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+e single-valued neutrosophic set (SVNS) can not only depict imperfect information in the real decision system but also handle
undetermined and inconformity information flexibly and effectively. +ree-way decisions (3WDs) are often used as an effective
method to deal with uncertainties, but the conditional probability is given by the decision maker subjectively, which makes the
decision result too subjective. +is paper proposes a novel model based on 3WDs to settle the multiattribute decision-making
(MADM) problems, where the attribute values are described by SVNS, and the attribute weights are entirely unknown. At first, we
build a single-valued neutrosophic decision theory rough set (SVNDTRS)model based on Bayesian decision process.+en, we use
the analytic hierarchy process (AHP) approach to calculate the subjective weight of each attribute, the information entropy to
obtain the attribute’s objective weight, and the minimum total deviation approach to determine the combined weight of the
attributes. After obtaining the standard weight, the grey relational analysis (GRA) method is utilized to calculate the grey
correlation closeness with the ideal solution, and the conditional probability is estimated by it. In addition, we develop a decision-
making method in view of the ideal solution of 3WDs with the SVNS. +is approach not only considers the lowest cost but also
gives a corresponding semantic explanation for the decision result of each alternative, which can supplement the decision results
of GRA. At last, we illustrate the feasibility and effectiveness of 3WDs through an example of supplier selection and compare it
with other methods to verify the advantages of our approach.

1. Introduction

Multiattribute decision making (MADM) is more and
more momentous for modern decision science. Its essence
is to use the existing decision information to sort and
optimize a limited number of alternatives in a certain way.
Due to the complexity and unpredictability of the external
environment, the ambiguity of the object itself, the limi-
tations of human cognition, and the subjectivity of the
decision maker, decision makers usually need to provide
preference information through various types of attribute
values. Since Zadeh [1] introduced the concepts of the fuzzy
sets (FSs), the FSs have been widely studied. Atanassov [2]
put forward the intuitionistic fuzzy sets (IFSs) by adding
the nonmembership degree based on the traditional FSs.
IFSs consist of membership degree and nonmembership

degree, and they can more easily express fuzzy information
and have been rapidly developed and widely used since they
were introduced. However, the degree of hesitation in IFSs
cannot be defined separately. +erefore, even if IFSs can
effectively describe imperfect information, they are less
flexible when dealing with uncertain and inconformity
information. +en, the clearly quantified neutrosophic sets
(NSs) can describe the value of the proposition between
true and false, which was initially proposed by Smarand-
ache [3]. NSs are made up of membership degree, hesitancy
degree, and nonmembership degree. In addition, Wang
et al. [4] proposed a subcategory of NS called single-valued
neutrosophic sets (SVNSs) and discussed its related rules
and properties. +e trait of SVNS is that membership
degree, hesitancy degree, and nonmembership degree are
mutually independent; all three are between 0 and 1, and
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the sum of them is between 0 and 3. Deli and Şubaş [5]
developed a sorting method and extended it into MADM
problems. Wang et al. [6, 7, 8] introduced a MADM ap-
proach in view of Maclaurin symmetric mean (MSM)
operator and TODIM for SVNS. Sodenkamp et al. [9] used
SVNS to process independent multisource undetermined
measurements, which affected the dependability of expert
evaluation in MADM problems.

In many actual MADM problems, owing to the un-
certainty or imperfect of information, it is difficult to adopt
a method that only accepts and rejects these two decisions.
+rough the expansion of the two decisions, Yao [10, 11]
proposed three-way decisions (3WDs) involving accep-
tance, rejection, and delayed decision making [12, 13, 14].
+e principle of the 3WDs is derived from the probability
rough set. In light of the positive, boundary, and negative
domains of the probabilistic rough set, the 3WD model
including acceptance decision, delayed decision, and re-
jection decision is established. So far, 3WDs are widely used
in some areas such as influenza emergency management,
granular computing, enterprise evaluation, and social
networking [13, 15, 16, 17, 18]. At the same time, many
theoretical results have been achieved in the study of
3WDs. For example, Zhang et al. [19] considered a new risk
measurement function by utility theory and derived a 3WD
model with DTRS. Sun et al. [20] introduced a decision-
theoretic rough fuzzy set model with linguistic information
based on 3WDs and applied it to MADMs. Zhang et al. [21]
proposed a dynamic 3WD model and proved the model is
practicable and valid. According to the TODIM method,
Hu et al. [22] constructed a new 3WD model and dem-
onstrated its application in online diagnosis and medical
selection.

In the 3WD model, the loss function (LF) is a key pa-
rameter. +e scholars have studied a great deal of 3WD rules
based on LFs of diverse forms, such as interval number [23],
IFSs [24], intuitionistic uncertain linguistic variables [25],
dual hesitant FSs [26], and Pythagorean FSs [27]. SVNS can
handle uncertain, incomplete, and inconsistent information
more flexibly. To this end, we use the SVNS to express the LF
in this paper. Furthermore, how to determine the condi-
tional probability is also the key to the 3WD method. +e
conditional probability in many references is subjectively
given by the decision makers, which makes the decision
results too subjective. Liang et al. [27] used the TOPSIS
method to evaluate the conditional probability by calculating
the distance between each alternative and the positive or
negative ideal solution, which provides a new perspective for
us to identify the conditional probability. In this paper, we
measure the maximum grey correlation of each alternative
with the relative neutrosophic positive ideal solution
(RNPIS) and the minimum grey correlation with the relative
neutrosophic negative ideal solution (RNNIS) and estimate
the conditional probability using the grey relational analysis
(GRA) method [28–30].

In conclusion, SVNS can handle uncertain, incomplete,
and inconsistent information more flexibly, and 3WDs are
often used as an effective method to deal with uncertainties,
but the conditional probability in many references is given by

the decision maker subjectively, which makes the decision
result too subjective. +erefore, we use the GRA method to
calculate conditional probability. +e goal and motivation of
this paper are (1) to extend 3WDs to the environment of
SVNS, using SVNS to represent the LF in 3WDs; (2) to
propose the SVNDTRS model and explore its properties; and
(3) to use the GRA method to calculate conditional proba-
bility in 3WDs. +e proposed method extends the use en-
vironment of 3WDs and provides a new idea for the
determination of conditional probability in 3WDs.

+e remainder of this paper is arranged as follows. In
Section 2, we briefly review the basics of the NSs and SVNSs.
In Section 3, we propose a method to determine the com-
bination weight of attributes. In Section 4, we propose a single-
valued neutrosophic decision theory rough set (SVNDTRS)
model and its propositions. In Section 5, we estimate the
conditional probability of 3WDs based on the GRA method
and presented a MADMmethod to deal with SVNSs based on
the SVNDTRS. In Section 6, we use a numerical example to
demonstrate the availability, and other methods are compared
and analyzed. In Section 7, we reach the conclusion.

2. SVNS

In this section, we introduce some basic concepts of the NSs
and the SVNSs.

Definition 1 [3]. Let X be an object set, and the common
elements of X are represented by x. A NSYof X consists of
T+

Y(x), I+
Y(x) and F+

Y(x). Y can be represented as
Y � T+

Y(x), I+
Y(x), F+

Y(x) | x ∈ X􏼈 􏼉, where T+
Y(x), I+

Y(x), and
F+

Y(x) represent the membership degree, hesitancy degree,
and nonmembership degree, respectively. T+

Y(x), I+
Y(x),

F+
Y(x) ∈ [− 0, 1+] and satisfies − 0≤T+

Y(x) + I+
Y(x) + F+

Y

(x)≤ 3+.

Definition 2 [4]. Let X be an object set, and the common
elements of X are represented by x. A SVNS 􏽥Y of X consists
of T􏽥Y(x), I􏽥Y(x) and F􏽥Y(x). 􏽥Y can be represented as
􏽥Y � T􏽥Y(x), I􏽥Y(x), F􏽥Y(x) | x ∈ X􏼈 􏼉, where T􏽥Y(x), I􏽥Y(x),
and F􏽥Y(x) represent the membership degree, hesitancy
degree, and nonmembership degree, respectively. T􏽥Y(x),

I􏽥Y(x), F􏽥Y(x) ∈ [0, 1] and satisfies 0≤T􏽥Y(x) + I􏽥Y(x)+

F􏽥Y(x)≤ 3. Let (T􏽥Y(x), I􏽥Y(x), F􏽥Y(x)) be the single-valued
neutrosophic number (SVNN) and abbreviated as
x � (Tx, Ix, Fx).

Definition 3 [31]. For any two SVNNs xm � (Tm, Im, Fm)

and xn � (Tn, In, Fn), the related operations are defined as
follows:

xm + xn � Tm + Tn − TmTn, ImIn, FmFn( 􏼁,

xm × xn � TmTn, Im + In − ImIn, Fm + Fn − FmFn( 􏼁,

kxm � 1 − 1 − Tm( 􏼁
k
, Im( 􏼁

k
, Fm( 􏼁

k
􏼐 􏼑, k> 0

xm( 􏼁
k

� Tm( 􏼁
k
, 1 − 1 − Im( 􏼁( 􏼁

k
, 1 − 1 − Fm( 􏼁( 􏼁

k
􏼐 􏼑, k> 0.

(1)
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Definition 4 [32]. +e complement set of a SVNS 􏽥Y is 􏽥Y
c,

which is defined by

T􏽥Yc (x) � F􏽥Y(x);

I􏽥Yc (x) � 1 − I􏽥Y(x);

F􏽥Yc (x) � T􏽥Y(x).

(2)

Definition 5 [31]. Let x � (Tx, Ix, Fx) be a SVNN; the cosine
similarity S(x) of x is described as follows:

S(x) �
T(x)

����������������
T(x) + I(x) + F(x)

􏽰 . (3)

Definition 6 [31]. For any two SVNNs xm � (Tm, Im, Fm)

and xn � (Tn, In, Fn), if S(xm)≤ S(xn), then xm ≤xn.

Definition 7 [32]. Let xm � (Tm, Im, Fm) and xn � (Tn, In,

Fn) be any two SVNNs; the Hamming distance between two
SVNNsxm and xn is described as follows:

d xm, xn( 􏼁 � Tm − Tn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Im − In

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Fm − Fn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (4)

+e normalized Hamming distance between two SVNNs
xm and xn is described as follows:

dN xm, xn( 􏼁 �
1
3

Tm − Tn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Im − In

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Fm − Fn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

(5)

where 0≤d(xm, xn)≤ 3, 0≤dN(xm, xn)≤ 1.

3. Basic Model of SVNDTRS

In this section, we introduce a model of SVNDTRS based on
3WDs. At first, we use SVNN to build a LF matrix. +e loss
of different decision schemes under different state variables
is illustrated in Table 1.

For the Bayesian decision [33, 34], the decision-making
process is described by the state set and action set. +e state
set is described by Ω � Γ, ¬Γ{ } and indicates whether
the element x is in Γ. Among them, Γ is the set of objects
for correct classification and ¬Γ is the set of objects for
wrong classification. +is action set is represented by
A � aP, aB, aN􏼈 􏼉, where aP, aB, and aN signify the decision
actions that divide an object x into positive, boundary, and
negative domains. +e positive domain signifies that x

belongs to Γ, that is, the accept event objects. +e negative
domain signifies that x does not belong to Γ, that is, the
reject event objects. +e boundary domain signifies

whether the uncertainty x belongs to Γ, that is, it does not
promise or delay the decision event objects. In addition, the
parameters λmn(m � P, B, N; n � P, N) describe the LFs.
λPP and λPN signify the costs of correct classification and
error classification of the object x in accepted decision; λBP

and λBN signify the costs of correct classification and error
classification of the object x in delayed decision; and λNP

and λNN signify the costs of correct classification and error
classification of the object x in rejected decision.

TPP ≤TBP <TNP, (6)

INP ≤ IBP < IPP, (7)

FNP ≤FBP <FPP, (8)

TNN ≤TBN <TPN, (9)

IPN ≤ IBN < INN, (10)

FPN ≤FBN <FNN. (11)

Moreover, new constraints should be added as follows:

0≤TPP + IPP + FPP ≤ 3,

0≤TBP + IBP + FBP ≤ 3,

0≤TNP + INP + FNP ≤ 3,

0≤TPN + IPN + FPN ≤ 3,

0≤TBN + IBN + FBN ≤ 3,

0≤TNN + INN + FNN ≤ 3.

(12)

According to references [35, 36], (6)–(11) are the pre-
requisites for SVNDTRS. By taking advantage of the con-
clusions of Definitions 5-6, the following proposition can be
depicted.

Proposition 1. According to conditions (6)–(11), we can get
the following relationship:

λPP ≤ λBP < λNP,

λNN ≤ λBN < λPN.
(13)

For the matter x belonging to Γ, the loss caused by de-
marcating it into positive domain will not be greater than the
loss of dividing it into boundary domain. +e loss of both is
not more than that caused by dividing it into negative domain.
Similarly, for thematter x which belongs to ¬Γ, the loss caused
by falling it into negative domain will not be greater than that
caused by bringing it to boundary domain, both of them are
less than that caused by brings it to positive domain.

Let P(Γ ∣ [x]) be the conditional probability that x

belongs to Γ, and P(¬Γ ∣ [x]) is the conditional probability
that x belongs to ¬Γ. +erefore, we can get P(Γ ∣ [x]) +

P(¬Γ |[x]) � 1. By using the Bayesian risk decision theory

Table 1: Loss functions.

Γ(P) ¬Γ(N)

aP λPP � (TPP, IPP, FPP) λPN � (TPN, IPN, FPN)

aB λBP � (TBP, IBP, FBP) λBN � (TBN, IBN, FBN)

aN λNP � (TNP, INP, FNP) λNN � (TNN, INN, FNN)
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[24, 33, 34], for the matter x, the expected losses
R(ai ∣ [x])(i � P, B, N) from taking different operations are
indicated as follows:

R aP | [x]( 􏼁 � λPPP(Γ | [x])⊕ λPNP(¬Γ | [x]), (14)

R aB | [x]( 􏼁 � λBPP(Γ | [x])⊕ λBNP(¬Γ | [x]), (15)

R aN | [x]( 􏼁 � λNPP(Γ | [x])⊕ λNNP(¬Γ | [x]). (16)

According to the computing principle of SVNNs,
(14)–(16) can be computed as follows:

R aP ∣ [x]( 􏼁 � 1 − 1 − TPP( 􏼁
P(Γ|[x])

, I
P(Γ|[x])
PP , F

P(Γ|[x])
PP􏼐 􏼑⊕ 1 − 1 − TPN( 􏼁

P(¬Γ|[x])
, I

P(¬Γ|[x])
PN , F

P(¬Γ|[x])
PN􏼐 􏼑, (17)

R aB ∣ [x]( 􏼁 � 1 − 1 − TBP( 􏼁
P(Γ|[x])

, I
P(Γ|[x])
BP , F

P(Γ|[x])
BP􏼐 􏼑⊕ 1 − 1 − TBN( 􏼁

P(¬Γ|[x])
, I

P(¬Γ|[x])
BN , F

P(¬Γ|[x])
BN􏼐 􏼑, (18)

R aN ∣ [x]( 􏼁 � 1 − 1 − TNP( 􏼁
P(Γ|[x])

, I
P(Γ|[x])
NP , F

P(Γ|[x])
NP􏼐 􏼑⊕ 1 − 1 − TNN( 􏼁

P(¬Γ|[x])
, I

P(¬Γ|[x])
NN , F

P(¬Γ|[x])
NN􏼐 􏼑. (19)

For the expected losses of (17)–(19), we can get the
following propositions.

Proposition 2. In accordance with the algorithms of SVNSs,
the expected losses R(ai ∣ [x])(i � P, B, N) can be recounted
as follows:

R aP ∣ [x]( 􏼁 � 1 − 1 − TPP( 􏼁
P(Γ|[x]) 1 − TPN( 􏼁

P(¬Γ|[x])
, I

P(Γ|[x])
PP I

P(¬Γ|[x])
PN , F

P(Γ|[x])
PP F

P(¬Γ|[x])
PN􏼐 􏼑,

R aB ∣ [x]( 􏼁 � 1 − 1 − TBP( 􏼁
P(Γ|[x]) 1 − TBN( 􏼁

P(¬Γ|[x])
, I

P(Γ|[x])
BP I

P(¬Γ|[x])
BN , F

P(Γ|[x])
BP F

P(¬Γ|[x])
BN􏼐 􏼑,

R aN ∣ [x]( 􏼁 � 1 − 1 − TNP( 􏼁
P(Γ|[x]) 1 − TNN( 􏼁

P(¬Γ|[x])
, I

P(Γ|[x])
NP I

P(¬Γ|[x])
NN , F

P(Γ|[x])
NP F

P(¬Γ|[x])
NN􏼐 􏼑.

(20)

Proof. For the expected lossesR(aP ∣ [x]), we first denote that
l1 � (1 − TPP)P(Γ|[x]), l2 � (1 − TPN)P(¬Γ|[x]), m1 � I

P(Γ|[x])
PP ,

m2 � I
P(¬Γ|[x])
PN , n1 � F

P(Γ|[x])
PP , and n2 � F

P(¬Γ|[x])
PN . According

to (17)–(19) and SVNN rules of operation, R(aP ∣ [x]) is
computed as follows:

R aP | [x]( 􏼁 � 1 − 1 − TPP( 􏼁
P(Γ|[x])

, I
P(Γ|[x])
PP , F

P(Γ|[x])
PP􏼐 􏼑

⊕ 1 − 1 − TPN( 􏼁
P(¬Γ|[x])

, I
P(¬Γ|[x])
PN , F

P(¬Γ|[x])
PN􏼐 􏼑

� 1 − l1, m1, n1( 􏼁⊕ 1 − l2, m2, n2( 􏼁

� 1 − l1( 􏼁 + 1 − l2( 􏼁 − 1 − l1( 􏼁 1 − l2( 􏼁, m1m2, n1n2( 􏼁

� 1 − l1l2, m1m2, n1n2( 􏼁

� 1 − 1 − TPP( 􏼁
P(Γ[x]) 1 − TPN( 􏼁

P(¬Γ|[x])
, I

P(Γ|[x])
PP I

P(¬Γ|[x])
PN , F

P(Γ|[x])
PP F

P(¬Γ|[x])
PN􏼐 􏼑.

(21)

Similarly, the expected losses R(aB ∣ [x]) and
R(aN ∣ [x]) can be proved.

Proposition 3. Assuming that P(C ∣ [x]) is an invariant
constant with P(Γ ∣ [x]) + P(¬Γ ∣ [x] � 1, TR(ai|x) � 1 − (1−

TiP)P(Γ|[x])(1 − TiN)P(¬Γ|[x]) is nonmonotonically increasing as
TiP and TiN(i � P, B, N) increase.

Proof. Let xP1
� (TiP1

, IiP1
, FiP1

) and xP2
� (TiP2

, IiP2
, FiP2

)

be any two SVNNs, and TiP1
<TiP2

, IiP1
< IiP2

, and
FiP1
<FiP2

. Let xN1
� (TiN1

, IiN1
, FiN1

) and xN2
� (TiN2

, IiN2
,

FiN2
) be any two SVNNs, and TiN1

<TiN2
, IiN1
< IiN2

, and
FiN1
<FiN2

.

SinceTiP1
<TiP2

andTiN1
<TiN2

, we have 1 − TiP1
> 1 − TiP2

and 1 − TiN1
> 1 − TiN2

; then, we obtain (1 − TiP1
)P(Γ|[x]) >

(1 − TiP2
)P(Γ|[x]) and (1 − TiN1

)P(¬Γ|[x]) > (1 − TiN2
)P(¬Γ|[x]).

Furthermore, we have (1 − TiP1
)P(Γ|[x])(1 − TiN1

)P(¬Γ|[x]) >
(1 − TiP2

)P(Γ|[x])(1 − TiN2
)P(¬Γ|[x]).

Finally, we have 1 − (1 − TiP1
)P(Γ|[x])(1 − TiN1

)P(¬Γ|[x]) <
1 − (1 − TiP2

)P(Γ ∣[x])(1 − TiN2
)P(¬Γ|[x]).

Proposition 4. Assuming that P(Γ | [x]) is an invariant
constant with P(Γ ∣ [x]) + P(¬Γ ∣ [x]) � 1, IR(ai|x) � I

P(Γ|[x])
iP

I
P(¬Γ|[x])
iN is nonmonotonically increasing as IiP and IiN (i �

P, B, N) increase.
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Proof. Since IiP1
< IiP2

and IiN1
< IiN2

, we have I
P(Γ|[x])
iP1
<

I
P(Γ|[x])
iP2

and I
P(¬Γ|[x])
iN1
< I

P(¬Γ|[x])
iN2

; then, we obtain I
P(Γ|[x])
iP1

I
P(¬Γ|[x])
iN1
< I

P(Γ|[x])
iP2

I
P(¬Γ|[x])
iN2

.

Proposition 5. Assuming that P(Γ ∣ [x]) is an invariant
constant with P(Γ[x]) + P(¬Γ ∣ [x] � 1, FR(ai|x) � F

P(Γ[x])
iP

F
P(¬Γ|[x])
iN is nonmonotonically increasing as FiP and

FiN(i � P, B, N) increase.

Proof. Since FiP1
<FiP2

and FiN1
<FiN2

, we have F
P(Γ|[x])
iP1

<F
P(Γ|[x])
iP2

and F
P(¬Γ|[x])
iN1
<F

P(¬Γ|[x])
iN2

; then, we obtain
F

P(Γ|[x])
iP1

F
P(¬Γ|[x])
iN1
<F

P(Γ|[x])
iP2

F
P(¬Γ|[x])
iN2

.

Based on the results discussed in [15], the action plan
with the lowest decision-making risk always is chosen as the
first choice, and the 3WD rules can be expressed as

(P) : If R aP | [x]( 􏼁≤R aB | [x]( andR aP | [x]( 􏼁≤R aN | [x]( 􏼁, thenx ∈ POS(Γ),

(B) : If R aB | [x]( 􏼁≤R aP | [x]( 􏼁 andR aB | [x]( 􏼁≤R aN | [x]( 􏼁, thenx ∈ BND(Γ),

(N) : If R aN | [x]( 􏼁≤R aP | [x]( 􏼁 andR aN | [x]( 􏼁≤R aB | [x]( 􏼁, thenx ∈ NEG(Γ).

(22)

4. Establishing the Weights

In fact, in most MADM processes, due to the pressure of
time, the limitation of expertise, and the lack of data in
problem areas, we often encounter weights of each at-
tribute that are unknown or partly known. Because many
existing methods are not suitable for solving such prob-
lems, two types of methods are generally used to de-
termine weights. One is subjective weighting, such as the
point estimation method and AHP method; the other is
objective weighting, such as the deviation maximization
method and entropy method [28]. +e subjective weight
method gives the subjective weight according to the in-
dividual preferences of decision makers. While applying
the objective weighting method, the subjective judgment
of the decision maker is neglected, although the data are
fully utilized. +erefore, these two approaches have lim-
itations. +is paper synthesized these two methods and
proposed an overall merit model based on the AHP
method and entropy method to optimize the integration
weights.

4.1. AHP Method. Suppose that the complementary judg-
ment matrix (the scale is 0.1∼0.9) given by the decision
maker for each attribute in the solution set is Q � (qjk)n×n:

Q �

q11 q12 · · · q1n

q21 q22 · · · q2n

⋮ ⋮ · · · ⋮

qn1 qn2 · · · qnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

+e judgment matrix is constructed by using the 0.1–0.9
five-scale method proposed by Du [37]. +e scale values of
qjk are shown in Table 2.

+e properties are shown as follows:

qjk > 0,

qjk + qkj � 1,

qkk � 0.5.

(24)

+en, we get the subjective weights μj(j � 1, 2, . . . , n) by
the following formulas [8]:

μj �
􏽐

n
k�1qjk +(n/2) − 1

n(n − 1)
. (25)

+en, we get the subjective weight vector μ � (μ1, μ2,
. . . , μn)T of attribute Cj(j � 1, 2, . . . , n) with μj ≥ 0 and
􏽐

n
j�1μj � 1.
Of course, (25) is right only when the complementary

judgment matrix has consistency.

4.2. Entropy Method. +e entropy method can dynamically
mine the effective information provided by data, and its
objective way of empowerment can measure the importance
of evaluation index. It determines the corresponding weight
by calculating the size of the entropy measure [29].

+e entropy measure [29] of a SVNS 􏽥Y � T􏽥Y(xi),􏼈

I􏽥Y(xi), F􏽥Y(xi) ∣ x ∈ X} is

Ei(
􏽥Y) � 1 −

􏽐
m
i�1 T􏽥Y xi( 􏼁 + F􏽥Y xi( 􏼁( 􏼁 I􏽥Y xi( 􏼁 − Ic

􏽥Y xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

m
.

(26)

+e properties are as follows [29]:

(1) Ei(
􏽥Y) � 0, if 􏽥Y is a clear set and I􏽥Y(xi) � 0,∀x ∈ X

(2) Ei(
􏽥Y) � 1 if (T􏽥Y(xi), I􏽥Y(xi), F􏽥Y(xi)) � (0.5, 0.5,

0.5), ∀x ∈ X

(3) Ei(
􏽥Y)≥Ei(

􏽥Υ) if 􏽥Y is more deterministic than 􏽥Υ,
i.e., T􏽥Y(xi) + F􏽥Y(xi)≤T􏽥Υ(xi) + F􏽥Υ(xi) and |I􏽥Y(xi) −

I􏽥Υc (xi)|≤ |I􏽥Υ(xi) − I􏽥Υc (xi)|

(4) Ei(
􏽥Y) � Ei(

􏽥Y
c
), ∀x ∈ X

Table 2: Scaling and the meaning of AHP.

Scaling Meaning
0.1 Ck is extremely less important than Cj

0.3 Ckis slightly less important than Cj

0.5 Ck is as important as Cj

0.7 Ck is slightly more important than Cj

0.9 Ck is extremely more important than Cj

0.2, 0.4, 0.6, 0.8 +e median of the adjacent judgments
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+e entropy value for Cj can be denoted as

Ej � 1 −
􏽐

m
i�1 Tij xi( 􏼁 + Fij xi( 􏼁􏼐 􏼑 Iij xi( 􏼁 − Ic

ij xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

m
,

i � 1, 2, . . . , m; j � 1, 2, . . . , n.

(27)

+e entropy weight [28] ωj is represented by

ωj �
1 − Ej

􏽐
n
j�1 1 − Ej􏼐 􏼑

�
􏽐

m
i�1 Tij xi( 􏼁 + Fij xi( 􏼁􏼐 􏼑 Iij xi( 􏼁 − Ic

ij xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
n
j�1 􏽐

m
i�1 Tij xi( 􏼁 + Fij xi( 􏼁􏼐 􏼑 Iij xi( 􏼁 − Ic

ij xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

, j � 1, 2, . . . , n. (28)

+en, we get the objective weight vector ω � (ω1,ω2,

. . . ,ωn)T of attribute Cj(j � 1, 2, . . . , n) with ωj ≥ 0 and
􏽐

n
j�1ωj � 1.

4.3.Determining theCombinationWeight. Attribute weight is
of great significance to MADM, which directly affects the
accuracy of decision making. In order to make an accurate and
scientific decision, it is necessary to consider the subjective
preferences of decision makers and strive to reduce the sub-
jective arbitrariness of weights. Besides, the objective in-
formation of decision objects is fully utilized to achieve the
unity of subjectivity and objectivity. +erefore, it is of great
significance to combine the subjective and objective weights
reasonably to form a combination weight. We use the method
of minimum total deviation [28] to determine the combination
weight.+e core idea of the optimal combinationweightmodel
is that the weight deviation obtained by various weighting
methods should be as small as possible [38, 39]. To this end, the
following basic models can be established:

min􏽘
m

i�1
􏽘

n

j�1
wj − ωj􏼐 􏼑S 􏽥Yij􏼐 􏼑􏽨 􏽩

2
+ wj − μj􏼐 􏼑S 􏽥Yij􏼐 􏼑􏽨 􏽩

2
􏼚 􏼛

s.t.

􏽘

n

j�1
wj � 1, wj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

+e Lagrange multiplier function is constructed by
solving the model:

L wj, η􏼐 􏼑 � 􏽘
m

i�1
􏽘

n

j�1
wj − ωj􏼐 􏼑S 􏽥Yij􏼐 􏼑􏽨 􏽩

2
+ wj − μj􏼐 􏼑S 􏽥Yij􏼐 􏼑􏽨 􏽩

2
􏼚 􏼛

+ 2η 􏽘
n

j�1
wj − 1⎛⎝ ⎞⎠,

(30)

and we have

zL wj, η􏼐 􏼑

zwj

� 􏽘
m

i�1
2 2wj − μj + ωj􏼐 􏼑􏽨 􏽩 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
+ 2η � 0,

zL wj, η􏼐 􏼑

zη
� 2 􏽘

n

j�1
wj − 1⎛⎝ ⎞⎠ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

+en, we obtain

η �
􏽐

n
j�1 μj + ωj􏼐 􏼑􏽐

m
i�1 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − 2

n
,

wj �
μj + ωj􏼐 􏼑􏽐

m
i�1 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − 􏽐

n
j�1 μj + ωj􏼐 􏼑􏽐

m
i�1 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − 2􏼒 􏼓/(n)􏼒 􏼓

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)
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+en we get the weight vector W � (w1, w2, . . . , wn)T of
attribute Cj(j � 1, 2, . . . , n) with wj ≥ 0 and 􏽐

n
j�1wj � 1.

5. Decision Analysis for 3WDs with SVNDTRS

In the existing 3WDs models, the LF is an important pa-
rameter. How to use the appropriate information form to
represent the LF is very important. In addition to describing
imperfect information in real decision-making system,
SVNSs can also handle uncertain and inconformity in-
formation flexibly and effectively. Furthermore, how to
determine the conditional probability is also the key to
3WDs. +e conditional probability in many documents is

subjectively given by the decision makers, making the de-
cision results too subjective. +e GRA method provides a
unique perspective for the assessment of conditional
probability. According to the above presentation, we con-
structed a new SVNDTRS model based on the GRAmethod.
In this section, we mainly describe the decision rules of the
SVNDTRS model and how to determine the conditional
probability by the GRA method.

5.1. Basic Rules of SVNDTRSs. In light of the results of
Definitions 5-6 and (P)-(N), we give the decision rules (P1)-
(N1) as follows:

(P1) : if S R aP | [x]( 􏼁( 􏼁≤ S R aB | [x]( 􏼁( 􏼁 and S R aP | [x]( 􏼁( 􏼁≤ S R aN | [x]( 􏼁( 􏼁, then x ∈ POS(Γ), (33)

(B1) : if S R aB | [x]( 􏼁( 􏼁≤ S R aP | [x]( 􏼁( 􏼁 and S R aB | [x]( 􏼁( 􏼁≤ S R aN | [x]( 􏼁( 􏼁, then x ∈ BND(Γ), (34)

(N1) : if S R aN | [x]( 􏼁( 􏼁≤ S R aP | [x]( 􏼁( 􏼁 and S R aN | [x]( 􏼁( 􏼁≤ S R aB | [x]( 􏼁( 􏼁, then x ∈ NEG(Γ), (35)

where the similar degree S(R(ai | [x]))(i � P, B, N) of the
expected losses is calculated as

S R ai | [x]( 􏼁( 􏼁 �
T R ai | [x]( 􏼁( 􏼁

��������������������������������������
T R ai | [x]( 􏼁( 􏼁 + I R ai | [x]( 􏼁( 􏼁 + F R ai | [x]( 􏼁( 􏼁

􏽱 , (36)

S R aP | [x]( 􏼁( 􏼁 �
1 − 1 − TPP( 􏼁

P(Γ|[x]) 1 − TPN( 􏼁
P(¬Γ|[x])

��������������������������������������������������������������������

1 − 1 − TPP( 􏼁
P(Γ|[x]) 1 − TPN( 􏼁

P(¬Γ|[x])
􏼐 􏼑

2
+ I

P(Γ|[x])
PP I

P(¬Γ|[x])
PN􏼐 􏼑

2
+ F

P(Γ|[x])
PP F

P(¬Γ|[x])
PN􏼐 􏼑

2
􏽲 ,

(37)

S R aB | [x]( 􏼁( 􏼁 �
1 − 1 − TBP( 􏼁

P(Γ|[x]) 1 − TBN( 􏼁
P(¬Γ|[x])

��������������������������������������������������������������������

1 − 1 − TBP( 􏼁
P(Γ|[x]) 1 − TBN( 􏼁

P(¬Γ|[x])
􏼐 􏼑

2
+ I

P(Γ|[x])
BP I

P(¬Γ|[x])
BN􏼐 􏼑

2
+ F

P(Γ|[x])
BP F

P(¬Γ|[x])
BN􏼐 􏼑

2
􏽲 ,

(38)

S R aN | [x]( 􏼁( 􏼁 �
1 − 1 − TNP( 􏼁

P(Γ|[x]) 1 − TNN( 􏼁
P(¬Γ|[x])

��������������������������������������������������������������������

1 − 1 − TNP( 􏼁
P(Γ|[x]) 1 − TNN( 􏼁

P(¬Γ|[x])
􏼐 􏼑

2
+ I

P(Γ|[x])
NP I

P(¬Γ|[x])
NN􏼐 􏼑

2
+ F

P(Γ|[x])
NP F

P(¬Γ|[x])
NN􏼐 􏼑

2
􏽲 .

(39)

5.2. Computing Conditional Probability of SVNDTRS with
GRA Method. Let 􏽥Y � (􏽥Yij)m×n � (Tij, Iij, Fij)m×n be a
SVNS-based decision matrix, where Tij, Iij, and Fij

represent the membership degree, hesitancy degree, and
nonmembership degree of evaluation for the attribute Cj

with respect to the alternative Ai.
Firstly, we determine the relative RNPIS X+ and the

RNNIS X− .
+e RNPIS X+ can be defined as

X
+

� x
+
1 , x

+
2 , . . . , x

+
n􏼈 􏼉, (40)

where x+
j � (T+

j , I+
j , F+

j ) � (max1≤i≤mTij,min1≤i≤mIij,

min1≤i≤mFij) for j � 1, 2, . . . , n.

And the RNNIS X− can be defined as

X
−

� x
−
1 , x

−
2 , . . . , x

−
n􏼈 􏼉, (41)

where x−
j � (T−

j , I−
j , F−

j ) � (min1≤i≤mTij,min1≤i≤mIij,

min1≤i≤mFij) for j � 1, 2, . . . , n.
+e grey relational coefficient (GRC) between xi and the

RNPIS X+ on the j− th attribute is

g
+
ij �

min1≤i≤mmin1≤j≤nΔ+
ij + ξmax1≤i≤nmax1≤j≤nΔ+

ij

Δ+
ij + ξmax1≤i≤mmax1≤j≤nΔ+

ij

, (42)

where Δ+
ij � dN(xij, x+

j ), for i � 1, 2, . . . , m, and j � 1, 2,

. . . , n, ξ � 0.5.
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+e GRC between xi and the RNPIS X+ is

G
+
i � 􏽘

n

j�1
wjg

+
ij, i � 1, 2, . . . , m. (43)

+e GRC between xi and the RNNIS X− on the j − th
attribute is

g
−
ij �

min1≤i≤mmin1≤j≤nΔ−
ij + ξmax1≤i≤mmax1≤j≤nΔ−

ij

Δ−
ij + ξmax1≤i≤mmax1≤j≤nΔ−

ij

,

(44)

where Δ−
ij � dN(xij, x−

j ), for i � 1, 2, . . . , m and j � 1, 2, . . . ,

n, ξ � 0.5.
+e GRC between xi and the RNNIS X− is

G
−
i � 􏽘

n

j�1
wjg

−
ij, i � 1, 2, . . . , m. (45)

Compute the neutrosophic relative relational degree
(NRRD) Hi:

Hi �
G+

i

G+
i + G−

i

�
􏽐

n
j�1wj min1≤i≤mmin1≤j≤nΔ+

ij + ξmax1≤i≤mmax1≤j≤nΔ+
ij􏼐 􏼑/ Δ+

ij + ξmax1≤i≤mmax1≤j≤nΔ+
ij􏼐 􏼑􏼐 􏼑

􏽐
n
j�1wj min1≤i≤mmin1≤j≤nΔ+

ij + ξmax1≤i≤mmax1≤j≤nΔ+
ij􏼐 􏼑/ Δ+

ij + ξmax1≤i≤mmax1≤j≤nΔ+
ij􏼐 􏼑􏼐 􏼑 + 􏽐

n
j�1wj min1≤i≤mmin1≤j≤nΔ−

ij + ξmax1≤i≤mmax1≤j≤nΔ−
ij􏼐 􏼑/ Δ−

ij + ξmax1≤i≤mmax1≤j≤nΔ−
ij􏼐 􏼑

,

(46)

where Δ+
ij � dN(xij, x+

j ) � (1/3)(|Tij − T+
j | + |Iij − I+

j | +

|Fij − F+
j |), Δ−

ij � dN(xij, x−
j ) � (1/3) (|Tij − T−

j | + |Iij −

I−
j | + |Fij − F−

j |).
Here, NRRD Hi represents the probability of xi in the

state Γ.+erefore, we defineHi as the conditional probability
of object xi.

5.3. Approaches for SVBDTRS Model Based on 3WDs. In
this section, we utilize the SVNDTRS model to deal with a
MADM problem. For a MADM problem, let A � A1,􏼈

A2, . . . , Am} be the set of alternatives and C � C1,􏼈

C2, . . . , Cn} be the set of attributes. Suppose that Y �

(􏽥Yij)m×n is the SVNS decision matrix, which is shown as
follows:

Y �

􏽥Y11
􏽥Y12 · · · 􏽥Y1n

􏽥Y21
􏽥Y22 · · · 􏽥Y2n

⋮ ⋮ ⋮ ⋮
􏽥Ym1

􏽥Ym2 · · · 􏽥Ymn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

where 􏽥Yij is the preference value given by the decisionmaker
for the alternatives Ai ∈ A(i � 1, 2, . . . , m) to the attribute
Cj ∈ C(j � 1, 2, · · · , n). Based on these necessary conditions,
the decision results are required.

Next, we use the SVNDTRS model to solve this MADM
problem. +e method comprises the following procedures:

Step 1: according to the nonempty object sets and
nonempty attribute sets, establish the LF matrix.
Step 2: with Section 4, determine the weight
W � (w1, w2, . . . , wn)T of all attributes.
Step 2-1: according to the complementary judgment
matrix given by experts, the subjective weight of at-
tributes is calculated by formula (25):

μj �
􏽐

n
k�1qjk +(n/2) − 1

n(n − 1)
. (48)

Step 2-2: according to the entropy method, the ob-
jective weight of attributes is computed by formula
(28):

ωj �
1 − Ej

􏽐
n
j�1 1 − Ej􏼐 􏼑

�
􏽐

m
i�1 Tij xi( 􏼁 + Fij xi( 􏼁􏼐 􏼑 Iij xi( 􏼁 − Ic

ij xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
n
j�1 􏽐

m
i�1 Tij xi( 􏼁 + Fij xi( 􏼁􏼐 􏼑 Iij xi( 􏼁 − Ic

ij xi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

. (49)

Step 2-3: based on the optimal combination weighting
model with minimum total deviation, the combination
weights of attributes are calculated by formula (32):

wj �
μj + ωj􏼐 􏼑􏽐

m
i�1 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − 􏽐

n
j�1 μj + ωj􏼐 􏼑􏽐

m
i�1 S 􏽥Yij􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓 − 2􏼒 􏼓/(n)

2
.

(50)
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Step 3: for (40) and (41), identify the RNPIS X+ and the
RNNIS X− .
Step 4: in light of (46), calculate the NRRD of xi to the
RNPIS X+, expressed as Hi. Furthermore, reckon the
value of conditional probability of the xi as
P(Γ | xi) � Hi (i � 1, 2, . . . , m).
Step 5: on the basis of the LFs and the conditional
probability, use (37)–(39) to compute cosine similarity
S(R(ai | [x]))(i � P, B, N) of the expected losses.
Step 6: in line with the decision rules (P1)-(N1), further
determine the decision results of each alternative.

6. A Numerical Example

A company is preparing to expand its production scale to
cope with the complexity of the market and the diversity of
demand. At present, it is planning to select long-term
suppliers from six suppliers. For core enterprises, how to
select suppliers scientifically and reasonably plays a crucial
role in cost control, supply chain stability, and risk man-
agement. +e six suppliers form the sets A � A1, A2, A3,􏼈

A4, A5, A6}. +e company considers the four attributes of
the supplier in terms of quality, production capacity, after-
sales service, and management ability. +e four attributes
constitute the attribute sets C � C1, C2, C3, C4􏼈 􏼉, and the
weight of each attribute is unknown. +e six alternatives
A � A1, A2, A3, A4, A5, A6􏼈 􏼉 are appraised by the decision
maker under the four attributes C � C1, C2, C3, C4􏼈 􏼉, and
the decision matrices Y � (􏽥Yij)6×4 are built , as listed in
Table 3.

6.1. Decision-Making Steps

Step 1: according to (6)–(11) and the alternative eval-
uation, the LF is given as follows: λPP � (TPP, IPP,

FPP) � (0, 0.8, 1), λPN � (TPN, IPN, FPN) � (0.7, 0.2,

0.15), λBP � (TBP, IBP, FBP) � (0.35, 0.4, 0.3), λBN �

(TBN, IBN, FBN) � (0.5, 0.3, 0.4), λNP � (TNP, INP,

FNP) � (0.9, 0.3, 0.2), λNN � (TNN, INN, FNN) � (0.05,

0.95, 0.9).
Step 2: with Section 4, determine the weight
W � (w1, w2, . . . , wn)T of all attributes.
Step 2-1: the complementary judgment matrix given by
experts is as follows:

Q �

0.5 0.3 0.5 0.1

0.7 0.5 0.7 0.3

0.5 0.3 0.5 0.1

0.9 0.7 0.9 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

According to formula (25), we can calculate the sub-
jective weight of attributes μ � (0.3, 0.2333, 0.3,

0.1667)T.
Step 2-2: according to the entropy method, we
can compute the objective weight of attributes by
formula (28):

ω � (0.2250, 0.2773, 0.2425, 0.2552)
T
. (52)

Step 2-3: based on the optimal combination weighting
model with minimum total deviation, the combination
weights of attributes are calculated by formula (32):
w � (0.2650, 0.2344, 0.2476, 0.2530)T.
Step 3: for (40) and (41), we identify the RNPIS X+ and
the RNNIS X− :

X
+

� [(0.7, 0.0, 0.1), (0.9, 0.0, 0.1), (0.7, 0.1, 0.1),

(0.7, 0.1, 0.1)],

X
−

� [(0.4, 0.3, 0.4), (0.4, 0.3, 0.4), (0.3, 0.2, 0.5),

(0.5, 0.2, 0.3)].

(53)

Step 4: on the basis of (46), we compute the NRRD of xi

with respect to the RNPIS X+, expressed as Hi. Fur-
thermore, we reckon the value of conditional proba-
bility of xi as P(Γ | xi) � Hi (i � 1, 2, . . . , 6). +e results
are shown in Table 4.
Step 5: on the basis of the LFs and the conditional
probability, we can calculate cosine similarity of the
expected losses by using (37)–(39).+e results are listed
in Table 5.
In order to more intuitively express the 3WD results of
each alternative, we present the results of Table 5 in
Figure 1.
Step 6: according to the decision rules (P1)-(N1), we
can further determine the result of each alternative:
A6 ∈ POS(Γ), A5, A3, A4, A2 ∈ BND(Γ), and A1 ∈
NEG(Γ). From the above results, we can see that A6
should be invested, A1 should not be invested, and A5,
A3, A4, and A2 whether or not should be invested
should be further studied.

6.2. Comparative Analysis. For thoroughly testing the
availability and significance of our development method,
two methods are adopted for comparative analysis, in-
cluding the grey relation analysis method based on Biswas
et al. [32] and the extended TOPSIS method proposed by
Zhang and Wu [40]. Furthermore, we apply these two
methods to the same example as in this paper.

(1) +e decision result based on the GRA method
proposed by Biswas et al. [32].
Utilizing the GRA method, the GRC and the NRRD
are indicated in Table 6.

Table 3: SVNS decision matrix.

C1 C2 C3 C4

A1 (0.4, 0.3, 0.2) (0.5, 0.1, 0.4) (0.3, 0.2, 0.3) (0.5, 0.1, 0.3)

A2 (0.5, 0.0, 0.1) (0.3, 0.2, 0.3) (0.4, 0.2, 0.5) (0.6, 0.1, 0.1)

A3 (0.5, 0.1, 0.4) (0.5, 0.0, 0.4) (0.6, 0.2, 0.1) (0.7, 0.2, 0.1)

A4 (0.7, 0.2, 0.1) (0.4, 0.3, 0.2) (0.6, 0.1, 0.3) (0.6, 0.1, 0.2)

A5 (0.4, 0.3, 0.2) (0.5, 0.2, 0.2) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1)

A6 (0.6, 0.1, 0.1) (0.9, 0.1, 0.1) (0.6, 0.2, 0.3) (0.5, 0.2, 0.2)
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From Table 6, we can get H6 >H5 >H3 >H4 >
H2 >H1, so A6 >A5 >A3 >A4 >A2 >A1. +us the
best alternative is A6.

(2) +e decision result based on the extended TOPSIS
method proposed by Zhang and Wu [40].

+e weights of attributes are determined by maximizing
deviation method as follows:

w � [0.2561, 0.3069, 0.2709, 0.1661]
T
. (54)

We can get the relative closeness RCi of each alternative
to the RNPIS X+ (Table 7).

From Table 7, we can get RC6 >RC3 >RC5 >RC4 >
RC2 >RC1, so A6 >A3 >A5 >A4 >A2 >A1. +us the best
option is A6.

From the above results, we can see that the GRA method
proposed by Biswas et al. [32] has the same ranking results as
that of our proposed method and has the same best option
A6. In this way, we can demonstrate the effectiveness of
our proposed method. Nevertheless, the decision-making
method in [32] is the attribute weight obtained by the
entropy method, without considering the subjective pref-
erences of decision makers. In this paper, the objective
weight is obtained by the entropy method, while the sub-
jective weight is obtained by the AHP method, and the
combination weight is obtained based on the method of
minimum total deviation. Moreover, the GRAmethod based
on [32] has a drawback, which can only give the ranking.+e
decision results based on SVNDTRS model not only gives
the ranking but also provides the relevant semantic expla-
nation for the selection of each alternative, which is more
scientific and flexible than the GRA method [32].

Table 4: +e GRC and the NRRD and its conditional probability.

A1 A2 A3 A4 A5 A6

G+
i 0.444 0.579 0.606 0.608 0.629 0.663

G−
i 0.868 0.750 0.647 0.658 0.666 0.628

Hi 0.339 0.436 0.483 0.480 0.484 0.514
P(Γ | Ai) 0.339 0.436 0.483 0.480 0.484 0.514

Table 5: +e cosine similarity degree of the expected losses.

A1 A2 A3 A4 A5 A6

S(R(aP | Ai)) 0.5111 0.4497 0.4177 0.4198 0.4172 0.3968
S(R(aB | Ai)) 0.4235 0.4130 0.4076 0.4080 0.4070 0.4042
S(R(aN | Ai)) 0.4219 0.4959 0.5279 0.5260 0.5284 0.5470

0

0.1

0.2

0.3

0.4

0.5

0.6

A1 A2 A3 A4 A5 A6

S(Rap(Ai))
S(Rab(Ai))
S(Ran(Ai))

Figure 1: +e cosine similarity degree of the expected losses.

Table 6: +e GRC and the NRRD.

A1 A2 A3 A4 A5 A6

G+
i 0.443 0.566 0.604 0.594 0.624 0.668

G−
i 0.864 0.763 0.645 0.674 0.660 0.624

Hi 0.339 0.426 0.483 0.468 0.486 0.517

Table 7: +e relative closeness of each alternative to the RNPIS X+.

A1 A2 A3 A4 A5 A6

RCi 0.3027 0.3682 0.5254 0.4889 0.5246 0.7016
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Comparing the ranking obtained by the MADMmethod
in [40] and the proposed method, we get the same best
choice A6, but the positions of alternatives A3 and A5 are not
the same. Among the rankings obtained in this paper, al-
ternative A5 is better than alternative A3. But in [40], al-
ternative A3 is better than alternative A5. +e reason for this
inconsistency is that the attribute weights of the two
methods are different. In [40], attribute weights are obtained
by maximizing deviation, ignoring the subjective prefer-
ences of decision makers, and C2 is the most important
attribute. +is paper combines the subjective weights ob-
tained by the AHP method and finds C1 as the most im-
portant attribute. +is paper not only considers the
subjective preferences of decision makers but also takes full
advantage of the evaluative information of decision-making
objects, reduces the subjective randomness of weight, and
achieves the unity of subjective and objective. +erefore, the
ranking of our proposed method is more reasonable.

In a word, the 3WD method based on the SVNDTRS
model proposed in this paper has the following advantages:
(1) It not only considers the subjective preferences of de-
cision makers but also makes the best of objective in-
formation of decision objects to realize the unity of
subjectivity and objectivity. (2) Using the GRA method to
obtain the conditional probability of 3WDs provides a new
viewpoint for obtaining the conditional probability of
3WDs. (3) It not only gives the ranking results of each al-
ternative but also provides the corresponding semantic
explanation for the selection of alternatives.

7. Conclusion

In this paper, we extended 3WDs to the environment of
SVNSs and used SVNSs to express the evaluation values
and LFs given by decision makers. We also proposed a
method to obtain the attribute weights. We applied the
AHP method to get the subjective weight of attributes and
entropy method to obtain the objective weight and
established the combination weight of attributes based on
the principle of minimum total deviation. It not only
considers the subjective preferences of decision makers but
also takes most advantage of the evaluative information of
decision makers to realize the unity of subjectivity and
objectivity. Based on this, we proposed a SVNDTRS model
based on the GRA method. +e NRRD calculated by the
GRA method is defined as the conditional probability of
3WDs. Finally, we extended the proposed method to a
numerical example of supplier selection and compared it
with other methods to demonstrate the effectiveness of our
proposed method. We presented a new idea for the de-
termination of conditional probability in 3WDs and a new
solution for the LF expressed by SVNSs in 3WDs. In future,
we will study the application of 3WDs to settle the MADM
problem composed of fuzzy information.
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