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Abstract: The aim of reducing the inspection cost and time using acceptance sampling can be achieved
by utilizing the features of allocating more than one sample item to a single tester. Therefore, group
acceptance sampling plans are occupying an important place in the literature because they have
the above-mentioned facility. In this paper, the designing of a group acceptance sampling plan is
considered to provide assurance on the product’s mean life. We design the proposed plan based on
neutrosophic statistics under the assumption that the product’s lifetime follows a Weibull distribution.
We determine the optimal parameters using two specified points on the operating characteristic curve.
The discussion on how to implement the proposed plan is provided by an illustrative example.

Keywords: time-truncated test; Weibull distribution; risk; uncertainty; neutrosophic

1. Introduction

The ambition of each producer is to globalize their business by means of marketing the products.
However, few producers reach this goal since they only make sincere efforts in improving and
controlling the product’s quality to accomplish this target. The producer who enhances the product’s
quality need not concern its globalization because the continuous improvement in quality helps to
increase the positive opinion of the products and to fulfill the consumer’s expectations. Hence, the
involvement of the producers with great efforts supports to attain the desired result and to achieve the
ambition. For quality improvement and maintenance purposes, the producer uses certain statistical
techniques, namely control charts and acceptance sampling (see Montgomery [1] and Schilling and
Neubauer [2]). In spite of the application of control charts in quality maintenance via monitoring the
manufacturing process, it is not suitable for assuring the quality of the finished products. But there is a
necessity to provide quality assurance for the products before they are received by the consumer. Under
this situation, the manufacturers may prefer complete inspection. However, complete inspections
are not appropriate for all situations because they are costly, require quality inspectors, and are time
consuming. Therefore, in most of the cases, manufacturers adopt sampling inspections to provide
quality assurance. In sampling inspection, a sample of items is selected randomly from the entire lot
for inspection.

Acceptance sampling is also a form of sampling inspection, in which the decision to accept or
reject a lot is made based on the results of sample items taken from the concerned lot. Obviously,
acceptance sampling overcomes the drawbacks of complete inspections, such as inspection cost and
time consumption, since it inspects only a part of the items of the lot for making decisions. Acceptance
sampling plans yield the sample size and acceptance criteria associated with the sampling rules to be
implemented. For further details on acceptance sampling, one may refer to Dodge [3] and Schilling and
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Neubauer [2]. In the literature, several sampling plans are available for lot sentencing with different
sampling procedures; however, a single-sampling plan (SSP) is the most basic, as well as the easiest,
sampling plan in terms of the implementation process. In SSP, a single sample of size # is taken for
lot sentencing, and the acceptance/rejection decision is made immediately by comparing the sample
results with acceptance numbers determined from attribute inspections or with acceptance criteria
from variables inspections. Many authors have investigated SSPs under various situations (see, for
example, Loganathan et al. [4], Liu and Cui [5], Govindaraju [6], and Hu and Gui [7]).

In SSP implementation, a sample of n items is distributed to 1 testers, and the decision is made after
consolidating the information obtained from all the testers. Obviously, it requires much time to make a
decision, and the inspection cost is also high. One can overcome these drawbacks by implementing a
group acceptance sampling plan (GASP) instead of using SSP. In GASP, a certain number of sample
items are allocated to a single tester, and the test is conducted simultaneously on the sample items.
Therefore, the testing time and inspection cost are reduced automatically under GASP when compared
to SSP. It is to be mentioned that the number of testers involved in the inspection is frequently referred
to as the number of groups, and the number of sample items allocated to each group is defined as
the group size. For the purposes of making a decision on the lot by utilizing minimum cost and time,
GASP has been used for the inspection of different quality characteristics by several authors (see, for
example, Aslam and Jun [8]).

When industrial practitioners are uncertain about the parameters, the inspection cannot be done
using traditional sampling plans. In this case, the use of fuzzy-based sampling plans is the best
alternative to traditional sampling plans. Fuzzy-based sampling plans have been widely used for lot
sentencing. Kanagawa and Ohta [9] proposed a single-attribute plan using fuzzy logic. More details on
fuzzy sampling plans can be seen in Chakraborty [10], Jamkhaneh and Gildeh [11], Turanoglu et al. [12],
Jamkhaneh and Gildeh [13], Tong and Wang [14], Uma and Ramya [15], Afshari and Gildeh [16], and
Khan et al. [17].

The fuzzy approach has been used to compute the degree of truth. Fuzzy logic is a special case of
neutrosophic logic. The later approach computes measures of indeterminacy in addition to the first
approach (see Smarandache [18]). Abdel-Basset et al. [19] discussed the application of neutrosophic
logic in decision making. Abdel-Basset et al. [20] worked on linear programming using the idea
of neutrosophic logic. Broumi et al. [21] provided the minimum spanning tree using neutrosophic
logic. More details can be seen in [22,23]. Neutrosophic statistics is treated as an extension of classical
statistics, in which set values are considered rather than crisp values. Sometimes, the data may be
imprecise, incomplete, and unknown, and exact computation is not possible. Under these situations,
the neutrosophic statistics concept is used (see Smarandache [24]). Broumi and Smarandache [25]
discussed the correlations of sets using neutrosophic logic. More details about the use of neutrosophic
logic in sets can be seen in [26-28]. But one can use a set of values (that respectively approximates
these crisp numbers) for a single variable using neutrosophic statistics. Chen et al. [29,30] introduced
neutrosophic numbers to solve rock engineering problems. Patro and Smarandache [31] and Alhabib
et al. [32] discussed some basicsofprobablity distribution under neutrosophic numbers. Nowadays, the
neutrosophic statistics concept is used for quality control purposes. When designing the control chart
and sampling plans under classical statistics, it is assumed that the value which represents the quality
of the product is known. But in neutrosophic statistics, such value is indeterminate or lies between
an interval. Some researchers have designed the control chart and acceptance sampling plans under
these statistics (see, for example, Aslam et al. [33]). Aslam [34] introduced neutrosophic statistics in
the area of acceptance sampling plans. Aslam and Arif [35] proposed a sudden death testing plan
under uncertainty.

As mentioned earlier, Aslam and Jun [8] designed GASP to ensure the Weibull-distributed
mean life of the products under classical statistics. They determined the optimal parameters for
some calculated values of failure probability; however, they did not consider the case where the
failure probability is uncertain. Therefore, in this paper, we attempted to design GASP for providing
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Weibull-distributed mean life assurance where the values of shape parameters and failure probabilities
are uncertain. That is, we considered the design of GASP under neutrosophic statistics, which is the
main difference between the proposed work and the work done by Aslam and Jun [8]. We will compare
the proposed plan with the existing sampling plan under classical statistics in terms of the sample
size required for inspection. We expect that the proposed plan will be quite effective, adequate, and
efficient compared to the existing plan in an uncertainty environment.

2. Design of the Proposed Plan using Neutrosophic Statistics

The method to design the proposed GASP for providing quality assurance of the product in terms
of mean life is discussed in this section. The ratio between the true mean life and the specified mean life
of the product is considered as the quality of the product. A Weibull distribution is considered as an
appropriate model to express the lifetime of the product because of its flexible nature. So, we assume
that the lifetime of the product ty € {t;, t;;} under study follows a neutrosophic Weibull distribution,
which has the shape parameter 6y € {01, 617} and scale parameter Ay € {Ar, Ay). Then, the cumulative
distribution function (cdf) of the Weibull distribution is obtained as follows.

IN ON
F(tN,' /\N,(SN) =1-exp _(E) ,iN=0,An > 0,68 > 0. 1)

In this study, it is assumed that the scale parameter Ay is unknown and the shape parameter
On is known. It can be seen that the cdf depends only on ty/Ay since the shape parameter is known.
One can estimate the shape parameter from the available history of the production process when it is
unknown. The true mean life of the product under the neutrosophic Weibull distribution is calculated

by the following equation
_ (A (L)
a = ()r(55) @

where I'(.) represents the complete gamma function. Then, the probability that the product will fail
before it reaches the experiment time txy,is denoted by py and is given as follows

= 1-expl-(22)") ©

As pointed out by Aslam and Jun [8], we can write x5 as a constant multiple of the specified
mean life pno, such as tng = tg = appapno where ‘a’ is called the experiment termination ratio. Also, we
can express the unknown scale parameter in terms of the true mean life and known shape parameters.
After tyo, Ay value substitution, and possible simplification, one can obtain the probability that the
product will fail before attaining the experiment time ty, using the following equation.

0
ON r(L) N
= 1- _gon [ HNO o)
pN = 1— exp|-a (HN) [51\] ) 4)

With respect to the ratios between the true mean life and the specified mean life, un/uno, the
acceptable quality level (AQL, i.e., py1) and limiting quality level (LQL, i.e., pn2) are defined. That is,
the failure probabilities obtained when the mean ratio values greater than one are taken as AQL and
the same are obtained at a mean ratio equal to one are considered as LQL. The operating procedure of
the proposed GASP for a time-truncated life test is described as follows:

Step1. Take a sample of ny € {ny, ny} items randomly from the submitted lot and distribute ry € {r,
ry} items into gy € {31, Sul groups. Then, conduct the life test on the sample items for the
specified time fyy.
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Step2. Observe the test and count number of sample items failed in each group before reaching
experiment time fy( and denote it as dy € {dy, dyj}.

Step3. If at most, cyy sample items found to be failed in each of all gy groups, then accept the lot
where cy € {c, cy7}. Otherwise, reject the lot.

Two parameters used to characterize the proposed plan are number of groups gy and the
acceptance number cy. It is to be noted that ry € {ry, r;} denotes the number of items in each group
and is called the group size. The operating procedure of the proposed GASP is represented by a flow

chart and is shown in Figure 1.
START

A 4

Take a sample of nv items randomly from the submitted lot

and distribute rn sample items into gy groups

\ 4

Count number of sample items failed in each

group before reach the experiment time no, say dn

l
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Figure 1. Operating procedure of the proposed group acceptance sampling plan (GASP) under a

[ Accept the lot

oON

truncated life test.

In general, an operating characteristic (OC) function helps to investigate the performance of the
sampling plan. The OC function of the proposed GASP under a Weibull model based on time-truncated
test is given by

CN &N
PaN(PN) = Z ( ;I:[ )pld\]N (1—pN)VN—dN (5)
=0

Generally, each producer wishes that the sampling plan should provide a chance greater than
(1 — a) to accept the product when the product quality is at AQL, where « is the producer’s risk,
whereas the consumer wants that the chance to accept the lot to be less than  when quality of the
product is at LQL, where g is the consumer’s risk. Obviously, the sampling plan that involves the
minimum risks to both producer and consumer will be favorable. The design of the sampling plan by
considering AQL and LQL, along with producer and consumer risks is known as two points on the
OC curve approach and this approach is considered as the most important among others. Similarly,
the sampling plan that makes its decision on the submitted lot using minimum sample size or average
sample number (ASN) will be attractive. Therefore, in this study, we design GASP with the intention
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of assuring a Weibull-distributed mean life of the products with minimum sample size and minimum
cost using two points on the OC curve approach. It should be mentioned that the ASN of the proposed
plan is the product of the number of groups and group size (i.e., ny = gn7n). For determining the
optimal parameters, we use the following optimization problem.

Minimize gy
Subject to Ps(pn1) = 1-a,

Pll (PNZ) S ,B/

gn=21,ry>1, e 20, ©)
where pn1 and py; are the failure probabilities obtained from the following equations
0
ot (T N1
NO 5
pn1 =1 —exp [-a™! (L) ((N]) ,ON1 € {011, 6un}, @)
N ON1
On2
On2 T 1
0
pn2 =1 —exp [—a®2 (M) ( NZ) , ON2 € {012, 6w}, ®)
UN On2
[ N 18N
N d rN—d
Pan(pni) = Z( iy )Pz\ﬁ (1-pn)™™ €)
| dN=0
[ N 18N
N d —d
Pan(pn2) = dZO( iy )PNAQ (T=pn2)™™™N| . (10)
LUN=

In this designing, we define AQL as the failure probability corresponding to the mean ratios
UN/UNo = 2, 4, 6, 8, 10. Similarly, the LQL is defined as the failure probability corresponding to the
mean ratio un/uno = 1. The optimal parameters of the proposed GASP are determined for various
combinations of group size, shape parameter, and producer’s risk. We used the grid search method
under neutrosophic statistics to find the optimal values of parameters [g;, gi7] and [cr, c;7]. We selected
those values of parameters from several combinations of parameters that satisfy the given conditions
where the range between gy and gy; is at a minimum. For this determination, we considered two sets
of group sizes, such as ry = {10, 12} and ry = {4, 6}, and two sets of shape parameters, such as ox = {0.9,
1.1} and 6y = {1.9, 2.1}. Similarly, the producer risks are assumed to be « = 0.1 and a = 0.05, and four
values of the consumer’s risk, namely = 0.25, 0.10, 0.05, 0.01, are used. The experiment termination
ratios involved in this determination are 4 = 0.5 and a = 1. Then, the optimal parameters are reported
in Tables 1-4. We can observe the following trends from tables.

i In most of the cases, the number of groups required for inspection decreases if the constant ‘a’
increases from 0.5 to 1.

ii. For fixed values of 0y, «, B, a, and un/uno, the number of groups increases when group size
decreases. There is no particular change in the number of groups when the mean ratio increases.
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Table 1. Optimal parameters of the proposed GASP under neutrosophic statistics when ry = [10, 12]
and 65 =[0.9, 1.1].

a=0.5 a=1.0
p UN/ENoO 8N cN Pan(pn1) 8N N Pan(pn1)
2 [19, 44] [6,7] [0.919, 0.983] [5, 7] [7, 8] [0.904, 0.951]
4 [2, 4] [3, 4] [0.905, 0.987] [1, 3] [4, 5] [0.910, 0.957]
0.25 6 [1, 3] [2, 4] [0.919, 0.999] [1, 3] [4, 6] [0.974, 0.999]
8 [1, 3] [2,4] [0.956, 1.000] [1, 3] [4,7] [0.990, 1.000]
10 [1, 3] [2,3] [0.974, 0.998] [1, 3] [3, 7] [0.974, 1.000]
2 * * * [26, 28] [8, 9] [0.924, 0.969]
4 [2, 4] [3,4] [0.905, 0.987] [1, 3] [4, 6] [0.910, 0.992]
0.1 6 12, 4] [3, 4] [0.969, 0.998] 1, 3] 4, 6] [0.974, 0.999]
8 [2, 4] [2, 3] [0.915, 0.994] [1, 3] [3, 5] [0.951, 0.999]
10 [2, 4] [3,4] [0.994, 1.000] [1, 3] [3, 5] [0.974, 1.000]
2 * * * (34, 36] 8, 9] [0.902, 0.960]
4 [7,11] [4, 5] [0.935, 0.996] [3, 5] [5, 7] [0.930, 0.998]
0.05 6 [3, 6] [3,4] [0.954, 0.997] [2,4] [4, 5] [0.949, 0.993]
8 2, 4] 2, 3] [0.915, 0.994] 1, 3] 3, 4] [0.951,0.991]
10 [2, 4] [2, 3] [0.948, 0.998] [1, 3] [3, 4] [0.974, 0.997]
2 * * * * * *
4 [9,17] 4, 5] [0.917, 0.994] 4, 6] 5, 6] [0.908, 0.984]
0.01 6 [5, 8] [3, 4] [0.925, 0.996] [2, 4] [4, 5] [0.949, 0.993]
8 [5, 8] [3, 4] [0.968, 0.999] [2, 4] [3, 4] [0.905, 0.987]
10 3, 5] 2,3] [0.923, 0.997] 2, 4] 3, 6] [0.948, 1.000]

*: Plan does not exist.

Table 2. Optimal parameters of the proposed GASP under neutrosophic statistics when ry = [10, 12]
and 6y =[1.9, 2.1].

a=05 a=1.0
p UN/ENo 8N cN Pan(pn1) 8N N Pan(pn1)
2 [5, 11] [2,3] [0.926, 0.988] [2,4] [5, 6] [0.990, 0.995]
4 [2, 4] [1,2] [0.981, 0.999] [1, 3] [3, 4] [0.998, 1.000]
0.25 6 [2,4] [1,2] [0.996, 1.000] [1, 3] [2, 4] [0.998, 1.000]
8 [2, 4] [1,2] [0.999, 1.000] [1, 3] [1,5] [0.990, 1.000]
10 [2, 4] [1,2] [0.999, 1.000] [1, 3] [2, 3] [1.000, 1.000]
2 [39, 65] [3, 4] [0.942, 0.995] [2, 4] [4, 6] [0.945, 0.995]
4 [4, 7] [1,2] [0.962, 0.999] [1, 3] [2, 3] [0.985, 0.997]
0.1 6 3,7 [1,2] [0.994, 1.000] 1, 3] 12, 4] [0.998, 1.000]
8 [5, 7] [1,2] [0.996, 1.000] [1, 3] [1, 3] [0.990, 1.000]
10 [3, 7] [1,2] [0.999, 1.000] [1, 3] [2, 4] [1.000, 1.000]
2 (67, 84] [3, 4] [0.902, 0.994] 3, 5] 4, 6] [0.918, 0.994]
4 [4, 8] [1,2] [0.962, 0.998] [1, 3] [2, 4] [0.985, 1.000]
0.05 6 [5, 8] [1,2] [0.989, 1.000] [1, 3] [2, 5] [0.998, 1.000]
8 4, 8] [1,2] [0.997, 1.000] 1,3] 12, 5] [1.000, 1.000]
10 [5, 8] [1,2] [0.998, 1.000] [1, 3] [1, 5] [0.996, 1.000]
2 [59, 129] [3, 4] [0.914, 0.990] [7,9] [5, 6] [0.964, 0.989]
4 [6,13] [1,2] [0.944, 0.997] 2, 4] 2, 5] [0.970, 1.000]
0.01 6 [9, 13] [1,2] [0.981, 1.000] [1, 3] [1, 3] [0.973, 1.000]
8 [7,13] [1,2] [0.995, 1.000] [1, 3] [1,2] [0.990, 0.999]
10 [7,13] [1, 2] [0.998, 1.000] [1,3] [1, 2] [0.996, 1.000]
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Table 3. Optimal parameters of the proposed GASP under neutrosophic statistics when ry = [4, 6] and

Sx =09, 1.1].
a=0.5 a=1.0
p UN/ENO 8N cN Pan(pn1) 8N N Pan(pn1)

2 * * * * * *
4 [6,10] [2, 3] [0.932, 0.990] [8, 10] [3, 4] [0.964, 0.988]
0.25 6 [7,10] [2, 3] [0.970, 0.998] [2,4] [2, 3] [0.955, 0.988]
8 [2, 4] [1,2] [0.928, 0.994] [2,4] [2,3] [0.977, 0.996]
10 2, 4] [1,2] [0.950, 0.997] [1,3] [1,2] [0.923, 0.980]

2 * * * * * *
4 [68, 88] [3,4] [0.967, 0.997] [12, 14] [3,4] [0.947, 0.983]
0.1 6 [13,17] [2,3] [0.945, 0.997] [3, 5] [2, 3] [0.933, 0.985]
8 [13,17] [2, 3] [0.973, 0.999] [3, 5] [2, 3] [0.965, 0.995]
10 [3, 5] [1,2] [0.926, 0.996] [3, 5] [2, 3] [0.980, 0.998]

2 * * * * * *

[103,

4 115] [3,4] [0.951, 0.996] [16, 18] [3, 4] [0.930, 0.978]
0.05 6 (19, 22] 2, 3] [0.920, 0.996] 4, 6] 12,3] [0.911, 0.982]
8 [17,22] [2, 3] [0.965, 0.999] [4, 6] [2, 3] [0.954, 0.994]
10 [4, 7] [1,2] [0.902, 0.994] [4, 6] [2, 3] [0.973, 0.998]

2 * * * * * *

[170, * * *

4 176] [3,4] [0.920, 0.993]

0.01 6 [23, 34] 2, 3] [0.904,0994]  [24,26] 3, 4] [0.970, 0.996]
8 [32, 34] [2, 3] [0.934, 0.998] [6, 8] [2, 3] [0.932, 0.992]
10 [28, 34] [2,3] [0.967, 0.999] [6, 8] [2, 3] [0.960, 0.997]

*: Plan does not exist.

Table 4. Optimal parameters of the proposed GASP under neutrosophic statistics when ry = [4, 6] and

Sy = 1.9, 2.1].
a=0.5 a=1.0
B UN/ENO 8N cN Pan(pni1) 8N oN Pan(pni1)

2 [116546] 2,3] [0.902, 0.993] [3, 5] 2, 3] [0.929, 0.958]

4 [8,23] [1,2] [0.989, 1.000] [1, 3] [1, 3] [0.983, 1.000]

0.25 6 [20, 23] [1, 2] [0.994, 1.000] [1, 3] [1, 3] [0.996, 1.000]
8 [8, 23] [1,2] [0.999, 1.000] [1, 3] [1,2] [0.999, 1.000]

10 [9, 23] [1,2] [1.000, 1.000] [1, 3] [1, 2] [0.999, 1.000]

2 * * * [25, 27] [3, 4] [0.966, 0.983]

4 [26, 37] [1,2] [0.965, 0.999] [2,4] [1,2] [0.966, 0.995]

0.1 6 [18, 37] [1,2] [0.995, 1.000] 2, 4] [1,2] [0.992, 1.000]
8 [18, 37] [1,2] [0.998, 1.000] [2, 4] [1,2] [0.997, 1.000]

10 [33,37] [1,2] [0.999, 1.000] [2,4] [1,2] [0.999, 1.000]

2 * * * (32, 34] 3, 4] [0.957, 0.978]

4 [27, 48] [1, 2] [0.964, 0.999] [3, 5] [1,2] [0.949, 0.994]

0.05 6 [23, 48] [1,2] [0.993, 1.000] [3, 5] [1,2] [0.988, 0.999]
8 [45, 48] [1,2] [0.995, 1.000] 3, 5] [1,2] [0.996, 1.000]

10 [28, 48] [1,2] [0.999, 1.000] [3, 5] [1,2] [0.998, 1.000]

2 * * * [49, 51] [3, 4] [0.935, 0.968]

4 (27, 74] 1,2] [0.964, 0.999] 4, 6] [1,2] [0.933, 0.992]

0.01 6 [64, 74] [1,2] [0.981, 1.000] [4, 6] [1,2] [0.984, 0.999]
8 [71, 74] [1,2] [0.993, 1.000] [4, 6] [1,2] [0.995, 1.000]

10 [29, 74] [1, 2] [0.999, 1.000] [4, 6] [1, 2] [0.998, 1.000]

*: Plan does not exist.
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3. Illustrative Example

Suppose that a manufacturer wants to provide the mean life assurance for his product, and he
claims that the true mean life of the product is uy = 500 h. The quality inspector decides to check
whether the manufacture’s claim on the lifetime of the product is true or not and, therefore, specifies
the experiment time as fyo = 500 h. Hence, the experiment termination ratio is calculated as a = 1.0.
The failure probability corresponding to the mean ratio un/uno = 4 is considered as AQL and the same
at mean ratio 1 is taken as LQL. The consumer risk is assumed to be = 0.25. The shape parameter of
the Weibull distribution is specified as o)y = 0.9. Suppose the quality inspector wants to implement the
proposed GASP under neutrosophic statistics, and he decides to allocate ry = 6 items to each tester.
Therefore, in order to execute the proposed plan for the above-specified conditions, we obtain the
optimal parameters gn = [8, 10] and cy = [3, 4] from Table 3. The input values (or specified values) and
the optimal values determined for those input values are reported in Table 5 for easy identification.

Table 5. Summary of input values and output parameters.

Input Values Output Parameters
UN tno a UN/ENo p on N 8N cN
500(h) 500(h) 1.0 4 0.25 0.9 6 [8, 10] [3, 4]

This shows that the number of groups for the inspection lies between 8 and 10. Suppose the quality
inspector chooses eight groups. Then, implementation procedure of the proposed plan is as follows.

A random sample of 48 items is chosen from the submitted lot, and 6 sample items are distributed
to 8 groups. The sample items are included in the life test, and the test is conducted up to the specified
time 500 h. The submitted lot is accepted if there are, at most, 3 sample items that failed before the
time 500 h in each of all 8 groups. Otherwise, the lot is rejected.

4. Comparison

To show the efficiency of the proposed plan in terms of number of groups (sample size) over the
existing SSP, we tabulated the optimal parameters determined for some specified values of a, ry, and
On- The minimum number of groups required for inspecting the lot under neutrosophic statistics and
classical statistics is shown in Table 6. We note from Table 6 that the proposed sampling plan under
neutrosophic statistics has the smaller number of groups compared to the time-truncated plan under
classical statistics. For example, when a = 0.5 and un/uno = 2, the number of groups in an indeterminate
interval under classical statistics is larger than the proposed sampling plan under neutrosophic
statistics. The same efficiency of the proposed plan can be observed for all other specified parameters.
By comparing both sampling plans, it can be noted that time-truncated group sampling plan under
neutrosophic statistics is better than the plan using classical statistics. Hence, the proposed plan is
more economical than the existing plan in saving cost, time, and efforts in uncertainty environments.

Table 6. Values of the proposed GASP and single-sampling plan (SSP) under neutrosophic statistics
when ry =[10, 12] and 6y =[0.9, 1.1].

a=0.5 a=1.0
B UN/ENoO GASP SSpP GASP sSSP
8N nN SN nN
2 [19, 44] [34, 38] [5, 7] [20, 23]
4 [2,4] [11, 14] [1, 3] [7, 8]
0.25 6 [1, 3] [9,10] [1, 3] [5, 6]
8 [1,3] [6,7] [1,3] [5,4]
10 [1, 3] [6,7] [1, 3] [4, 4]
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Table 6. Cont.

a=0.5 a=1.0
B UN/UNo GASP SSpP GASP SSP
8N nN 8N nN
2 * [54, 59] [26, 28] [36, 35]
4 [2,4] [17,20] [1, 3] [10,11]
0.1 6 [2, 4] [14, 13] [1, 3] [9, 7]
8 [2,4] [11,13] [1, 3] [7,7]
10 [2,4] [8,10] [1, 3] [7, 5]
2 * [68, 73] [34, 36] [48, 42]
4 [7,11] [22,27] [3, 5] [13, 14]
0.05 6 [3, 6] [16,19] [2, 4] [12,10]
8 [2, 4] [13,16] [1, 3] [10, 8]
10 [2,4] [13, 16] [1, 3] [8, 8]
2 * [103, 108] * [68, 59]
4 [9,17] [36, 36] [4, 6] [22,21]
0.01 6 [5, 8] [23, 28] [2, 4] [16, 15]
8 [5, 8] [20, 24] [2, 4] [12,13]
10 [3, 5] [20, 20] [2, 4] [12,10]

*: Plan does not exist.

5. Conclusions

In this paper, we have designed a group acceptance sampling plan for cases where the quality
of the product is in determinate and vague. Therefore, neutrosophic statistics has been used in this
design instead of classical statistics. The optimal parameters determined for different combinations of
group sizes and shape parameters have been tabulated. It is concluded from this study that one can
use the proposed plan if there is uncertainty in the product’s quality. The proposed sampling plan
using some other neutrosophic distributions or sampling schemes can be considered in future research.
The extension of the proposed plan for big data is also a fruitful area for future research.
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Glossary

lifetime of the product, where t] is the lower value of the lifetime and t;; is the upper value of the
i €t tul lifetime

shape parameter of the Weibull distribution, where 6; is the lower value of the shape parameter
and 0y; is the upper value of the shape parameter

scale parameter, where A; is the lower value of the scale parameter and A; is the upper value of

on € {0, ou}

An €A, A
N € e Aul the scale parameter

tNo experiment time

UN true mean life

UNO specified mean life

a experiment termination ratio (i.e., 2 = tno/tino)

UN/HENO ratio between the true mean life and the specified mean life
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PN1 acceptable quality level (AQL)
N2 limiting quality level (LQL)
sample size (i.e., ny = gNTN), Where 1] is the lower value of the sample size and ny; is the upper
ny € {I/lL, ”U} .
value of the sample size
el ru) group size, where 71 is the lower value of the group size and ry; is the upper value of the group
N L, Tu

gN €1gL, gul

dy € {dy, dy)

cn € {er, cul

size

number of groups, where g; is the lower value of the number of groups and gy; is the upper
value of the number of groups

number of failure items in the sample, where d}, is the lower value of the number of failure items
and dy; is the upper value of the number of failure items

acceptance number, where ¢; is the lower value of the acceptance number and cy; is the upper
value of the acceptance number

a producer’s risk

B consumer’s risk

P.n (pN) Probability of acceptance at failure probability py

Py (pn1) Probability of acceptance at failure probability pyq or at AQL

P.n (pn2) Probability of acceptance at failure probability py» or at LQL
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