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Abstract: Recently, the TODIM has been used to solve multiple attribute decision making (MADM)
problems. The single-valued neutrosophic sets (SVNSs) are useful tools to depict the uncertainty of
the MADM. In this paper, we will extend the TODIM method to the MADM with the single-valued
neutrosophic numbers (SVNNSs). Firstly, the definition, comparison, and distance of SVNNs are
briefly presented, and the steps of the classical TODIM method for MADM problems are introduced.
Then, the extended classical TODIM method is proposed to deal with MADM problems with the
SVNNSs, and its significant characteristic is that it can fully consider the decision makers’” bounded
rationality which is a real action in decision making. Furthermore, we extend the proposed model to
interval neutrosophic sets (INSs). Finally, a numerical example is proposed.

Keywords: multiple attribute decision making (MADM); single-valued neutrosophic numbers;
interval neutrosophic numbers; TODIM method; prospect theory

1. Introduction

Multiple attribute decision making (MADM) is a hot research area of the decision theory domain,
which has had wide applications in many fields, and attracted increasing attention [1,2]. Due to the
fuzziness and uncertainty of the alternatives in different attributes, attribute values in decision making
problems are not always represented as real numbers, and they can be described as fuzzy numbers
in more suitable occasions, such as interval-valued numbers [3,4], triangular fuzzy variables [5-8],
linguistic variables [9-13] or uncertain linguistic variables [14-21], intuitionistic fuzzy numbers
(IFSs) [22-27] or interval-valued intuitionistic fuzzy numbers (IVIFSs) [28-31], and SVNSs [32] or
INSs [33]. Since Fuzzy set (FS), which is a very useful tool to process fuzzy information, was
firstly proposed by Zadeh [34], it has been regarded as an useful tool to solve MADM [35,36],
fuzzy logic [37], and patterns recognition [38]. Atanassov [22] introduced IFSs with the membership
degree and non-membership degree, which were extended to IVIFSs [28]. Smarandache [39,40]
proposed a neutrosophic set (NS) with truth-membership function, indeterminacy-membership
function, and falsity-membership function. Furthermore, the concepts of a SVNS [32] and an INS [33]
were presented for actual applications. Ye [41] proposed a simplified neutrosophic set (SNS), including
the SVNS and INS. Recently, SNSs (INSs, and SVNSs) have been utilized to solve many MADM
problems [42-67].

In order to depict the increasing complexity in the actual world, the DMs’ risk attitudes
should be taken into consideration to deal with MADM [68-70]. Based on the prospect theory,
Gomes and Lima [71] established TODIM (an acronym in Portuguese for Interactive Multi-Criteria
Decision Making) method to solve the MADM problems with the DMs’ psychological behaviors
are considered. Some scholars have paid attention to depict the DMs’ attitudinal characters in the
MADM [72-74]. Also, some scholars proposed fuzzy TODIM models [75,76], intuitionistic fuzzy

Information 2017, 8, 125; doi:10.3390/info8040125 www.mdpi.com/journal/information


http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-9074-2005
http://dx.doi.org/10.3390/info8040125
http://www.mdpi.com/journal/information

Information 2017, 8, 125 2 0of 18

TODIM models [77,78], the Pythagorean fuzzy TODIM approach [68], the multi-hesitant fuzzy
linguistic TODIM approach [79,80], the interval type-2 fuzzy TODIM model [81], the intuitionistic
linguistic TODIM method [82], and the 2-dimension uncertain linguistic TODIM method [83]. However,
there is no scholar to investigate the TODIM model with SVNNS. Therefore, it is very necessary to pay
abundant attention to this novel and worthy issue. The aim of this paper is to extend the TODIM idea
to solve the MADM with the SVNN:s, to fill up this vacancy. In Section 2, we give the basic concepts of
SVNSs and the classical TODIM method for MADM problems. In Section 3, we propose the TODIM
method for SVN MADM problems. In Section 4, we extend the proposed SVN TODIM method to
INNSs. In Section 5, an illustrative example is pointed out and some comparative analysis is conducted.
We give a conclusion in Section 6.

2. Preliminaries

Some basic concepts and definitions of NSs and SVNSs are introduced.

2.1. NSs and SVNSs

Definition 1 [39,40]. Let X be a space of points (objects) with a generic element in fix set X, denoted
by x. NSs A in X is characterized by a truth-membership function Ta(x), an indeterminacy-membership
Ix(x) and a falsity-membership function Fa(x), where Tp(x): X — 170,17 I4(x): X —]70,1"
[and Fa(x) : X —]70,17[ and 0~ < supTa(x) + supla(x) + supFu(x) < 3%,

The NSs was difficult to apply to real applications. Wang [32] develop the SNSs.

Definition 2 [32]. Let X be a space of points (objects); a SVNSs A in X is characterized as the following:

A = {(x, Ta(x), Ta(x), Ea ()| € X} M

where the truth-membership function T 4 (x), indeterminacy-membership 14 (x) and falsity-membership function
Fp(x), Ta(x) : X = [0,1],I4(x) : X = [0,1] and Fa(x) : X — [0,1], with the condition 0 < Tx(x) +
IA(JC) + FA(X) <3.

For convenience, a SVNN can be expressed to be A = (Ta,Ia,Fa), Ta € [0,1],14 € [0,1],F4 € [0,1],
and 0 < Tp+ 14+ Fyq <3.

Definition 3 [50]. Let A = (T, I, Fa) be a SVNN, a score function S(A) is defined:

24 Tp—1I4—Fy)

s(4) = ¢ .

,S(A) € [0,1]. @)

Definition 4 [50]. Let A = (T4, 14, Fa) be a SVNN, an accuracy function H(A) of a SVNN is defined:
H(A) =Ta—Fa, H(A) € [-1,1]. ®)

to evaluate the degree of accuracy of the SVNN A = (Tyx, 14, Fa), where H(A) € [—1,1] . The larger the value
of H(A) is, the higher the degree of accuracy of the SVNN A.

Zhang et al. [50] gave an order relation between two SVNNs, which is defined as follows:

Definition 5 [50]. Let A = (Ta,1a,Fa) and B = (Tg, I, Fp) be two SVNNG, if S(A) < S(B), then A < B;
if S(A) = S(B), then

(1) if H(A
() ifH(A

= H(B), then A = B;
< H(B), then A < B.

)
)
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Definition 6 [32]. Let A and B be two SVNNSs, the basic operations of SVNNs are:
(1) A®B= (TA+T3—TATB,IAIB,FAFB);

(2) A®B=(TaTp, Ia+Ip—Ialp, Fa+ Fp — FaLp);

@ A= (1-01-T)N L)Y (Ea))A >0

@ ()= (TN ) 1= =Fa)')a >0
Definition 7 [42]. Let A and B be two SVNNSs, then the normalized Hamming distance between A and B is:

1
d(A/B):§(|TA—TB|+|IA—IB\+|FA—FB|) 4)

2.2. The TODIM Approach

The TODIM approach [71], developed to consider the DM’s psychological behavior, can effectively
solve the MADM problems. Based on the prospect theory, this approach depicts the dominance of
each alternative over others by constructing a function of multi-attribute values [69].

Let G = {G1, Gy, - - -, G, } be the attributes, w = (wy, wy, - - - , wy ) be the weight of G,0<w; <1,

n
and Y} w; = 1. A = {Ay,Ay,---,Ap} are alternatives. Let A = (aij)mxn be a decision matrix,
=i

where ajj is given for the alternative A; under the G;,i = 1,2,--- ,m,and j = 1,2,--- ,n. We set
wj, = wj/w,(j,r =1,2,---,n) are relative weight of G; to G,, and w, = max{w]-|j =12---,n},
and 0 <wj, <1.

Then the traditional TODIM model concludes the following computing steps:
Step 1. Normalizing A = (a;;) ~ into B = (b;)

Step 2. Computing the dominance degree of A; over every alternative A; under attribute G;:

mx mxn’

n
5(A, A =Y ¢i(Ay A, (i,t=1,2,--- ,m) )
j=1
where
n
¢ wjr (bij = i) / X jr, if bij— by >0

]:

$i(Ai, Ar) =4 O if bij—b;j =0 ©)

S

n

\J < 1w]-r> (bt] — b,]) /w]-r, lf b,] — bt] <0

j=
and the parameter 6 shows the attenuation factor of the losses. If b;; — b;; > 0, then ¢;(A;, At)
represents a gain; if b;; — by; < 0, then ¢;(A;, A) signifies a loss.

Step 3. Deriving the overall dominance value of A; by the Equation (7):

Y 6(An A — min{ 5 (A, At)}
4)(A1) — t=1 1 t=1

m m ’ Z':1/2/"'/7/}1' (7)
max{ Y (5(A,-,At)} - rnin{ Y 5(A1-,At)}
t=1 t=1

1 1

Step 4. Ranking all alternatives and selecting the most desirable alternative in accordance with
¢(A;). The alternative with minimum value is the worst. Inversely, the maximum value is
the best one.
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3. TODIM Method for SVN MADM Problems
Let A = {A1, Ay, - -+, A} be alternatives, and G = {Gy,Gy, -+, G, } be attributes. Let w =
n

mxn

(wy,wy, - - -, wn) be the weight of attributes, where w; € [0,1], '21 w; = 1. Suppose that R = (ri]-)
=

(T, Lij, Fif)mxn be a SVN matrix, where 7;; = (Tj;, I;j, F;j), which is an attribute value, given by an
expert, for the alternative A; under G;, T;; € [0,1],I;; € [0,1],F; € [0,1], 0 < T;; + I + F; < 3,
i=12---,mj=12--,n

To solve the MADM problem with single-valued neutrosophic information, we try to present
a single-valued neutrosophic TODIM model based on the prospect theory and can depict the DMs’
behaviors under risk.

Firstly, we calculate the relative weight of each attribute G; as:

wjr:wj/wrr j/V:1,2,"',7’l. (8)

where w; is the weight of the attribute of G;, w, = max{wj|j =12---,n},and 0 < wj < 1.
Based on the Equation (8), we can derive the dominance degree of A; over each alternative A;
with respect to the attribute G;:

n
\/wjrd(rijrrtj)/Zl Wiy, if rij > 1y
]:
i(Ai, Ar) = 0, if rij =rj ©)

n
$ (Zl w]r> d(?‘l']', Tt]') /w]‘,, Zf Ti]' < 7'[]‘
]:

S

1
d(riry) = 3 (|Tj = Tyl + [T = Iy| + [Fij — By ). (10)

where the parameter 8 shows the attenuation factor of the losses, and 4 (ri]-, rt]') is to measure the
distances between the SVNNss 7;; and r4; by Definition 7. If r;; > 4, then ¢;(A;, A) represents a gain;
if ;j < r4j, then ¢;(A;, At) signifies a loss.

For indicating functions ¢;(A;, At) clearly, a dominance degree matrix ¢; = [¢;(A;, A)] e
under G; is expressed as:

A A, A,
Ay 0 ¢](A1/ A2) T 4)](A1/Am)
A (A, A 0 i(Ap, A
¢j = [¢j(Ai, AD)], ., = > | ? 2 : N 7 % ) ,j=12,,n
Am ‘Pj(Am/Al) ‘Pj(Am/ Az) .- 0

(11)
On the basis of Equation (11), the overall dominance degree 5(A;, A¢) of the A; over each A; can

be calculated: .

S(A3 A = L 9i(A A, (it 1,2, m). (12)
j=
Thus, the overall dominance degree matrix § = [§(A;, A¢)],,,,, can be derived by Equation (12):
Ay Ay . A
Ay 0 0(A1,A) - O(A1,Am)
5= 5(As A = A, 5(A2.,A1) 0 5(A2fAm) : (13)

Am | 6(Am, A1) 0(Am, A2) - 0



Information 2017, 8, 125 50f 18

Then, the overall value of each A; can be calculated Equation (14):

¥ 6(An A — min{ 5 S(A, At)}

5(A1) — t:lm ! t=1 —

max{ Y (5(Ai,At)} — mjn{ Y 5(Al-,At)}
t=1 t=1

1 1

L i=12-,m. (14)

Also the greater the overall value 6(4;), the better the alternative A;.
In general, single-valued neutrosophic TODIM model includes the computing steps:
(Procedure one)

Step 1. Identifying the single-valued neutrosophic matrix R = (r;j)
MADM, where r;; is a SVNN.

Step 2. Calculating the relative weight of G; by using Equation (8).

Tij/ Iijr Fij)mxn in the

mxn_(

Step 3. Calculating the dominance degree ¢;(A;, At) of A; over each alternative A; under attribute
G; by Equation (9).

Step 4. Calculating the overall dominance degree §(A;, A;) of A; over each alternative A; by using
Equation (12).

Step 5. Deriving the overall value 6(A;) of each alternative A; using Equation (14).

Step 6. Determining the order of the alternatives in accordance with §(A4;)(i =1,2,--- ,m).

4. TODIM Method for Interval Neutrosophic MADM Problems
Furthermore, Wang et al. [33] defined INSs.

Definition 8 [33]. Let X be a space of points (objects) with a generic element in fix set X, an INSs A in X is
characterized as follows:

A= {(x,Tz(x),I;(x),F5(x))|x € X} (15)

where truth-membership function T (x), indeterminacy-membership 1;(x) and falsity-membership function
F;(x) are interval values, Tp(x) C [0,1],1a(x) C [0,1] and F4(x) € [0,1], and 0 < sup(Tj;(x)) +
sup(I;(x)) +sup(Fz(x)) <3. -
An interval neutrosophic number (INN) can be expressed as A = (T;1;,F;) =
L 7R] [7L R L pR L TR L IR L pR
({Tg, Tg], {IA, IA], [FA,FAD, where [TA, TA] c [01], {IA, Iﬂ c [0,1], {FA,FA] c 0,1,

R 7R R
andOng—i-Ig—i-FAS&

Definition 9 [84]. Let A= ({Tf‘v, Tﬂ , [I 1%, I Il—ﬂ , [F 1%, Fﬂ ) be an INN, a score function S of an INN can be
represented as follows:

2+ TE 1L —FL) 4+ (24 TR R —
A A

e A A A F}%) e
S (A) = - S (A) € [0,1]. (16)

Definition 10 [84]. Let A= ([TI%, T}ﬂ, {If?’ Iﬂ, {FI%, FED be an INN, an accuracy function H(A)
is defined:

(a) - L5705 )

5 JH(A) € [-1,1], (17)

Tang [84] defined an order relation between two INNs.
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Definition 11 [84]. Let A = ([Tg Tg] {1/% I}ﬂ {F/% Fg}) and B = ([TBL Tg} [Ié Ig} {Fél—“gb

- 24+ TL—JL—FL) 4 (24 TR R _FR ~ 24+ TE_JL_FL) 4 (24 TR_[R_FR
betwolNNs,S(A) = ( 4 4 A)6< 4 A A> andS(B) = ( B _B 3)6( BB B/ pe the

TE+TR );(F§+F’3)

ryert)- (e ;
2

scores, and H(A) = ( 4 A) and H(E) = (
S(ﬁ) < S(E),theng < E;ifs(g) = S(E), then

be the accuracy function, then if

() if H(A) =H(B), then A=B;
2) ifH(A)<H(§),A<§.

Definition 12 [33,61]. Let Ay = ([T}, TR], [IF, IR], [FF, FR]) and Ay = ([T4, TX], [15, IX], [F¥, EX])
be two INNs, and some basic operations on them are defined as follows:

() Ay Ay = ([1F+TH =TT T4 78 = TR 1 g, 1R, [P, R
@ Avody = ( (AT M i)

7

[FL + FF — PR, FR+ F — ERER
® Ad=([1--1H'1- -1 [0 a0 [ ) > o

@ (4)" = ([t @) [oh )] - a - - a-y]) a0

Definition 13 [84]. Let A; = ([TL, TR, [IF, IR], [FE, ER]) and A, = ([T, TR, [1L, IR], [EF, ER])
be two INNS, then the normalized Hamming distance between A = ([TlL, TF], [IlL, If], [FlL, Fﬂ) and
A, = ([TF, TR, 1}, IX], [EF, ER)) is defined as follows:

1
d( A1 A2) = < (| = Th| 4 [Tf = |+ |1 — 5|+ IR = 1F |+ |FF - EE |+ |FR = FF|)  a8)

Let A, G and w be presented as in Section 3. Suppose that R = (E]-)mxn =

({T},Tﬁ},[ﬂ,]ﬂ,[F»L,F»RD is the interval neutrosophic  decision  matrix, where
7t ij i 750 | ) isen

[T#,Tﬂ, {Ii[;, I};], {Fi’]f, Fiﬂ is truth-membership function, indeterminacy-membership function and

; ; ; L TR L R L R R, R | TR
falsity-membership function, [Ti]-,Tij} c[o,1], [Il-]-,lij} c[0,1], {Pi]-,Pij} co,1],0< T+ I+ F <3,
i=1,2,,mj=12-,n

To cope with the MADM with INNs, we develop interval neutrosophic TODIM model.
Firstly, we calculate the relative weight of each attribute G; as:

ij:wj/wr/j/rzllzl"'/n (]‘9)
where w; is the weight of the attribute of G;, w, = max{wj|j =12,---,n }, and 0 < wj, <1.

Based on the Equation (20), we can derive the dominance degree of A; over each alternative A;
with respect to the attribute G;:

n
\/wjrd("fz‘j,?tj)/ﬂl Wir, if 7ij > 7
]:
$j(Ai, Ar) = 0, if7ij =1 (20)

n
$ (Zl w]-,>d (7ij, Phi) /g, if Tij < T
]:

D=
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L L
T}~ th‘ +

R R
iy th].’+

SO 1
d (7 7ij) = g(
where the parameter § shows the attenuation factor of the losses, and 4 (7’}]',7”-) is to measure the
distances between the INNs 7;; and 7;; by Definition 13. If 7;; > 7;, then ¢;(A;, At) represents a gain; if
7ij < 7yj, then ¢;(A;, A¢) signifies a loss.
For indicating functions ¢;(A;, At) clearly, a dominance degree matrix ¢; = [P;(A;, A)] s
under G; is expressed as:

L L R R
i — 1| + |1 - 1| +

L L
Ff thj‘ +

Ef — F}}D 1)

A A A,
Aq 0 ¢j(A1,A2) - (A1, Am)
A (As, A 0 (An, Ay P —
(P] = [(Pf(Ai/Af)]mxm = i (P]( 2 1) . (P]( 2 ) J=12 M
A | $i(Am A1) 0j(Am, Az) - 0

(22)
On the basis of Equation (22), the overall dominance degree §(A;, A¢) of the A; over each A; can

be calculated: .,

5(Ai, Ay) = 2¢1<A,~,At>, (i, t=1,2,--,m) (23)
=
Thus, the overall dominance degree matrix 6 = [6(A;, At)],,«,, can be derived by Equation (23):
Aq Ay . A
A 0 5(A1,Ay) - 8(A1, Ap)
A A = 2| A0 ol 24
Am (5(Am',A1) (5(Am', Ay) - 0

Then, the overall value of each A; can be calculated Equation (25):

m m
Z 5(Ai, At) — mm{
=1 1 =

(S(Ai,At)}
5(A) = —1 ! i=1,2-,m. (25)

max{ £ o, 40}~ min{ £ o(a, 40
1 t=1 1 t=1

Also the greater the overall value 6(4;), the better the alternative A;.
In general, interval neutrosophic TODIM model includes the computing steps:
(Procedure two)

Step 1. Identifying the interval neutrosophic matrix R = (;;) n = ( [Tl%, Tlﬂ , [IZ%, Ilﬂ , [Fl%, Flﬂ )mxn
in the MADM, where 71-]- is an INN.

Step 2. Calculating the relative weight of G; by using Equation (19).

Step 3. Calculating the dominance degree ¢;(A;, At) of A; over each alternative A; under attribute
G; by Equation (20).

Step 4. Calculating the overall dominance degree §(A;, A;) of A; over each alternative A; by using
Equation (23).

Step 5. Deriving the overall value §(A;) of each alternative A; using Equation (25).

Step 6. Determining the order of the alternatives in accordance with §(A4;)(i =1,2,--- ,m).
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5. Numerical Example and Comparative Analysis

5.1. Numerical Example 1

8 of 18

In this part, a numerical example is given to show potential evaluation of emerging
technology commercialization with SVNNs. Five possible emerging technology enterprises (ETEs)
A;i(i=1,2,3,4,5) are to be evaluated and selected. Four attributes are selected to evaluate the
five possible ETEs: D G is the employment creation; ) G, is the development of science and
technology; (3 Gg is the technical advancement; and () Gy is the industrialization infrastructure. The
five ETEs A;(i = 1,2,3,4,5) are to be evaluated by using the SVNNs under the above four attributes
(whose weighting vector w = (0.2,0.1,0.3, 0.4)T), as listed in the following matrix.

(
(
Az | (
(
(

Gy
0.5,0.8,0.1)
0.7,0.2,0.1)
0.6,0.7,0.2)
0.8,0.1,0.3)
0.6,0.4,0.4)

Gy
(0.6,03,0.3)
(0.7,0.2,0.2)
(0.5,0.7,0.3)
(0.6,0.3,0.4)
(0.4,0.8,0.1)

Gs
(0.3,0.6,0.1)
(0.7,0.2,0.4)
(0.5,0.3,0.1)
(0.3,0.4,0.2)
(0.7,0.6,0.1)

Then, we use Procedure One to select the best ETE.
Firstly, since wy = max{wi, wp, w3, w4}, then G4 is the reference attribute and the reference
attribute’s weight is w, = 0.4. Then, we can calculate the relative weights of the attributes
G; (j =1,2,3,4) as wy, = 0.50, wy, = 0.25, w3, = 0.75 and wy, = 1.00. Let 6 = 2.5, then the dominance
degree matrix ¢;(A;, At)(j = 1,2,3,4) with respect to G; can be calculated:

Ay
Ap
A
Ay
As

$1

¢

$3

¢4

Ay
0.0000
0.2309
0.1414
0.2828
0.2309

Ay

0.0000
0.1000
—0.5164
—0.2309
—0.6928

Ay
0.0000
0.3317
0.2236
0.1732
0.2000

Ay

0.0000
0.3464
0.2582
0.1633
—0.1155

Gy
(0.5,0.7,0.2
(0.8,0.2,0.1
(0.6,0.3,0.2
(0.5,0.6,0.1
(0.5,0.8,0.2

Ay Az Ay As
—0.4619 —0.2828 —0.5657 —0.4619 ]
0.0000  0.2160  0.1633  0.2000
—0.4320 0.0000 —0.4899 —0.3651
—0.3266 0.2449  0.0000  0.2000
—0.4000 0.1826 —0.4000 0.0000 |

Ay Asz Ay As

—0.4000 0.1291 0.0577  0.1732 ]|
0.0000 0.1633 0.1155  0.1826
—0.6532 0.0000 —0.5657 —0.4619
—0.4619 0.1414 0.0000  0.1826
—0.7303 0.1155 -0.7303  0.0000 |

Ay As Ay As
—0.4422 —0.2981 —0.2309 —0.2667 ]
0.0000 —0.3266 0.2828  0.2646
0.2449  0.0000  0.2000  0.2236
—-0.3771 —-0.2667 0.0000 —0.3528
—0.3528 —0.2981 0.2646  0.0000 |

Ar Az Ay As

—0.3464 —0.2582 —0.1633 0.1155 |
0.0000  0.2309  0.3055 0.3651
—0.2309 0.0000  0.2582  0.2828
—0.3055 —0.2582  0.0000  0.2000
—0.3651 —0.2828 —0.2000 0.0000 |

)
)
)
)
)
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The overall dominance degree 5(A;, A;) of the candidate A; over each candidate A; can be derived
by Equation (13):

A Ay As Ay As
A; [ 00000 —1.6505 —0.7100 —0.9022 —0.4399
A, | 1.0090 0.0000 02836 08671 1.01234
§= As | 01068 —1.0712 00000 —0.5974 —0.3206
As | 03884 —14711 —0.1386 0.0000  0.2298
As | —03774 —1.8482 —0.2828 —1.0657 0.0000

Then, we get the overall value §(A;)(i = 1,2,3,4,5) by using Equation (14):

(A1) = 0.0000,5(Az) = 1.0000,6(A3) = 0.2648
5(Ag) = 0.3944,5(As) = 0.0187

Finally, we get order of ETEs by §(A;)(i =1,2,3,4,5): Ay > Ay >~ A3 > As > Aj, and thus the
most desirable ETE is Aj.

5.2. Comparative Analysis 1
In what follows, we compare our proposed method with other existing methods including the
SVNWA operator and SVNWG operator proposed by Sahin [85] as follows:
Definition 14 [85]. Let A; = (T, I;, F;) (j = 1,2,- - -, n) be a collection of SYNNs, w = (w1, wy, - - - L wy)T
n
be the weight of Aj(j =1,2,---,n),andw; >0, Y w; =1. Then

j=1
ri= (T, I; ;)
n
= SVNWAw(ri]/ ri2/ e /riVl) = @ (w]rl])
j=1 (26)
on on .
B <1 = IT(1=Ty) ", 1T (1;) Y, 11 (Fi»wj)
=1 =1 =1
ri= (T, I, F)
n w;
= SVNWGw (ri]/ riZ/ te /Tii’l) = ® (7’1']') !
=1 (27)

- (ﬁl(Ti]-)wf,l ~Ta-1)Y1-T110 —Fij)wf>
2

j=1 j=1

By utilizing the R, as well as the SVNWA and SVNWG operators, the aggregating values are
derived in Table 1.

Table 1. The aggregating values of the emerging technology enterprises by the SVNWA
(SVNWG) operators.
SVNWA SVNWG

Aq (0.4591, 0.6307, 0.1473) (0.4369, 0.6718, 0.1627)

A (0.7449, 0.2000, 0.1625) (0.7384, 0.2000, 0.2124)

Az (0.5627, 0.3868, 0.1692) (0.5578, 0.4571, 0.1822)

Ay (0.5497, 0.3464, 0.1762) (0.4799, 0.4381, 0.2067)

As (0.5822, 0.6389, 0.1741) (0.5610, 0.6933, 0.2083)
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According to the aggregating results in Table 1, the score functions are listed in Table 2.

Table 2. The score functions of the emerging technology enterprises.

SVNWA SVNWG
Ay 0.5604 0.5341
A; 0.7942 0.7753
Aj 0.6689 0.6398
Ay 0.6757 0.6117
As 0.5898 0.5531

According to the score functions shown in Table 2, the order of the emerging technology
enterprises are in Table 3.

Table 3. Order of the emerging technology enterprises.

Order
SVNWA Az > A4 > A3 > A5 > Al
SVNWG A2 > A3 > A4 > A5 > Al

From the above analysis, it can be seen that two operators have the same best emerging technology
enterprise A; and two methods’ ranking results are slightly different. However, the SVN TODIM
approach can reasonably depict the DMs” psychological behaviors under risk, and thus, it may deal
with the above issue effectively. This verifies the method we proposed is reasonable and effective in
this paper.

5.3. Numerical Example 2

If the five possible emerging technology enterprises A;(i = 1,2,3,4,5) are to be evaluated by
using the INNS under the above four attributes (whose weighting vector w = (0.2,0.1,0.3, O.4)T),
as listed in the matrix ﬁ, then:

([0.5,0.6],[0.8,0.9],[0.1,0.2])  ([0.6,0.7],[0.3,0.4],[0.3,0.4])

(10.7,0.9],0.2,0.3],[0.1,0.2]) ([0.7,0.8],[0.1,0.2],[0.2,0.3])

R= ([0.6,07],10.7,0.8],0.2,03]) (]0.5,0.6],[0.7,0.8],[0.3,0.4])

(10.8,0.9],[0.1,0.2],[0.3,0.4]) ([0.6,0.7],[0.3,0.4],[0.4,0.5])

(10.6,0.7],[0.4,0.5],[0.4,0.5]) ([0.4,0.5],0.8,0.9],0.1,0.2])
([0.3,0.4],[0.6,0.7],[0.1,0.2])  ([0.5,0.6],[0.7,0.8],[0.1,0.2])
(10.7,0.9],[0.2,0.3],[0.4,0.5])  ([0.8,0.9],[0.2,0.3],[0.1,0.2])
([0.5,0.6],[0.3,0.4],[0.1,0.2])  ([0.6,0.7],[0.3,0.4],[0.2,0.3])
([0.3,0.4],[0.4,0.5],[0.2,0.3]) ([0.5,0.6],[0.6,0.7],[0.1,0.2])
([0.7,0.8],[0.6,0.7],[0.1,0.2])  ([0.5,0.6],[0.8,0.9],[0.2,0.3])

Then, we use Procedure Two to select the best ETE.
Firstly, since wy = max{wj, wp, w3, w4}, then Gy is the reference attribute and the reference
attribute’s weight is w, = 0.4. Then, we can calculate the relative weights of the attributes
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Gj(j =1,2,3,4) as: wy, = 0.50, wa, = 0.25, w3, = 0.75 and wy, = 1.00. Let 6 = 2.5, then the dominance
degree matrix ¢;(A;, At)(j = 1,2,3,4) with respect to G; can be calculated:

Aq Ay Asz Ay As

A; | 0.0000 —04761 —0.2828 —0.5657 —0.4619

Ap | 02380 0.0000 0.2236  0.1528  0.2082

¢1 = Az | 0.1414 -0.4472 0.0000 —0.4899 —0.3651
Ay | 02828 —0.3055 0.2449  0.0000  0.2000

As | 02309 -0.4163 0.1826 —0.4000 0.0000

Aq Ay Asz Ay As
Aq 0.0000 —0.4619 0.1291 0.0577  0.1732

Ap 0.1155  0.0000 0.1732 0.1291 0.1915

¢ = Az | —05164 —-0.6928 0.0000 —-0.5657 —0.4619
Ay | —02309 —-0.5164 0.1414 0.0000  0.1826

As | —0.6928 —0.7659 0.1155 —0.7303  0.0000

A Ay As Ay As
Ay | 0.0000 —-0.4522 -0.2981 —-0.2309 —0.2667

Ap | 03391 0.0000 02550  0.2915  0.2739

¢3= Az | 02236 —0.3399 0.0000  0.2000  0.2236
Ay | 01732 —-0.3887 —0.2667 0.0000 —0.3528

As | 02000 —-0.3651 —0.2981 0.2646  0.0000

Aq Ay Az Ay As
Aq 0.0000 —0.3266 —0.2828 —0.1155 0.1633

Aj 0.3266  0.0000  0.2309  0.3055 0.3651

Py = Az 02828 —0.2309 0.0000  0.2582  0.2828
Ay 0.1155 —-0.3055 —0.2582 0.0000  0.2000

As | —0.1633 —0.3651 —0.2828 —0.2000 0.0000

The overall dominance degree 5(A;, A;) of the candidate A; over each candidate A; can be derived
by Equation (24):

A Aj A3 Ay As

Aq 0.0000 —1.7168 —0.7346 —0.7506 0.0698

Ay 1.0192  0.0000  0.3727  0.3513 0.8305

6= As 0.1314 —1.0310 0.0000 —0.4726 0.0445
Ay 0.3406 —1.5161 —0.1386 0.2000 0.0298

As | —04252 —-1.9124 —-0.8654 —0.6657 0.0000

Then, we get the overall value 6(A;)(i = 1,2,3,4,5) by using Equation (25):

5(A7) = 0.1143,5(Az) = 1.0000,6( Az) = 0.3944
5(A4) = 0.4322,5(As) = 0.0000

Finally, we get order of ETEs by §(A;)(i =1,2,3,4,5): Ay = Ay > Az = A1 = As, and thus the
most desirable ETE is A».
5.4. Comparative Analysis 2

In what follows, we compare our proposed method with other existing methods including the
INWA operator and INWG operator proposed by Zhang et al. [50] as follows:
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Definition 15 [50]. Let ﬁj = ([T]-L, T]-R}, [I]-L,Iﬂ, [F]-L,F]R} ) (j=1,2,---,n) be a collection of INNSs,

n
w = (wy,wy, - ,wn)T be the weight of Aj(j =1,2,---,n),and w; >0,y wj=1. Then

j=1
7= ([TiL/ Tz'R]/ Uz‘LrIiR]r [Fz'L/ Fili])
= INWAw(ffl’l/’fiZI e /ffin) - ]E:B] (w]?l])
B n _ L w]- _ n _ R w/ (28)
) 1 ]gl(l Tl.j) 1 ng(l Ti].) ]
n L w] n R i n L w] n R ZUj
) 1) | Get) ™ ()
7i = ([TiL’ TiR]’ [IiL’ IZ'R}’ [FiL’FlRJ)
= INWG, (71, T2, Tin) = 4®1 (~1])w]
j=
Y R\ Y (1 NY B R\ (29)
) ]1:[1(T1]) ,]gl(T,]) ] [1 ]gl(l 11.].) 1 ]1:11(1 11.].) ]

By utilizing the decision matrix R, and the INWA and INWG operators, the aggregating values
are in Table 4.

Table 4. The aggregating values of the emerging technology enterprises by the INWA and

INWG operators.
INWA
Ay ([0.4591, 0.5611], [0.6307, 0.7342], [0.1116, 0.2144])
Ay ([0.7449, 0.8928], [0.1866, 0.2881], [0.1625, 0.2742])
Az ([0.5627, 0.6634], [0.3868, 0.4925], [0.1692, 0.2734])
Ay ([0.5497, 0.6674], [0.3464, 0.4657], [0.1762, 0.2844])
As ([0.5822, 0.6863], [0.6389, 0.7421], [0.1741, 0.2825])
INWG
Aq ([0.4369, 0.5395], [0.6718, 0.7805], [0.1223, 0.2227])
Ay ([0.7384, 0.8895], [0.1905, 0.2906], [0.2124, 0.3144])
Az ([0.5578, 0.6581], [0.4571, 0.5685], [0.1822, 0.2825])
Ay ([0.4799, 0.5851], [0.4381, 0.5440], [0.2067, 0.3077])
As ([0.5610, 0.6624], [0.6933, 0.8082], [0.2083, 0.3097])

According to the aggregating values in Table 4, the score functions are in Table 5.

Table 5. The score functions of the emerging technology enterprises.

INWA INWG
Ay 0.5549 0.5298
Aj 0.7877 0.7700
Aj 0.6507 0.6209
Ay 0.6574 0.5948

As 0.5718 0.5340
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According to the score functions shown in Table 5, the order of the emerging technology
enterprises are in Table 6.

Table 6. Order of the emerging technology enterprises.

Ordering
INWA A2>A4>A3>A5>A1
INWG A2>A3>A4>A5 >A1

From the above analysis, it can be seen that two operators have the same best emerging
technology enterprise A; and two methods’ ranking results are slightly different. However, the
interval neutrosophic TODIM approach can reasonably depict the DMs’ psychological behaviors under
risk, and thus, it may deal with the above issue effectively. This verifies the method we proposed is
reasonable and effective.

6. Conclusions

In this paper, we will extend the TODIM method to the MADM with the single-valued
neutrosophic numbers (SVNNSs). Firstly, the definition, comparison and distance of SVNNs are
briefly presented, and the steps of the classical TODIM method for MADM problems are introduced.
Then, the extended classical TODIM method is proposed to deal with MADM problems with the
SVNNSs, and its significant characteristic is that it can fully consider the decision makers” bounded
rationality which is a real action in decision making. Furthermore, we extend the proposed
model to interval neutrosophic sets (INSs). Finally, a numerical example is proposed to verify the
developed approach.

In the future, the application of the proposed models and methods of SVNSs and INSs needs
to be explored in the decision making [86-99], risk analysis and many other uncertain and fuzzy
environment [100-112].
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