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The neutrosophic cubic sets (NCSs) attained attraction of many researchers in the current time, so the need to discuss and study
their stability was felt. Thus, in this article, we discuss the three types of stability of NCSs such as truth-stability, indeterminacy-
stability, and falsity-stability. We define the left (resp., right) truth-left evaluative set, left (resp., right) indeterminacy-evaluative
set, and left (resp., right) falsity-evaluative set. A new notion of stable NCSs, partially stable NCSs, and unstable NCSs is defined.
We observe that every NCS needs not to be a stable NCS but each stable NCS must be an NCS, i.e., every internal NCS is a stable
NCS but an external NCS may or may not be a stable NCS. We also discuss some conditions under which the left and right
evaluative points of an external NCS becomes a neutrosophic bipolar fuzz set. We have provided the condition under which an
external NCS becomes stable. Moreover, we discuss the truth-stable degree, indeterminacy-stable degree, and falsity-stable degree
of NCSs. We have also defined an almost truth-stable set, almost indeterminacy-stable set, almost falsity-stable set, almost partially

stable set, and almost stable set with examples. Application of stable NCSs is given with a numerical example at the end.

1. Introduction

The crisp set lost the stability as it covers the extremes only,
which is not the ideal situation in every problem. To cover
this gap, Zadeh [1] presented the idea of the fuzzy set (FS) in
1965 which is stable as compared to the crisp set. But, when
there is a case to handle the negative characteristics, the
fuzzy set (FS) too lost its stability. To cover this gap, Ata-
nassov [2], in 1986, gave the idea of intutionistic fuzzy sets
(IFSs) which are more stable than the fuzzy set. But, the
problem with Atanassov’s idea is that indeterminacy is lost
and no proper attraction is given to it. Then, Smarandache
[3] covered this gap by giving a new idea of a neutrosophic
set which is a stable version other than the fuzzy set and
intutionistic fuzzy sets. The neutrosophic set (NS) is the
extension of the FS, IVFS, and IFS. In the NS, we deal with its
three components, that is, truthfulness, indeterminate, and
untruthfulness, and these three functions are independent
completely. Neutrosophy gives us a support for a whole

family of new mathematical theories with the abstraction of
both classical and fuzzy counterparts. In real life and in
scientific problems to apply the neutrosophic set, Wang et al.
[4] introduced the new idea of a single-valued neutrosophic
set (SVNS) and interval neutrosophic set (INS). These are
subclasses of the NS, in which truthfulness, indeterminate,
and untruthfulness were taken in a closed interval [0, 1], see
also [5]. On the other side, Zadeh [6] made another ex-
tension which is known as the interval-valued fuzzy set
(IVES), in which he described interval membership function.
There are many real-life applications of the IVFS, ie,
Sambuc [7] in medical diagnosis in thyroidian, Gorzalczany
in approximate reasoning, and Turksen [8, 9] in interval-
valued logic. In 2012, the theme of the cubic set (CS) was
used by Jun et al. [10]. CS is the combination of the IVFS and
FS in the form of an ordered pair. These all are mathematical
tools to determine the complications in our daily life. Jun
et al. [11] gave the idea of the NCS. For application of NCSs,
we refer to [12-17]. In 2017, the concept of stable cubic sets
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was introduced by Muhiuddin et al. [18]. In 2019 and 2020,
Smarandache [19-21] generalized the classical algebraic
structures to neutroalgebraic structures (or neutroalgebras)
(whose operations and axioms are partially true, partially
indeterminate, and partially false) as extensions of partial
algebra and to antialgebraic structures (or antialgebras)
(whose operations and axioms are totally false). Also, in
general, he extended any classical structure, in no matter
what field of knowledge, to a neutrostructure and an anti-
structure. Similarly, as alternatives to a classical theorem
(that is true for all sets’ elements) are the neutrotheorem
(partially true, partially indeterminate, and partially false)
and antitheorem (false for all sets’ elements), respectively.

In this paper, we define different types of the stable
neutrosophic cubic set with examples and some basic results.
We also define the concept of almost stable neutrosophic
cubic sets. At the end, we have provided an application of the
presented theory.

2. Preliminaries

This section mainly recalls some basic concepts related to
fuzzy sets [1], cubic sets [10], neutrosophic sets [3, 4],
neutrosophic cubic sets [11], and evaluative structure of
cubic sets [18]. For more detail of these sets, we refer the
reader to [1, 3, 4, 10, 11, 18].

Definition 1 (see [1]). A mapping p: U — [0, 1] is called an
FS, and p (&) is a membership function and denoted by p.

Definition 2 (see [10]). A structure C = {(; p(u), p (W)t
€ U)}isacubicsetinU in which p(t) isIVFin U, and p (1) is
an FS in U. This is simply denoted by C = (p, p). C* denotes
the collection of cubic sets in U.

Definition 3 (see [3, 4]). A neutrosophic set is a structure
N ={(it; Ty (1), Iy (i1), F (t)|i2 € U)}, (1)

in U. Here, (Ty (), Iy (21), Fy (1) € [0,1]) are three func-
tions, known as truthfulness, indeterminate, and untruth-
fulness, respectively, simply denoted by N = (T, Iy, Fy)-

Ep, ={(it, B, (i0))lis € U}
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Definition 4 (see [11]). A structure
Ne ={(i Ty, (@), Ty, (i), Fyy_(i0), Ty (i), Iy_(it), Fy_(it)lit € U)},
(2)
is an NCS in X. Here,
+ L U 1% L U 1% L U
(TNC = [TNc’ TNC]’INC = [INC’INC]’ FNC [FNC’ FNC])’
(3)

is an interval NS and (Ty, Iy, Fy,) is an NS in X simply
denoted by

NC = (TNC’TNC’ FNC’ TNC’ INC’ FNC))
(0,01 <Ty_+Ty_+Fy <I[3,3], (4)

0<Ty +Iy +Fy <L

Definition 5 (see [18]). A structure C = {(it; p (i1), p (0)|ix
€ U)}isa CS in U in which C (1) is the evaluative structure
defined as follows:

Ee = {(i Ee (il € U)}, %)

where E. (1) = (I(E;(#0)), 7 (Eg (1)) with left evaluative
point [(E; (1)) = p(&t) — p(i) and right evaluative point
r(Ec(w) = p(a)" — p(i2) atu € U. We say that E (iz) is the
evaluative point of C = (p, p) at ut € U.

3. Neutrostable Neutrosophic Cubic Sets

In this section, we provide the concepts of the truth-evaluative
set, indeterminacy-evaluative set, falsity-evaluative set, stable
truth-element, stable indeterminacy-element, stable falsity-
element, and unstable element of the NCS. We also discuss
some interesting results.

Definition 6. Let p = (T ,,1,,F ,,t,,i,, f,) be an NCS in
U. Then,

(1) The truth-evaluative set of p = (Tp,Ip,Fp,tp,ip,
fp7 is represented as

= (left truth — evaluative point, right truth — evaluative point)

= (U(Ery @), r(Ex, (i)

(6)

= (L) =T (@), T* (i) — t (i2)).
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(2) The indeterminacy-evaluative set of p=<(T,,I,,

Fpstpsip, f ) is represented as

E;, ={(it By, i)z € U}

=(E;, @), r(E;, (@)
= (@) - I" (@), I" () — i (3b)).

(3) The falsity-evaluative set of p=<T,,I,,F,,t
fp7 is represented as

Eg, ={(is Eg, (i)lit € U}

3

= (left indeterminacy — evaluative point, right indeterminacy — evaluative point) 7
p>rp’ iP >

= (left falsity — evaluative point, right falsity — evaluative point) ®)

= (I(Egp (@), r(Egp ()

= (f @)~ F (@), F* (@) - f (i2)).

The collection
Eyp () = (I(Ery (). [(Ery (@) [(Ep , ))),  (9)
is called the left evaluative point and the collection
Egy (i) = (r(Egp (). 7(Ery )r(Ep , (@)),  (10)

is called the right evaluative point. We say that E; (i) =
(ELﬂ (it),ERﬁ (1)) is the evaluative point.

Example 1. Let B ={<t1, T (), I (), F (1), (14),
i(u), f(u)ylu € I} be an NCS in U. If
(T (@), I (i), F (@), t (i), i (), f (1))
=([0.2,0.4], [0.4,0.6], [0.5,0.7], (0.3,0.2,0.8)),
forallui € U,
(11)

then  Epg={0.1,0.1}, Ejs = {-0.2,0.4}, Ep = {0.3,-0.1}.
Thus,

Eg (1) = (Ey (i6), Egg (i)
={(11,¢0.1,-0.2,0.3,0.1,0.4, —0.1))|iz € U}.

(12)

Remark 1. In Example 1, we observe that the left or right
evaluative point of the NCS is not necessarily an NS. This
motivates us to define the following terminologies.

Definition 7. Let § = (T, I3, Fp, 14,13, f 37 be an NCS in U
with the evaluative set
Eg ={(it; (Ep (i2), Egg (i0)) )it € U} (13)
An element €U is called

(1) Truth stable element of U if

(2) Indeterminacy stable element of U if

{u1; t (left truth stable — element, right truth stable — element)} (14)
{us e (t () = T~ (uT" () — t (&r))n > qO}.

={u; t (left indeterminacy stable — element, right indeterminacy stable — element)}, (15)
(it (i)~ T (@), I" (i) - i (i2) )n > O}



(3) Falsity stable element of U if

Egg = (1(Sps (), 7(Sep ()))
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={u; t (left stable falsity — element, right stable falsity — element)} (16)
=(f (@) = F (&), F" (i) - f () 20.

An element G€U is called stable if it satisfies conditions
(1-3). The set of all stable elements of U is called stable cut of
B =Ty, 1p, Fptpip, fp> in U and is denoted by Sg. We say
that = (T, I, Fg, g, ig, f g is a stable neutrosophic set if
Sg=U.

B

An element €U is called partially stable if it partially
satisfies conditions (1-3). The set of all partially stable ele-
ments of U is called partially stable cut of =Ty,
Ig, Fp,tg, iﬁ,fﬁ} inU .and is d'enoted by Pg. We say that B =

Tp, 1p, Fptp,ig, f ) is a partially stable neutrosophic set if
cU.

An element G€U is called antistable (unstable) if it does
not satisfy conditions (1-3). The set of all unstable stable
elements of U is called unstable stable cut of = (T},
Ig, Fp,tg, zﬁ,fﬁ.) inU .and is denoted by Uj. We say that B =
(T, 1p, Fp,tp,ip, f g» is a unstable stable neutrosophic set if
UycU.

Thus, U= SﬁUPﬁUUﬁ

Example 2. Let § = (Tﬁ,Iﬁ,Fﬁ,tﬁ, iﬁ,f/;> bean NCSinU =
{0,a,b,c} given by Tablel.

Clearly, {0,a} are stable elements of U and {b,c} are
unstable elements of U. Thus,

U ={a,b,c,d}

(17)
=S8 ={0,a}UPz = DUUp ={b, c}.

Example 3. Let B = (Tp, I3, Fp,tg,ig, fg) bean NCSin U =
{a, b} given by Table 2.
Clearly, a and b are stable elements of U. Thus,

U ={a,b}

(18)
:S/j :{a,b}UPﬂ :q)UUﬁ = Q.

Remark 2. Every internal NCS is a stable NCS, as shown in
example 3. If an NCS is neither internal nor external, then we
may have some stable elements with respect to the internal
portion and some unstable elements with respect to the
external portion as given in the Example 2. Thus, an external
NCS may or may not be a stable NCS, as shown in Examples
4 and 5.

Example 4. Letf = <Tﬁ, Iﬁ, Fﬁ, tgs iﬁ, f/;> be an external NCS
in U = {a, b} given by Table 3.
Then, clearly, a,b are unstable elements of U. Thus,

U ={a,b}

(19)
=Slg = (DUPﬁ ={a,b}UUﬁ = Q.

Example 5. Letf = (T, 13, Fp.tp,1p, f ) be an external NCS
in U = {a, b} given by Table 4.
Then, clearly, a,b are stable elements of U. Thus,

U ={a,b}

(20)
:sl; :{a,b}CDUP’B :CDUUﬁ = Q.

Example 6. Letf = (T, I3, Fg,1p, i3, f 3 be an external NCS
in U = {a} given by Table 5.

Clearly, a is an unstable element of U. Thus,
Upg ={a} =U. Hence, U = §s = PUPg = ®UUg = {a}.

Example 7. Letf = (T, 13, Fg,1p,i4, f 3 be an external NCS
in UU = {a} given by Table 6.

Clearly, a is an unstable element of U. Thus,
Upg={a} =U. Hence, U = §s = PUPg = ®UUg = {a}.

Example 8. Let = (Tp, I3, Fp,tp,ig, fg) bean NCSin U =
{a, b, c} given by Table 7.

Clearly, a and b are partially stable elements of U, so
Pg={a,b} CU and c is the only stable element of U, so
S = {ch. Also, there is no element which is unstable, so
Uﬁ = Q. Hence, U= SﬁUPﬁUUﬁ

Remark 3

(1) If we have an external NCS which is unstable like in
Example 6 such that

t(@) > [T (), T" ()],i(ir)

- . O T . (21)
>[I (@), I ()], f (@) >[F (@), F* ()],
then its right evaluative point becomes a neu-
trosophic bipolar fuzzy set.

(2) If we have an external NCS which is unstable like in
example 7 such that
t(a) < [T~ (), T" (@0)],i (i)
(22)
<[ (@), I" ()], f () <[F~ (i), F* ()],

then its left evaluative point becomes a neutrosophic
bipolar fuzzy set.
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TaBLE 1: Neutrosophic cubic set § of U.
U Ty (i) Ig(d) Fy () tg (i) ig (i) fp@)
0 [0.3,0.5] [0.2,0.4] [0.2,0.5] 0.4 03 0.4
a [0.3,0.5] [0.3,0.5] [0.3,0.6] 0.4 0.4 0.5
b [0.6,0.8] [0.5,0.6] [0.4,0.5] 0.5 0.4 03
c [0.4,0.8] [0.5,0.6] [0.6,0.7] 0.9 0.7 0.8
TaBLE 2: Neutrosophic cubic set § of U.
U T;; (@) Iﬂ(fi) F/s(il) tg (1) ig (@) fp(’fi)
a [0.1,0.7] [0.1,0.6] [0.2,0.8] 0.6 0.5 0.7
b [0.6,0.8] [0.6,0.9] [0.5,0.7] 0.7 0.8 0.6
TaBLE 3: Neutrosophic cubic set  of U.
U Ty (i) Ig (1) Fp (i) tg(i1) i (1) fpi)
a [0.1,0.3] [0.1,0.4] [0.3,0.6] 0.4 0.5 0.7
b [0.5,0.8] [0.6,0.8] [0.4,0.6] 0.4 05 03
TaBLE 4: External neutrosophic cubic set 8 of U.
U Ty (i) Ig(d) Fy () tg (i) ig (i1) fp(@)
a [0.2,0.4] [0.3,0.5] [0.3,0.6] 0.2 03 03
b [0.4,0.8] [0.6,0.7] [0.4,0.5] 0.8 0.7 05
TaBLE 5: External neutrosophic cubic set  of U.
U Ty (i) Ig (i) Fg (i) tg (i) ig (i) fp(@)
a [0.3,0.5] [0.1,0.4] [0.4,0.6] 0.8 05 0.7
TaBLE 6: External neutrosophic cubic set 3 of U.

U Ty (i) 1) Fy (i) £ (@) is (i) F@)
a [0.5,0.6] [0.3,0.5] [0.7,0.9] 0.4 0.2 0.6
TaBLE 7: Neutrosophic cubic set  of U.

U T (i) 1, (i) Fy (i) £ (i) is (i) F@0)
a [0.7,0.8] [0.3,0.5] [0.6,0.9] 0.7 0.8 0.2
b [0.1,0.5] [0.6,0.9] [0.3,0.8] 0.2 0.7 0.1
c [0.1,0.4] [0.2,0.5] [0.3,0.7] 0.3 0.4 0.5

(3) Every NCS needs not to be a stable NCS, but each
stable NCS must be an NCS.

(4) Observing Example 5, we reached at Theorem 1.

(T (i) = g (i), T () = £ (),
(VaeU)| (I () =i, I @) =i@@), [ (23
(F (@) = f (@), F* (&) = f (@)

Theorem 1. If an external NCS 8 = (T'g, I3, Fp,tg,ig, f) in

U satisfies the condition then B = (T, Ip, Fy,tp,ig, f) is a stable NCS.



Proof. Straightforward.

Remark 4. We observe that if B is both an internal and
external NCS, then p is a stable NCS.

Theorem 2. The complement of a stable NCS is also a stable
NCS.

t(m)-T (u)=0, i(w)—I (n)=0,
< T (@) -t (1) 20 )( I'(@)-i(i) 20

It follows that

I(Ege () = (1=t () = (1 =T" (@)) = T* (i) — £ () 2 0,

(
I(Ege (@) = (1=i(i) = (1= I" (@) = T" (i) = i () 2 0,
I(Ege (@) = (1= £ (@) = (1= F" (@) = F* (&) - f (i) 20,
r(Ege (@) = (1=T" (@) = (1= £(@) = t (@) = T~ (i1) 20,
r(Ege (@) = (1-1 (@)= (1-i(@) =i(@) - (&)=0,
r(Ege @) = (1= F (@) - (1- f (@) = f (i) - F~ (@) 20.
(26)

Therefore, < = (T I, Fgo t3. i, f5) 1s a stable NCS.

Theorem 3. The complement of an unstable NCS is also an
unstable NCS.

Proof. Let B =<Tp,Ip, Fp,tp,ig, f) be an unstable NCS in
U. Then,

U = Uy ={ire il Eg (i2)) < 0} U fite ialr(Ep (i) ) < 0} # @,

(27)
and so, there exist & € U such that
(t(@) =T (1) <0), (i(w) - I (u)<0), (28)
(f(w)-F (u1)<0), VuelU,
or
(T" (&) — t () <0), (I" () —i () <0), (29)

(F* (@) - f()<0), Vael.

It follows that
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Proof. Let = (Tg, I3, Fp.tp,ip, f 3 be a stable NCS in U.
Then,

U = S, ={ire il Eg(i2)) 2 0, r( E; () 2 0}. (24)
Hence,
), < ff”’ ~F @z, ) Vii e U. (25)
F'(ir) - f(i)=0

(EBL (i) = (1 -t (i)
(Eﬁc (i) = (1 - (i)
I(Ege () = (1= f (@) = (1= F" (@) = F* (&) - f (i) <0,

(30)

-(1-T () =T @) -t(@)<
(=T (@) = I (&) — i(i2) <0,

or

r(Eﬁc(a)) =(1-T @) -1 -t@)=t@@) -T (1)<0,

r(Ege (i) = (11 (@) = (1=i() =i (i) =" (i) <0,

r(Ege (i) = (1= F (@) = (1= f (@) = f (i) = F (i%) <0.
(31)
Hence, Uy #®, and therefore, [3 = (TC,IC FC

@i f> is an unstable NCS.
Example 9 illustrates Theorem 3.

Example 9. Let B = (T, I3, Fp,tg,ig, fg) bean NCSin U =
{a, b} given by Table 8.
Clearly, a and b are unstable elements of U and their
complements are represented by Table 9.
Then, f° = (TC,IC F“ tﬁ>lﬂ’fﬁ is
ac Uﬁc

unstable since

Theorem 4. The P-union and P-intersection of two stable
NCSs in U are stable cubic sets in U.

PT’OO]‘: Let ﬁ = <Tﬁ’ I,B’ Fﬁ’ tﬁ’ I,B’fﬁ> and ﬁz = <Tﬁz’ Iﬁz’Fﬁz’
tg,ig, fp,) be two NCSs in U. Then,

S ={ire Ull(Bs (i) 2 0,7(Bss (1)) 2 0} = U,

(32)
Sp, = {ae U|l(/55B2 (a)) >0, r(ﬁsﬁz (a)) > 0} =U.

It follows that
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TaBLE 8: Neutrosophic cubic set § of U.
U T;; (@) Is (@) Fg (1) tﬂ(&) i/;(fi) fﬂ(&)
a [0.1,0.5] [0.3,0.6] [0.2,0.4] 0.4 05 03
b [0.6,0.9] [0.1,0.9] [0.1,0.6] 0.7 0.6 0.5
TaBLE 9: Complement of neutrosophic cubic set § of U provided in Table 8.
U T (i) 15 (@) Fi (i) £ (i) 0 £ @)
a [0.5,0.9] [0.4,0.7] [0.6,0.8] 0.6 05 0.7
b [0.1,0.4] [0.1,0.9] [0.4,0.9] 03 0.4 0.5
tﬁ(ft) _Tl_f (1) >0, ig () —I,,} (u) =0, fﬁ(i’t) —F;(&)ZO,
, , , VYuel,
Tg(&)—t,g(&)zo I‘E(ﬁ)—i/j(ft)zo Fg(ﬁt)—fﬁ(ﬂ)zo
(33)

<t,32(&)—T;2(&)20,> <iﬁ2(&)—152(&)20,> <f,;2(i’:)—F/§2(£¢)20,> )
> > , Yuel.

T}, (it) — tg (i) 20

Assume that g (21) 2t (i), g (1) 2ig (0), fp (11) 2
£, (1) and consider the following cases:

(T () =Ty (@), Ty (1) =Ty (1)

(i) g (0)=1I5 (), 15 (1) =I5 (i)
(Fp, () 2 Fg (i), Fj (i4) 2 Fy (1)
(Tp, () <Tp (), T () =T, (i)

(i) (I, ()25 (), 15 (1)1 (i)
(Fp, () = Fg (), Fj (i) 2 Fy (1))
(Tg () <Ty (), Ty (1) <Ty ()

(i) (Ig () 21T (), Ig (i) = Iy (i)
(Fp, () = Fg (i), Fj (1) > Fy (1))
(Tg () <Ty (@), Ty (1) <Ty (1)

(iv) (Ig (W) <Ig (), 15 (1) =I5 (i)
(Fg, ()= Fy (i), Fy (i) > Fj (i)
(T, () <Ty (@), Ty (1) <Ty (1)

(v) (g (@) <Ig (@), Iz ()< Iy (i)
(Fp, () 2 Fg (), Fj (i) 2 Fy (1))
(Tg () <Ty (@), Ty (1) <Ty ()

(vi) (Ig (W) <Ig (),Ig () <Ig (i)
(Fp, () < Fg (), Fj (i) 2 Fy (1)
(Tg () <Ty (@), Ty (1) <Ty ()

(vii) (I () <Ig (i),Ig (1) <Iy (i)
(Fp, () < Fpg (i), Fy (i) <Fy (1)
(T () =Ty (), Ty (1) <Ty (1)

(viii) (I (1) <y (), 15 () <Ig (i)
(Fj, () < Fg (i), Fj (i1) <Fy (1)
(T (i) =Ty (i), Ty (i) = Ty, (1))

(ix) (Ig (W)<Ig ()15 ()<Ig (i)
(Fp, () < Fg (), Fj (i1) < Fy (i)

1;2 (1) —ig (1) 20

Fg ()~ fp,(1)20

(Tp, () =Ty (), Ty () 2Ty ()
(x) (I, W) =1Ig (@), I () <Ig ()
(Fp, () <Fyg (1), Fgl () < ng (1)
(Tp, () =Ty (), Ty () 2Ty ()
(xi) (Ig ()=1Ig (), 15 () =T (i)
(Fg () <Fg (i), Fy () <Fj ()
(Tp, (W) 2Ty (), Ty () 2Ty (1)
(xii) (T, () =Ty (i), T (i6) = T (1))
(Fg, ()= F (), Fy (1) < Fy (1)
The first case implies that
max{(tﬁl (&)’ lﬁl (&)’ fﬁl (&))’ (tﬂz (&)’ lﬁz (&)’ fﬁz (&))}
=(tp, () =Ty (i), (i) 2 T (i0),ig (i) 2 Iy (1))
= max{T}, (i), Iy, (@), Fy, (), Ty, ), Iy, (), Fy, (@)},
max{(t, (6),ig, (), f5, (1)), (t, (it ig, (), f5, (D)}
=(tg, () > T (i), (1) > I ()i (i4) > I, (i)
= max{T}l (ix), I (ix), Fy, (), Ty, (in), Iy (is), F, (i)}
(34)
It follows that
(85, (0 = T, @i @) = Ty, G f 5, 6) = Fy () 20,
(Tﬂl (il)+ - tﬁl (&)’ Iﬁl (&)+ - Iﬁl (&))Fﬁl (il)+ N fﬂl (&)) 20.
(35)

The result of the remaining cases can be obtained in the
same way. Therefore, 3; U pf3, is a stable CS in U. By the same
way, we also know that 8, U pf3, is a stable CS in U.

Example 10 shows that the R-union and the
R-intersection of two stable NCSs in U may not be a stable
NCS in U.



Example 10. Let B, =<Tp,Ig,Fp, tgy »igs fpy and B, =
(Tp,1p,Fp,tp,ig, fp,> be two NCSs in U = {a, b} defined
by Tables 10 and 11, respectively.

Then,
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Eg .5, (@) ={(~0.25,0.35), (0.05,0.55), (-0.1,0.3)),
Eg g, (b) ={(0,0.3), (0,0.1), (-0.25,0.35)),

Ep, np, (@) =(0.3,-0.1), (0.7,-0.4), (0.5,-0.1)),
<a, [0.4,0.5], [0.3,0.9], [0.7,0.9],0.15, 0.35, 0.6,
ﬁIURﬁzz{ (b, [0.6,0.9], [0.8,0.9], [0.5, 0.6], 0.6, 0.8, 0.25) } Egung, (b) =<(0.1,02), (0.7,0.1), (0.36, ~0.16)). )
bin g {(a, [0.1,0.3], [0,1,0.4],[0.3,0.7],0.4,0.8,0.80),}
PR (b, 10.6,0.9], [0.1,0.9], [0.2,0.4],0.7,0.8,0.56) |
(36) Theorem 5. Let f3, = <T/31>I/31’Fﬁ1’tﬁ1’il31’fﬁ1> and
o . bt fﬁ j <Tﬁz’1ﬁz’Fﬁz’tﬁz’iﬂz’fﬁz> be two internal NCSs in U such
ence, we Know a a
(T, (i)™, Ig (i), Fy (1)),
. B B B . . o
(VueU)(max{ (T T G (&)7) S((tﬁl,zﬁl,fﬁl)/\(tﬁz,zﬁz,f/sz))(u) ) (38)
B, >1B, 4B,

Then, the R-union of 8, and f3, is a stable NCS in U.

PTOOf: Let ﬂl = <Tﬁ1’ Iﬂl’ Fﬁl’tﬁl)iﬁl’ fﬁ1> and ﬁZ = <Tﬁ2’ Iﬁz’
Fﬁz’tﬁz’iﬁz’fﬁz> be two internal NCSs in U. Then, (Tﬂl

()" <ty (i) < T (i), (Ig (i) <ig, () <Ig (@), and
(F (u) <f (u)<F (u)) and (T (u) <tg (u)<
Ty (u) ) (I (u) <lﬁ (u)<1ﬂ ()", and (Fg, (u) <fg,
(u)<F/5 (u) ) VYue U. We know that

max{(Ty, (i), I, (i) < Fy (i) ), (T, ()", T, (8)” < Fg, (i) )}

<((ta,0 g, Fp )N (tp,0 1, f5,)) (@)

(39)

s maX{(Tﬁl (ﬁ)+’ Iﬁl (&)+ s Fﬁl (&)+)’ (Tﬁl (&)+’ Iﬁ] (&)+ < Fﬁl (&)+)}’

for all &1 € U. Hence, the R-union of 8, and , is an internal
NCS, and so it is stable by the fact that every internal NCS is
stable.

Theorem 6. Let ﬂl = <Tﬁ Iﬁ ’Fﬁ tﬁ lﬁ fﬁ and
By = Tp,1p,,Fp,tp,ig, fp) betwointernal NCSsin U such
that

o (Tﬁl (&)+’ Iﬁl (&)+’ Fﬁl (&)+)’ . . o
(Vi eU) <ma"{ (T, 0" 1, )" Fy ()" < ((tp i, f, )Vt gy £,)) @) ) (40)

Then, the R-intersection of 8, and , is a stable NCS in
U.

Proof. Straightforward.

4. Neutro-Almost-Stable Neutrosophic
Cubic Set

In this section, we introduce a new class of the stable
neutrosophic cubic set, namely, the neutro-almost-stable
neutrosophic cubic set.

Definition 8. Let f = (Tg, I3, Fp, 14,15, f 37 be an NCS with
the evaluative set Ez = {(i’t, Eg(i))lu € U} in U. Then,

(1) The truth-stable degree of 8 in U is denoted by
Tru(SDﬁ) and is defined as

Tru(SDg) = <ZZ(ETﬁ(u)) (ETﬂ(il))) (41)

ueU

(2) The indeterminacy-stable degree of §in U is denoted
by Ind(SDp) and is defined as

Ind(SD;) = <Z (Egs (i), r(Ey (ﬁ))). (42)
uelU

(3) The falsity-stable degree of § in U is denoted by
Fal(SDy) and is defined as
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TaBLE 10: Neutrosophic cubic set f3; of U.

v T, () Iy, (1) Fp, (4) tg, (1) i, (i) A

a [0.4,0.5] [0.3,0.4] [0.3,0.7] 0.4 0.35 0.60

b [0.3,0.7] [0.8,0.9] [0.5,0.6] 0.60 0.8 0.56
TaBLE 11: Neutrosophic cubic set 3, of U.

U Ty, (1) Ig (i) Fy (i) tg (i1) i, (1) £, @)

a [0.1,0.3] [0.1,0.9] [0.7,0.9] 0.15 0.8 0.8

b [0.6,0.9] [0.1,0.9] [0.2,0.4] 0.7 0.8 0.25

Fal(SDg) = < > U(Egg (i2)), r(Egg (&))). (43)
ueU

(4) The stable degree of  in U is denoted by SDy and is
defined as SD/3 = (Tru(SDﬁ),Ind(SDﬁ),Fal(SDﬁ)).

Definition 9. An NCS with the evaluative set Eg=
{(t, Eg ()]s € U} in U is said to be

(1) Almost truth-stable if Tru(SDﬁ) >0

(2) Almost indeterminacy-stable if Ind (SDy) >0

(3) Almost falsity-stable if Fal(SD/;) >0

(4) Almost stable if it is almost truth-stable, almost
indeterminacy-stable, and almost falsity-stable, i.e.,
Tru(SDp) >0, Ind (SDg) > 0, Fal (SDy) > 0.

(5) Almost partially stable if it is almost partially truth-
stable, almost partially indeterminacy-stable, and
almost partially falsity-stable.

(6) Almost unstable if it is almost truth-unstable, almost
indeterminacy-unstable, and almost falsity-unstable,
ie., Tru(SDp) <0,Ind (SDg) <0, Fal (SDg) <0.

Example 11. Let B, =(Ty,Ip,Fp,tg,ig,fp> and B, =
(Tp,1p,Fp,tp,ig, fp,> be two NCSs in U = {a, b} defined
by Tables 12 and 13, respectively,with the evaluative set

Eg ={(a;€0,0.1), (0.05,0.05), €0.3,0.1)),
(1:€0.3,0.1), €0,0.1), €0.06, 0.04))>.

(44)
Then, Tru(SDﬁl) = (0.3,0.2) =0, Ind(SD/gl) = (0.05,
0.15) >0, Fal(SDﬁz) = (0.36,0.14) > 0. Thus,
SDg = (0.3,0.2,0.05,0.15,0.36,0.14) > 0, (45)

alsowith the evaluative set

Eg = {(a€0.05,0.15),¢0.7,0.1), €0.1,0.1)),

(46)
(6<0.1,0.2),<0.7,0.1), 0.05,0.15)) .
Then, Tru(SDﬁz) = (0.15,0.25) >0, Ind(SDﬁz) =
(0.14,0.2) > 0, Fal(SD)ﬁ2 = (0.15,0.25) > 0. Thus,
SD/;2 =(0.15,0.35,0.14,0.2,0.15,0.25) > 0. (47)

So, f; and f3, both are almost stable NCSs.

Example 12. Let By = Ty, 1p,Fp,tp,is, fp) bean NCSin
U = {a,b} defined by Table 14.
The evaluative set is

Eg ={(a(-0.1,0.2),€0.3,-0.1),{~0.1,0.3)),
(b(-0.1,0.5), ¢(~0.2,0.3, 0.2, —-0.1))).

(48)

Then, Tru(SDﬂ3) = (-0.2,0.7) < 0. Thus, the NCS g, =
(TﬁS,IﬁS,F&,t&,i 3,fﬁ3> in U is not almost truth-stable as
Tru(SDg ) <0. Also, Ind(SDg) = (0.1,0.2)>0. Thus, the
NCS B3 = (T, 13, Fptp,ig, fp,7 in U is almost indeter-
minacy-stable as Ind(SDp)>0. Similarly ;= (Ty,
Ig,Fgtg,ig, fpg> in U is almost falsity-stable as
Fal(SDﬁ )>0. So, finally, we can say that f8; is an almost
partially stable NCS.

Example 13. Let By = Ty, 1p,Fp,tg,ig, f 5> bean NCSin
U = {a, b} defined by Table 15
The evaluative set is

Eg, ={(a;€0.2,-0.1,¢0.3,-0.1), {~0.1,0.3)),
(b: (~0.1,0.5), {~0.2,0.3), 0.2, ~0.1)).

(49)

Then, Tru(SDg,) = (0.1,0.4) >0,Ind (SDg ) = (0.1,
0.2)>0, Fal(SD ) = (0.1,0.2) > 0. So, B, is an almost stable
NCS, but it is not a stable NCS, as from Definition 7;
Sﬁ = CD,P/; = cD,Uﬁ = {a,b}.

Remark 5. From Examples 11, 12, and 13, we have the
following results.

Theorem 7

(1) Every stable NCS B = T, I3, Fg,tp,ig, fgy in Uis an
almost-stable NCS, but the converse is not true

(2) Every internal NCS is almost stable
(3) Every external NCS may or may not be stable

(4) The P-union and P-intersection of two stable NCSs are
almost stable

(5) The complement of an almost-stable NC is also an
almost-stable NCS

Proof. Straightforward.
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TaBLE 12: Neutrosophic cubic set f3; of U.

U Ty, (i) Ig (1) Fy (@) tg (i1) ig, (1) fp @)

a [0.4,0.5] [0.3,0.4] [0.3,0.7] 0.4 0.35 0.60

b [0.3,0.7] [0.8,0.9] [0.5,0.6] 0.60 0.8 0.56
TaBLE 13: Neutrosophic cubic set f3, of U.

v T, () Ty, (#) Fp, (@) tg, () ig, () A

a [0.1,0.3] [0.1,0.9] [0.7,0.9] 0.15 0.8 0.8

b [0.6,0.9] [0.1,0.9] [0.2,0.4] 0.7 0.8 0.25
TaBLE 14: Neutrosophic cubic set 33 of U.

U Tp, (1) Ig (1) Fy (@) tg (i1) i, (1) £, @)

a [0.2,0.3] [0.3,0.5] [0.4,0.6] 0.1 0.6 03

b [0.3,0.7] [0.8,0.9] [0.5,0.6] 0.2 0.6 0.7
TaBLE 15: Neutrosophic cubic set 84 of U.

v T, () AL Fp, (@) £, () fg, () A

a [0.2,0.3] [0.3,0.5] [0.4,0.6] 0.4 0.6 03

b [0.3,0.7] [0.8,0.9] [0.5,0.6] 0.2 0.6 0.7

5. Application in Decision Making Negative ideal solution is

Al =y / (53)
In this section, we shall define a new approach to multiple =i

attribute group decision making with the help of stable
neutrosophic cubic sets. We also provide a numerical ex-
ample. Suppose H = {H,, H,, ..., H,,}. Each alternative H,
respects n criteria G; = {G,G,, ..., G,,} which are expressed
by ~a stable NCS g = (Grruij> Gindij Gratij) (drraijs
Qindijp Gratij))> (J=12,...mi=12,...,m). The criteria
Gy,...,Gy are benefit and criteria G,,,...,G, are non-
benefit criteria, and w = (w;, w,,...,w,) is the weighted
vector of the criteria, where, w;e[0,1] and Y w; = 1. So, the
decision matrix is obtained as D = (q;;)x,- The steps of the
decision making based on stable NCSs are given as follows:

Step 1: we standardize the decision matrix.

Step 2: we construct the normalized decision matrix.
Normalize score or data are as follows:

PO fori=1,....m;j=1...,n (50

Step 3: we construct the weighted normalized decision
matrix:

p S W T (51)

Step 4: we determine the ideal and negative ideal so-
lutions. Ideal solution A* = {v,,...,v,}, where

v;.‘ :{max<vij>, if jeJ; min(vij>, ifje ]’}. (52)

where
v}{max(vij>, if j € J; min(vij>, if j e ]I}. (54)

Step 5: we calculate the separation measures for each
alternative. Separation from the ideal alternatives is

§; = [Z(v;—v,-)z], i=1,...,m (55

2
—vij> ] i=1,...m (56

Step 6: we calculate the relative closeness to the ideal
solution C; where

. Si N
C :m, 0<C/ <L (57)

We select the option with C; closest to 1.

5.1. Numerical Application. At the end of December 2019
[22], in Wuhan, the China Health Commission reported a
cluster of pneumonia cases of unknown etiology. The
pathogen was identified as novel coronavirus 2019. Later, the
World Health Organization named it Coronavirus Disease
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2019 (COVID-19). After the discovery of COVID-19, it
spread in more than 200 countries. COVID-19 has zoonotic
basis, which was then spread through the human interaction
to human population [23]. Common signs of COVID-19
infection are similar to those of common cold and include
respiratory symptoms such as dry cough, fever, shortness of
breath, and breathing difficulties. Initially its etiology was
unknown. Later on, it was studied thoroughly and found
that it has an incubation period of 14 days, during which
some individuals show all the symptoms while others show
mild symptoms. It is sensitive to know that someone have
the disease due to the dual nature (same as common flu) of
COVID-19 symptoms [24]. In this section, we use the
TOPSIS method to rank the COVID-19 in four provinces of
Pakistan. A numerical example which is solved using the
TOPSIS method is presented to demonstrate the applica-
bility and effectiveness of the proposed method.

5.2. Example. Let us consider the decision making problem.
Suppose that there is a panel and they selected four possible
alternatives (H,, H,, Hs, H,) to find out the spreading of
COVID-19 in provinces of Pakistan: H,is KPK, H,is Sindh,
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Hiis Punjab, and H,is Balochistan. A group of doctors
intends to choose one province be the most affected area
from four provinces, to be further evaluated according to the
four attributes, which are shown as G, effected people, G,
recovered people, G; admitted people, and G, number of
deaths. By this method, we can find out which province is
more affected. Then, we must take some action to stop the
cases in that province. The experts give them advice for
quarantine. Also, they suggest them treatment and say that
the treatment will be continued until the transmission of
virus stops. By using the stable neutrosophic cubic infor-
mation, the alternatives are evaluated by the decision maker
and the results are presented in the decision matrix.

The decided steps of the TOPSIS method are presented
as follows:

Step 1

(a) The decision makers take their analysis of each
alternatives based on each criterion and the per-
formance of each alternative H; with respect to
each criterion G i (Tex translation failed).

Gl GZ GS G4
[ [0.1,0.4], [0.1,0.3], [0.1,0.4], [0.1,0.4],
[0.2,0.6], [0.1,0.3], [0.1,0.4], [0.1,0.3],
I—I1 < < < <
[0.1,0.4], [0.1,0.3], [0.1,0.4], [0.1,0.4],
| (0.2,0.5,0.2) | [ (0.2,0.2,0.2) | [ (0.2,0.2,0.2) | | (0.2,0.2,0.2) |
[0.1,0.3], [0.1,0.4], [0.1,0.4], [0.1,0.3],
[0.1,0.4], [0.1,0.6], [0.1,0.4], [0.2,0.6],
H2 < - < 3
[0.2,0.5], [0.1,0.4], [0.1,0.4], [0.1,0.4],
D= | (0.2,0.2,0.3) | [ (0.3,0.4,0.2) | [ (0.2,0.2,0.3) | | (0.2,0.4,0.3) | (58)
[ [0.2,0.5], [0.1,0.4], [0.3,0.6], [0.1,0.4],
[0.2,0.5], [0.1,0.3], [0.3,0.6], [0.1,0.4],
H, 4 4 3 4
[0.1,0.4], [0.2,0.6], [0.1,0.5], [0.2,0.6],
| (0.3,0.3,0.3) | [ (0.3,0.2,0.4) | | (0.4,0.4,0.3) | | (0.2,0.3,0.4) |
[0.1,0.4], [0.1,0.4], [0.1,0.3], [0.1,0.4],
[0.1,0.4], [0.3,0.6], [0.1,0.5], [0.2,0.4],
H4 < < < <
[0.1,0.4], [0.1,0.5], [0.1,0.3], [0.3,0.6],
| (0.2,0.2,0.2) | [ (0.3,0.4,0.4) ] [ (0.2,0.3,0.2) | | (0.3,0.3,0.4) |
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(b) Then, the decision makers present their analysis in
the form of a stable neutrosophic cubic set,
according to Definitions 6 and 7 and Example 3:

G, G,
((0.1,0.2), (0.1,0.1),
H, { (03,01, } { (0.1,0.1),
| 0.1,02) ] | (0.1,0.1) ]
((0.1,0.1), ) [ (0.2,0.1), )
H, {(0.1,02),} {(03,02),
| 0.1,03) )] [ (0.1,0.2) ]
((0.1,0.2), ) [ (0.1,0.2), )
H, {(0.1,02),} {01,001,
[ 0.2,01) )] [ (0.2,0.2) ]
(0.1,02), ] [ (0.2,0.1),
H, { (0.1,02), } { (0.1,0.2),
| (0.1,02) ] | (0.3,0.1) ]

Step 2. The normalized decision matrix is

G,

A

A

A

A

(0.25,0.29),
(0.5,0.143),
(0.2,0.25)

((0.25,0.143),
(0.17,0.29),
(0.2,0.38)

((0.25,0.29), )
(0.17,0.29),
[ (0.5,0.125) |
((0.25,0.29),

(0.17,0.29),

(0.2,0.25) |

G,

(0.17,0.1), )

A

(0.17,0.17),
| (0.143,0.17) |

(0.33,0.1), )

A

(0.5,0.33),

Y

Y

[ (0.143,0.33) |

(0.17,0.2),

A

(0.17,0.17),
(0.29,0.33) |

[ (0.33,0.1), )

A

(0.17,0.33),

| (0.43,0.17) ]

Y

Y

((0.1,0.2),
1 (0.1,0.2),
[ (0.1,0.2) ]
((0.1,0.2), )
1 (0.1,0.2),
| (0.2,0.1) ]
((0.1,0.2), )
1 (0.1,0.2),
(0.2,0.2) |
((0.1,0.1),

1 (0.2,0.2),

Y

Y

Y

Y

[ (0.1,0.1)

G;

A

A

A

A

[ (0.25,0.29), )
(0.2,0.25),
| (0.17,0.33) |
(0.25,0.29), )
(0.2,0.25),

| (0.33,0.17) ]
(0.25,0.29),

(0.2,0.25),

Y

Y

Y

(0.33,0.33) ]
[ (0.25,0.143),

(0.4,0.25),

(0.17,0.17)

[ (0.1,0.2), )

| (0.1,0.2) |

([ (0.1,0.1),

| (0.2,0.1) ] .

[ (0.2,0.1),
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(0.1,0.1), ¢

(0.2,0.2), ¢

(0.1,0.2), )

(0.2,0.1), ¢

(0.2,0.2)

(0.1,0.1), ¢

(0.1,0.2) j

Gy

A

A

A

A

((0.20,0.33),
(0.17,0.20),
[ (0.17,0.29)
((0.20,0.17),
(0.33,0.4),
| (0.33,0.143)
(0.20,0.33),
(0.33,0.20),
| (0.33,0.29) |
((0.40,0.17), )

(0.17,0.20),

[ (0.17,0.29) |

(59)

(60)
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Step 3. The weighted normalized decision matrix where
w = (0.3,0.1,0.2,0.4) is

G,

1 (0.15,0.043),
(0.06,0.075)

1 (0.051,0.087),
(0.06,0.114)

1 (0.051,0.087),
(0.15,0.038)
(0.075,0.087),
1 (0.051,0.087),
(0.06,0.075)

(0.075,0.087), )

( (0.075,0.043), )

((0.075,0.087), )

G,

|
|
|
|

(0.017,0.01),
(0.017,0.017),

(0.0143,0.017)

(0.033,0.01),
(0.05,0.033),

(0.0143,0.033)

(0.017,0.02),
(0.017,0.017),
(0.029,0.033)
(0.033,0.01),
(0.017,0.033),
(0.043,0.017)

Step 4. Positive and negative ideal solution: the
positive ideal solution A* = (a,,4a,,a;,a,) contains
the greatest numbers of the first, second, and third
column and smallest numbers of the fourth column.
The negative ideal solution A’ = (aj,a,, as,ay)

(0.075,0.087),
(0.15,0.087),
(0.15,0.114)

(0.075,0.043),

A'4 (0.051,0.043),

(0.06,0.038)

A*

(0.033,0.02),
(0.05,0.033),
(0.029,0.033)
(0.017,0.01),
(0.017,0.017),
(0.0143,0.017)

Step 5. Separation measures for the positive and neg-
ative ideal solution are

a; = 0.3694,
a; =0.2133,
a; = 0.0409,
ay = 0.1292,
a, = 0.1308,
a, = 0.1206,
ay = 0.1236,
a, = 0.0349.

(63)
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G, G,
((0.05,0.06), ((0.08,0.132), )
S (0.04,0.05),} { (0.07,0.08), }
[ (0.034,0.066) [ (0.07,0.12) |
[ (0.05,0.06), ( (0.08,0.07),
L (0.04,0.05), ]» { (0.132,0.16), }
[ (0.066,0.034) [ (0.132,0.06) J . (61)
[ (0.05,0.06), ((0.08,0.132), )
{ (0.04,0.05), } 1 (0.132,0.08), }
[ (0.066,0.066) [ (0.132,0.12) |

((0.05,0.143), ( (0.40,0.07),
1 (0.08,0.05), 1 (0.07,0.08),
[ (0.034,0.034) [ (0.07,0.12)

contains the smallest numbers of the first, second,
and third column and greatest numbers of the
fourth column.

(0.05,0.143), (0.08,0.07),

(0.08,0.05), (0.07,0.07), t,

(0.066, 0.066) (0.07,0.06) )
(0.06,0.05), (0.40,0.132),
(0.04,0.05), (0.132,0.16),

(0.034,0.034) (0.132,0.12)

Step 6. Ranking order of the alternatives is shown by
(Figures 1-4). Ranking of COVID-19 is obtained by
completing the TOPSIS calculation.
H, = 0.2615,
H, = 0.3612,
H, =0.7514,
H, =0.2127,
H;>H,>H,>H,.

(64)

Thus, we concluded that H,is the most effected province
of Pakistan till April 12, 2020. Here, we used stable neu-
trosophic cubic sets, but we may use other versions of stable
neutrosophic cubic sets.
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Total COVID-19 confirmed cases in punjab till 12-Apr-2020
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FiGgure 1: Total COVID-19 confirmed cases in Punjab till 12 Apr 2020.

Total COVID-19 confirmed cases in sindh till 12-apr-2020
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FIGURE 2: Total COVID-19 confirmed cases in Sindh till 12 Apr 2020.

Total COVID-19 confirmed cases in KPK till 12-apr-

2020

697697

617652

555
500°2°

[fe}
—
~
N
[N
o
o
NN
o
—
—
o
N
[
N
o
n
N
—
N
N
wn
=)}
—
o]
o]
—
(=}
[}
—
[N
<
—
—
N
—
o
o~
[l
o
—
o
—
o
[
N
o0
N
N
—
D~
—
N
—
S O O O o o o o O
S O O O o o o O
0 N O N F N AN~

o0z-1de-z1
0z-1de-T1
0z-1de-Qr
0z-1de-¢
0z-1de-g
0z-xde-/
0z-1de-9
0z-1de-g
0z-1de-y
0z-ide-¢
0g-ide-g
0z-1de-1
0g-Tew-T¢
0g-Tewr-O¢
0C-TewW-67
0¢-Tew-8¢
0g-Tew-£Lg
0g-Tewr-9¢
0g-Tewr-g¢
0g-Tew-y¢
0Z-Tewr-¢7
0g-Tewr-zg
0g-Tewr-1g
0Z-Tewr-Og
0C-Tew-61
0C-Tew-81
og-Tewr-£1
0¢-Tew-91

—— Total cases

Figure 3: Total COVID-19 confirmed cases in KPK till 12 Apr 2020.
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Total COVID-19 confirmed cases in balochistan till 12-Apr-

2020
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FiGure 4: Total COVID-19 confirmed cases in Balochistan till 12 Apr 2020.

6. Conclusions

In this article, we work out with the idea of stable NCSs and
internal and external stable NCSs. Also, we define their
union, intersection, and complement with examples. After
that, we demonstrate the application of the TOPSIS method
to find out the ranking of COVID-19. For this purpose, we
used a numerical example to find out the most affected area.
We reached at the following key points:

Every stable NCS B = (T, I3, Fg, tp,ig, fp> in U is an
almost-stable NCS, which is, of course, an NCS which
turns into a cubic set with three different parts as truth,
indeterminacy, and falsity, but the converse of this
chain is not true always.

If we have an external NCS which is unstable such that
t(@) > [T (), T (w)],i (i)

L. . . (65)
>[I (@), I" (W], f () >[F (), F* (w)],

then its right evaluative point becomes a neutrosophic
bipolar fuzzy set.

If we have an external NCS which is unstable such that

£(i1) < [T (i), T* (ir)], i (ia) < [I” (ix), I* (i0)], £ () ()
<[F" (&), F" ()],

then its left evaluative point becomes a neutrosophic
bipolar fuzzy set.

We used the idea of stable neutrosophic cubic sets in
the application section, so results are within the range;
otherwise, we may have results which lie outside the
domain of neutrosophic cubic sets. This is the main
advantage of stable neutrosophic cubic sets.
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