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1. INTRODUCTION

In 1965, Zadeh [20] had introduced a concept of a fuzzy set as the generalization
of a crisp set. In 1986, Atanassove [1] proposed the notion of intuitionistic fuzzy set
as the generalization of fuzzy sets considering the degree of membership and non-
membership. In 1998 Smarandache [19] introduced the concept of a neutrosophic set
considering the degree of membership, the degree of indeterminacy and the degree
of non-membership. Moreover, Salama et al. [15, 16, 18] applied the concept of
neutrosophic crisp sets to topology and relation.

After that time, many researchers [2, 3, 4, 5, 7, 8, 10, 12, 13, 14] have inves-
tigated fuzzy sets in the sense of category theory, for instance, Set(H), Sets(H),
Setg(H), Fuz(H). Among them, the category Set(H) is the most useful one as the
”standard” category, because Set(H) is very suitable for describing fuzzy sets and
mappings between them. In particular, Carrega [2], Dubuc [3], Eytan [4], Goguen
[5], Pittes [12], Ponasse [13, 14] had studied Set(H) in topos view-point. However
Hur et al. investigated Set(H) in topological view-point. Moreover, Hur et al. [3]
introduced the category ISet(H) consisting of intuitionistic H-fuzzy sets and mor-
phisms between them, and studied ISet(H) in the sense of topological universe.
Recently, Lim et al [10] introduced the new category VSet(H) and investigated it
in the sense of topological universe.
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The concept of a topological universe was introduced by Nel [11], which implies a
Cartesian closed category and a concrete quasitopos. Furthermore the concept has
already been up to effective use for several areas of mathematics.

In this paper, first, we obtain some properties of neutrosophic crisp sets proposed
by Salama and Smarandache [17] in 2015. Second, we introduce the category NCSet
consisting of neutrosophic crisp sets and morphisms between them. And we prove
that the category NCSet is topological and cotopological over Set (See Theorem
4.6 and Corollary 4.8), where Set denotes the category consisting of ordinary sets
and ordinary mappings between them. Furthermore, we prove that final episinks
in NCSet are preserved by pullbacks(See Theorem 4.10) and NCSet is Cartesian
closed over Set (See Theorem 4.15).

2. PRELIMINARIES

In this section, we list some basic definitions and well-known results from [6, 9, 11]
which are needed in the next sections.

Definition 2.1 ([9]). Let A be a concrete category and ((Y},§;)).s a family of objects
in A indexed by a class J. For any set X, let (f; : X — Y}); be a source of mappings
indexed by J. Then an A-structure £ on X is said to be initial with respect to (in
short, w.r.t.) (X, (f;),(Y;,€;)), if it satisfies the following conditions:

(i) for each j € J, f; : (X,&) — (Y},§;) is an A-morphism,

(ii) if (Z, p) is an A-object and g : Z — X is a mapping such that for each j € J,
the mapping f; o g : (Z,p) = (Y;,&;) is an A-morphism, then g : (Z,p) — (X,§) is
an A-morphism.

In this case, (f; : (X,€) = (Y;,&;))s is called an initial source in A.

Dual notion: cotopological category.

Result 2.2 ([9], Theorem 1.5). A concrete category A is topological if and only if
it 1s cotopological.

Result 2.3 ([9], Theorem 1.6). Let A be a topological category over Set, then it is
complete and cocomplete.

Definition 2.4 ([9]). Let A be a concrete category.
(i) The A-fibre of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibred over Set, it satisfies the followings:
(a) (Fibre-smallness) for each set X, the A-fibre of X is a set,
(b) (Terminal separator property) for each singleton set X, the A-fibre of X
has precisely one element,
(¢) if £ and n are A-structures on a set X such that id : (X, &) — (X,n) and
id: (X,n) — (X, ) are A-morphisms, then £ = 1.

Definition 2.5 ([6]). A category A is said to be Cartesian closed, if it satisfies the
following conditions:
(i) for each A-object A and B, there exists a product A x B in A,
(ii) exponential objects exist in A, i.e., for each A-object A, the functor A x — :
A — A has a right adjoint, i.e., for any A-object B, there exist an A-object B4
and a A-morphism e4 p : A x B4 — B (called the evaluation) such that for any
2
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A-object €' and any A-morphism f : Ax C — B, there exists a unique A-morphism
f : C = B* such that the diagram commutes:

Definition 2.6 ([6]). A category A is called a topological universe over Set, if it
satisfies the following conditions:

(i) A is well-structured, i.e. (a) A is concrete category; (b) A satisfies the fibre-
smallness condition; (¢) A has the terminal separator property,

(ii) A is cotopological over Set,

(iii) final episinks in A are preserved by pullbacks, i.e., for any episink (g; : X; —
Y); and any A-morphism f : W — Y, the family (e; : U; — W), obtained by
taking the pullback f and g;, for each j € J, is again a final episink.

3. NEUTROSOPHIC CRISP SETS

In [17], Salama and Smarandache introduced the concept of a neutrosophic crisp
set in a set X and defined the inclusion between two neutrosophic crisp sets, the
intersection [union] of two neutrosophic crisp sets, the complement of a neutrosophic
crisp set, neutrosophic crisp empty [resp., whole] set as more than two types. And
they studied some properties related to neutrosophic crisp set operations. However,
by selecting only one type, we define the inclusion, the intersection [union], and
neutrosophic crisp empty [resp., whole] set again and find some properties.

Definition 3.1. Let X be a non-empty set. Then A is called a neutrosophic crisp
set (in short, NCS) in X if A has the form A = (A, Az, A3),
where A, Ao, and A3 are subsets of X,

The neutrosophic crisp empty [resp., whole] set, denoted by ¢y [resp., X ] is an
NCS in X defined by ¢n = (¢, ¢, X) [resp., Xn = (X, X, ¢)]. We will denote the
set of all NCSs in X as NCS(X).

In particular, Salama and Smarandache [17] classified a neutrosophic crisp set as
the followings.

A neutrosophic crisp set A = (A4, A2, Ag) in X is called a:

(i) neutrosophic crisp set of Type 1 (in short, NCS-Type 1), if it satisfies

ANAy=AsN Ay = A3 N A = ¢,

(ii) neutrosophic crisp set of Type 2 (in short, NCS-Type 2), if it satisfies
Al ﬂAQ :AgmAg :A3OA1 :(band Al UAQUAP, :X,
(iii) neutrosophic crisp set of Type 3 (in short, NCS-Type 3), if it satisfies
A1 ﬂAQﬁAg :gband Al UAQUAg =X.
We will denote the set of all NCSs-Type 1 [resp., Type 2 and Type 3] as NC'S;(X)
[resp., NCSy(X) and NCS3(X)].

Definition 3.2. Let A = (A1, A2, A3), B = (B1, By, B3) € NCS(X). Then
(i) A is said to be contained in B, denoted by A C B, if
A1 C By, Ay C By and A3 D Bs,
(ii) A is said to equal to B, denoted by A = B, if
AC Band B C A,
(iii) the complement of A, denoted by A€, is an NCS in X defined as:

A¢ = (A37A57A1)7
3
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(iv) the intersection of A and B, denoted by AN B, is an NCS in X defined as:
ANB = (A1 N By, A2 N By, A3 U Bs),

(v) the union of A and B, denoted by AU B, is an NCS in X defined as:
AUB = (A1 UBy, Ay U By, A3 N Bs).

Let (Aj)je] C ZVC’S()()7 where Aj = (Aj71,A]‘,2,Aj73). Then
(vi) the intersection of (4;);e, denoted by (¢, A; (simply, () 4;), is an NCS

in X defined as:
A = (A4 [ Ais),
(vii) the the union of (A;);es, denoted by (J;c ; 4; (simply, J 4;), is an NCS in

X defined as:
U4 =41 JA4j2.[)A)s)-

The followings are the immediate results of Definition 3.2.

Proposition 3.3. Let A,B,C € NCS(X). Then
(1) oy C AC Xy,
(2) if AC B and B C C, then A C C,
(3) ANBC A and ANB C B,
(4) ACAUB and BC AUB,
(5) AC B if and only if ANB = A,
(6) AC B if and only if AUB = B.

Also the followings are the immediate results of Definition 3.2.

Proposition 3.4. Let A,B,C € NCS(X). Then
(1) (Idempotent laws): AUA=A, ANA=A,
2) (Commutative laws): AUB=BUA, ANB=BNA,
) (Associative laws): AU(BUC)=(AUB)UC, AN(BNC)=(ANnB)NC,
) (Distributive laws): AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANnB)U(ANCQO),
(5) (Absorption laws): AU(ANB)=A, AN(AUB) = A4,
(6) (DeMorgan’s laws): (AU B)® = A°N B¢, (AN B)° = A°U B¢,
(7) (4°)° = 4,
(8) (8a) AUgpn = A, ANon = 9N,
(8b) AUXy=XN, ANXy =A4,
(8C) X}:\/' :¢N7 ¢?\/ :XN;
(8d) in general, AU A # Xn, ANA® # ¢n.

Proposition 3.5. Let A€ NCS(X) and let (A;)je; C NCS(X). Then
(1) (NA4;)°=UA5 (UAj) =N4A3,
(2) An(UA) =UANA4;), AU(NA4;) =N(AU A4;).
P?”OOf. (1) Aj = (Aj71,Aj72,Aj73). Then ﬂA] = (ﬂ Aj,hﬂAj,QaUAj,S)- Thus
(NA)°=(UAj3 (NA42)5NA450) = (UAj8,UAS -, NA) = U A4S
Similarly, the second part is proved.
(2) Let A = (Al,A27A3). Then
AU(NA;) =(A1U (A1), A2 U (N Aj2), As N (U Aj3))
4
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=(N(A1UA4;1),N(A2U 4;2), U(A3 N A; )
=(4AU 4;).
Similarly, the first part is proved. O

Definition 3.6. Let f : X — Y be a mapping, and let A = (A;, As, A3) € NCS(X)
and B = (Bl, BQ7B3) € NCS(Y) Then
(i) the image of A under f, denoted by f(A), is an NCS in Y defined as:

f(A) = (f(A1), f(A2), f(A3)),
(ii) the preimage of B, denoted by f~!(B), is an NCS in X defined as:

FHB) = (F7H(B1). f7H(B2), fH(B3)

Proposition 3.7. Let f : X — Y be a mapping and let A,B,C € NCS(X),
(Aj)jes € NCS(X) and D,E,F € NCS(Y), (Dp)kex C NCS(Y). Then the
followings hold:

(1) if B C C, then f(B) C f(C) and if E C F, then f~1(E) C f~Y(F).

(2) AC f7Lf(A)) and if f is injective, then A = f~1f(A)),
(3) f(f~YD)) C D and if f is surjective, then f(f~1(D)) = D,
4) fHUDK) =Uf M (Dr). fHN D) =N f(Dx),
(5) fF(UA;) =US(4;), F(NA;) CcNf4),

(6) f(A) = on if and only if A = ¢n and hence f(dn) = dn, in particular if f
is surjective, then f(Xn) =Yy,

(7) £ (Yn) =Yn, f(on) = ¢.

Definition 3.8 ([17]). Let A = (41,45, A3) € NCS(X), where X is a set having
at least distinct three points. Then A is called a neutrosophic crisp point (in short,
NCP) in X, if A;, Ay and Az are distinct singleton sets in X.

Let Ay = {p1}, A2 = {p2} and A3 = {ps}, where p1 # ps # p3 € X. Then
A= (A1, As, A3) is an NCP in X. In this case, we will denote A as p = (p1, p2, p3)-
Furthermore, we will denote the set of all NCPs in X as NCP(X).

Definition 3.9. Let A = (41,A45,43) € NCS(X) and let p = (p1,p2,p3) €
NCP(X). Then p is said to belong to A, denoted by p € A, if {p1} C Ay, {p2} C Ao
and {ps}° D As, i.e,, p1 € A1, p2 € Az and p3 € AS.

Proposition 3.10. Let A = (A1, Ay, A3) € NCS(X). Then
A=|J{pe NCP(X):pe A}.

3
4
5

Proof. Let p = (p1,p2,p3) € NCP(X). Then
U{p e NCP(X):pe A}

=UmeX:peAi},U{pe X:pre A},N{ps € X : p3 € A5}
:A. D

Proposition 3.11. Let A = (A1,A2,A3),B = (B1,Bs,B3) € NCS(X). Then
A C B ifand only if p € B, for each p € A.

Proof. Suppose A C B and let p = (p1,p2,p3) € A. Then

Al C Bl,AQ C BQ,Ag D Bj
)
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and
p1 € A1, p2 € As, p3 € AS.
Thus py € By,p2 € Ba,ps € B§. Sop € B. 0

Proposition 3.12. Let (A;)jes C NCS(X) and let p e NCP(X).
(1) pe N A, if and only if p € Aj for each j € J.
(2) pe UA; if and only if there exists j € J such that p € A;.

Proof. Let A;j = (Aj1,A;2,A;3) for each j € J and let p = (p1,p2,p3).
(1) Suppose p € (1 A;. Then p; € () Aj1,p2 € () A4j2,p3 € JAS 3. Thus
p1 € Aj1,p2 € Ajo,p3 € Aj 5, for each j € J. So p € A; for each j € J.
We can easily see that the sufficient condition holds.
(2) suppose the necessary condition holds. Then there exists j € J such that

p1 € Aj1,p2 € Aja,p3 € Af 5.

Thus p1 € UAjﬁl,pQ S UAij,pg c (mAj_rg)c. So pE UA]
We can easily prove that the necessary condition holds. O

Definition 3.13. Let f : X — Y be an injective mapping, where XY are sets
having at least distinct three points. Let p = (p1,p2,p3) € NCP(X). Then the
image of p under f, denoted by f(p), is an NCP in Y defined as:

f(p) = (f(p1), f(p2), f(p3)).

Remark 3.14. In Definition 3.13, if either X or Y has two points, or f is not
injective, then f(p) is not an NCP in Y.

Definition 3.15 ([17]). Let A = (A1, A2, A3) € NCS(X) and B = (By, B2, B3) €
NCS(Y). Then the Cartesian product of A and B, denoted by A x B, is an NCS
in X x Y defined as: A x B = (A1 x By, Az X By, A3 x Bs).

4. PROPERTIES OF NCSet

Definition 4.1. A pair (X, A) is called a neutrosophic crisp space (in short, NCSp),
if Ae NCS(X).

Definition 4.2. A pair (X, A) is called a neutrosophic crisp space-Type j (in short,
NCSp-Type j), if Ae NCS;(X), j =1,2,3.

Definition 4.3. Let (X, Ax), (Y, Ay) be two NCSps or NCSps-Type j, j = 1,2,3
and let f: X — Y be amapping. Then f: (X, Ax) — (Y, Ay) is called a morphism,
if Ax C f~(Ay), equivalently,
Ax1 C fHAy1), Ax2 C [T (Ay2) and Ax 3 D f~(Ay3),
where AX = (AX717AX72,AX’3) and Ay = (Ay,h Ay72,Ay73).
In particular, f : (X, Ax) — (Y, Ay) is called an epimorphism [resp., a monomor-
phism and an isomorphism], if it is surjective [resp., injective and bijective].

From Definitions 3.9, 4.3 and Proposition 3.11, it is obvious that
f: (X, Ax) — (Y, Ay) is a morphism
if and only if
p = (p1,p2,p3) € f1(Ay), for each p = (p1,p2,p3) € Ax, i.e.,

f(p1) € Ay1, f(p2) € Ay, f(p3) & Ay, e,
6
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f(p) = (f(pr), f(p2), f(p3)) € Ay

The following is an immediate result of Definitions 4.3.

Proposition 4.4. For each NCSp or each NCSps-Type j (X, Ax), j = 1,2,3, the
identity mapping id : (X, Ax) — (X, Ax) is a morphism.

Proposition 4.5. Let (X, Ax), (Y, Ay), (Z,Az) be NCSps or NCSps-Type j, j =
1,23 and let f: X =Y, g:Y — Z be mappings. If [ : (X, Ax) — (Y, Ay)
and f : (Y, Ay) — (Z,Az) are morphisms, then go f : (X,Ax) — (Z,Az) is a
morphism.

Proof. Let Ax = (Ax1,Ax2,Ax3), Ay = (Ay,1, Ay, Ay3) and Ay = (Az1,Az2,
Azs3). Then by the hypotheses, Ax C f~!(Ay) and Ay C g~ '(Az). Thus by
Definition 4.3,

Ax1 C [T (Ay), Ax2 C f7H(Ay2), Ax3 D [ (Ay;3)
and

Ay C g (Azn), Ay C g Y (Azs), Avs D g~ (Azs).
So Ax1 C [N g7 (Az1)), Ax2 C [ (97 (Az2)), Ax3 D [ (g " (Az3)).
Hence Ax1 C (9o f) ' (Az1), Ax2 C (g0 f) " (Azz2), Ax3 D (go f) 1 (Az2).
Therefore g o f is a morphism. O

From Propositions 4.4 and 4.5, we can form the concrete category NCSet [resp.,
NCSet;] consisting of NCSs [resp., -Type j, 7 = 1,2,3] and morphisms between
them. Every NCSet [resp., NCSet;, j = 1, 2, 3]-morphism will be called a NCSet
[resp., NCSet;, j = 1,2, 3]-mapping.

Theorem 4.6. The category NCSet is topological over Set.

Proof. Let X be any set and let ((X;,A;))jecs be any families of NCSps indexed
by a class J. Suppose (f; : X — (X;, A;))s is a source of ordinary mappings. We
define the NCS Ax in X by Ax = f; '(4;) and Ax = (Ax1,Ax2, Ax3)-
Then clearly, AX71 = mfjil(Aj’l), AX’Z = ﬂfjil(Ajyg), AX,g = Ufjil(Aj’g).
Thus (X, Ax) is an NCSp and Ax 1 C fj*l(Aj’l)7 Axo C fjfl(Aj,g) and Ax 3 D
fjfl(Ajﬁg). So each f; : (X, Ax) — (X;,A;) is an NCSet-mapping.

Now let (Y, Ay) be any NCSp and suppose ¢g : Y — X is an ordinary mapping
for which fjog: (Y, Ay) — (X;, A;) is a NCSet-mapping for each j € J. Then for
each j € J, Ay C (f;09) " (4;) = g7*(f; '(4;)). Thus

Ay C(fjo09) 7 (A) =g () f; 1 (4)) = g7 (Ax).

Sog:(Y,Ay) — (X, Ax) is an NCSet-mapping. Hence (f; : (X, Ax) = (X;,4,)s
is an initial source in NCSet. This completes the proof. O

Example 4.7. (1) Let X be a set, let (Y, Ay) be an NCSp and let f: X — Y be
an ordinary mapping. Then clearly, there exists a unique NCS Ay in X for which
f:(X,Ax) — (Y, Ay) is an NCSet-mapping. In fact, Ax = f~1(Ay).
In this case, Ax is called the inverse image under f of the NCS structure Ay .
7
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(2) Let ((Xj,A;))jes be any family of NCSps and let X = IIc;X,. For each
j € J,let prj : X = X, be the ordinary projection. Then there exists a unique NCS
Ax in X for which pr; : (X, Ax — (X, A,) is an NCSet-mapping for each j € J.
In this case, Ay is called the product of (A4;);ec s, denoted by
and (IIX;,IIA;) is called the product NCSp of ((X;, 4;))jer-
In fact, Ax = ﬂjerrj_l(Aj).
In particular, if J = {1, 2}7 then A1 X AQ = (Al,l X Ag,l, ALQ X A2’27A1’3 X Agyg),
where A1 = (A1717A1)2,A173) € NCS(Xl) and Ay = (Ag)l,AZQ,AQ?g) S NCS(XQ)
The following is obvious from Result 2.2. But we show directly it.
Corollary 4.8. The category NCSet is cotopological over Set.

Proof. Let X be any set and let ((X;,A;))s be any family of NCSps indexed by a
class J. Suppose (f; : X; — X); is a sink of ordinary mappings. We define Ax as
AX = Ufj(Aj)7 where AX = (AX,1,AX72,AX73) and Aj = (Aj71,Aj72,Aj73). Then
clearly, Ax € NCS(X) and each f; : (X;,4;) = (X, Ax) is an NCSet-mapping.
Now for each NCSp (Y, Ay ), let ¢ : X — Y be an ordinary mapping for which
each go f; : (X, 4;) = (Y, Ay) is an NCSet-mapping. Then clearly for each j € J,
Aj C(go f) HAy), ie, A C [ (g7 (Ay)).
Thus JA; € Uf; (g7 (Ay)). So fi(U4) € fi(Uf; (g7 (Ay))). By Proposi-
tion 3.7 and the definition of Ay,

HUA) =Ky = Ax

LUK A)) =0 £ H(Ay) = g7 (Ay).
Hence Ax C g~ '(Ay). Therefore g : (X, Ax) — (Y, Ay) is an NCSet-mapping.
This completes the proof. O

and

The following is proved similarly as the proof of Theorem 4.6.
Corollary 4.9. The category NCSet; is topological over Set for j =1,2,3.

The following is proved similarly as the proof of Corollary 4.8.
Corollary 4.10. The category NCSet; is cotopological over Set for j =1,2,3.
Theorem 4.11. Final episinks in NCSet are prserved by pullbacks.
Proof. Let (g; : (X;,4,) = (Y,Ay))s be any final episink in NCSet and let f :
(W, Aw) — (Y, Ay ) be any NCSet-mapping. For each j € J, let

Ui ={(w,z;) e W x X : f(w) = g;(;)}.
For each j € J, we define the NCS Ay, = (Ay, ,, Av, ,, Av, ;) in U; by:

J,17 J
Av;, = Awa X Aj1, Ay, , = Awe X Aj2, Ay, s = Aws X Ajs.
For each j € J, let e¢; : U; — W and p; : U; — X, be ordinary projections of Uj.
Then clearly,
AUJ-,1 C 6;1(AW’1), AUJ‘,2 (- 6;1(AW,2),AUJ.,3 D) egl(Awyg)
8
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and

Ay, , Cp; (A1), Au,, Cpy ' (Aj2), Au,, D p; t(A)).
Thus Ay, C ej_l(AW) and Ay, C pj_l(Aj). So e; : (U, Ay;) — (W, Aw) and
p; : (Uj, Ay;) — (X, Aj) are NCSet-mappings. Moreover, gj opy, = foe; for each
j € J, i.e., the diagram is a pullback square in NCSet:

(Uj, Au;) bi (Xj,A45)
€; gj
(W, Aw) (Y, Ay).
f

Now in order to prove that (e;) is an episink in NCSet, i.e., each e; is surjective,
let w € W. Since (g;) is an episink, there exists j € J such that g;(z;) = f(w)
for some z; € X;. Thus (w,z;) € U; and w = e;(w,x;). So (e;)s is an episink in
NCSet.

Finally, let us show that (e;) is final in NCSet. Let Aj;, be the final structure
in W w.rt. (e;)s and let w = (wy,we, ws) € Aw. Since f: (W, Aw) — (Y, Ay) is
an NCSet-mapping, by Definition 3.9,

w1 € AW,l n fﬁl(Ay_rl), Wo € AW’Q n fﬁl(Ayvg) and ws € A;V,S n (fil(Ay’g))c.
Thus

wy € AW,17 f(wl) S Ay’l, we € AW’27 f(wg) S AY’Q and w3 € A%/’37 f(UAg) S A%g.
Since (g;)s is final,

wy € Aw,1,xj,1 € U U Aja,
J €97 (f(w)

wy € Aw,a, T2 € U U Ajo2
T wja€97 (f(w))
and

w3 € A?/V73,l‘j73 S (m ﬂ Aj73)c.

I wj5€9;t (F(w))
So (w1, ;1) € Au,,, (w2,3;2) € Ay,, and (ws,z;3) € Af, . Since Ajy, is the
final structure in W w.rt. (ej)s, w € Ajy, ie.,, Aw C Aj,. On the other hand,
since (e; : (Uj, Ay;) = (W, Aw)) is final, 1y : (W, Ayy) — (W, Aw) is an NCSet-
mapping and thus A}, C Aw. Hence A}, = Aw. Therefore (e;), is final. This
completes the proof. O

The following is proved similarly as the proof of Theorem 4.9.
Corollary 4.12. Final episinks in NCSet; are prserved by pullbacks, for J = 1,2, 3.
For any singleton set {a}, NCS Ay,} [resp., NCS-Type j A4y, for j = 1,2,3]
on {a} is not unique, the category NCSet [resp., NCSet;, for j = 1,2,3] is not
properly fibred over Set. Then by Definition 2.6, Corollary 4.8 and Theorem 4.11

[resp., Corollaries 4.10 and 4.12], we have the following result.
9
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Theorem 4.13. The category NCSet [resp., NCSet;, for j = 1,2,3] satisfies
all the conditions of a topological universe over Set except the terminal separator

property.
The following is an immediate result of Definitions 3.9 and 3.15.

Proposition 4.14. Let p = (p1,p2,p3),9 = (q1,92,93) € NCP(X) and let A =
(A1,As2,A3),B = (B1,B2,B3) € NCS(X). Then (p,q) € A x B if and only if
(p17Q1) S Al X Bl; (p27QQ) € A2 X BQ and (P37(I3) € A2 X 32)07 i'e': p3 € A§ or
g3 € Bs5.

Theorem 4.15. The category NCSet is Cartesian closed over Set.

Proof. 1t is clear that NCSet has products by Theorem 4.6. Then it is sufficient to
see that NCSet has exponential objects.

For any NCSps X = (X, Ax) and Y = (Y, Ay), let YX be the set of all ordinary
mappings from X to Y. We define the NCS Ayx = (Ayx 1, Ayx o, Ayx 3) in Y
by: for each f = (fi, fo, f3) € YX, f € Ayx if and only if f(z) € Ay, for each
x = (x1,22,23) € NCP(X), i.e.,

fieAyxq,fo€ Ayx o, fs & Ayx 3
if and only if
fi(z1) € Ay, fa(za) € Ay, fa(zs) & Ay 3.
In fact,
Ayx,l = {f1 S yX. fl(l’l) € Ay71 for each x; € X},
AYX72 = {fg € yX. fz(.TQ) € Ay72 for each x5 € X},
Ayx73 = {fg € yX. f3($3) §é Ay73 for some x3 € X}
Then clearly, (YX, Ay x) is an NCSp.

Let YX = (YX Ay x). Then by the definition of Ay x,

AYXJ C fﬁl(Ay,l), Ayx72 C fﬁl(AyQ) and Ayxﬁg D fﬁl(ijg).

We define exy : X x YX =Y by ex y(z, f) = f(z), for each (x, f) € X x YX.
Let (z, f) € Ax X Ay x, where x = (z1,x2,23), f = (f1, f2, f3). Then by Proposition
4.14 and the definition of ex y,

(l‘l,fl) c AX,l X Ayx)l, (Ig,fg) S AX72 X Ayx72, (.’L‘g,fg) € (Ax)g X Ayx73)c
and

ex,y(z1, fi) = fi(z1), ex vy (22, f2) = fa(22), ex vy (23, f3) = f3(z3).
Thus by the definition of Ay x,

(z1, f1) € FH (Avia) X M (Av),
(22, f2) € fH(Ax,2) X fH(Ax2),
(z3, f3) € (f " (Ax,3) x (f 7 (Ax.3))".

So (z1, f1) € 6)_(’1Y(Ay,1), (22, f2) € e)_(}Y(Ayg) and (z3, f3) € (e}}Y(ijg,))c. Hence

Ax X Ayx C 6;(’1Y(Ay). Therefore exy : X x YX — Y is an NCSet-mapping.
For any Z = (Z,Az) € NCSet, let h : X x Z — Y be an NCSet-mapping. We
define h : Z — Y¥X by [h(2)](x) = h(z,z2), for each z € Z and each z € X. Let
(x,2) € Ax x Az, where © = (x1, 22, x3) and z = (21, 29,23). Since h : X X Z —-Y

is an NCSet-mapping,
10
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Ax1xAz1 Ch7 Ay1), Axo x Azo Ch 1 (Aya), Ax3 x Azs D h™ 1 (Ay).

Then by Proposition 4.14,

(z1,21) € K" (Ay), (w2, 22) € A1 (Ay,2), (z3,23) € (W1 (Ay3))".
Thus h((21,21)) € Ay,1, h((22, 22)) € Ay,2, h((z3,23)) € (Ay;3)°.
By the definition of h, -

[(21)](21) € Ay, [A(22)](22) € Ay,a, [P(23)](23) € (Ay3)“.
By the definition of Ayx, - -

[h(Z£)](AZ71) C AYX717 Lh(z2)](AZ,2) C AYX72, [h(z’g)](AZ,;g) B Ayx73. ~
So Az C h™'(Ayx). Hence h : Z — YX is an NCSet-mapping. Furthermore, h
is the unique NCSet-mapping such that ex y o (1x x h) = h. This completes the
proof. O

The following is proved similarly as the proof of Theorem 4.15.

Corollary 4.16. The category NCSet; is Cartesian closed over Set for j =1,2,3.

5. CONCLUSIONS

For a non-empty set X, by defining a neutrosophic crisp set A = (43, As, Az) and
an intuitionistic crisp set A = (Aj, As) in X, respectively as follows:

(1) A C X,AQ C X,Ag C X,

(11) Al C Ag,Ag C A%,
and

(i) A C X, A; C X,

(if) Ay C A,
we can form another categories NCSet, and ICSet. Furthermore, we will study
them in view points of a topological universe and obtain some relationship between
them.
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