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The generalization negation of
probability distribution and its
application in target recognition based
on sensor fusion
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Abstract
Target recognition in uncertain environments is a hot issue. Fusion rules are used to combine the sensor reports from dif-
ferent sources. In this situation, obtaining more information to make correct decision is an essential issue. Probability distri-
bution is one of the most used methods to represent uncertainty information. In addition, the negation of probability
distribution provides a new view to represent the uncertainty information. In this article, the existing negation of probability
distribution is extended with Tsallis entropy. The main reason is that different systems have different parameter q. Some
numerical examples are used to demonstrate the efficiency of the proposed method. Besides, the article also discusses the
application of negation in target recognition based on sensor fusion to further demonstrate the importance of negation.
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Introduction

In recent years, information fusion is paid great atten-
tion in military applications.1,2 Many methods based
on information fusion have been proposed to classify
objects,3 target recognition4,5 and decisions making.6,7

In most cases, the final result which is obtained by
information fusion of multiple sensors may be reason-
able. However, the recognition result maybe counter-
intuitive due to high conflict.8 Up to now, fusion rule is
still an open question. Besides, the information gath-
ered in sensors fusing system9–11 exists uncertain as it is
incomplete, inconsistent and possibly imprecise. Many
methods have been proposed to obtain more informa-
tion.12–14 However, due to the existing uncertainty,15–17

it is essential to obtain more information according to
known knowledge.

Presenting knowledge is an open issue.18–20 In most
cases, we commonly use ‘must’, ‘may’ and ‘likely’ to

estimate whether an event will happen or not. Due to
the uncertainty, there are some methods to deal with
it.21–24 Probability distribution is used to quantitatively
describe the possibility of occurrence of a result in real
applications.25 More importantly, for most cases, it is
much easier to describe the negation of the events than
directly describe them in some circumstances. For
example, if it is difficult to prove a mathematical for-
mula rigorously, however, a counterexample can easily
prove the formula wrong. Similarly, there is a signifi-
cant property in probability, namely mutual exclusion.
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Mutual exclusion means the occurrence of one thing
when its opposite will not happen. In other words, the
probability of an event will affect its opposition.
Therefore, it is meaningful to study negation of prob-
ability distribution (NPD).26 Recently, the NPD based
on Gini entropy was proposed by Yager to present
knowledge in a new view.27

The motivation of this study is to find a more gen-
eral and reasonable mode to evaluate the uncertainty
of NPD. If the correlations between the N elements are
strong enough, then the extensivity of some entropies is
lost, which is incompatible with classical thermody-
namics.28 Tsallis entropy29 is proposed to overcome
this difficulty with non-extensive property. In Tsallis
entropy, q is not a ‘tunable’ parameter, but is strictly
determined by the system itself.30 As a result, always
using Gini entropy in Yager’s NPD,27 which is a special
case of Tsallis entropy when q= 2, is not reasonable to
many real systems. To solve this problem, the article
uses Tsallis entropy to measure the uncertainty of
NPD, which can be more reasonable.

More importantly, in nature and society, everything
has its negation. Regret and expect give us two views to
consider a problem. Moreover, the best alternative is as
close as ideal solution and is as far as negative solution.
Besides, NPD can provide another information based
on known information. That is to say, we can analyse
this target from two sides, which can improve the cor-
rectness of decision-making. The reason is that NPD
has the properties of imprecision and unknown, which
is beneficial for decision. More importantly, if the origi-
nal information is highly conflicting, the conflict of
negation may not be highly conflicting. Based on the
discussion, it is of great significance to study negation.
Hence, the article also uses negation to recognize target
based on sensor fusion.

The rest of this article is structured as follows: In the
section ‘Preliminaries’, preliminaries of some entropies
and Yager’s negation method are introduced. The pro-
posed method is introduced in the section ‘The pro-
posed method’. In the section ‘Examples and
discussion’, a numerical example is used to illustrate
the method of negation and using Tsallis entropy to
evaluate the uncertainty. The application of negation in
target recognition based on sensor fusion is introduced
in the section ‘Application of negation based on sensor
fusion’. Finally, some conclusions are given in the sec-
tion ‘Conclusion’.

Preliminaries

In this section, the preliminaries of some entropies and
NPD will be briefly introduced.

Gini entropy

Entropy plays a very important role in many systems.31–33

In Yager’s NPD, the Gini entropy is adopted.27

Definition 1. Gini entropy is defined as follows34

HG =
Xn

i= 1

P(Ai)(1� P(Ai)) ð1Þ

where pi is the probability distribution which satisfiesPn
i= 1 Pi = 1. Gini entropy is expansive, that is,

G(P1,P2, � � � ,Pn)=G(P1,P2, � � � ,Pn, 0). It means add-
ing an element with zero probability does not affect the
Gini entropy.

Moreover, if only for the sake of comparing the uncer-
tainty associated with the two distributions, the Gini
entropy may be preferred to the Shannon with simpler cal-
culation.35 Knowledge representation is of great significance
to modern science. In many fields, it has been regarded as
the main driving force for the application of theory to prac-
tice, such as, aggregation,36 evidence resolution,37–39 deci-
sion-making40–42 and so on.43–45 Interestingly, probability is
similar to coins, it also has a original side and a negative
side.46 Summarizing, negation provides a new view to inves-
tigate the property of probability.

Definition 2. Assuming a probability distribution
P= P(A1),P(A2), � � � ,P(An)f g, the NPD was defined
as27

�P(Ai)=
1� Ai

n� 1
ð2Þ

Because the probabilities are completely mutually
exclusive, its negation was normalized, so the NPD
satisfies

0 ł �P(A1)ł 1X
�P(Ai)= 1

It should be pointed that since the basic probability
assignment has more flexibility to represent uncertainty,
the negation of basic probability assignment is also paid
attention recently.46

Tsallis entropy

Definition 3. Given a probability distribution
P= P1,P2 � � � ,Pnf g, the Tsallis entropy can be defined
as29

Hq Pð Þ= k

q� 1
1�

X
i

P
q
i

 !
ð3Þ
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when q! 1, which corresponds to the Boltzmann-
Gibbs entropy, namely

H(P)=H1(P)= �
X
i= 1

PilnPi ð4Þ

One can rewrite Tsallis entropy as follows29

Hq =
k

q� 1

XW
1

Pi(1� P
q�1
i ) ð5Þ

where q is a real parameter sometimes called entropic-
index which generalizes the usual exponential and plays
the important role in description of thermodynamic. k
is the Boltzmann constant (or some other convenient
value, in areas outside physics, such as information the-
ory, cybernetics and others).28,29 Besides, when q= 2,
the Tsallis entropy degenerates the Gini entropy.

The proposed method

From the above, it can be seen that Yager’s method
would be the special case. In order to expand the appli-
cation of negation, the article proposed a method that
uses Tsallis entropy to measure the uncertainty of
NPD. Using Tsallis entropy to measure the uncertainty
of NPD can expand the application of negation

Hq =
1

q� 1

X 1� Pi

n� 1
1� (

1� Pi

n� 1
)
q�1

� �
ð6Þ

In the following part, the property of negation-based
proposed method can be discussed.

Property 1. Tsallis entropy can increase after negation.
Specific proof is as follows

Hq(P)=
1

q� 1
3 (1�

X
(P

q
i ))

Hq(�P)=
1

q� 1
3 (1�

X
(�Pq

i ))

when q 6¼ 1

Hq(�P)� Hq(P)=
1

q� 1
3 (
X

P
q
i �

X 1� Pi

n� 1

� �q

)

D0 =Hq(�P)� Hq(P)+ l
XN

i= 1

Pi � 1

 !

∂D0

∂Pi

=
q

q� 1
pq�1 +

q

q� 1

1

n� 1

� �q

1� Pið Þq�1 + l

Hq(�P)� Hq(P)ø 0

when q= 1

H1(�P)� H1(P)= �
X

(1� Pi)ln(1� Pi)+
X

PilnPi

D0 =H1(�P)� H1(P)+ l
XN

i= 1

Pi � 1

 !

∂H1(�P)� H1(P)

∂Pi

= lnPi +
1

n� 1
3 ln

1� Pi

n� 1
+ l

H(�P)ø H(P)

From the above calculation, it can be seen that
Tsallis entropy can increase after negation.

Property 2. There is maximum Tsallis entropy with uni-
form distribution after multiple negations.

The general formula of the negation method is as
follows

xi+ 1 =
1

n
+

n 3 x1 � 1

n 3 (n� 1)i�1
ð7Þ

where xi+ 1 represents the ith negation. After multiple
negations, the probability distribution is as follows

lim
i!‘

xi+ 1 =
1

n

From the above, it can be seen that Tsallis entropy
reaches the maximum after multiple negations.

Besides, in nature, any operation can cause energy
consumption. The change of entropy means the con-
sumption of energy, and consumed energy cannot be
reused. Similarly, the variation of information entropy
is accompanied by the consumption of information. Of
various entropies, Tsallis entropy is non-extensive
entropy and applied in artificial and social complex sys-
tems. Hence, using Tsallis entropy to measure uncer-
tainty of NPD can expand the applications of negation.

Examples and discussion

Example

Example 1. Given the event space X = fx1, x2, x3g,
P(x1)= 0:2,P(x2)= 0:5,P(x3)= 0:3, the NPD can be
obtained as follows

�P(x1)= 0:4, �P(x2)= 0:25, �P(x3)= 0:35

Comparing P(xi) with its negation �P(xi), it can be
seen that the event xi which attaches to lower probabil-
ity acquires higher probability after negation process.
Attractively, what happens if negation is taken to �P(xi)
? Second negation is made and the results are obtained
as follows

��P(x1)= 0:3, ��P(x2)= 0:375, ��P(x3)= 0:325
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It is apparent that the original probability distribu-
tion P(xi) is not equal to ��P(xi). Generally, this process
for obtaining the NPD is irreversible when N ø 3

��P(xi) 6¼ P(xi)

It is necessary to explore what causes this irreversi-
bility. From Example 1, it can be found that the prob-
ability would be redistribution after negation. Hence, it
should be considered whether the uncertainty has chan-
ged after taking NPD. In the next section, there are
some discussions on why the negation process is gener-
ally irreversible and how to measure the uncertainty of
the probability based on our negation method.

Further discussion

Again considering the Example 1, the Table 1 is used
to show the change of probability after each iteration
of negation process. It can be clearly known that prob-
ability is reallocated after negation. Gradually, the
probability distribution becomes more and more close
to the uniform distribution. What is the cause of this
phenomenon?

The concept of entropy is derived from physics.47,48

With the increasing application of entropy,49,50 infor-
mation entropy has become an indispensable part of
modern scientific development.51,52 Shannon53 first
proposed the concept of information entropy to
describe the uncertainty and has applied in a lots of
fields.54,55 However, as in typical physical problems,
there are some examples where the Boltzmann-
Shannon entropy is not suitable.56,57 In 1988, Tsallis
proposed a non-extensive entropy called Tsallis
entropy. Subsequently, non-extensive statistical
mechanics which is Generalization of Boltzmann-
Gibbs Statistics emerged based on Tsallis entropy.
More importantly, the Boltzmann-Gibbs statistics is
recovered as the limitation when q! 1.58 The value of
q is hidden in the microscopic dynamics of the system.
It can be obtained by some experiments. A relevant
improvement on the inference accuracy by adopting
non-extensive entropies is proposed by Tsallis,57 where
q equals 2.5 obtains a better result. Besides, in
article,59q= 2:5 is used to obtain mutual information
during DREAM4 data. As a consequence, using Tsallis
entropy to measure the uncertainty extended the
method of Yager.27 Therefore, it is of great significance
to measure uncertainty of negation with Tsallis
entropy.

Let’s calculate the uncertainty using Tsallis entropy
with different q to observe how Tsallis entropy change
after negation, as shown in Figure 1. There are changes
of Tsallis entropy with five different q from 1

2
to 3. It

can be easily seen that the Tsallis entropy increases

gradually in the process of negation and is almost
invariable after the fifth negation, regardless of the
value of q. It is clearly shown that the uncertainty gra-
dually increases in any system after each iteration of
negation process. When there are multiple iterations of
negation process, the probability distribution would be
uniform distribution and Tsallis entropy has maximum
entropy, which is consistent with Property 1 and
Property 2. Hence, using Tsallis entropy to measure
uncertainty of NPD is reasonable.

Application of negation based on sensor
fusion

Target recognition is paid great attention in military
applications.60 There are some methods to make deci-
sions.61–63 Fusion rules can help us make better deci-
sions.64,65 However, using existing information to make

Figure 1. The trend of Tsallis entropy after each iteration of
negation process.

Table 1. The change of probability after each iteration of
negation process.

Frequency of negation P(x1) P(x2) P(x3)

0 0.2000 0.5000 0.3000
1 0.4000 0.2500 0.3500
2 0.3000 0.3750 0.3250
3 0.3500 0.3125 0.3375
4 0.3250 0.3437 0.3313
5 0.3375 0.3281 0.3344
6 0.3310 0.3360 0.3330
7 0.3345 0.3320 0.3335
8 0.3330 0.3340 0.3330
9 0.3333 0.3332 0.3335
10 0.3333 0.3333 0.3334
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more accurate decision is also an open issue. The nega-
tion provides a new view to obtain more accurate jud-
gement with the collected information. The specific
example is as follows.

There are three sensors to recognize the target which
maybe A, B and C. The results from the sensors are as
follows

p1(A)= 0:7, p1(B)= 0:2, p1(C)= 0:1

p2(A)= 0:6, p2(B)= 0:3, p2(C)= 0:1

p3(A)= 0:5, p3(B)= 0:3, p3(C)= 0:2

Dempster rule is widely used in sensor data fusion.64

The combination results are shown as follows

K = 0:77, p(A)= 0:91, p(B)= 0:078, p(C)= 0:087

Using the method of negation, new information is
obtained as follows

�p1(A)= 0:15, �p1(B)= 0:4, �p1(C)= 0:45

�p2(A)= 0:2, �p2(B)= 0:35, �p2(C)= 0:45

�p3(A)= 0:25, �p3(B)= 0:35, �p3(C)= 0:4

Similarly, fusion rule is used as follows

KN = 0:8625, �p(A)= 0:055; , �p(B)= 0:356, �p(C)= 0:375

It is well known that conflicting coefficient K plays
an essential role in information fusion.8 As a result,
analysing the difference of K between the original prob-
ability and its corresponding negation is necessary. It is
easily found that the conflict after negation becomes
bigger. The reason is that �p(A)= 1� p(A) represents
the probability the target is not A, namely �p(A) is the
probability that target is B or C. Besides, the method
of negation contains the uncertain class (AorB). Hence,
the conflict becomes bigger due to the existing uncer-
tain class after negation.

More importantly, by comparing the results between
the original and negation, the decision has more sup-
port to target A. �p(A)= 0:055 reflects the probability
that the target is not A. That is to say, it can increase
the probability of target A from the other side. Hence,
it can get two results from the two sides based on data,
which is better to make a more reasonable decision in
target recognition.

Next, considering the changes of entropy between
the original and negation, assume that q= 3 as there
are three sensors

T1 = 0:324, T2 = 0:378, T3 = 0:42, T = 0:123

�T1 = 0:421, �T 2 = 0:429, �T3 = 0:439, �T = 0:375

From the above, it can be seen that the Tsallis
entropy after fusion becomes less, showing that the
fusion can decrease the uncertainty of information.

However, fusion rules don’t work in extreme prob-
ability distribution. Using negation can provide another
view to analyse this phenomenon.

There is a special example to better explain the appli-
cation of negation. There are two sensors to recognize
the targets which maybe A, B and C. The results from
the sensors are as follows

p1(A)= 0:8, p1(B)= 0, p1(C)= 0:2

p2(A)= 0, p2(B)= 0:8, p3(C)= 0:2

p2(A)= 0, p2(B)= 0:8, p3(C)= 0:2

Using fusion rules, one can get the results as follows

p(A)= 0, p(B)= 0, p(C)= 1

From the result, it can be seen that the target must
be C as p(C)= 1. Obviously, the result is not very reli-
able. Besides, it can be seen that when evidence is highly
conflicting, Dempster rule doesn’t work. However,
negation can provide another information, which is
useful to make decision

�p1(A)= 0:1, �p1(B)= 0:5, �p1(C)= 0:4

�p2(A)= 0:5, �p2(B)= 0:1, �p2(C)= 0:4

The fusion results are as follows

�p(A)= 0:19, �p(B)= 0:19, �p(C)= 0:62

Next, considering the changes of entropy between
the original and negation, assume that q= 2 as there
are two sensors

T1 = 0:4800, T2 = 0:4800, T = 0

�T1 = 0:8100, �T 2 = 0:8100, �T = 0:7480

Obviously, negation gives us some new information.
From the above result, the probability that target is not
C is 0.62. It can be seen that the result of negation is
more reasonable than the original result. More impor-
tantly, negation provides another view to analyse prob-
lem and can better handle conflicting evidence. Hence,
negation is useful to make decision.

In addition, analysing the Tsallis entropy between
original and negation, it can be found that Tsallis
entropy becomes bigger. Besides, according to the sec-
ond law of thermodynamics, the entropy of an isolated
system never decreases. The negation can increase
Tsallis entropy. Moreover, entropy is irreversible.
From this view, the negation can make systems sponta-
neously evolve towards thermodynamic equilibrium,

Gao and Deng 5



the state with maximum entropy. That is to say, nega-
tion tends to make the system uniformly distributed,
and in fact it does. Hence, the negation not only pro-
vides a new way to understand problems, but also pro-
vides better performance of decision support system.
Besides, because the Tsallis entropy is highly applied in
many applications, negation provides a new view to
obtain information. Hence, using Tsallis entropy to
measure the uncertainty can enlarge the application of
negation.

Conclusion

Probability distribution is efficient to represent knowl-
edge. However, everything in nature and society has its
negation, which shows that negation is very essential.
Similarly, probability distribution also has its negation.
The article extends the proposed negation by using
Tsallis entropy. Besides, numerical example is used to
calculate the uncertainty by different q of Tsallis
entropy after negation. It can be found that there is
maximum Tsallis entropy after taking many iterations
of negation no matter what the value of q is, meanwhile,
the probability distribution becomes uniform distribu-
tion. Hence, it is reasonable to choose Tsallis entropy in
NPD after q is determined. From the above, it can be
known that the negation can consume some informa-
tion and increase the Tsallis entropy. Finally, the article
also discusses the application of negation in target rec-
ognition based on sensor fusion, which shows that
negation can obtain a more reasonable decision when
the conflict is high. In sum, negation not only provides
a new view to obtain information from another side
based on known information, but also can include
imprecise class to make better decision. Combining the
known information and the information of negation
can increase the accuracy of decision-making.

This article is a preliminary study to obtain the
NPD based on uncertainty measurements. This work is
done mainly to design a more efficient negation process
and uncertainty measurement, and expand the applica-
tion of negation. Besides, it is essential to determine the
uncertainty related to the negation and study its
properties.
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