Fp,1(zy) > max(Fa,(v), Fa,(y)), Tv(ry) <min(Ta,u (), Ta,u(y))
IBlU(‘Ty) > maX(Ith(x)v IAlU(y))7 FBlU(‘Ty) > maX(FAlU(x)v FAlU(y))

will suffice. Converse is straight forward. O
Proposition 3.12. If L(G) = (Az, B2) is IVNLG of IVNG G = (A1, By), then L(G*) is
the crisp line graph of G*.
Proof. Since L(G) be a IVNLG,
Ta,0(Sz) = Ti1(x), 1a,0(52) = I, 0(2), Fa,0(Sz) = Fp,1(2)
Vo€ FEandso S, €X if and only if x € F, also
T, (82 Sy) = min(Tp, (), T, L(Y)), IB,(S2Sy) = max(Ip,1(x), Ip,L(y))
Fp,1(8:5y) = max(Fp, (2), Fp, L)), Tp,u(SuSy) = min(Tp,u (), Tp,u(y))
I,0(S:Sy) = max(Ip,v(2), 5,0 (), Fpou(SeSy) = max(Fp,v(z), Fp,u(y))
V S5;8, €Y and so, Y = {S;5,: S, NSy # ¢p,x,y € E,x #y}. O
Proposition 3.13. If L(G) = (A2, B2) is IVNLG of IVNG G = (A1, By) if and only if
L(G*) = (X,Y) is the line graph and

Tp,r(vy) = min(Ta,r(x), Ta,.(y)), Ip,r(zy) = max(la,r(z), 1a,1(y))
Fp,(vy) = max(Fa, (), Fa,.(y)), Tpov(ry) = min(Tau(z), Ta,v ()
Ip,v(vy) = max(La,u(7), La,u (y)), Frov(wy) = max(Fa,u (), Fa,u(y))

VayeY.
Proof. Tt follows from Propositions 3.11 and 3.12. O

Proposition 3.14. Let G be a IVNG, then M(G) is isomorphic with sd(G)U L(G).
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Theorem 3.1. Let L(G) = (Ag, B2) be IVNLG corresponding to IVNG G = (A1, By).
(a) If G is weak isomorphic onto L(G) if and only if Vv € V, x € E and G* to be a cycle,
such that

TAlL(U) = TBlL(l')? IA1L(U) = IBlL(l')? FAlL(U) = TBlL(l')?

TAIU(U) = TBlU(x)a IA1U(U) = IBlU(x)’ FAlU(U) = TBlU(x)‘
(b) If G is weak isomorphic onto L(G), then G and L(G) are isomorphic.
Proof. By hypothesis G* is a cycle. Let V = {v1,va,v3,...,v,} and E = {x1 = vjve, 29 =
VU3, ..., Ty = Vpv1} where P : vivous ... vy is a cycle characterize a IVNS Ay by A4; (v;) =
([pi> pil; lai> @il [ri,v]) and By by Bi(x ) ([as a;), [b“bz] [es, a)) fori=1,2,3,...,n and
Upg1 = V1, if g1 = D1, Q1 = @1, T = 11, pn+1 = pl’ qn+l qlv n+1 = 7”1 Thus

a; < min(p;, piv1), bi > max(q;, ¢iv1), ¢ > max(ri,rit1)

a; < min(p;, piga), by = max(q;, gip), ¢; > max(ry, vy )
fori=1,2,3,...,n. Next X ={Ty,, T, Fwn} and Y = {Fm1Fm2,Fx2Fm3, U P S
thus for a,+1 = a1,a n+1 = a),bpy1 = by, bn+1 = b}, i1 = €1, C il = = ¢, to obtam

Ag(Ta) = Bu(w:) = (@i, ag), [bi, by, [ei, )
and By(I'y, Iz, ;) = ([min(a;, aiy1), mln(al,aHl)] [max (b;, bit1), max(bz,bzﬂ)] [max(c;, ¢iv1),
max(c;,c;ﬂ)]) for i =1,2,3,...,n and v,11 = v1. Since f preserves adjacency, hence it
induce permutation 7 of {1,2,3,...,n}, f(v;) = Lo iyvngyss and
VilVi+1 — f(vi)f(vi-f—l) = Fvw(i)vw(i)+lFvw(i+1)v7r(i+1)+l

fori=1,2,3,...,n — 1. Therefore

pi =Ta,0(vi) < Tapr(f(vi)) = Tao (Lo, yvniiysn) = TBiL (Vi) Vn(i)11) = (i)
Simﬂa’rlya Di S a7r(i)7 qi Z bﬂ'(i)? i 2 c7r(i)7 q; 2 b;r(z)a T’; 2 c;r(z) and

a; = Tpr(vivit1) < T, (f(vi) f(vig1))
= TBQL(FUTr(i)Ufr(i)+1err(i+1)v7r(i+1)+1)

= min(Ts, £(Va(i)Vr()+1)s T8 L(Vn(i41)Vn(it1)+1))

+1)

= min(ar@), ar()
similarly a; < min(a W(Z) ﬂ(i)+1)’ bi > max(br(iy, br(iy+1), b, > max(bﬂ(z),bw( )+1) and
¢i > max(Cr(s); Cr(i)+1) ¢, > max(c;r(l), ;r(l) ,) for i =1,2,3,...,n. Therefore

pi < a w(i)> di >b (i) T > Cr(i)> < aw(i) > bﬂ'(Z) T 2 cﬂ'(Z)

and
a; < min(aﬂ(i), aﬂ(i)+1), bi > max(bw(i), bﬂ(i)+1), ci > max(cw(i), Cﬂ(i)_H)
a; < min(a;(i),a;(i)ﬂ), b; > max(b;r(i), b;r(i)+1)7 C; > maX(C;r(i)7 C;r(i)+1)
thus
i < an(iysbi > ba(i)s & > Cr(iys @5 < iy, by > bﬂ(z) ¢ > Cn(z)
and so

(i) < Qr(n(i))> On(i) 2 () Cr(s) 2 Cr((i)
(i) < nn(i)) On(i) 2 Onn(i)) Cni) 2 Cnin(i))

Vi=1,2,3,...,n. Next to extend
Qi < n() S oo S ani) S Qiy by =2 bry =0 2 bai) 2> b
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(e Cr (i) > > Cri (i) > ¢y a; < aﬂ—(z) <...< aﬂ-j(l) <aqy
bi 2 b7r(2) 2 e Z bﬂj(i) 2 bi? C; Z CT((i) Z N Z Cﬂj(i) 2 C;
where 771! identity. Hence
@i = Gn(i), bi = brs), & = Cr(i)y @i = i) by = brgy), € = )

Vi=1,2,3,...

,n. Therefore

i < Gr(it1) = Qit1,bi 2 br(iy1) = big1, ¢ 2 Ca(it1) = Cita
/

/ ! ! / ! ! / /
@ S Q1) = Gig1, b5 2 Opginy = 015 6 2 Criign) = Cipa

which together with

! ! ! ! ! !
ant1 = a1,bpy1 =b1,¢cpy1 =c1, Ay =aq,b,, 1 =by,c 01 =

which implies that

/

! ! ! ! !
=c1, a; = ay,b; =by,c; =

a; = a1, b; = by, ¢

Vi=1,2,3,...,n. Thus

a1 = az = =0n =pP1=pP2 = = Pn
T -
bi=by=..=bh=q=@=...=q@
b=by=..=b=q=¢=...=q,
CG=C=...=CL=T1=Ta=...=Tp
A S S

Therefore (a) and (b) holds, since converse of result (a) is straight forward. O

4. CONCLUSION

The neutrosophic graphs have many applications in path problems, networks and com-
puter science. Strong IVNG and complete IVNG are the types of IVNG. In this paper,
we discussed the special types of IVNGs, subdivision IVNGs, middle IVNGs, total IVNGs
and IVNLGs of the given IVNGs. We investigated isomorphism properties of subdivision
IVNGs, middle IVNGs, total IVNGs and IVNLGs.
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