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Abstract 

The chapter aims to give computational algorithm to solve a multi-
objective non-linear programming problem using Neutrosophic 
geometric programming technique. As the Neutrosophic 
optimization technique utilizes degrees of truth-membership, 
falsity-membership and indeterminacy-membership functions, we 
made a study of correspondence among those membership functions 
to see its impact on optimization. Also, we made a comparative 
study of optimal solution between intuitionistic fuzzy geometric 
programming and Neutrosophic geometric programming technique. 
The developed algorithm has been illustrated by a numerical 
example. Finally, an application of proposed Neutrosophic 
geometric programming technique on gravel box design problem is 
presented.   
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1 Introduction 

The concept of fuzzy sets was introduced by Zadeh in 1965 [1]. Since the 
fuzzy sets and fuzzy logic have been applied in many real applications to handle 
uncertainty. The traditional fuzzy sets use one real value 𝜇𝐴(𝑥) Є [0, 1] to
represents the truth membership function of a fuzzy set a defined on universe X. 
In some applications, we should consider not only the truth membership 
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supported by the evident but also the falsity membership against by the evident. 
That is beyond the scope of fuzzy sets and interval valued fuzzy sets. In 1986, 
Atanassov [3], [5] introduced the intuitionistic fuzzy sets   which is a 
generalisation of fuzzy sets. The intuitionistic fuzzy sets consider both truth 
membership and falsity membership. Intuitionistic fuzzy sets can only handle 
incomplete information not the indeterminate information and inconsistent 
information. In IFS, sum of membership-degree and non-membership degree of 
a vague parameter is less than unity. Therefore, a certain amount of incomplete 
information or indeterminacy arises in an intuitionistic fuzzy set. It cannot handle 
all types of uncertainties successfully in different real physical problems. Hence 
further generalization of fuzzy set as well as intuitionistic fuzzy sets are required. 
In neutrosophic sets indeterminacy is quantified explicitly and truth membership, 
indeterminacy membership and falsity membership are independent. 
Neutrosophy was introduced by Florentin Smarandache in 1995 [4] which is 
actually generalization of different types of FS and IFS. The term “neutrosophy” 
means knowledge of neutral thought. This neutral concept makes the different 
between NS and other sets like FS, IFS. Modeling of most of real life problems 
involving optimization process turns out to be a multi-objective programming 
problem in a natural way. In this field, a paper named Multi-objective geometric 
programming problem with weighted-sum method by A.K. Ojha, A.K. Das has 
been published in the journal of computing 2010 [12]. In 1971 L.D. Paschal and 
A. Ben. Israel [16] developed a vector valued criteria in geometric programming. 
In 1978 a paper Fuzzy linear programming with several objective functions has 
been published by H.J Zimmermann [15].  In 1992 M.P. Bishal [13] and in 1990 
R.k. Verma [14] has studied fuzzy programming technique to solve multi-
objective geometric programming problems. In 2007 B. Jana and T.K. Roy [9] 
has studied multi-objective intuitionistic fuzzy linear programming problem and 
its application in Transportation model and in 2009 G.S. Mahapatra and T.K. Roy 
[10] developed multi-objective intuitionistic fuzzy mathematical programming 
problem and its application in Reliability optimization model. In this present 
study, a new approach of Neutrosophic Optimization (NO) is proposed. A multi-
objective non-linear programming problem is solved by geometric programming 
technique. 

2 Some Preliminaries 

2.1   Definition -1 (Fuzzy set) [1] 

Let X is a fixed set. A fuzzy set A of X is an object having the form �̃� = 
{(x,𝜇𝐴 (x)), x Є X} where the function 𝜇𝐴(𝑥) : X → [0, 1] defines the truth 
membership of the element x Є X to the set A.  
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2.2   Definition-2 (Intuitionistic fuzzy set) [3] 

Let a set X be fixed. An intuitionistic fuzzy set or IFS �̃�𝑖 in X is an object 
of the form  �̃�𝑖 = {< 𝑋, 𝜇𝐴 (𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋} where 𝜇𝐴 (𝑥) : X→ [0, 1] and           
𝜈𝐴 (𝑥) : X→ [0, 1]  define  the Truth-membership and Falsity-membership 
respectively , for every element of x∈  X , 0≤ 𝜇𝐴 (𝑥) + 𝜈𝐴(𝑥)  ≤1 . 

2.3   Definition-3 (Neutrosophic set) [4] 

Let X be a space of points (objects) and 𝑥 ∈ 𝑋. A neutrosophic set �̃�n in X 
is defined by a Truth-membership function𝜇𝐴 (𝑥), an indeterminacy-membership 
function 𝜎𝐴(𝑥) and a falsity-membership function 𝜈𝐴(𝑥)  and having the form       
�̃�𝑛 ={< 𝑋, 𝜇𝐴 (𝑥), 𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋}.  𝜇𝐴 (𝑥),  𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥) are real 
standard or non-standard subsets of  

] 0-, 1+ [. that is  
                            𝜇𝐴 (𝑥) : X→ ] 0-, 1+ [  
                           𝜎𝐴(𝑥) : X→ ] 0-, 1+ [  
                            𝜈𝐴 (𝑥) : X→ ] 0-, 1+ [  
There is no restriction on the sum of  𝜇𝐴 (𝑥),  𝜎𝐴(𝑥) 𝑎𝑛𝑑 𝜈𝐴(𝑥), so  
0- ≤ sup 𝜇𝐴(𝑥) + sup 𝜎𝐴(𝑥) + sup 𝜈𝐴(𝑥) ≤ 3+ 

 

2.4    Definition-3 (Single valued Neutrosophic sets) [6]  

 Let X be a universe of discourse. A single valued neutrosophic set  �̃�𝑛     
over X is an object having the form  �̃�𝑛 = {< 𝑋, 𝜇𝐴 (𝑥),  𝜎𝐴(𝑥), 𝜈𝐴(𝑥) > /𝑥 ∈ 𝑋} 
where  𝜇𝐴 (𝑥) : X→ [0, 1], 𝜎𝐴(𝑥) : X→[0, 1] and 𝜈𝐴 (𝑥) : X→ [0, 1] with 0≤
𝜇𝐴 (𝑥) + 𝜎𝐴(𝑥) + 𝜈𝐴(𝑥)  ≤3 for all x ∈ X. 

Example1:   Assume that X = [x1, x2, x3]. X1 is capability, x2 is 
trustworthiness and x3 is price. The values of x1, x2and x3 are in [0, 1]. They are 
obtained from the questionnaire of some domain experts, their option could be a 
degree of “good service”, a degree of indeterminacy and a degree of “poor 
service”. A is a single valued neutrosophic set of X defined by 

A = 〈0.3,0.4,0.5〉/x1 + 〈0.5,0.2,0.3〉/x2 + 〈0.7,0.2,0.2〉/x3     

2.5 Definition- 4(Complement): [6]  

 

The complement of a single valued neutrosophic set A is denoted by c(A) 
and is defined by  

                            𝜇𝑐(𝐴)(𝑥) = 𝜈𝐴 (𝑥) 

                            𝜎𝑐(𝐴)(𝑥) = 1 − 𝜎𝐴 (𝑥)  

                             𝜈𝑐(𝐴)(𝑥) = 𝜇𝐴 (𝑥)            for all x in X. 
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Example 2:   let A be a single valued neutrosophic set defined in example 
1. Then, c (A) = 〈0.5,0.6,0.3〉/x1 + 〈0.3,0.8,0.5〉/x2    +〈0.2,0.8,0.7〉/x3. 

2.6 Definition 5(Union):[6] 

The union of two single valued neutrosophic sets A and B is a single 
valued neutrosophic set C, written as C = A ∪  B, whose truth-membership, 
indeterminacy-membership and falsity-membership functions are are given 
by 

𝜇𝑐(𝑥) = max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 
𝜎𝑐(𝑥) =max (𝜎𝐴(𝑥), 𝜎𝐵(𝑥))                                                              

  𝜈𝑐(𝑥) = min (𝜈𝐴(𝑥), 𝜈𝐵(𝑥))      for all x in X 
    

Example 3:   Let A and B be two single valued neutrosophic sets 
defined in example -1. Then, A ∪  B = 〈0.6,0.4,0.2〉/x1 + 〈0.5,0.2,0.3〉/x2 
+ 〈0.7,0.2,0.2〉/x3. 

2.7 Definition 6(Intersection):[6] 

The Intersection of two single valued neutrosophic sets A and B is a single 
valued neutrosophic set C, written as C = A ∩  B, whose truth-membership, 
indeterminacy-membership and falsity-membership functions are are given by 

𝜇𝑐(𝑥) = min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 
𝜎𝑐(𝑥) = min (𝜎𝐴(𝑥), 𝜎𝐵(𝑥))  
 𝜈𝑐(𝑥)  = max (𝜈𝐴(𝑥), 𝜈𝐵(𝑥))       for all x in X 

    
Example 4:   Let A and B be two single valued neutrosophic sets defined 

in example -1. Then, A ∩  B = 〈0.3,0.1,0.5〉/x1 + 〈0.3,0.2,0.6〉/x2 + 
〈0.4,0.1,0.5〉/x3. 

Here, we notice that by the definition of complement, union and 
intersection of single valued neutrosophic sets, single valued neutrosophic sets 
satisfy the most properties of classic set, fuzzy set and intuitionistic fuzzy set. 
Same as fuzzy set and intuitionistic fuzzy set, it does not satisfy the principle of 
middle exclude [17-21]. 

3 Multi-objective Geometric Programming Problem 

A multi-objective geometric programming problem can be defined as 

Find x=(x1,x2,…………xn)T   ,so as to    (1) 

Min fk0(x) = ∑ 𝐶𝑘0𝑡∏ 𝑥𝑗
𝑎𝑘0𝑡𝑗𝑛

𝑗=1   
𝑇𝑘0
𝑡=1

                    k=1,2,………….,p 

such that fi(x) =  ∑ c
𝑇𝑖
𝑡=1 it∏ xj

aitj𝑛
𝑗=1  ≤1          i=1 ,2, ,m 

xj > 0  j= 1,2,  n 
where ck0t > 0  for all  k and t .  aitj ,ak0tj are all real ,for all i, k, t, j. 
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4 Computational Algorithm 

Step 1:  Solve the MONLP problem (1) as a single objective non-linear 
problem p times for each problem by taking one of the objectives at a time and 
ignoring the others. These solutions are known as ideal solutions. Let 𝑥𝑘 be the 
respective optimal solution for the kth different objective and evaluate each 
objective value for all these kth optimal solution.   

Step 2: From the result of step-1, determine the corresponding values for 
every objective for each derived solution. With the values of all objectives at each 
ideal solution, pay-off matrix can be formulated as follows.  

           

[
 
 
 
 
    𝑓1

∗(𝑥1)     𝑓2(𝑥
1)…………𝑓𝑝(𝑥

1)   

 𝑓1(𝑥
2)     𝑓2

∗(𝑥2)…………𝑓𝑝(𝑥
2)

…………………………………… . .
 𝑓1(𝑥

𝑝)     𝑓2(𝑥
𝑝)…………𝑓𝑝

∗(𝑥𝑝)
  ]

 
 
 
 

 

Step 3. For each objective 𝑓𝑘(𝑥), find lower bound 𝐿𝑘𝜇 and the upper 
bound 𝑈𝑘𝜇. 

𝑈𝑘
𝜇 = max {𝑓𝑘(𝑥𝑟

∗
)}  and  𝐿𝑘𝜇 = min {𝑓𝑘(𝑥𝑟

∗
)}   where 1≤ r ≤ k  

 For truth membership of objectives. 

Step 4. We represent upper and lower bounds for indeterminacy and falsity 
membership of objectives as follows: 

𝑈𝑘
𝜈  = 𝑈𝑘𝜇    and  𝐿𝑘𝜈 = 𝐿𝑘𝜇 + t (𝑈𝑘𝜇 - 𝐿𝑘𝜇 )     

𝐿𝑘
𝜎  = 𝐿𝑘𝜇   and  𝑈𝑘𝜎 = 𝐿𝑘𝜇   + s (𝑈𝑘𝜇 − 𝐿𝑘𝜇   )    

Here t and s are to predetermined real number in (0, 1). 

Step 5. Define Truth-membership, Indeterminacy-membership, Falsity- 
membership functions as follows: 

𝜇𝑘(𝑓𝑘(𝑥))  =  { 𝑈𝑘
𝜇 −𝑓𝑘(𝑥)

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇

  1             𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜇

        𝑖𝑓  𝐿𝑘
𝜇 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜇

0             𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜇

 , 

 

𝜈𝑘(𝑓𝑘0(𝑥)) = 1- 1
1−𝑡

 𝜇𝑘(𝑓𝑘0(𝑥))  and  𝜎𝑘(𝑓𝑘0(𝑥)) = 1
𝑠
 𝜇𝑘(𝑓𝑘0(𝑥)) - 

1−𝑠

𝑠
 

for k= 1, 2, ………,p. 

It is obvious that   
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𝜎𝑘(𝑓𝑘(𝑥))  =  { 𝑈𝑘
𝜎 −𝑓𝑘(𝑥)

𝑈𝑘
𝜎 − 𝐿𝑘

𝜎

  1             𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜎

        𝑖𝑓  𝐿𝑘
𝜎 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜎

0             𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜎

  , 

𝜈𝑘(𝑓𝑘(𝑥))  = {𝑓𝑘(𝑥)−𝐿𝑘
𝜈

𝑈𝑘
𝜈 − 𝐿𝑘

𝜈

 0             𝑖𝑓  𝑓𝑘(𝑥) ≤  𝐿𝑘
𝜈

        𝑖𝑓  𝐿𝑘
𝜈 ≤ 𝑓𝑘(𝑥) ≤  𝑈𝑘

𝜈

1             𝑖𝑓 𝑓𝑘(𝑥) ≥ 𝑈𝑘
𝜈

   

and   0 ≤   𝜇𝑘(𝑓𝑘0(𝑥)) + 𝜈𝑘(𝑓𝑘0(𝑥)) + 𝜎𝑘(𝑓𝑘(𝑥))  ≤ 3 
for k= 1, 2, …………,p. 

Step 7. Now a Neutrosophic geometric programming technique for multi-
objective non-linear programming problem with the linear Truth-membership, 
Falsity-membership and Indeterminacy functions can be written as  

Maximize    (𝜇1(𝑓10(𝑥)), 𝜇2(𝑓20(𝑥)),……………, 𝜇𝑝(𝑓𝑝0(𝑥)))  (2) 

Minimize   (𝜈1(𝑓10(𝑥)) 𝜈2(𝑓20(𝑥)) ……………, 𝜈𝑝(𝑓𝑝0(𝑥)))    

Maximize    (𝜎1(𝑓10(𝑥)), 𝜎2(𝑓20(𝑥)),…………… , 𝜎𝑝(𝑓𝑝0(𝑥)))  

Subject to fi(x) =   ∑ c
𝑇𝑖
𝑡=1 it∏ xj

aitj𝑛
𝑗=1  ≤1                    for i=1, 2,………….m       

   xj > 0,                                       j= 1,2,…………n. 
 Using weighted sum method, the multi-objective non-linear programming 

problem (2) reduces to 

Min 𝑉𝑀𝐴(𝑥) = ∑ 𝑤𝑘( 𝜈𝑘
𝑝
𝑘=1 (𝑓𝑘0(𝑥))  -  𝜇𝑘(𝑓𝑘0(𝑥)) -𝜎𝑘(𝑓𝑘0(𝑥))) (3) 

  Min 𝑉𝑀𝐴(𝑥) = (1 + 1

1−𝑡
+
1

𝑠
)∑ 𝑤𝑘  

∑ 𝐶𝑘0𝑡∏ 𝑥𝑗
𝑎𝑘0𝑡𝑗𝑛

𝑗=1   
𝑇𝑘0
𝑡=1

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇
𝑝
𝑘=1  - {(   (1 +

1

1−𝑡
+
1

𝑠
) ∑ 𝑤𝑘  

𝑈𝑘
𝜇

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇
𝑝
𝑘=1   ) − 

1

𝑠
}     

   Subject to fi(x) =  ∑ c
𝑇𝑖
𝑡=1 it∏ xj

aitj𝑛
𝑗=1  ≤1        i=1, 2,………….m       

    xj > 0,       j= 1,2,…………n. 
Excluding the constant term, the above (3) reduces to the following 

geometric programming problem 

 Min   𝑉𝑀𝐴1 (𝑥) =(1 + 1

1−𝑡
+
1

𝑠
)  ∑ 𝑤𝑘  

∑ 𝐶𝑘0𝑡∏ 𝑥𝑗
𝑎𝑘0𝑡𝑗𝑛

𝑗=1   
𝑇𝑘0
𝑡=1

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇
𝑝
𝑘=1   

 (4) 

  Such that  𝑓𝑖(𝑥)   =      ∑ c
𝑇𝑖
𝑡=1 it∏ xj

aitj𝑛
𝑗=1  ≤1       i=1, 2,……...m;  

   xj > 0,                                                                j=1,2,………n.  

  Here t, s ϵ (0, 1) are pre-determined real numbers.   
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where 𝑉𝑀𝐴(𝑓𝑘0(𝑥))= 𝑉𝑀𝐴1 (𝑓𝑘0(𝑥))-{ (1 +
1

1−𝑡
+
1

𝑠
) (   ∑ 𝑤𝑘  

𝑈𝑘
𝜇

𝑈𝑘
𝜇 − 𝐿𝑘

𝜇
𝑝
𝑘=1   ) −

 
1

𝑠
} .  

Here (4) is a posynomial geometric programming problem with  

         DD = ∑ 𝑇𝑘0
𝑝
𝑘=1  + ∑ 𝑇𝑖

𝑚
𝑖=1  − n – 1. 

 It can be solved by usual geometric programming technique. 

Definition: Neutrosophic Pareto (or NS Pareto) optimal solution 

A decision variable 𝑥∗ Є X is said to be a NS Pareto optimal solution  to 
the  Neutrosophic GPP (2) if there does not exit another x Є X such that  
𝜇𝑘(𝑓𝑘0(𝑥)) ≤ 𝜇𝑘(𝑓𝑘0(𝑥∗)), 𝜈𝑘(𝑓𝑘0(𝑥)) ≥ 𝜈𝑘(𝑓𝑘0(𝑥∗)) and 𝜎𝑘(𝑓𝑘0(𝑥)) ≤ 

𝜎𝑘(𝑓𝑘0(𝑥
∗))  for all k=1,2,……..p. and   𝜇𝑗(𝑓𝑗0(𝑥)) ≠ 𝜇𝑗 (𝑓𝑗0(𝑥∗)), 𝜈𝑗 (𝑓𝑗0(𝑥)) 

≠ 𝜈𝑗 (𝑓𝑗0(𝑥∗)) and 𝜎𝑗(𝑓𝑗0(𝑥)) ≠ 𝜎𝑗 (𝑓𝑗0(𝑥∗))  for at least one j,  j = 1,2,……..p.   

Some basic theorems on M-N Pareto optimal solutions are introduced 
below. 

Theorem 1   The solution of (2) based on weighted sum method 
Neutrosophic GP problem (3) is weakly NS Pareto optimal. 

Proof.  Let  𝑥∗ ϵ X be a solution of the Neutrosophic GP problem. Let us 
suppose that it is not weakly M-N Pareto optimal. In this case there exit another 
x ϵ X such that  𝜇𝑘(𝑓𝑘0(𝑥)) < 𝜇𝑘(𝑓𝑘0(𝑥∗)), 𝜈𝑘(𝑓𝑘0(𝑥)) >  𝜈𝑘(𝑓𝑘0(𝑥∗)) and 
𝜎𝑘(𝑓𝑘0(𝑥)) <𝜎𝑘(𝑓𝑘0(𝑥∗)).  for all k=1,2,……..p. Observing that  𝜇𝑘(𝑓𝑘0(𝑥)) is 
strictly monotone decreasing function with respect to 𝑓𝑘0(𝑥) , this implies 
𝜇𝑘(𝑓𝑘0(𝑥)) >  𝜇𝑘(𝑓𝑘0(𝑥∗)) and 𝜈𝑘(𝑓𝑘0(𝑥)) is strictly monotone increasing  
function with respect to 𝑓𝑘0(𝑥) , this implies 𝜈𝑘(𝑓𝑘0(𝑥)) <  𝜈𝑘(𝑓𝑘0(𝑥∗)) and also 
𝜎𝑘(𝑓𝑘0(𝑥)) >  𝜎𝑘(𝑓𝑘0(𝑥

∗)).  Thus we have ∑ 𝑤𝑘  𝜇𝑘(𝑓𝑘0(𝑥))
𝑝
𝑘=1   > 

∑ 𝑤𝑘  𝜇𝑘(𝑓𝑘0(𝑥
∗)) 

𝑝
𝑘=1 , ∑ 𝑤𝑘  𝜈𝑘(𝑓𝑘0(𝑥))

𝑝
𝑘=1   < ∑ 𝑤𝑘 𝜈𝑘(𝑓𝑘0(𝑥

∗)) 
𝑝
𝑘=1 and 

∑ 𝑤𝑘  𝜎𝑘(𝑓𝑘0(𝑥))
𝑝
𝑘=1   > ∑ 𝑤𝑘  𝜎𝑘(𝑓𝑘0(𝑥

∗)) 
𝑝
𝑘=1  . This is a contradiction to the 

assumption that 𝑥∗ is a solution of the Neutrosophic GP problem (2). Thus  𝑥∗ is 
weakly NS Pareto optimal. 

Theorem 2   The unique solution of Neutrosophic GP problem (3) based 
on weighted sum method is weakly NS Pareto optimal. 

Proof.  Let  𝑥∗ Є X be a unique solution of the Neutrosophic GP problem. 
Let us suppose that it is not weakly NS Pareto optimal. In this case there exit 
another x Є X such that  𝜇𝑘(𝑓𝑘0(𝑥)) ≤  𝜇𝑘(𝑓𝑘0(𝑥∗)), 𝜈𝑘(𝑓𝑘0(𝑥)) ≥ 𝜈𝑘(𝑓𝑘0(𝑥∗)) 
for all k=1,2,……..p and 𝜇𝑙(𝑓𝑙0(𝑥)) < 𝜇𝑙(𝑓𝑙0(𝑥∗)), 𝜈𝑙(𝑓𝑙0(𝑥)) > 𝜈𝑙(𝑓𝑙0(𝑥∗)) for 
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at least  one l. Observing that  𝜇𝑘(𝑓𝑘0(𝑥)) is strictly monotone decreasing 
function with respect to 𝑓𝑘0(𝑥) , this implies 𝜇𝑘(𝑓𝑘0(𝑥)) >  𝜇𝑘(𝑓𝑘0(𝑥∗)) and 
𝜈𝑘(𝑓𝑘0(𝑥)) is strictly monotone increasing  function with respect to 𝑓𝑘0(𝑥) , this 
implies 𝜈𝑘(𝑓𝑘0(𝑥)) < 𝜈𝑘(𝑓𝑘0(𝑥∗))  and also 𝜎𝑘(𝑓𝑘0(𝑥)) is strictly monotone 
decreasing function with respect to 𝑓𝑘0(𝑥) , this implies  𝜎𝑘(𝑓𝑘0(𝑥)) > 
 𝜎𝑘(𝑓𝑘0(𝑥

∗)). Thus we have ∑ 𝑤𝑘  𝜇𝑘(𝑓𝑘0(𝑥))
𝑝
𝑘=1   ≥ ∑ 𝑤𝑘  𝜇𝑘(𝑓𝑘0(𝑥

∗)) 
𝑝
𝑘=1  and    

∑ 𝑤𝑘  𝜈𝑘(𝑓𝑘0(𝑥))
𝑝
𝑘=1   ≤ ∑ 𝑤𝑘  𝜈𝑘(𝑓𝑘0(𝑥

∗)) 
𝑝
𝑘=1  and ∑ 𝑤𝑘  𝜎𝑘(𝑓𝑘0(𝑥))

𝑝
𝑘=1   

≥   ∑ 𝑤𝑘 𝜎𝑘(𝑓𝑘0(𝑥
∗)) 

𝑝
𝑘=1 .  

On the other hand, the uniqueness of 𝑥∗  means that: 

∑ 𝑤𝑘 𝜇𝑘(𝑓𝑘0(𝑥
∗))   

𝑝
𝑘=1  <∑ 𝑤𝑘  𝜇𝑘(𝑓𝑘0(𝑥))   

𝑝
𝑘=1 , ∑ 𝑤𝑘 𝜈𝑘(𝑓𝑘0(𝑥

∗))   
𝑝
𝑘=1  >  

∑ 𝑤𝑘  𝜈𝑘(𝑓𝑘0(𝑥))   
𝑝
𝑘=1  and ∑ 𝑤𝑘 𝜎𝑘(𝑓𝑘0(𝑥

∗))   
𝑝
𝑘=1  <∑ 𝑤𝑘 𝜎𝑘(𝑓𝑘0(𝑥))

𝑝
𝑘=1 .  

The two sets inequalities above are contradictory and thus 𝑥∗ is weakly NS 
Pareto optimal.  

5 Illustrated Example  

Min 𝑓1(𝑥1, 𝑥2) = 𝑥1−1𝑥2−2 

Min 𝑓2(𝑥1, 𝑥2) =2 𝑥1−2𝑥2−3  

Such that 𝑥1 + 𝑥2 ≤ 1 

Here pay-off matrix is          [6.75 60.78
6.94 57.87

]  

Define truth-membership, falsity-membership and indeterminacy-
membership functions are as follows: 

𝜇1(𝑓1(𝑥))  =   {6.94−𝑥1
−1𝑥2

−2

0.19

  1             𝑖𝑓  𝑥1
−1𝑥2

−2  ≤  6.75

        𝑖𝑓  6.75 ≤ 𝑥1
−1𝑥2

−2 ≤  6.94

0             𝑖𝑓 𝑥1
−1𝑥2

−2  ≥ 6.94

  

𝜇2(𝑓2(𝑥))  =   {60.78− 2𝑥1
−2𝑥2

−3

2.91

  1             𝑖𝑓  2 𝑥1
−2𝑥2

−3   ≤ 57.87

        𝑖𝑓  57.87 ≤   2 𝑥1
−2𝑥2

−3 ≤  60.78

0             𝑖𝑓 2 𝑥1
−2𝑥2

−3  ≥ 60.78

  

𝜈1(𝑓1(𝑥)) = 1- 1
1−𝑡

 𝜇1(𝑓1(𝑥)) ,   and  𝜈2(𝑓2(𝑥)) = 1- 1
1−𝑡

 𝜇2(𝑓2(𝑥)) 

𝜎1(𝑓1(𝑥)) =  1
𝑠
 𝜇1(𝑓1(𝑥)) - 

1−𝑠

𝑠
,  𝜎2(𝑓2(𝑥)) =  1

𝑠
 𝜇2(𝑓2(𝑥)) - 

1−𝑠

𝑠
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Table 1. Optimal values of primal, dual variables and objective functions 
from neutrosophic geometric programming problem for different weights. 

Weights 

W1, W2 

optimal         
dual  

variables 

𝑤01
∗, 𝑤02∗, 

𝑤11
∗, 𝑤12∗ 

optimal   primal           
variables 

optimal objectives Sum of optimal 
objectives 

𝑥1
∗ 𝑥2

∗ 𝑓1
∗(𝑥1

∗, 𝑥2
∗) 𝑓2

∗(𝑥1
∗, 𝑥2

∗) 
𝑓1
∗(𝑥1

∗, 𝑥2
∗) 

+𝑓2
∗(𝑥1

∗, 𝑥2
∗) 

0.5, 0.5 

0.6491609, 

0.3508391, 

1.3508391, 

2.3508391 

0.3649261 0.6491609 

 

6.794329 

 

 

58.53371 

 

65.32803 

0.9, 0.1 

0.9415706, 

0.0584294, 

1.0584294,  
2.0584294 

0.3395821 0.6604179 
 

6.751768 

 

60.21212 

 

66.96388 

0.1, 0.9 

0.1745920, 

0.8254080, 

1.8254080, 

2.8254080 

0.3924920 0.6075080 
 

6.903434 

 

57.90451 

 

64.80794 

 

 

Table 2.  Comparison of optimal solutions by IFGP and NSGP technique. 

optimization techniques 

optimal decision     
variables 

𝑥1
∗,  𝑥2∗    

                      

 

optimal objective 
functions 

𝑓1
∗(𝑥1

∗, 𝑥2
∗),  

𝑓2
∗(𝑥1∗, 𝑥2∗) 

sum of optimal 
objective functions 

𝑓1
∗(𝑥1

∗, 𝑥2
∗)  

+𝑓2
∗(𝑥1∗, 𝑥2∗) 

Intuitionistic Fuzzy 
Geometric Programming (IFGP) 

0.36611, 

0.63389 

6.797678 

58.58212 
65.37980 

proposed Neutrosophic 
Geometric Programming(NSGP) 

0.3649261, 

0.6491609 

6.794329 

58.53371 
65.32803 

 

In Table.2, it is seen that NSGP technique gives better optimal result than 
IFGP technique.  
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6 Application of Neutrosophic Optimization in Gravel box 

Design Problem  

Gravel box problem:    A total of 800 cubic-meters of gravel is to be 
ferried across a river on a barrage. A box (with an open top) is to be built for this 
purpose. After the entire gravel has been ferried, the box is to be discarded. The 
transport cost per round trip of barrage of box is Rs 1 and the cost of materials of 
the ends of the box are Rs20/m2 and the cost of materials of other two sides and 
bottom are Rs 10/m2 and Rs 80/m2. Find the dimension of the box that is to be 
built for this purpose and the total optimal cost.  Let length = x1 m, width = x2 m, 
height = x3 m.  The area of the end of the gravel box =x2x3 m2. Area of the sides 
=x1x3 m2. Area of the bottom =x1x2 m2 .The volume of the gravel box=x1x2x3    m3.  
Transport cost: Rs  80

𝑥1𝑥2𝑥3
 .   Material cost: 40x2x3.  So, the multi-objective 

geometric programming problem is 

Min 𝑔01 =
80

𝑥1𝑥2𝑥3
+ 40𝑥2𝑥3 

Min  𝑔02 =
80

𝑥1𝑥2𝑥3
 

Such that   𝑥1𝑥2 + 2𝑥1𝑥3 ≤ 4.  

Here pay-off matrix is          [95.24 63.78
120 40

]   

  

Table. 3: Comparison of optimal solutions by IFGP and NSGP technique. 

Optimization techniques 

Optimal Decision     
Variables 

𝑥1
∗,  𝑥2∗ ,   𝑥3∗                  

 

Optimal Objective 
Functions 

𝑔01
∗ , 𝑔02∗ 

Sum of optimal 
objective values 

Intuitionistic fuzzy geometric 
programming (IFGP) 

1.2513842, 

1.5982302, 

0.7991151 

101.1421624 

50.0553670 
151.1975294 

Proposed neutrosophic 
geometric programming(NSGP) 

1.2513843, 

1.5982300, 

0.7991150 

101.1421582 

50.0553655 
151.1975237 
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7 Conclusion 

In view of comparing the Neutrosophic geometric programming technique 
with Intuitionistic fuzzy geometric programming technique, we also obtained 
the solution of the undertaken numerical problem by Intuitionistic fuzzy 
optimization method and took the best result obtained for comparison with 
present study.  

The objectives of the present study are to give the effective algorithm for 
Neutrosophic geometric programming method for getting optimal solutions to a 
multi-objective non-linear programming problem. Further the comparisons of 
results obtained for the undertaken problem clearly show the superiority of 
Neutrosophic geometric programming technique over Intuitionistic fuzzy 
geometric programming technique.  
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