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Abstract

In this article we present three similarity measures between simpli-
fied neutrosophic hesitant fuzzy sets, which contain the concept of single
valued neutrosophic hesitant fuzzy sets and interval valued neutrosophic
hesitant fuzzy sets, based on the extension of Jaccard similarity mea-
sure, Dice similarity measure and Cosine similarity in the vector space.
Then based on these three defined similarity measures we present a muli-
ple attribute decision making method to solve the simplified neutrosophic
hesitant fuzzy multiple criteria decision making problem, in which the
evaluated values of the alternative with respect to the criteria is repre-
sented by simplified neutrosophic hesitant fuzzy elements. Further we
applied the proposed similarity measures to pattern recognition. At the
end a numerical examples are discussed to show the effectiveness of the
proposed similarity measures.

Keywords: Vector similarity measure, Jaccard similarity measure, Dice
similarity measure, Cosine similarity measure, hesitant fuzzy sets, interval val-
ued hesitant fuzzy sets, Single valued neutrosophic hesitant fuzzy sets, interval
neutrosophic hesitant fuzzzy sets, multi-criteria decision making, pattern recog-
nition.

1 Introduction

The evidence provided by people to examine issues is frequently fuzzy and crisp,
and the fuzzy set (F'S) has been verified to be very important in multi-criteria
decision making. FS theory was first presented by L. A. Zadeh in 1965[46]
seeing degrees of membership to progressively asses the membership of elements



in a set. After the introduction of Fg, atanassov(1l] presented the concept of
intuitionistic fuzzy set (I/J*:’TS' ) by considering membership and non-membership
degrees of an element to the set. Atanassov et al. extended IF'S to interval
valued intuitionistic fuzzy set (IW_F/S )[2]. After the introduction of IFS alot
of similarity measures are proposed by many researchers as the extension of
the similarity measures for F'S, as a similarity measure is an important tool
for determining similarity between objects. Li and cheng[6] presented similarity

measure for IF'S which is the first to applied them to pattern recognition.
S.K De et al. gave some application of IF'S to medical daignosis[7]. Ye[12]
presented cosine similarity measure for IFS and applied it to medical diagnosis
and pattern recognition. Ye[13, 14] also presented cosine similarity measure and

vector similarity measures for IVIFS and trapezoidal IFN and applied them
to multiple criteria decision making problem.
Neutrosophic set( N NS ) was first presented by F. Samarandache[QQ 30] which

simplifies the concept of crisp set, FS IFS IVIFS and so on. In NS its inde-
terminacy is computed unambiguously and its truth-membership, indeterminacy-
membership and falsity-membership are signified freely. N.S simplifies all the
above defined sets from philosophical point of view. Several similarity mea-
sures for NS has been defined by Broumi. S. et al. [31]. Majumdar et al.[26]

presented similarity and entropy for N NS. NS is difficult to apply in real life
and engineering problem. To overcome this difficulty wang et. al. [36, 37].

introduced the concept of single valued neutrosophic sets (/SVNSs) and inter-
val neutrosophic sets ( INSs) and provided basic operation and properties of

SVNSs and INSs. The SVNSs and INSs is a subclass of NS. Sahin R.
et al.[28] defined subsethood for SV NSs. Zhang et al[42] also defined some

operation for INS. Ye[15, 16, 17, 18] defined correlation coefficient, improved
correlation,entropy and similarity measure for ST/\J\T S and INS and gave their
application in multiple attribute decision making problems (M/C\D/M ). Broumi.
S. et al. [32, 33] presented correlation and cosine similarity measure for INS.
Ye[19] presented the concept of simplified neutrosophic sets ( S/\N_S/s) which
contained the concept of ST/\J_V/S and TNS and defined some basic operation for

SNSs and applied them to multi-criteria decision making problem. Ye [20, 21]

also defined vector similarity measures for SN.Ss and improved cosine similarity
measures for SNSs. Peng et al[11] find some drawbacks of the operation for
SNS defined by Ye and presented new operations for SNS.

Hesitant fuzzy set ( HF S) is another generalization of F FS proposed by

Torra and Narukawa[34, 35]. The advantege of HF'S is that it authorizations
the membership degree of an element to a given set with a limited different

values, which can ascend in a group decision making problem. Recently a HF'S
has acknowledged more and more consideration since its presence. Xia and
Xu [38, 39, 40, 41] presented hesitant fuzzy information, similarity measures



for HFS and correlation for HFS.Chen et al[4] presented some correlation
coefficient for ;I_I?'/S and applied them to clustering analysis. Ye[22] presented
vector similarity measures for HFS. Chen et al.[3] further extended HFS to
interval valued hesitant fuzzy set. ( I ‘71}?5) Farhadinia. B [8, 9] defined
information measures for HF'S, and I V/}}_F/S. and distance measures for high

order HF'S.
Dual hesitant fuzzy sets (DH F S) was presented by Zhu[43, 44] which is

the generahzatlon of HF S F S IFS and fuzzy multi sets are spemal cases
of DHFS. Recently Su. Z[45] presented sumlarlty measure for DHFSs and
applied it to pattern recogmtlon Correlatlon of DHF S was presented by Ye[23]
and applied them to M C’DM under DHF informations. As mentioned above

that hesitancy is the most common problem in decision making for which H F'S is
a suitable means by allowing sevrel possible values for an element to a set. How-

ever in H F'S they consider only one truth-membership function and it cannot ex-
press this problem with a few different values assigned by truth-membership hes-
itant degree, indeterminacy-membership degree, El\c_l/falsity—membership degrees
due to doubts of decision makers.and also in DHF'S they consider two func-
tions that is membership and non-membership functions and can not consider
indeterminacy-membership function. To overawed this problem and the decision
maker can get more information Ye [24] presented the concept of single valued

neutrosophic hesitant fuzzy sets (SVNHF) and defined some basic operations,

aggregation operators and applied it to M CDM under SV N H F .environment.
Lui P. [25] presented the concept of interval neutrosophic hesitant fuzzy set

INHF ) and defined some basic operations, aggregation operators and ap-

plied them to multicriteria decision making problem.
Since vector similarity measures played an important role in decision making,

so we present vector similarity measures for SINHF and then give its applica-

tions in MC DM and pattern recognition.

The rest of the article is organized as follows. In section 2 we defined some
basic definitions related to our work. In section 3 we defined vector similarity
measures for simplified neutrosophic hesitant fuzzy sets. In section 4 we apply
the peoposed similarity measures to multi attribute decision making problem
under simplified neutrosophic environment. in section 5 we apply the proposed
similarity measures to pattern recognition. At the end we give some numerical
examples to show the effectiveness of the proposed similarity measures, conclu-
sion and refrences are given.

2 Preliminaries

In this section we define some basic definitions about hesitant fuzzy sets, interval
valued hesitant fuzzy set, single valued neutrosophic hesitant fuzzy set, interval



neutrosophic hesitant fuzzy sets and the vector similarity measures, such as
Jaccard similarity measure, Dice similarity measure, Cosine similarity measure.

Definition 1 /34, 35/Let U be a fived set, a hesitant fuzzy set M onU is defined
in terms of a function fy,(a) that when applied to U returns a finite subsets of
[0,1]. Hesitant fuzzy set is mathematically represented as,

M = {{a, fy;(a)la € O)},
Where fy;(a) is a set of some different values in [0, 1], denoting the possible
membership degrees of the element a € U to M.

Definition 2 [3]Let U be a fized set, an interval valued hesitant fuzzy set D
on U is defined in terms of a function fx;(a) that when applied to U returns a
finite set of subintervals of [0,1]. An interval valued hesitant fuzzy set is math-
ematically represented as,

D ={(a, fp(a)la € U)},
Where fp(a) is a set of some different values in [0, 1], denoting the possible
membership degrees of the element a € U to D.

Definition 3 /24]{16t U be a non empty fized set. A single valued neutrosophic
hesitant fuzzy set N is the structure of the form:

N = {(a,#(a),(a), f(a))}

In which £(a),%(a) and f(a) are three sets of some values in the real unit inter-
val [0, 1], representing the possible truth-membership hesitant degrees, indeterminacy-
membership hesitant degrees and falsity-membership hesitant degree of the el-
ement a € U to the set N , respectively, with the condition that 0 < ¢, x, ¥
Land 0 < o 4+ xT + ¢ < 3, where ¢ € f(a),x € i(a), € f(a),o"
Ugermax{p},x* = U, gmax{x},¢" = Uy fmax{¢}.

A

Definition 4 [25]Let U be a non empty fived set. A interval neutrosophic hes-
itant fuzzy set H 1is structure of the form

i = {{a,1(a),(a), f(a))}

In which #(a), 7(a) and f(a) are three sets of some interval values in the set of
real unit interval [0, 1], representing the possible truth-membership hesitant de-
grees, indeterminacy-membership hesitant degrees and falsity-membership hes-
itant degree of the element a € U to the set H, respectively, with the condition
that o = [¢',¢"] € {(a),x = [\, x"] € i(a), ¢ = [, 9"] € f(a) C [0,1] and 0 <
sup p* +sup x T +supy’ < 3,07 = U gpmax{p}, xT = U gmax{x}, v =
Uyefmax{t}.



2.1 Vector similarity measures

Let A = (¢1,¢2,...,¢m) and B = (ey, e, ..., em) be two vectors of length is m
where all the coordinates are positive. The jaccard similarity measure of these
two vectors [27] is given by
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Where A.B = chek is the inner product of the vectors A and B and
k=1

m

Z e and ||B|]? = Z €2 are the Euclidean norms of A and B.
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Then the Dice similarity measure [5] is defined as follows:
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and the Cosine similarity measure[10] is defined as follows:
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The Cosine similarity measure is nothing just the cosine angle between two
vectors.

the above formulas are same in the sence each take the value in the unit
interval [0, 1]. Tha jaccard and dice and cosine similarity measures are respec-
tively undefined if ¢y, = e, = 0, for k= 1,2..mand ¢z =0o0r e, =0, k=
1,2...m. Now we assume that the cosine similarity measure equal to zero when
cek=0o0re =0, k=1,2...m.

These vector similarity measure satisfy the following properties for the vec-
tors A and B.

(1) J(A,B) = J(B,A), D(A,B) = D(B,A), and C(A, B) = C(B, A)
(2)0 < J(A,B), D(A,B),C(A,B) <1
(3) J(A,B) = D(AB)=C(A,B) =1if A=B



3 Vector Similarity Measure For Simplified Neu-
trosophic hesitant fuzzy Sets

If the simplified neutrosophic hesitant fuzzy set contains finite set of single
points, that is single valued neutrosophic hesitant fuzzy set. Then the Jaccard,
Dice and Cosine similarity measures are defined as follows:

Definition 5 Let A and B be two SVNHFSs on the universal set U = {ul,u2,. T
respectively denoted by A = {<UJ,TA(’U,]) vi(uy), kz(uj)|u; € U} and B =
{{uj, 75(uy), L5(uy), kg (uy)lu; € U} for all j = 1,2,...,m.Then we define the

jaccard, Dice and cosine similarity measures for SVNHESs A and B as follows:
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~ 1 =1 =1 1=1
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Here Alej = max(le(7 z(t5), tz(0y), k 5(U5)), le(T 5(t;), L5(T;
all 4; € U, where le(7 5(4;),77(0;), 5 5(;)) and le(T 5(1;), 25(1;),
spectively represents the number of values in 7 7(%;), 7 5(%;), & 5(@;) and
When the number of values in 7 7(1;), 7 5 (), & 7(@;) and 7 5 (@), t5(%;), & 5(t;).
are not equal that is le(7 7(1;),75(1;), R 7(0;)) # le(T5(t;), t5(0;), Rg(ty)).
Then the pessimestic add the minimum value while the optimistic add the max-
imum value. This depend on the decision makers that was successfully applied
for hesitant fuzzy sets by [40].

The above defined three vector similarity measures satisfy the condition
defined in Ye[22].
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N (A1) JS@FS(AB) = Jovwars(B: A Dgyrps(A B) = Doygps(By A), Coyps (4, B) =
Csvnars B’AA) o o o
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Proof. (Al) obviously it is true. m

(A2) obviously the property is true due to the inequality &2 + §% > 2i§ for
eq 1 and eq 2 and the cosine value for eq 3.

(A3) When A = B then ?g(ﬂj) = f‘g(ﬂj), Zg(ﬂj) = Zg(ﬂj) and Rg(ﬂj) =
nB(uj) for each uj € U, ] =1,2,...,m. So there are

JSVNHFS(A B)=1 DSVNHFS(A,B) =1,and Csvnars(A, B) = 1. ~
In real life problem, the elements @, (j = 1,2,...,m) in a universal set U =

{1, qo, ..., u;} have different weights. Let @ = (w1, w2, ...,wj)f be the weight
m

vector of @; (j = 1,2,...,m) with w; > 0,5 = 1,2,...,m, and ij = 1.
j=1
Therefore we extend the above three similarity measures to weighted vector

similarity measures for SVNHFESs.
The weigthed Jaccard similarity measure for SVNHFSs A and B as follows:
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The Dice similarity measure for S VNHESs A and B as follows:
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The Cosine similarity measure for S VNHFSs A and B as follows:
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If the SNHF'S contain a set of interval values instead of a set of single
points. Then
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The weighted Jaccard similarity measures for INHF'S
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The weighted Dice similarity measure
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4 Multi attribute decision making With single
valued neutrosophic hesitant information

In this section we present a multi-criteria decision making method adapted from
Ye[22] to utilize the vector similarity measures for SVNHFSs and INHFSs
with SVNHFE and INHF information respectively.

For a MCDM problem with .S VNHF and IN HF information respectively,
let A={A;,As,...,A,} be a set of alternatives and C = {él,ég, ...,Cu’m} be a
set of attributes. If for the alternatives Aj (for 3 =1,2,...,n) the decision mak-
ers provide several values under the criteria C; (for i=1,2,...,m), then each
value is considered as a SVNHF element and INHF element (TjirTjis Rjs)( for j
1,2,..,m, i=1,2,....m).

Therefore we can stimulate a SVNHF and INHF decision matrix re-
spectively .D = (’T'ji,zj'i7l?6ji)n><m, where (’T'ji,zj'i7l?§ji)( fO’]" ] = 172,...,’]7,, 1=
1,2,...,m).is in the form of SVNHEF elements or INHF elements.

For the selection of best alternatives in multiple-criteria decision making
environments,the concept of ideal point has been used in the decision set. Al-
though in real world the ideal point does not exists. The ideal point deliver
a suitable theoretical hypothesis to evaluate alternatives. Therefore we define
cach value in each ideal SVNHF or INHF element (77,05, ;) for the ideal
alternative A* = {(C;, (75,75, K))|Ci € C} as T,y = Ll = 0Kl =
0, or ?;g(k,) = [1,1],2}’?0(k) = [0,0],/?;}‘0(k) =10,0], for k=1,2,...,le;, where le;
is the number of values or interval values in (7;;,7j:, kji)( for j =1,2,..,n, i =
1,2,...,m).

For the different importance of each criteria the weighting vector of criteria is
given as ¢ = (w1, @2, ..., W) 7, where w; > 0,i =1,2,...,m, and > ;- w; =
1.

Then we exploit the three weighted vector similarity measures for S VNHESs
or INHFSs for MCDM under SVNHF or INHF information, which can be
defined as follows:

Step 1. Calculate one of the three vector similarity measures between the
alternative A; (for j =1,2,...,n) and the ideal alternative A* by using one of
the three formulas:
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lEj lej

> e (@5)7 e sy (W) + ngg(i)(ﬁj)f}*a(i)(ﬂj)
1=1

=t lej
m + Z Hga(i) (uJ)R}*U(Z) (ﬁj)
3 A A * i=1
@) synmr(45, A7) = Zw’ le, s e )
Jj=1 -
Z [TAU(Z)(“J)} + Z |:[’Aa(z) (U’J)]
=1 =1
lej i 9 lej ) i 9
+ |:K:A<7(z) (UJ):| + Z |: 2*0(1) (uJ)]
=1 =1
lEj 9 lEj 9
Y ooy @]+ D Ry (@)
lej =t 17(37
Zl T Ao () (4 )TA* (i) (a;) + Zl Lo (d) (a )Z}*U(l) (i)
’ lEj =
+ 2 R o) ()R o) (8)
(13)
lej lej
Z?Aa(z)(@j)?}*a(i) (@) + Y Vo (@)T5. 5y ()
2 =1 e =1
m + Z Rﬁa(i)(ﬂj)’%}*a(i)(ﬂj)
@(AJ’A*) = sz lej = 9 Loy 2
Jj=1 ' - -
Z |:TAG'(’L) (’U’J)i| + Z |:LA0'(1) (uj)i|
1761 , zﬁi ,
+ Z |:K/AU(‘) (u‘]):| + Z {?}*U(z) (ﬂj ):|
i, s ,
+Z |:ZA*O'(1) (u]):| + Z |: A*a’(z)(~j):|
) ) (14)
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lej lej le;
m ZTAU z) v (i) +Z[’Ao() (a;)T% A*o (i) (4 +ZHAU(Z )R**U(i)(uj)
/b A iy A* = i i=1 =1
@wC(4;, A7) ; w; = — -
Z |:TAO'(7, U‘J :| + Z |:LA ﬂj :| + Z |:K:AO' ’L) :|
i=1
le; 9 l€j 5 lej )
r [TA oli >(uﬂ)} * ; [‘A*a(n(uﬂ)} * ; {Hﬁ*o(i)(uj)}
(15)
We use the following formulas under theSV N H F' information.
Under IN HF information, we use the following formulas:
lej lej
Z ’7-1%7( )(ﬁj) ZL*O’(Z ’u,] + Z TAG(Z ’u,]) *U *o () (ﬂj)
e, i
+ZL A*a() +Z o) L (i)(ﬂj)+
lej lej
m DRk @EE o @)+ Y RE L (@)EY ()
o) B i=1 i=1
@ xips(A B) = sz le; le; s e )
j=1 _ _ 3 )
3 ]+ 20 [Py 0]+ 35 0]+
i=1 i=1
lej ~ leJ ) 9 lej 9
7 [Z%U(i) (ﬂj)_ + Z _R%U(l) (ﬁj):| + Z {R%U(z)(Nj)} +
i= i=1
lej 19 lej ) 9 lej 9
S [Floe@)] + 2 [Flw@)] + X2 [ @) +
=1 =1 i=1
lej 19 lej 9 lej 9
—x% ~ =L ~ U ~ N
P [Lg*o(i) (uj) + ; _K'/A*O'(Z') (uj):| + ; [I{/Ea(z) (’LL])}
lej lej
7iﬁxﬂ;(i) () :kaiL*a(i) COEDD %%U(z) (ﬂj)ffga(i)(ﬂj)
i=1 i=1
le; lej
+ Z%o(i)(~3)zf4€o(a)(aﬂ) + Zzga(z) (aj)’j{a( )(~ )+
1=1 i=1
le; lej
Rﬁa(z) (@R o (1) + > ’%%am (@5)R o sy (@)
i=1 i=1
(16)

15




wD 5=

INHFS

le; j B ' _*UU -
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lej
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i n [ 3 }
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l€j lEj

L ~
Z Aa()(u) A*o (i) (4 +ZTA (i) (@;)7 A*a()( i)+

=1

lej leJ
~ *L ~
ZZ i A*J(z (a;) +Z Ao’(z (i)(uﬂ)
le] lej

m + Z K:Aa(z ;)R + Z HAU( ’U,] (’L) (ﬂj)

wClmS(/T,E):sz =

2[ }&:[M o
izi[,aam] 3 ]
30 [ 0]+ 25 [ 0]
= et 6]+ 35 [ ]
+lz_; (7 @)+ lz_; 7Y @)]
3 [ 0 }2+§[ @]

Practical example

This example is adopted from Ye [22] is used as the demonstration of the
effectiveness of of the proposed decision making method in real life problem.

For SVNH information

There is an investment company, which wants to invest some money in the
best option. There is a panel with four possible alternatives to invest the money:

(1) A is a car company (2) As is a food company , (3) A4 is a computers
company, (4) A4 is an arms company. The following three criterias on which
the investment company must take decision are (1) Cj is the risk, (2) Cy is the
growth, (3) Cj5 is the environmental impact. The weight vector of the criteria
is given as (0.35,0.25,0.4)T the four possible alternative

The decision matrix for attributes and alternative the data is represented by
SVNHFN
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[ C, Cy Cs |
i {0.3,0.4},{0.2,0.3}, {0.4,0.5},{0.1,0.3}, {0.1,0.2},{0.3,0.4},
! {0.5,0.6} {0.4,0.6} {0.6,0.7}
5 i {0.9,1}, {0.05,0.07}, {0.8,0.9},{0.1,0.2}, {0.7,0.9},{0.1,0.2},
D= 2 {0.01,0.02} {0.1,0.2} {0.01,0.02}
i {0.5,0.6},{0.2,0.3}, {0.5,0.7},{0.1,0.2}, {0.5,0.7},{0.1,0.2},
3 {0.1,0.2} {0.2,0.3} {0.2,0.3}
i {0.9,1},{0.1,0.2}, } {0.8,0.9},{0.1,0.2}, {0.4,0.5},{0.2,0.4},
i 4 {0.15,0.25} {0.1,0.2} {0.3,0.5} |
Table 1: The values obtained through the defined weighted vector similarity
measures for SVNHFS
WJSVNHF(A*,Ak) W‘DSV/]W{F(A*’Ak) WCSV/JW{F(A*’AIC)
Ay 0.2254 0.3384 0.4099
Ay 0.9420 0.9762 0.8752
1213 0.68125 0.81120 0.8812
Ay 0.73040 0.8205 0.8395

Ranking order 1212 - /~14 - /~13 - [11

A2>A4>-A3>-A1,

A3>A2>A4>-f~11

The values obtained in table 1 shows that the Jaccard and Dice similarity
measures have the same result that is As is the best alternative while the Cosine
similarity measure shows that As is the best alternative. From table 1 we
conclude that the Jaccard and Dice similarity measure are better to use in
multi-criteria decision making.

For INS information

Now we consider the above example for INHF'S's,

The decision matrix for attributes and alternative the data is represented by

INHFN

Cq
(0.3, 0.4], [0.4,0.5]},
A 4 {[02,0.3],]0.3,04],
{[0.5,0.6], [0.6,0.7]}
{[0.8,0.9],10.9, 1]},
{[0.01,0.02],[0.02,0.03]},
{0.01,0.02], [0.02,0.03]}
{[0.5,0.6], [0.6,0.7]},
{[0.2,0.3],[0.3,0.4]},
{[0.1,0.2], [0.2,0.3]}
{[0.8,0.9],[0.9, 1]},
{[0.1,0.2],[0.2,0.3]},
{[0.15,0.25], [0.25,0.35]}

S
[

|
|

Cy
{[0.4,0.5], 0.5, 0.6]},
{[0.1,0.2],[0.3,0.4]},
{[0.4,0.5],[0.5,0.6]}

{[0.8,0.9],[0.9,1]},
{[0.1,0.2],[0.2,0.3]},
{[0.1,0.2],0.1,0.2]}

{[0.4,0.5],10.5,0.7]},
{[0.1,0.2],[0.2,0.3]},
{[0.2,0.3],[0.3,0.4]}
{[0.7,0.8],[0.9, 1]},

{[0.1,0.2],[0.2,0.3]},
{[0.1,0.2],[0.2,0.3]}

Cs
{[0.1,0.2],[0.2,0.3]},
{[0.3,0.4],[0.4,0.5]},
{[0.6,0.7],[0.7,0.8]}

{[0.7,0.8],[0.9, 1]},
{[0.05,0.15],[0.15,0.25]},
{[0.01,0.02], [0.05,0.09] }
{[0.4,0.5],]0.5,0.7]},
{[0.1,0.2],[0.2,0.3]},
{[0.2,0.3],[0.3,0.4]}
{[0.4,0.5],]0.5,0.6]},
{[0.2,0.3],[0.3,0.5]},
{[0.3,0.4],[0.4,0.5]}

Table 2: The values obtained throug using weighted vector similarity mea-
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sures for I ]@N

} Wsvnur() WDsvnuF() WJsvnuF()
Ay 0.2825 0.4238 0.4357
A, 0.9437 0.9708 0.9765
;13 0.6100 0.7568 0.7297
Ay 0.7171 0.8197 0.8337
Rankmg order AQ - A4 - Ag - Al A~2 - A4 - Ag - Al, /12 - /14 - Ag - Al

The values obtained from table 2 shows that the best alternatives is /~12.

5 pattern recognition

In this section we appliad the above defined vector similarity measures to pattern
recognition. The method use here is adapted from Ye[12].

Example 6 We are given three sample pattern Ay, Ay, and As respectively
which are represented by the following SVNHESs in the finite universe U=
{a1,a2,a3}. We are also given an unkown pattern Q Our aim is to classify Q
in one of the given pattern. The principle of recognizing pattern is that of the
mazximum degree of similarity between SVNHFSs is discribed by

N =arg Mazi<i<3 {5SV/]\7}7FS(E’“ Q)}

Ay = {(a1,{0.6,0.7},{0.2,0.3}, {0.3,0.4}), (az, {0.4,0.5},{0.3,0.4}, {0.4,0.5}),
(a3,{0.3,0.4},{0.2,0.4},{0.5,0.7})}

Ay = {(a1,{0.4,0.5},{0.3,0.5},{0.5,0.6}), (az, {0.6,0.7},{0.2,0.3},{0.3,0.4}),
(a3,{0.5,0.6},{0.2,0.3},{0.2,0.4})}

As = {(a1,{0.2,0.3},{0.3,0.4},{0.6,0.7}), (a2, {0.4,0.5},{0.3,0.4}, {0.4,0.5}),

(as,{0.6,0.7},{0.2,0.3},{0.3,0.4})}

Q = {(a1,{0.1,0.2},{0.3,0.4},{0.7,0.8}), (az, {0.2,0.3},{0.3,0.4}, {0.6,0.7}),
(as,{0.4,0.5},{0.3,0.5},{0.5,0.6})}

(A1,Q) = 0.3501, (A2, Q) = 0.4317, (A;, Q) = 0.4723

One can observe that the pattern should be classified in gg according to the
pattern recognition principle. This result is the same obtained by Ye[12].

For INHFS
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Example 7 For INHFS we use the same example defined above just the pat-
terns are represented by INHFSs.

A, = {(a1,{[0.4,0.5],[0.6,0.7]},{[0.1,0.2],]0.2,0.3]}, {[0.2,0.3], [0.3,0.4]}),
(az,{]0.3,0.4],[0.4,0.5]}, {[0.3,0.4],[0.3,0.4]}, {[0.3,0.4], [0.4, 0.5]}),
(as,{]0.2,0.3],(0.3,0.4]}, {[0.1,0.3],[0.2,0.4]}, {[0.4,0.6], [0.5,0.7] 1)}

Ay = {(a1,{[0.3,0.4],[0.4,0.5]},{[0.2,0.3],]0.4,0.5]}, {[0.3,0.5], [0.4,0.6]}),
(az,{]0.4,0.6],[0.5,0.7]}, {[0.2,0.3],[0.3,0.4]}, {[0.3,0.4], [0.4, 0.5]}),
(a3, {]0.4,0.5],[0.6,0.7]}, {[0.1,0.2],[0.2,0.3]}, {[0.1,0.3],[0.2, 0.4] )}

Ay = {(a1,{[0.1,0.2),[0.2,0.3]},{[0.2,0.3],[0.3,0.4]}, {[0.5,0.6], [0.6,0.7]}),
(az,{]0.3,0.4],0.4,0.5]}, {[0.2,0.3],[0.3,0.4]}, {[0.3,0.4], [0.4, 0.5]}),
(a3,{]0.5,0.6],[0.6,0.7]}, {[0.1,0.2],[0.2,0.3]}, {[0.2,0.3], 0.3, 0.4] )}

7 )

Q = {({a1,{[0.1,0.3],]0.2,0.4]},{[0.2,0.3],[0.3,0.4]}, {[0.6,0.7],[0.7,0.8]}),
{a,{[0.1,0.2],[0.2,0.3]}, {[0.2,0.4], 0.4, 0.5]}, {[0.5,0.7],[0.6,0.8]}),
(as, {]0.2,0.4],[0.4,0.6]}, {[0.3,0.4], [0.4,0.5]}, {[0.4,0.5], [0.5, 0.6] })}

(A1,Q) = 0.1954, (A2, Q) = 0.1960, (A4, Q) = 0.2150

One can observe that the pattern should be classified in gg according to the
pattern recognition principle. This result is the same obtained by Ye[12].

Discussion

As simplified neutrosophic hesitant fuzzy set is an important extension of
the Fuzzy set(F'S),Intuitionistic fuzzy set(IF'S), Single valued neutrosophic
set(SV N.S), interval neutrosophic set (INS),Hesitant fuzzy set(H F.S) and Dual
hesitant fuzzy set(DH F'S), single valued neutrosophic hesitant fuzzyset (SVNHF'S),

inteval neutrosophic hesitant fuzzy set (INHFS). As mentioned above that

hesitancy is the most common problem in decision making for which HF'S is a
suitable means by allowing sevrel possible values for an element to a set. How-

—_—~—

ever in HF'S they consider only one truth-membership function and it cannot
express this problem with a few different values assigned by truth-membership
hesitant degree, indeterminacy-membership degree, and falsity-membership de-

grees due to doubts of decision makers.and also in DHF'S they consider two
functions that is membership and non-membership functions and can not con-
sider indeterminacy-membership function. Therefore simplified neutrosophic
sets is the more suitable for decision making and can handle incomplete, incon-
sistance and indeterminate information which occure in decision making. The
other advantege of the simplified neutrosophic set is that it contain the con-
cept of single valued neutrosophic hesitant fuzzy sets and as well as interval
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neutrosophic hesitant fuzzy sets. As comparing to other sets the simplified neu-
trosophic hesitant fuzzy set contain more information and the decision makers
can get more information to take their decision.

Conclusion

As simplified neutrosophic hesitant fuzzy set (SN HFS) is a new extension
which consists of the concept of Fuzzy bet(F S),Intuitionistic fuzzy set(] FS),
Single valued neutrosophic set(SVN S), interval neutrosophic set (I NS), Hes-
itant fuzzy set(HFS) and Dual hesitant fuzzy set(DHF'S), single valued neu-

trosophic set (SVNHFS), inteval neutrosophic hesitant fuzzy set (INHFS).
In this article we defined vector similarity measures for simplified neutrosophic
hesitant fuzzy set and applied them to multi-criteria decision making and pat-
tern recognition. We also observe that the Jaccard and Dice similarity measures
are better to apply in multi-criteria decision making problem then the Cosine
similarity measure. In future we shall apply the above distance measures to
medical diagnosis.
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