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Abstract

In this paper, the strong interval-valued neutrosophic intuitionistic fuzzy graphs are
suggest. Cartesian product, composition and clamp of two strong interval-valued neutrosophic
intuitionstic fuzzy graphs defined. Some propositions involving strong interval-valued
neutrosophic intuitionistic fuzzy graphs are stated and proved. We introduce the opinion of
product of two interval-valued intuitionistic fuzzy graphs and investigate some of their
properties. We discuss some propositions on Cartesian product and define some properties on it.
Strong interval-valued neutrosophic intuitionistic fuzzy graphs allows attaching the truth-
membership(t), indeterminacy-membership(i) and falsity —membership degrees (f) both to
vertices and edges. Combining the strong interval valued neutrosophic set with graph theory, a
new graph model emerges, called strong interval neutrosophic intuitionistic fuzzy graph.

Keywords: Intuitionstic fuzzy graph, Interval valued intuitionstic fuzzy graph.

1. Introduction

In 1965, Zadeh [21] inaugurated the conception of fuzzy set as a method of finding
uncertainty. In 1986, Atanassov proposed Intuitionistic Fuzzy set (IFS) [3] which looks more
accurately to uncertainty quantification and provides the opportunity to precisely model the
problem based on the existing knowledge and observations. After three years Atanassov and
Gargov [4] introduced Interval-Valued Intuitionistic Fuzzy Set (IVIFS) which is helpful to model
the problem precisely.

In 1975, Rosenfeld [14] introduced the concept of fuzzy graphs. Yeh and Bang [8] also
introduced fuzzy graphs independently. Fuzzy graphs are useful to represent relationships which
deal with uncertainty and it differs greatly from classical graphs. It has numerous applications to
problems in computer science, electrical engineering, system analysis, operations research,
economics, networking routing, transportation, ect. Interval-Valued Fuzzy Graphs (IVFG) are
defined by Akram and Dudec [1] in 2011. Atanassov [4] introduced the concept of intuitionistic
fuzzy relations and Intutionistic Fuzzy Graph (IFG).In fact, interval-valued fuzzy graphs and
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interval valued intuitionistic fuzzy graphs are two different models that extend theory of fuzzy
graph. S.N.Mishra and A.Pal [9] introduced the product of interval valued intuitionistic fuzzy
graph. Akram and Bijan Davvaz [1] introduced Strong Intuitionistic Fuzzy Graphs(SIFG). In this
paper, The opinion of Strong Interval-Valued Intuitionistic Fuzzy Graphs (SIVIFG) are
introduced.

Many works on fuzzy graphs, intuitionistic fuzzy graphs and interval valued
intuitionistic fuzzy graphs (Antonios K et al. 2014; Bhattacharya 1987; Mishra and pal 2013;
Nagoor Gani and shajitha Begum 2010; Nagoor Gani and Latha 2012; Shannon and atanassov
1994) have been carried out and all of them have considered the vertex sets and edge sets as
fuzzy and/or intuitionistic fuzzy sets.Further on, Broumi et al. (2016b) introduced a new
neutrosophic graph model, This model allows attaching the membership (t), indeterminacy(i)
and non-membership degrees () both to vertices and edges.
2. Preliminaries

In this section, the authors mainly recall some notions related to neutrosophic
graphs, strong interval valued neutrosophic sets, intuitionistic fuzzy graphs, Strong interval
valued neutrosophic intuitionistic fuzzy graphs, proper to the present work. The readers are
consulted for further details to (Broumi et al.2016b; Mishra and Pal 2013; Nagoor Gani and
Basheer Ahamed 2003;Parvathi and Karunambigai 2006;Smarandache 2006;wang et al.2010;
Wang et al. 2005a).

3.Interval-Valued Intuitionistic Fuzzy Graph
In this section, we introduce the Interval valued intuitionstic fuzzy graph and the
conception of Strong interval valued intuitionstic fuzzy graph.

Definition 3.1

A fuzzy set V is a mapping o from V to [0,1]. A fuzzy graph G is a pair of functions G=
(o, 1) where o is a fuzzy subset of a non-empty set V and p is a symmetric fuzzy relation on o,
i.e. u(uv)< o(u) Ao(v). The underlying crisp graph of G=(c,u) is denoted by G = (V,E)
where Ec Vx V.

Let D[0,1] be the set of all closed subintervals of the interval [0,1] and element of this set
are denoted by uppercase letters. If MeD[0,1] then it can be represented as
M =[M_,M_],where M and M, are the lower and upper limits of M.
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Definition 3.2

An intuitionistic fuzzy graph with underlying set V is defined to be a pair G
=(A, B) where

(i) the functions x, :V —[01] and y, :V —[0,1] denote the degree of membership and
non membership of the element x eV respectively, such that 0< z,(x)+ y,(x) <1 for all
xeV.

(if) the function 4 :EcV xV —[0]1] and p,:EcV xV —[0]1] are defined by
w5 ((%, Y)) < min( 22,(X), 2, (y)) @nd y5 (X, y)) = mex(y,(X), 74(y)) such that

0< 15 (%, Y) +76((xy)) <1, V(X y) € E.

Definition 3.3
An intuitionistic fuzzy graph G = (A,B) is called strong intuitionistic fuzzy graph if

5 (Xy) = min( 22,(X), £,(Y)) and yg(xy) = mex(y4(x), 7a(y)), forallxy e E.

Definition 3.4

An interval valued intuitionistic fuzzy graph with underlying set V is defined to be pair G
=(A, B) where
1) The functions M, :V — D[0] and N, :V — D[0,1] denote the degree of membership and
non membership of the element x €V, respectively such that 0< M, (x)+ N, (x) <1 for all
xeV.
2) The functions M;:E <V xV —»D[01] and N;:E <V xV —D[0]1] are defined by
Mg, (X, y)) <min( M 5 (X), M (Y)) and Ng (%, ¥)) = max( N, (X), N (¥)), and
My (X, y)) < min( Mo, (X), M, (¥))  and N, ((x, ) = max(N , (%), N, () such that

0<Mgy((x,y))+Ngy((x,¥)) <1 V(x,y) e E.

Strong Interval-Valued Intuitionistic Fuzzy Graph

Definition 3.5

An interval valued intuitionistic fuzzy graph G=(A,B) is called strong interval valued
intuitionistic fuzzy  graph if Mg, (Xy) =min( M, (X), M, (Y)) and
Ng (Xy) =mex(N, (X), Ny (Y),  if Mgy (xy) = min( M, (x), M5, (¥)) and

NBU (Xy) = ITHX( NAU (X), NAU (y» , VXY € E.
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Example 3.1

Figure 1 is an SIVIFG G=(A,B) where
A={(x,[0.4,0.6],[0.2,0.3]),(y,[0.5,0.6],[0.1,0.3]),{z,[0.7,0.5],[0.3,0.1])}
B={(xy,[0.4,0.6],[0.2,0.3]),(yz,[0.5,0.6]), (xz,[0.4,0.6],[0.3,0.1]) }.

<x,[0.4,0.6],[0.2,0.3]>

<x2.[0.4,0.6].[0.2.0.3]>
<xy.[0.4.0.6].[0.2.0.3]

Figure-1 Strong Interval Valued Intuitionistic Fuzzy Graph

Definition 3.6
Let Ajand A, be interval-valued intuitionistic fuzzy subsets of V, and V, respectively.

Let B, and B, interval-valued intuitionistic fuzzy subsets of E, and E, respectively. The
Cartesian product of two SIVIFGg G, and G, is denoted by G, xG, = (A xA,,B, xB,) and
is defined as follows:

1) My x My )(Xg, %) =min( M, (%,), M, (X))

(M XMy )X, Xp) = min( M, (%), My (X,))

(Nl XN Xp) = max(N (X)), Ny (X,))

(Npu X Nou (X, X,) = max( N, (%), Ny (X)), VX, €Vy, X, €V,

2) (Mg x Mg (X X )(X, ¥,)) = min( M, (X), Mg, (X,Y,))

(Mgy x Mg J((X, % )(X, ¥,)) = min( M, (X), Mg, (X, Y,))
(Ngy X Ng, )((X % )(X, ¥,)) = max( N, (X), Ng, (X, Y2))
(Ngy x Ngy J(X, X, )(X, ¥,)) = max( N,y (X), Ngy (X, Y2)) VX eV XY, €E,
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3) (Mg x Mg )(x,2)(¥1,2)) = min( Mg, (x,Y), My, (2))
(Mgy x Mg )((%1, 2)(Ys,2)) = min( Mgy, (x,y,), My (2))
(NBlL x NBZL)((le Z)(yl’ z)) = max( Nle(le1)1 NAZL(Z))

(Ngy ¥ Ngy (X1, 2)(y1,2)) = max(Ngy (X Y1), Ny (2)) VzeV,, xy, €k
Theorem 3.1
Union of two strong interval valued intuitionistic fuzzy graphs is always SIVIFG.

Proof:
Let G1 and G2 are SIVIFG, there exist x;y, € E;, i=1,2 such that

Mg (X, 1)) = Min( M, (), Mo (Y,)), i=1,2,
Mgy (X, ¥3)) = min( My, (%), M,y (Y1), i=1,2.
Ng (%, y:)) =max(N, (X)), N (), i=1,2.
Ngy (%, ¥i)) = max(N o, (X)), Ny, (), i=1,2.

Let E={(X, %)X, ¥,)/ % €V, XY, € E,}u{(x,2)(V1,2)/z€V,, %y, €E}
Consider, (x,X,)(X,Y,) € E, we have

(Mg, x Mg )(X,X,)(X, ¥,)) = min( M, (X), Mg, (X,Y,))
=min( M, (X), M, (%), Mo, (¥,)):
Similarly,
(Mg x Mg, )(X;, X;) = min( M, (X), Mg, (X))
=min( M, (X), M5 (X2), M (Y2))-
(M XM (X, %) = min( M, (x,), M, (X,))
(M XM 5 )(X, X, ) = min( My, (%;), M (X,))
(ML x My )(X1,Y,) =min( M, (%), M, (Y2))
(M XM )(X1, Y2) = min( M, (%), My (Y2))
min (M 5y XM, )(X, X2), (M py XM 5, )(X, Y,)) =min(min(. M, (X),M (X)),
min( M, (), M 55 (Y2)))
=min( M, (X), M5 (%)M ,5(Y2))
Hence,
(Mg xMg, 1) (X%, )(X,y,)) = min(( M, XM, )(X,X,),(M . xM . )(X, ;)
(Mgy xMg) (% X,)(X, Y,)) = min(( M, xM )X, X,), (M xM ) )(X,Y,))
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Similarly , we can show that
(Nle X NBZL) ((X: Xz)(X, yz)) = max(( N/\L X NAQL)(Xv Xz)a (N/\L X NAZL)(X’ yz))

Example:3.2
Consider the fuzzy graph with five vertices given in figure

<a,[0.9,0.7].[0.4,0.5]>

<ab,[0.7.0.5],[0.4,0.5]
<d,[0.4,0.31.[0.3.0.2]>

<b.[0.7,0.51.[0.3.0.1]> <e.[0.2.0.11,[0.5.0.4]>

<bd.[04.031[03.025  _4.102017.[0.5.04]>

<bc.[0.5.0.3].[0.4,0.5]>

<¢,[0.5,0.3].[0.2,0.1]>

Figure-2 Strong Interval Valued Intuitionistic Fuzzy Graph

A={(a,[0.9,0.7],[0.4,0.5]), (b,[0.7,0.5],[0.3,0.1]) , (¢, [0.5,0.3],[0.2,0.1]) , (d,, [0.4,0.3], [0.3,0.2]),
(e,[0.2,0.1],[0.5,0.4]) }

B={(ab,[0.7,0.5],[0.4,0.5]), (bc, [0.5,0.3], [0.3,0.1]) , (bd, [0.4,0.3], [0.3,0.2]) ,
(de,[0.2,0.1],[0.5,0.4]) }.

4. Operation on Strong Interval-Valued Neutrosophic Intuitionistic Fuzzy Graph

Definition 4.1

By an Strong Interval-Valued Neutrosophic Intuitionistic Fuzzy Graph G™ =(V,E) one
means a pair G=(A,B), Where A=< [TaLTad, [Tau,Taul, [laLladl, [lau,laul,[FaLFadl,
[Fau,Fau] > is an Strong Interval-Valued Neutrosophic Intuitionistic set on V and B=<
[Tew, Teul, [Teu,Teul, [leLlsLl, [lsu,lsul,[FeL,FeL]l,[Feu,Feu] > is an Strong Interval-Valued
Neutrosophic Intuitionistic relation on E satisfying the following condition:
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1. V={v1,va,.....va} such that Ta.:V— [0,1], Tau:V—[01], la:V— [0,1], lau:V — [0]],
and Fa.:V—[01], Fau :V—[01] denote the degree of truth-membership, the degree of
inderminancy membership and falsity-membership of the element yeV , respectively, and
0<T,(v;) + 1,4(v;) + Fp(v;) <1, forevery vieV.

2.The functions Teu:VxV —[01], TsuVxV —[01], Ils:VxV —[01],
leu:VxV —[01] and FeL:VxV —[01], Feu:VxV — [01], such that

Tou (Vi V) <min[ T, (v;), Ta (V)]

TBU (Vi ij) < min[ TAU (Vi )1 TAU (Vj )]

IBL(Vi’Vj) = max[ IBL(Vi)v IBL(Vj)]

Toy (Vi,v;) 2 max gy (v), 1y (V)]

And

FBL(Vi 'Vj) = max[ FBL(Vi)' FBL(Vj)]

Fau (i, V) = max] Fgy (v;), Fey (v))]

Denote the degree of truth-membership, the degree of inderminancy membership and
falsity-membership of the degree (Vv;,v;) € E respectively, where

0<Tg(v;,v;) +1g(v;,v;) + Fg(v;,v;) <1 forall (v;,v;)eE

Example 4.1
Figure 3 is an example for SIVNIFG, G=(A,B) defined on a graph G'=(V,E)

such that V={x,y,z}, E={xy,yz,zx}, A is an Strong Interval Valued Neutrosophic Intuitionistic
Fuzzy set of V

A={(x,[0.2,0.4],[0.3,0.2],[0.4,0.3]),{y,[0.5,0.3],[0.2,0.1],[0.3,0.5] ),
(2,[0.4,0.3],[0.2,0.4],[0.3,0.1]) } and B an Strong Interval Valued Neutrosophic Intuitionistic
Fuzzy setof E <V xV .

B={(xy,[0.2,0.4],[0.3,0.2],[0.4,0.3]),( yz,[0.4,0.3],[0.2,0.4],[0.3,0.5] ),
(2x,[0.2,0.4],[0.3,0.2],[0.4,0.3]) }.
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<x.[0.2.0.41.[0.3.0.2].[0.4.0.3]>

<x2.[0.2,0.4].[0.2,0.4].[0.4.0.3]>
<xv,[0.2,0.4].[0.3,0.2].[0.3.0.5]

<.[05.031[020.11003.05]> <y [0.4,0.3].[0.2.0.4],[03,0.5> ~Z0-403}[0-2.041.[0.3.0.1]>

Figure-3 Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph

By routine computations, it is easy to see that G=(A,B) is an Strong Interval Valued
Neutrosophic Intuitionistic Fuzzy Graph of G”.

Definition 4.2

Let G =G, xG, =(V,E) be the Cartesian product of two graphs where V =V, xV,
E={(x %)% ¥,) I X €Vy, X, Y, € By od{(x,2)(V,,2)/z€Vv,, %Y, €E};  then,  the

Cartesian product G =G, xG, =(A xA,,B, xB,) is an Strong Interval Valued Neutrosophic
Intuitionistic Fuzzy Graph defined by

1) (Tar T )(X0s %) =min( Ty, (X)), T, (X))
(Tau X Ta (X3 %) = min( T, (%), Ty (X2))
(Far X T (X0, X5 ) = max( 1, (%), 1y (X,))
(Fau X g )(X0 %) = max( l iy, (%), 1y (X2))
(Far x Fa (X1, %) = max(Fy (%), Fo (X))

(FAiu X FAZU )(X;, X,) = max( FA1U (X)), FAZU (x,)) forall (X, %;) €V

and

2) (Tle XTBZL)(X’ Xz)(X, y2) = min( TAiL(Xl)’TBzL(XZ yz))
(Tau * T )X X )(X, Y,) = mMin( Ty (%), Tgy (X,,))
(T X Tg, )X, % )(X, Y,) = max( 1, (%), 1, (X,Y,))

(Islu x IBZU (X, X,)(X, y,) = max( IAlu (x1), IBZU (X2Y,))
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(Fg,. x Fa, JOX X, )(X, Y,) = max( Fy (%), Fg, (X,Y,))
(FBIU X FBZU )(X, XZ)(X, Y2) = max( FAlu (Xl)! FBZU (Xz yz)) ) vx eV, Vx,y, €E,

3) (To x T, (X0, 2)(Yy, 2) = Min(Tg (X,Y1), Ty, (2)
(Tey X Teu )(X1, Z)(Y1, 2) = min( Ty (X,Y1), Tay (2))
(T, X 1g, )(X0 2)(Y1, 2) = max( gy (X,Y,), 1, (2))
(Tey % 1gu (X1, 2)(Y1,2) = max(lgy (X Y1), | oy (2))
(Fe, x Fg, J(X1, 2)(Y1,2) = max(Fg (% Y1), Fy (2))
(Feu x Fay )%, 2)(y1, 2) = max(Fyy (X, Y1), Foy (2)) . VZEV,, WXy, €E

Example 4.2

Let G, =(A,B,) and G, =(A,,B,) be two graphs where Vi={ab}, V.={c,d},

E;={a,b} and E>={c,d}. Consider two Strong Interval Valued Neutrosophic Intuitionistic
Graphs:

A ={<a,[0.30.4],[0.50.1],[0.2,0.4] >, < b,[0.5,0.1],[0.2,0.4],[0.1,0.3] > },
B:={<ab,[0.3,0.4],[0.5,0.1],[0.2,0.4]>};

A, ={<c,[0.2,0.5],[0.3,0.2],[0.5,0.2] >, < d,[0.3,0.2],[0.4,0.1],[0.2,0.4] > },
B2={<cd,[0.2,0.5],[0.4,0.1],[0.5,0.2]>};

<a, [0.3,0.4],[0.5,0.1],[0.2,0.4]> <b,[0.5,0.1],[0.2,0.4].[0.1,0.3]>

<ab,[0.3,0.4].[0.5.0.1].[0.2,0.4]>

Figure-4 Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph G

<¢.[0.2.0.5].[0.3.0.2].[0.5.0.2]> <d,[0.3,0.2].[0.4,0.1],[0.2,0.4]>

<d,[0.3.0.2].[0.3.0.2].[0.5.0.2]>

Figure-5 Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph G2

1259



International Journal of Pure and Applied Mathematics Special Issue

<ac.[0.2.0.51.[0.5.0.11.[0.5.0.2]>  <(ac.bc).[0.5.0.1.[0.5.0.11.[0.5.02]>  <bc,[0.5,0.1].[0.2,0.4].[0.5,0.2]>

<(ac,ad),[0.3,0.2],[0.5.0.1],[0.5.0.2]> <(be,bd),[0.3,0.21.[0.2,0.4],[0.5,0.2]>

<ad.[0.3,0.2].[0.5,0.1],[0.2,0.4]> <(ad.bd).[0.3.0.2],[0.5,0.1].[0.2,0.4]> <bd,[0.3,0.2],[0.2.0.4],[0.2,0.4]>

Figure-6 Cartesian product of Strong Interval Valued Neutrosophic Intuitionistic Fuzzy
Graph

Proposition 4.1

If G and G are the Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graphs
then the Cartesian product G, xG, is a Strong Interval Valued Neutrosophic Intuitionistic Fuzzy
Graphs.
Proof:

Let G, xG, =(A xA,B, xB,)
Verifying only conditions for B, x B,, because conditions for A x A, are obvious.

Let E={(x%)(X,¥,)/ % €Vy, XY, € E,}O{(X,2)(y1,2)/ 2€V,, Xy, €E}
Considering (x,x2)(X,y2) € E we have

(Ta X T, (X X )(X, Y2)) = min( Ty (X), Ty, (X, Y2))

<min (T, (X), min( T, (X,), To (Y,))
=min(min(T,, (X), Ty (X)) min(min(T,, (), T, (Y,)))
=min ((Ta, xTa )X, %) (Tay xTa )X, Y,)),

(Tay > T (X, X, )(X, Y2)) = Min( Ty (X), Tey (X, Y2))
<min (T (%), MIn( T, (%), Ty (¥2)))
= min(min(T,y (X), Tay (X)) min(min(T,, (X), Tay (Y,))
=min (Tay x Ty )% %) (Tay X Ty )X, Y2)),

(Fg > T, J((X, X, )(X, Y,)) = max( 1, (X), lg, (X;Y,))
2max (1, (x), max(1,, (X,), 1, (Y,))

= max(max( IAiL(X)l IAEL(XZ ))) ;max(max( | AiL(X)l IAQL(yZ )
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=max ((Fa x Ty )X X)), (Tar X 140)(X,Y2)),
(Tay * Tau (X % )(X, Y,)) = max( 1 (X), T (X,Y,))
>max (1, (X), max( 1, (%), 1oy (Y2))
= max(max( I,y (X), 1y (X,))) ;max(max( 1, (X), oy (¥,)))
=max ((Iyy x 1oy )X, X,), (Lag X 14u)(X,Y2)),
(Fg x Fg  )((X, X, )(X, Y,)) = max( Fy, (X), Fg, (X,Y,))
>max (Fy, (X), max(Fy (X,), Fy (Y2))
= max(max(F,, (x), Fy, (X)) ,max(max(Fy (X), Fpr(Y,))
=max (Fy. x Fo )X %), (Fye x By )(X,Y2)),
(Fau x Fau )((X,%,)(X, Y,)) = max(Fy, (X), Fgyy (X, Y,))
>max (Fy, (X), max( Fyy (X,), Fay (Y2)))
= max(max(Fyy (X), Fuy (%,))) ;max(max(Fyy, (X), Fay (¥2))

= max ((FAlu x FAZU (X, X,), (FA1U x FAZU )X, Y,)).
Similarly, we prove ((x1,z)(y1,2))€ E
Hence

(Te xTe, )(X1, 2)(¥1:2))  =min (To x Ty )X 2), (Ta X Ty )(V1,2)),
(Tey * T (X1, 2)(Y1,2)) = min ((Tyy x Ty )%y, 2), (Tay X Ty )V, 2) ),
(g X g, )(X1, 2)(Y1,2)) = max (1 ¥ 1o )(Xp, 2), (Lo X 1y )(Y1,2)),
(Tey x 1a )(X02)(y1,2)) = max((1yy x 15y )(%1,2), (ay x 1oy )(¥1,2)),
(Fe, x Fa, J(X1, 2)(Y1, 2)) = max (Fy > Fp )(X1,2), (Fp X Fy )(Y1,2)),
(Feu x Fau )(%1,2)(¥1,2)) = max((Fyy x Fpy )(%,2), (Fpy x Fuy )(¥1,2)).

Hence proved

Definition 4.3
Let G =G, xG, =(V,xV,,E) be the composition of two graphs where

E ={(x%)(X, ¥,)/ X €V}, X,Y, € E,}O{(%, 2)(¥1,2) [ 2€V,, %y, € EF U
{0, %)(Y1, o) I Xy, € B X, #Y,};  then, the composition of Strong Interval Valued

Neutrosophic Intuitionistic Fuzzy graphs G,[G,]= (A o A,, B, 2 B,)is an SIVNIFG defined by
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1) (Tar o Ta )Xy, %) =min( T, (X)), o, (X,))
(Tau © T (X0 Xp) = min( Ty, (%), Ty (X))
(Na o T )06 Xp) = max( 1y (%), 1, (X,))
(Tay @ Tau ) (X1, X,) = max(l oy (%), 1oy (X,))
(Far o Fa (X0 Xp) = max(Fy (%), Fyyi (X,))

(Fau @ Fau) (X Xp) = max(Foy (%,), Foy (X)) W%, €V, X, €V,

2) (Tay o Te, )X X )(X, Y,) = min( Ty (%), g, (X,Y,))
(Tey © Tou )X X )(X, Y,) = Min( Ty, (%), T,y (X, Y5))
(T, © 1o, )X X )(X, Y,) = max( 1y (%), 1, (X2Y2))
(Tey © Tg,0 )(X: X, )(X, ¥,) = max(1, (X)), ley (X,Y2))
(Fe, o Fa, )(X: %, )(X, ¥,) = max(Fy (X)), Fe (X, Y2))
(Feu © Fau )X X )(X, o) = max(Fy, (X)), ey (XY2)), VX eV, VXY, € By

3) (To ©To, )X, 2)(Y1, 2) = min(Tg (X,Y1), Ty, (2)
(Tew ©Tou )X 2)(Y1, 2) = Min(Tey (X Y1), Toy (2))
(T, © 1o, (X0 2)(Ys, 2) = max( gy (X,Y,), 1, (2))
(Tey © g, ) (X1, 2)(Y1,2) = max( gy (X Y1), | oy (2))
(Fe, © Fo, )(X0 2)(Y1, 2) = max(Fyg (X,Y,), Fyy (2))
(Fey © Fay)(X1, 2)(y1,2) = max(Fgy (Y1), Foy (2)), VZeV, Wxy, eE;

4) (Mo o To, (X0 X ) (Y1, ¥2)) = min( Ty, (%), Ty (¥2): Tey (X1Y5))
(Tau © Tau (X1 X5 )(Y1r ¥2)) = MIn( T (X2 ) Ty (V2): Tay (XY1))
(Tg @ g, (X0 Xo)(Y10 Y2)) = max(h (%), 1o (Y2) Tg (X0Y1))
(Tew © Ve (X0 X2)(Y1, Y2)) = max( 1,y (X,), Ly (Y2): Tey (X1 Y1)
(Fa o Fa, )((X1, Xz )(Y1: ¥2)) = max(Fy (X;), By (Y2) Fe (X,Y1))
(Fau o Fau )X X, )(Y1, Y,)) = max(Fyy (X,), Fay (V2), Fay (X,Y1))
V(X %, )(Yy, Y,) € E°—E, where E° = E U{(X,, X,)(Yy, ¥,)/ XY, €E;, X, # Y, }.
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Example 4.3

Let G, =(V,,E,) and G, =(V,,E,) be two graphs where Vi={a,b}, V.={c,d},

E;={a,b} and E>={c,d}. Consider two Strong Interval Valued Neutrosophic Intuitionistic
Graphs:

A ={<a,[0.50.3],[0.3,0.2],[0.1,0.3] >, < b,[0.3,0.4],[0.5,0.2],[0.1,0.2] > },
B;={<ab,[0.3,0.4],[0.5,0.2],[0.1,0.3]>};

A, ={< ¢,[0.30.2],[0.5,0.2], [0.1,0.4] >, < d,[0.1,0.3],[0.3,0.2], [0.4,0.3] > },
B:1={<cd,[0.1,0.3],[0.5,0.2],[0.4,0.3]>};

<ab.[0.3,0.4].[0.5.0.2].[0.1,0.3]>

<2,[0.5.0.3].[0.3.0.2].[0.1.0.3]> <b,[0.3.0.4].[0.5,0.2],[0.1,0.2]>

Figure-7 Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph Gz

<cd,[0.1,0.3],[0.5.0.2].[0.4.0.3]>

<c,[0.3,0.2],[0.5,0.2],[0.1,0.4]> <d,[0.1,0.3],[0.3,0.2],[0.4,0.3]>

Figure-8 Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph Gz

<ac,[0.3,0.2],[0.5.0.2].[0.1,0.4]> <(ac,bc),[0.3,0.2],[0.5,0.2].[0.1,0.4]> <bc,[0.3,0.2],[0.5,0.2].[0.1,0.4]>

<(ac.bd).[0.1,0.31,[0.5.0.2].[0.4,0.3]>

(acad) [0.10.31[05.0.21 04,04~ <(be,bd),[0.1,0.31,[0.5,0.2].[0.4,0.3]>

<(bc,ad),[0.1,0.3],[0.5,0.2].[0.4,0.3]>

<ad,[0.1,0.3].[0.3.0.2].[0.4.0.3]> <(ad,bd),[0.1,0.3].[0.5,0.2].[0.4.0.3]> <bd,[0.1,0.3],[0.5.0.2].[0.4,0.3]>

Figure-9 Composition of Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graph
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Proposition 4.2

Special Issue

If G and G are the Strong Interval Valued Neutrosophic Intuitionistic Fuzzy Graphs
then the Composition G, -G, is a Strong Interval Valued Neutrosophic Intuitionistic Fuzzy

Graphs.
Proof:

Let G oG, =(A°A,B oB,)
Verifying only conditions for B, - B, , because conditions for A o A, are obvious.
Let E={(X,%,)(X,¥.)/ X €V, XY, € E}u{(x,2)(y1.2)/z€V,, Xy, €E}
Considering (x,x2)(X,y2) € E we have
(Te o Ta, (X X )(X, Y5)) = min( Ty (%), Tg, (X,Y5))

<min (T, (X), min( T, (%), Toy (¥,)))
= min(min(TAiL(X)rTAzL(XZ))) imin(min(TAlL(X)iTAzL(yZ)))
=min (To o T )06 %), (To o T )X, Y2)),

(Tey © Te,u )((X, X,)(X, ¥2)) = min( Ty, (X), Tey (X,Y,))

<min (T, (X), Min( T, (X,), Ty (¥,)))
= min(min(T,, (X), Toy (X,))) min(min(T, (X), Tay (¥,))
=min (Tay © Tap )X %) (Tay 0 Tau )X, ¥2)),

(IBlL ° IBZL)((XY X,)(X, Y,)) = max( IAiL(X)l IBZL(XzyZ))

>max (1, (X), max( 1, (%), 1, (Y,))
= max(max( 1, (X), 1, (X,))) ,max(max(1 (X), 1, (¥,))

= max((IAlL ° IAQL)(XI XZ)Y(IAiL ° IAZL)(Xi Y2)),

(Tgy © 1w )X X )(X, ¥,)) = max(,, (%), Tgyy (X, Y>))

>max (1, (X), max( 1, (%), 1y (Y2)))
= max(max( | au (), Iy (X,))) ,max(max( | au (%), I au (¥.))

= maX((IAlu ° IAQU (X, X,), (IA,U © IAZU )X, Y2)),

(Fe @ Fe, J(X X, )(X, ¥,)) = max(Fyy (X), By (X;Y,))

>max (Fy (x), max(Fy (x,), Fy (Y2))
= max(max(Fy (x), Fy, (X,))) max(max(Fy (x), Fy (Y,)))

= max ((FAiL ° FAQL)(X' X,), (FAlL °© FAZL)(Xv ¥2)),
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(Fau © Fau J((X %)(X, Y,)) = max( Fuy (X), Fgy (X,Y2))
>max (Fy, (X), max( Fyy (X,), Fay (Y2)))
= max(max(Fyy (X), Fay (X,))) ;max(max(Fyy, (X), Fay (¥2))
=max ((Fay © Fau)(X, %;), (Fay © Fay )(X, Y,)).

Consider (x,,z)(y;,z)€E

(Ta © T, (X1, 2)(Y1, 2)) = min( Tg, (X, Y1), T, (2))
<min (T (%), (T, (Y1), min( T, (2)))
=min(min(Tg, (X,), T (2))) ,min(min(Tg, (Y;), T, (2)))
=min ((Tg o Ta )X, 2), (Toy 0 Ty )(Y1,2)),
(Tay © Teu (X1, 2)(Y1, 2)) = min( Ty, (X, ), Toy (2))
<min(Tgy (%), (Tgy (Y1), Min( T, (2)))
= min(min(Tgy (X,), Tay (2))) ;min(min(Tyy, (1), Tay (2)))
=min (Tgy © Tay )X, 2), (Tey 2 Tay )(¥1:2)),
(Te o 1o, J((X, 2)(Y1, 2)) = max( g (X, Y1), 14, (2))
zmax (Ig (%), (g, (y;), max(1,, (2))
=max(max(lg, (%), I o, (2))) ,;max(max(lg, (Y1), 1. (2)))
=max ((Igy o 1o )X, 2), (g o 1a )(Y1:2)),
(Tey © Ve )(X1, 2)(Y1, 2)) = max( gy (X, Y:), 1oy (2))
=max (1gy (%), (15 (Y1), max(1,, (2))
= max(max( gy (X)), 1oy (2))) ;max(max(lgy (¥,), Iy (2)))
=max ((Tgy o Tay )X, 2), (Tgy © 1oy )(Y1,2)),
(Fg o Fe, J(X1, 2)(¥1,2)) = max(Fg (X,Y1), Fiy (2))
2max (Fg (%), (Fg, (y,), max(Fy, (2)))
= max(max(Fg, (X,), Fa, (2))) ;max(max(Fg, (¥,), Fa.(2)))
=max ((Fg o Fp )(%,2), (Fgy o Fy )(¥1,2)),
(Fey © Feu )(X1, 2)(Y1, 2)) = max( Fgy (X, ), Fay (2)
>max (Fgy (X)), (Fgy (1), max(Fyy, (2))

= max(max(Fgy, (X,), Fuy, (2))) ;max(max(Fg,, (Y1), Fay (2)))
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=max ((Fgy o Fay)(%:,2), (Fay o Fay )(¥1,2)),
Consider (x,,%,)(y,,Y,) € E°—E
(Mo © o, (X1 X )(Y1s Y2)) = Min( Ty (X,) T (Vo) Ty (X Y1))
<min (T, (%) Ta (Y2), MIn( Ty (X)), T (V1))
=min(min(T,, (X,), To (X)) );min(min(T,, (V;), Ta (V2)))
=min (Tye 0T )X Xa ) (Tar 0 To )(Y10 ¥2)),s
(Tay © Tau )((X0: X5 )(Y10 ¥2)) = MIn( T (X5 Ty (V2), Toy (XY1))
<min (T (%) Tay (V2), min( Ty (%), Ty (¥1)))
= min(min(T, (X,), Tay (X5)) ),min(min(T .y (¥;), Toy (¥2)))
=min ((Tay © Tau )% X0 (Tay © Tag )V, ¥2)),
(Ne @ g, )((X1s X )(Y1r Y2)) = max(hy (%), ba (V2D Te (X1Y1))
Zmax (1, (X2), o, (Y2), max(ly (%), 1o (Y1)
= max(max( 1, (X;), 14,0 (Xz)) ),max(max( 1, (Y;), 1y, (Y2)))
=max ((Fyy o 1y )X %) (Fae o T )(Y1n Y2) ),
(Tew © Ve (X0 X2)(V1 Y2)) = maxX( 1,y (X,), Ly (Y2): Tey (X1 Y1)
Zmax (1 (), Tay (Y2) max(ly, (%), 1y (V1))
= max(max( 1,y (X)), 1y (Xz)));max(max (1 (¥:): 1oy (¥2)))
=max ((Iyy o Fay )Xy X2)s (Fag © Fag )(Yir ¥2)),
(Fa o Fa, (X1, X )(Y1, ¥2)) = max(Fy (X;), Fo (Y2) Fe (X,1))
>max (Fp (X,), Far (Y2), max(Fy (%), Fo (Y1)
= max(max(Fy (%), Fu (X2)) ), max(max(F (Y1), Fa(Y2))
=max ((Fap o Fa )X Xp), (Fap o Fu (Y10 Y2)),

(Feu © Fau (X1, %) (Y1, ¥2)) = max(Fy (X;), Fagy (¥2), Fey (X0¥1))
2max (Fpy (%), Fay (Y2), max(Fuy (X1), Fuy (¥1)))
= max(max( FA1U (X)), FAZU (X,))),max(max( FA1U (Y1), FAQU (¥2))

= max ((FAlu ° FAQU )X, X,), (FAlu ° FAZU YY1, Y2)).
This completes the proof.
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Proposition 4.3

If G, xG, is Strong Interval Valued Netrosophic Intuitionistic Fuzzy Graph then at least
Gy or G2 must be strong .
Proof:

Suppose that G1 and G are not SIVNIFG, there exist x;y; € E;,i=1,2 such that
1) (Tar o Ta)(Xe, %) <min( Ty, (), Ty (X))

(Tau © Taw )X Xp) < min( Ty (%), Ty (X))

(Par o T )% Xp) 2 max( 1y, (%), 15, (X,))

(Lay @ Fau ) (X0 %) 2 max( (), 1oy (X))

(FAlL °© FAZL)(Xl’ X,) = max( FAIL(Xl)’ FAZL(XZ))
(FAiu °Fpu )(X1, X;) = max( FAiu (X1), FAQU (X,)) .

E ={(x, %)(X, ¥2) I X, €V, X, Y, € B yu{(%,2) (Y1, 2) [ zev,, Xy, B}

Consider, (X, X,)(X,Y,) € E, we have
(Ta © T, (X X, )(X, Y5)) = min( Ty (X), Tg, (X, Y2))
<min (T, (X), min( T, (X,), To (Y,))
=min(min(T,, (X), Ty, (X)) min(min(T,, (x), T, (Y,))
=min (Tyy o Ta )(X %), Ty 0 To )X, Y2)),
(Tay © Teu (X, X.)(X, ¥,)) = min( T,y (X), Tey (X, Y2))
<min (T, (X), min( Ty, (%), Tay (Y2)))
= min(min(T,, (X), Toy (X2))) min(min(T,y (X), Tay (¥2)))
=min ((Tay ©Tay )X %), (Thy 2 Tay )X, Y2))
(Tar o Ta )Xy, %) =min( Ty, (X)), T (X,))
(Tau © Taw )X, Xz) = min( Ty, (%), Ty (X;))
(P o T (X0 Xp) = max( 1, (X)), 1,0 (X))
(Fau o Pau )X X, ) = max(ly, (%), 1y (X2))
(Far © Fa (X0, Xp) = max(Fy (X)), Fy (X,))
(Fau © Fau )(X1, %) = max(Fyy (%), Fyy (X,))
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min(( Ty © Tau )X %), (Tay © Tau )X, ¥2)) =
min(min( T, (X), Tay (X)), MIn( Ty (X), Ty (¥2)))
= min( Ty, (%), Tay (%) Tay (¥2))

max(( 1y © 1 )% Xp): (Fay o 1oy (X ¥2)) =
max(max( |, (X), 1y (X)), max(ly (X), 1y (Y2)))
= max( 1y (%), Tay () Tay (¥2))

Hence,
(TBlL OTBZL)((X! X,)(X, Y,)) <min ((TAiL °TA2|_)(X1 X,), (TAiL OTAZL)(X! Y2))),

(TBIU OTBZU (X, X,)(X, Y,)) < min ((T/-\U °TA2u (X, X,), (TA,U OTAZU )X, Y2)),

(IBlL ° IBZL)((X’ X,)(X,Y,)) = max ((IAlL ° IAZL)(XY X,), (IAlL °© IAQL)(X: Y2)),

(IBlu ° IBZU (X, %,)(X, Y,)) = max ((IAiu ° IA2U )(X, Xz)v(IAlu ° IAQU )(X,Y,)),

Similarly, we can show that

(Fle ° FBZL)((X’ X,)(X,Y,)) >max ((FAiL ° FAQL)(Xv X,), (FAlL ° FAZL)(XI ¥2))

(Falu °© FBZU (X, %,)(X, y,)) = max (( I:Alu °© FAZU (X, X,), (FAiu ° FAQU )X, Y,)).

Hence, G, -G, is not Strong Interval Valued Netrosophic Intuitionistic Fuzzy Graph, Which is
a contradiction. This completes the proof.

Conclusion

In this Paper, Cartesian product, Composition and join of two SIVIFG and SIVNIFGs
are discussed. Our future plan to extend our research to some other operations on Strong Interval
Valued Neutrosophic Intuitionistic Fuzzy Graph.
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