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}i—,‘ Abstract: Divergence measure is an important tool for determining the amount of
16 discrimination between two probability distributions. Since the introduction of fuzzy sets,
17 divergence measures between two fuzzy sets have gained attention for their applications in
ig various fields. Exponential entropy measure has some advantages over Shannon’s entropy. In
20 this paper, we used the idea of Jensen Shannon divergence to define a new divergence
21 measure called ‘fuzzy Jensen-exponential divergence (FJSD)’ for measuring the
22 discrimination/difference between two fuzzy sets. The measure is demonstrated to satisfy
23 some very elegant properties, which shows its strength for applications in multi-criteria
gg decision making problems. Further, we develop a method to solve multi-criteria decision
26 making problems under fuzzy phenomenon by utilizing the proposed measure and
27 demonstrate by a numerical example.
28
29
30 Keywords - entropy, fuzzy sets, fuzzy divergence, Jensen-Shannon divergence, multi-criteria
31 decision making
32
33 .
34 1. Introduction
35
36 In the last six decades, divergence measures have been extensively used to measure the
37 difference between two probability distributions [4, 5, 15, 16 and 27] and widely applied in
gg various fields.
40 The notion of divergence, introduced by Kullback and Leibler [16] in 1951, provides a
j; measure of discrimination between two probability distributions. After its introduction,
43 various generalized measures of divergence have been proposed by researchers [28 and 31]
44 and studied their properties and application in details. In 1991, Lin [18] defined a new
45 divergence measure named as Jensen-Shannon divergence, which has been gained quite some
46 attention from researchers/practitioners and successfully applied in variety of disciplines [1, 7
i 9,11, 19 and 21-24].
49 Parallel to the concept of probability theory, the notion of fuzzy sets (FSs) introduced by
gg Zadeh [35] in 1965 to deal with vagueness. Since then, the theory of fuzzy set has become a
52 vigorous area of research in different disciplines such as engineering, artificial intelligence,
53 medical science, signal processing, and expert systems. In 1992, Bhandari and Pal [3]
54 forwarded the concept of divergence measure from probabilistic to fuzzy phenomena and
gg defined a divergence measure between two fuzzy sets. Fuzzy divergence measure gives fuzzy
57 information measure for discrimination of a fuzzy set A relative to some other fuzzy setB .
58 This fuzzy divergence measure has wide applications in many areas such as pattern
59 recognition, fuzzy clustering, signal and image processing etc. Some generalized measures of
60
61
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fuzzy divergence have been studied by Hooda [12], Bajaj and Hooda [2], Shang and Jiang
[29].

As mentioned above Jensen-Shannon divergence is an important measure from application
point of view. This divergence measure is based on Shannon’s entropy function [30]. In 1989,
Pal and Pal [25, 26] critically analyze the Shannon’s function and discussed its some
limitations. To imbue these limitations, Pal and Pal [25, 26] defined a new measure of entropy
based on exponential function. Futher, Kvalseth [17] and Verma and Sharma [34] defined
some generalized version of exponential fuzzy entropy.

In 1999, Fan and Xie [6] introduced the fuzzy divergence measure based on exponential
function and studied its relation with divergence measure introduced in [3]. Ghosh et al. [7]
developed some applications of fuzzy divergence measure in the area of automated leukocyte
recognition.

In this paper, we propose a new measure of divergence called ‘fuzzy Jenson-exponential
divergence (FJED)’ between two fuzzy sets. The new divergence measure has elegant
properties, which are stated and proved in the paper to enhance the employability of this
measure. The strength of this extension has been demonstrated by an example of multi-criteria
decision making.

The paper is organized as follows: In Section 2 some basic definitions related to probability
and fuzzy set theory are briefly given. In Section 3, the fuzzy Jenson-exponential divergence
measure is proposed. In Section 4 some properties of the proposed fuzzy divergence measure
are stated and proved. In Section 5 a fuzzy multi-criteria decision making method is proposed
with the help of fuzzy Jenson-exponential divergence measure. A numerical example is also
given to illustrate the solution process and our conclusions are presented in Section 6.

2. Preliminaries
Let o :{(pl,pz,..., pn): p 20 > p = 1};n22denote the set of all complete finite
]=1

discrete probability distributions.
For any probability distribution P = ( PP, P, ) € Q. , Shannon [30] introduced the entropy

to measure the uncertainty associated with probability distribution P as follows
> p | (1)
H(P)=—JZ=1 p,log p,.

Pal and Pal [26] analyzed the classical Shannon information entropy and introduced a new
probabilistic entropy called exponential entropy given by

H(P)=2p, (e -1). (2)
j=1
These authors point out that, the exponential entropy has an advantage over Shannon’s
entropy. For the uniform probability distributionP=(%,% ..... %j exponential entropy has a
fixed upper bound
. 11 1
IlmeH(—,— ..... —j:e—l asn—o, 3)
n‘n"'n

which is not the case for Shannon’s entropy.
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Kullback and  Leibler [16] measure of divergence of a  probability
distributionQ = (q,,,,...,q,) €, to probability distributionP:(pl,pz,..., pn)eQn, is
given by
n p
D(PIQ)=ijlogq—’- (4)
= i

In 1991, Lin [18] introduced the Jensen Shannon divergence between the two probability
distributions P =(p,, p,,..., p,)andQ=(q,,q,,..,q,) as

JSD(P;Q)zH(P;Qj—H(P);H(Q), (5)

where H (P) is the Shannon entropy. Since H(P) is a concave function, according to Jensen’s
inequality [10], JSD(P;Q) is nonnegative and vanishes when P =Q. The JSD can also be
represents in terms of KL divergence as

JSD(P;Q)=§(D(P|¥j+o(0|¥n. (6)

Definition 1. Fuzzy set [35]: A fuzzy set A defined in a finite universe of
discourse X ={x,x,,... x,} is mathematically represented as

A:{(x, ILIA(X)>‘XEX}, (7)
where ,uA(x): X —>[0,1] is measure of belongingness or degree of membership of an
elementx in A.

Definition 2 Set Operations on FSs [35]: Let FS(X)denote the family of all FSs in the
universe X , assume A, B e FS(X ) given as

Az{(X,,uA(x)>|XE X},

B = {(x, 1 (X))|x € X }.
Then some set operations defined as follows:

(i) AcBiff u,(X)<us(x) VxeX;
(i) A=Biff AcB and Bc A;
(i) A® = {(x, 1—p, (X)) x e X J
(iv) ANB= {{x 1, () 5 (X)) x € X}
(v) AUB= {x u,()v pis (X)) x € X };
where v, A stand for max and min operators, respectively.

In 1972, De Luca and Termini [20] defined fuzzy entropy for a fuzzy set A corresponding to
Shannon entropy [20], given by

HA) = =23 1 (x)10g 1y (%)) + @ st Dlog— i (6 ) ]
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Fuzzy exponential entropy for fuzzy set A corresponding to (2) has also been introduced by
Pal and Pal [26] as

H(A)= @;[M (x, )ei’”’*(”) +(1—/,IA (x, ))e”‘*(“) —1] . 9)

Let A and B be two fuzzy sets defined in X . Corresponding to the Kullback and Leibler [16]
divergence measure, Bhandari and Pal [3] defined the fuzzy divergence measure of a fuzzy
set B with respect to fuzzy set Aas

D(A|B :1 n X. Jlo ﬂA(Xj)+ 1- X. )|lo —(1_/1A(Xj))
. Z{( 18| ”“”)'g(wa(xj))} 0o

Fan and Xie [6] proposed the fuzzy divergence measure based on exponential function as
DIAIB) = X (1 (1= (x,))e 0, ()0 )
j=1

In the next section, motivated by the idea of Jensen-Shannon divergence, we propose a new
measure called ‘fuzzy Jensen-exponential divergence’ (FJED) to measure the difference
between two fuzzy sets. Some properties of the proposed FJED are also studied here.

3. Fuzzy Jensen-Exponential Divergence (FJED)

Definition 3.1. Single Element Universe set: Let A={x,x,(X))|xeX} and
B={(x, ;(X))| xe X} be the two fuzzy sets defined in a single element universe of

discourse X ={x}. We define the fuzzy Jensen-exponential divergence measure between two
FSs A and B , as

FIJED" (A||B) = H(AJFBJ_(eH(A)nH(B)j
e 2 5

I (uA(x)+u3(x>]exp(2—uA(x)—uB(x))
2 2

+(2_,UA(X)_ﬂB(X)jeXp(ﬂA(X)+/UB(X)j

2 2

=( e—l) (1 (0 EXP (L= 11, (X)) + (L= 11 (%) ) exP (12,(X))) . (12)

+ (/uB (x)exp (1_ Hg (X)) + (1_ Hg (X))eXp (/uB (X)))
2

Theorem 3.1: For all A,BeFS(X), the fuzzy Jenson-exponential divergence measure
FJED"(A|| B) in (12) satisfies the following properties:

(i) FJED"(A||B)=0,

(i) FIED"(A|B)=0 ifandonly if A=B,

(ili) 0<FJED’(A||B)<1.

Proof: (i) It follows from Jensen inequality [10].
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(ii) Let A=B,thenitis obvious FIED"(A||B)=0.
Conversely, let
FJED"(A||B)=0

eH[A;B]_(eH(A);eH(B)]:O (13)

Since H (*)is a concave function [26], then from Jensen inequality [10] expression (13)
holds if and only if A=B..

(iii) FJED"(A|| B)attains the highest value for the following cases:
A=(1,0),B=(0,1) or A=(0,1),B=(10),
which gives the required results, i.e., 0< FJED"(A|| B) <1.

This completes the proof. m
In the above definition, we assumed single element universe set. Now, here we extended this
notion to finite universe of set.

Definition 3.2: Let A={(x, ,(X;)) | X; € X} and B ={(x, 1, (X;)) | X; € X} be two fuzzy sets in

the universe of discourse X ={x,x,,...x,}, then the fuzzy Jenson-exponential divergence
measure between A and B, is given by

2

[ﬂA(Xj)+ﬂB(Xi)jeX [2_ﬂA(Xj)_ﬂB(X,‘)J
5 Y

(Z_IUA(Xj)_IUB(Xj)
n
2

Jexp(

ILlA(Xj) + Uy (Xj)
2

l n
FJED(A|B)=—F——
( ) n( e_]-)JZi (ﬂA(Xj)exp(l_luA(Xj))-l_(1_/UA(Xj))eXp(luA(Xj)))

- +(,UB (Xj)exp(l_luB(Xj))+(1_:UB(Xj))exp(luB(Xj)))
2

' (14)
In the next section, we prove some elegant properties of the proposed measure given by (14).
For proving the properties, we will assume that the finite universe of discourse X is
partitioned into two disjoint sets X, and X, , such that

X1={X|XEX,,UA(XJ-)2,UB(XJ-)} (15)
XZ:{X|XE X, ,uA(xj)<yB(xj)}. (16)
5
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4. Properties of Fuzzy Jensen Exponential Divergence

The measure given by (10) has the following important properties:
Theorem 4.1: For all A,B € FS(X),

(i) FIED(A||AUB)=FJED(B|ANB),

(i) FIED(A||ANB)=FJED(B|| AUB),

(iii) FJED(AUB| ANB) = FIED(A| B),

(iv) FIED(A| AUB)+FJED(A|| ANB)=FJED(A| B),

(v) FIED(B| AUB)+FJED(B| ANB)=FJED(A| B).

Proof: (i) Considering measure given by (14), we have

| zuA(Xj)+luAUB(Xj) ex Z_IUA(Xj)_:uAUB(Xj)
FJED(A|| AUB) = = i ’ p ?
_n(\/e—l)jzl +[2_ﬂA(Xj)_ﬂAUB(Xj)]eXp(ﬂA(Xj)+/UAUB(X,')J
2 2

(IUA(Xj)exp(l_luA(Xj))+(1_IuA(Xj))eXp(luA(Xj)))

— +(ﬂAUB(Xj)eXp(1_:uAUB (Xj))+(1_:uAUB(Xj))exp(luAUB(Xj)))
2

I Ha (X)) + 11, (X;) ex 2— 1 (X;) = pa(X;) |
2 P 2
+£2_:uA(Xj;_ﬂA(Xj)jeXp[ﬂA(Xj);ﬂA(Xj)J
Xjele (/uA(Xj)EXp(l_/uA(Xj))"‘(1_ﬂA(Xj))EXp(ﬂA(Xj)))
- +(ﬂA(Xj)eXp(l_NA(Xj))+(1_NA(Xj))eXp(ﬂA(XJ‘)))
2
_ 1
n( e_l) [/UA(XJ')+luB(Xj)jeXp(z_luA(Xj)_IUB(Xj)j
2 2
+(2_ﬂA(Xj;_ﬂB(X]’)jeXPKﬂA(X]);ﬂB(Xj)j
+X;2 (IUA(Xj)exp(l_/uA(Xj))+(1_:uA(Xj))exp(luA(Xj)))
— +(:uB(Xj)eXp(l_luB(Xj))+(1_IUB(Xj))eXp(:uB(Xj)))
2
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and

FJED(B|| ANB)

|

n

1
“oe)

[N

SN——

I
—_—
@]~
|
N—
M

XjeXy

|

/uA(Xj);#B(Xj)]exp(Z_ﬂA(Xj;_/uB(Xj)]

(Z_ﬂA(Xj)_/uB(Xj)J (/’IA(Xj)+/’lB(Xj)j
+ exp

2 2
(/uA(Xj)exp(l_:uA(Xj))+(1_luA(Xj))eXp(luA(Xj)))

- +(,UB (Xj)eXp(:uB (Xj))+(1_ﬂ3 (Xj))exp(:us (X])>)
2

17)

/uB(Xj)+1uAﬂB(Xj)jeXp(2_:uB(Xj)_/uAﬂB(Xj)J

|

|

2 2

Z_ﬂs(xj)_ﬂAﬂB(Xj) ex luB(XJ')+'uAﬂB(XJ')
2 P 2

(IUB(Xj)eXp(l_:uB (Xj))+(1_luB(Xj))eXp(:uB(Xj)))

— +(ﬂAﬂB(Xj)eXp(1_,uAnB (Xj))+(1_:uAﬂB(Xj))eXp(:uAﬂB (XJ)))
2

ﬂB(Xj)"‘ﬂB(Xj)jexp[Z_ﬂB(Xj)_ﬂB(Xj)j

2 2

[Z_IUB(Xj)_:uB(Xj)j [ﬂs(xj)"‘ﬂs(xj)j
+ > exp >

(IUB (Xj)eXp(l_ﬂB(Xj))+(1_ﬂB (Xj))exp(/uB(Xj)))

- +(/uB (Xj)eXp(l_:uB(Xj))"'(l_tuB (Xj))exp(:uB(Xj)))
2
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(ﬂB(Xj)_;ﬂA(Xj)JeXp{Z_uB(Xj;_ILIA(Xj)j

2— g (Xj)_:uA(Xj)jeXp[:uB(Xj) +,UA(X,')J

2 2
XjeX, (:UB (x;)exp (1_ﬂB(Xj))+(1_ﬂB(Xj))eXp(zuB (XJ)))

- +(1uA(Xj)eXp(l_:uA(Xj))+(1_:uA(Xj))eXp(zuA(Xj)))
2

2
+(2_IUB(X]')_IUA(Xj)}eXp(IuB(Xj)+:uA(Xj)J

[:UB(Xj)-l_/uA(Xj)JeX (Z_ﬂB(Xj)_luA(Xj)]
2 p

2 2

) n( e_l) Xjg);z (:UB (Xj)exp(l_ﬂa (Xj))"‘(l_lua (Xj))exp(luB(Xj)))

- +(ﬂA(Xj)eXp(1_ﬂA(X,’))+(1_ﬂA(Xj))eXp(ﬂA(Xj)))
2

) (18)
From (17) and (18), we get
FIED(A||AUB)=FJED(B| ANB).
(if) The proof follows on similar lines as part (i).
(i) Using measure given by (10), shown as

FJED(AUBJ ANB)

I :LlAUB(Xj)+:L‘AﬂB(Xj) exp z_ﬂAUB(Xj)_,UAnB(Xj)
_ 1 i 2 2
) n(\/e—l) =il +(2_uAUB(Xj)—:uAﬂB(Xj)Jexp(:uAUB(Xj)—}-ﬂAﬁB(Xj)j
2 2

(/JAUB(Xj)eXp(l_,UAUB (Xj))+(1_:uAUB(Xj))eXp(:uAUB (XJ)))

- + (/uAﬂB (Xj ) eXp (1_ Hpang (Xj )) + (l_ Hpang (Xj )) eXp (/JAﬂB (Xj )))
2
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(/JA(X])—;ﬂB(Xj)]eXp(Z_I’lA(Xj;_l’lB(Xj)]

+(2_IUA(Xj;_ﬂB(Xj)Jexp(ﬂA(xj)—;/UB(Xj)j

<X (/UA(XJ')exp(l_/JA(XJ'))+(1_ﬂA(Xj))eXp(ﬂA(Xj)))

- +(/UB (Xj)eXp(l_ﬂB(Xj))+(1_ﬂB (Xj))eXp(ﬂB(X,‘)))

(ﬂB(Xj)-i_:uA(Xj))eX (Z_ﬂB(Xj)_:uA(Xj)J
p
2 2

+(2_/uB(XJ-)_:uA(Xj)jIO [ﬂB(Xj)-i—/JA(Xj)J
2 g 2

jE

=g |(ﬂB(xj)exp(l—ﬂB(xj))+(1—yB(xj))exp(yB(xj))) ]

+(/uA(Xj)exp(l_luA(Xj)>+(l_luA(Xj))exp(:uA(Xj)))
2

= FJED(A||B).

(iv) Considering (10), we have

FJED(A| AUB)

/UA(XJ')"‘/UAUB(X]) 2_luA(Xj)_luAUB(Xj)
> exp >

(Z_ﬂA(Xj)_luAUB(Xj)J {ILIA(XJ')_'_ILIAUB(X])}
+ exp

2 2

=1 (ﬂA(Xj)exp(l_luA(Xj))+(1_luA(Xj))eXp(luA(Xj)))

— +(/uAUB(Xj)exp(l_luAUB(Xj))+(1_IUAUB(Xj))exp(/uAUB(Xj)))
2
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m

(IUA(Xj)—l_:uA(Xj)j (Z_IUA(Xj)_/uA(Xj)
; exp

2

|

[Z_ﬂA(X,‘)_
+
2

2

ﬂA(Xj)jexp(laA(Xj)+IUA(Xj)j

(/UA(XJ')eXp(l_:uA(Xj))+(1_ﬂA(Xj))EXp(ﬂA(X,‘)))
- +(ﬂA(Xj)EXp(1_,uB (Xj))+(1_luA(Xj))exp(luA(Xj)))

X;eX,

and

FJED(AJANB)

—+

|

2

(/UA(XJ')"':UB(XJ')JEX (Z_IUA(XJ')_/JB(XJ')J
2 p

2

[2_/JA(X])_ﬂB(Xj)jeXp(ﬂA(Xj)+/JB(Xj)j

2

2

(/uA(Xj)eXp(l_:uA(Xj))+(l_luA(Xj))eXp(luA(Xj)))
- +(/UB(Xj)eXp(1_luB(Xj))+(1_IUB (Xj))eXp(ﬂB(Xj)))

2

IUA(Xj)+/uAﬂB(Xj)JIog(z_luA(Xj)_luAﬂB (Xj)]

2

2

n 2_'uA(XJ')_/uAﬂB(Xj) Io ﬂA(Xj)+ﬂAmB(Xj)
2 g 2

(ﬂA(Xj)eXp(l_luA(Xj))"'(1_ﬂA(Xj))eXp(ﬂA(Xj)))

- +(:uAﬂB (Xj)eXp (1_luAﬂB(Xj))+(1_luAﬂB(Xj))exp(/uAﬂB (XJ)))

(19)

2

10
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(ﬂA(Xj)+ﬂA(Xj)J [Z_NA(Xj)_ﬂA(Xj)J
2 exp 5

+(2_ﬂA(Xj;_luA(Xj)]exp(luA(Xj)_;luA(Xj)

|

1
_n( e_l) Xiele (ﬂA(Xj)exp(l_/uA(Xj))+(1_IUA(Xj))exp(/uA(Xj)))

- +</'lA(Xj)eXp(l_:uA(Xj))+(1_:uA(Xj))exp(:uA(Xj)))

2

[:uA(Xj)_'_luB(Xj)}log[Z_ﬂA(Xj)_:uB(Xj)J

2 2
+ 2= pp (%)) = 4t (%)) lo Ha (%) + g (X;)
2 g 2
n
& (40)ex0 (1= 1240 + (1= 2 ) ) exp (114 (x,)) )

- +(/"B (Xj)eXp(l_ﬂB (Xj))+(1_ﬂB(Xj))eXp(ﬂB(Xj)))

2

On adding (19) and (20), we get

FIED(A|| AUB)+FJED(A|ANB)=FJED(A| B).

(v) The proof is as similar as part (iv).
This completes the proof. m
Theorem 4.2: For all A,B € FS(X),
(i) FIED(A||B®)=FJED(A®|B),
(i) FISD(A||B)+FJSD(A®||B)=FJSD(A®||B®)+FISD(A|B®).

where A® and B® are the complement of fuzzy set A and B, respectively.

Proof: Consider the expression

(i) FJED(A|B®)-FJED(A°|B)

11

(20)

(21)
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Il

2

(,UA(XJ')"'/JBC (Xj)jexp(z_ﬂA(Xj)_ﬂBc (Xj)J

2

(Z_ﬂA(Xj)_,uBc(Xj)] [/JA(XJ')“‘,UBc(Xj)J
+ exp

(/UA(XJ')exp(ﬂA(Xj))"'(1_ﬂA(Xj))eXp(1_ﬂA(Xj)))

- +(/JBC (Xj)exp<,uBc (Xj))+(1_:uBC (Xj))exp<1_ﬂ3c (XJ)))

2 2

2

(uAc(X,-)wB(X)] (2 ,UAc(X) ﬂB(X)}
2 P

e—1) = (

(2 Mo (X)) = ﬂB(X)j ( Ac(X)+uB(X)j
+ exp

e (6,)0xP (L= 21,6 (%,))+ (1= 1,6 () ) exp (11,6 (x,) )

Ha (%) +1= 115 (X;)

2

+ (110 (%) exp (1= 425 (%)) )+ (L 1 (x,) ) xp 115 (x,) )
2

jexp[l_ﬂA(Xj;"' /uB(Xj)j

+[1_/UA(XJ';+ Hg (Xj)Jexp{luA(xj)-‘rl_:uB (Xj)j

(:uA(Xj)eXp(l_
- +((:uB(Xj))eXp(l_:uB (Xj))+(1_luB(Xj))exp(:uB(Xj)))

2

luA(Xj))+(1_IUA(Xj))exp(:uA(Xj)))

2

12
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l—yA(Xj)+ﬂB(Xj) ex 1+ﬂA(Xj)_ﬂB(Xj)
2 P 2
N 1+,UA(XJ-)_:UB(XJ') ex 1_,UA(XJ')+/‘B(XJ')
2 P 2

((1_/UA(Xj))exp(/uA(Xj))+1UA(Xj)eXp(1_luA(Xj)))

- +((1_ﬂB(Xj))exp(/“lB(Xj))+(/'lB (Xj))EXp (1_/13 (XJ)))
2

=0.
This proves (i).
(ii) The proof of (ii) is on similar lines as part (i).
Theorem 4.3: For all A,B,C e FS(X),
(i) FIED(AUB|C)<FJED(A|C)+FJED(BJC),
(i) FIED(ANBJC)<FJED(A|C)+FJED(B|C),
(iii) FIED(AUB|IC)+FJED(ANBJC)=FIJED(A|C)+FJED(B|C).

Proof: (i) Consider the expression

FISD(A||C)+FISD(B|C)—-FISD(AUBJIC) (22)
| (ﬂA(Xj)-i_ILIC(Xj)] (2_ﬂA(Xj)_ﬂC(Xj)J ]
exp
2 2
(Z_ﬂA(Xj)_ﬂC(Xj)j [ﬂA(Xj)+ﬂc(Xj)]
+ exp
) 1 i 2 2
) n( e_l) 1=l (/JA(Xj)eXp(l_'uA(Xj))+(1_:uA(Xj))eXp(:uA(Xj)))
J1 e ) exp (L= g () + (1= e (x)) ) exp (e (%))
2
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>
—_—

(1] [l
|
[N

N—
-y
M=

'E‘

I [ﬂs(xj)+ﬂc(xj)jex [Z_ﬂs(xj)_ﬂc(xj)j
2 P 2

+[z_ﬂs(xj;_ﬂc(Xj)jexp[ﬂs(xj)‘;ﬂc(xj))

(ﬂB (Xj)eXp(l_ﬂB (Xj))+(1_ﬂs (Xj))eXp(ﬂB(X,‘)))

- +(,uc (Xj)exp(l_,uc (Xj))+(1_ﬂc(xj))exp(,uc (XJ)))

2

(ﬂAUB(Xj)Z-l_ ,uc(xj)jexp[z_,uAUB(Xj) —Hc (Xj)J

+(2—ﬂAUB(xj)—ﬂc(x,.)jeXp[uAUB(xj)wC(xj)J

|

2

2 2

(:uAUB (Xj)eXp (1_ﬂAUB(Xj))+(1_/JAUB (Xj))log (:uAUB (Xj)))

+(,Uc (Xj)eXp(l_ﬂc(Xj))‘l'(l_ﬂc (Xj))eXp(ﬂc (XJ)))
2

- +(/Jc(xj)eXp(1_ﬂc(xj))+(l_/lc (Xj))eXp(ﬂc(Xj)))

2 2

+(2_:UB(XJ;_;UC(Xj)jexp(ﬂs(xj);ﬂc(xj)j

ﬂB(Xj)+ﬂC(Xj)jeXp[2_ﬂB(Xj)_ﬂC(Xj)j

(/UB (Xj)eXp(l_ﬂB (Xj))"'(l_/us(xj))eXp(/‘B (XJ)))

2
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>0.

This proves (i).

XjeXZ

2

+(2_IUA(XJ;_1UC(Xj)]log(ﬂA(X]‘);ﬂC(Xj)J

(ﬂA(Xj)Zﬂc(xj)jlog(z_/‘A(xj)_;Uc(xj)j

(/JA(Xj)eXp(l_:uA(Xj))"'(1_ﬂA(Xj))exp(ﬂA(Xj)))

+(/Uc (Xj)eXp(l_ﬂc(Xj))“‘(l_ﬂc (Xj))EXp(ﬂc(Xj)))
2

(ii) The proof is on similar lines as part (i).

(iii) Let us assume
FIJED(AUB||C)

XJ'EX]_

' (uAUB(x,-)wc(x,-)Jexp[2—uAUB<x,-)—uc(x,-)J

2

+(2_IUAUB(XJ')_'UC(Xj)]exp(’uAUB(XJ')+'UC(XJ')]

(IUAUB (X)) eXp(l_:“AUB (X; )) + (1_luAUB (X; )) log (/UAUB (X; )))

2 2

+(:”c (Xj)eXp(l—,Uc (Xj))+(1_ ”C(XJ'))eXp(’uC (Xj)))

2

(IUA(XJ')+:uC(Xj)JexpLZ_ﬂA(Xj)_uC(Xj)]

2 2

+(2_IUA(XJ')_ﬂC(Xj)JeXp(luA(Xj)+:uC(Xj)j

2 2

(luA(Xj)exp(l_IUA(Xj))+(l_luA(Xj))exp(luA(Xj)))

+(ﬂc (Xj)eXp(l_,uc (Xj))"‘(l_ﬂc (Xj))eXp(ﬂc (XJ)))
2
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XjEXZ

and
FJED(AﬂBHC)

[ﬂs(xj);ﬂc(xj)]exp(z_ﬂs(xj)_ﬂc

(Z_IUB(X]')_/JC(X])
+

2 el

2

(X,-)]

ﬂB(X,-)Jrﬂc(Xj)]

(,UB (Xj)eXp(l_ﬂB(Xj))+(1_ﬂB (Xj))exp(/uB(Xj)))
+(ﬂc (Xj)eXp(l_ﬂc(Xj))+(1_ﬂc (Xj))EXp(ﬂc (X,)))

2

L:uAﬂB(Xj)_F:uC (Xj)

2

]exp{z_ﬂms(xj)_ﬂc(xj)

2

|

2

2

+(2_IUAOB(XJ')_ﬂc(xj)]exp(/’lAﬂB(Xj)+/“lC(Xj)j

(/uAﬂB(Xj)eXp(l_luAﬂB (Xj))+(1_:uAﬁB(Xj))eXp(:uAﬂB(Xj)))
+(,uc (Xj)exp(l_ﬂc(xj))+<l_ﬂc (Xj))exp(/uc(xj)))

2

2

[IUB(Xj)+1uC(Xj)jexp[2_luB(Xj)+luC(Xj))
2

ﬂB(Xj)+ﬂc(Xj)

i

) n (\/ﬁ) X;l

2

(ll'lB (Xj)exp(l_lus (Xj))"'(l_lus (Xj))exp(:us (XJ)))
+(ﬂc (Xj)EXp(l_ﬂc (Xj))"‘(l_ﬂc(xj))eXp(ﬂc (XJ)))

Z_ﬂB(Xj)_ﬂc(Xj)jexp[

2

|
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2 2
(z_ﬂA(Xj)_:uc(Xj)} (ﬂA(Xj)+ﬂC(Xj)J
+ exp

(ﬂA(X,‘)+ﬂc(xj)jexp[2_ﬂA(Xj)_ﬂc(xj)j

2 2

XjeX, (/’lA(Xj)eXp(l_luA(Xj))-l_(1_/uA(Xj))eXp(:uA(Xj)))

— +(,uc (Xj)eXp(l_ﬂc(xj))"'(l_ﬂc(xj))e)(p(ﬂc (XJ)))
2

(24)
Adding (23) and (24), we obtain the required result.

This completes the proof. m

5. Application of FJED to Fuzzy Multi-Criteria Decision Making
5.1 Fuzzy Multi-criteria Decision Making Problem:

Decision making is a process of selecting the best option (or options) from a finite number of
feasible options. It is a very common activity that usually occurs in our daily life and plays an
important role in business, finance, management, economics, social and political science,
engineering and computer science, biology and medicine etc.

Multi criteria decision making (MCDM) refers to select optimal option from a finite number
of feasible options under several criteria. To find the most preferred option, the decision
maker provides his/her preference information for the options.

In many real life decision making problems, the available information is vague or imprecise.
To adequately solve decision problems with vague or imprecise information, fuzzy set theory
has become powerful tool. In the literature, a number of multiple criteria decision making
theories and methods under fuzzy environment have been proposed for effectively solving the
multi criteria decision making problems and various applications have been cited in the
literature [13, 32, 33].

Let M ={M,,M,,..,M_}be a set of options and let C =1{C,,C,.,...,C, }be a set of criteria.

For decision making, the decision maker characterized each option in terms of FSs by
assigning appropriate values to g —functions. Suppose that the characteristics of the

option M, in terms of the set of criteria C are presented by FS shown as follows:
Fs-M, ={(C,4)IC,eC}, i=12..mand j=12,..n, (25)
where z; indicates the degree with which the option M, satisfies the criterionC; and

w; €[01], i=12,...m and j=1,2,..,n.

We introduce a four-step algorithm to solve above fuzzy multi-criteria decision making
problem using the measure defined in (14).

17



©CO~NOOOTA~AWNPE

5.2 Algorithm:
Step 1: Finding the positive ideal and negative ideal solutions denoted by M™ andM ",
respectively given by:

M* ={(t.) (1) ooes ()} (25)
M ™ =) () () (26)
where
(5.)= <mf"x Hy >

(27)

<,uL > = <miin yij> |

Step 2: Calculating the values of FJSD(M™|M,;) and FIJSD(M™|M,) by the following
formulas respectively:

ﬂH+Mj6ﬂ)2_ﬂh_Mj
2 2

2—/1; —H; M+ 1
+ ex +
+( 2 P2

My LS
FIED(M™[M;) =~ 2 (M; exp (1, )+ (11, Joxp(s, )) “
+ +(:uij exp(l_ﬂij)+(l_ﬂij)eXp(ﬂ”))
2
and __ :
(ﬂj—;ﬂij]exp(z_ﬂjz ﬂuj
+[2—ﬂ1_ :uijJeXp['uJ- ﬂU}
_ l \ 2 2
FIED(M |Mi):HJZ_1: (ﬂji exp(l—y,;)+(1—ﬂj,)exp(“if)) “
+ +(:uij eXp(l_'uii)+(l_’u‘j)eXp('uij))
2

Step 3: Calculate the relative fuzzy Jensen-exponential divergence FJED(Mi) of options
M. with respectto M and M ~, where

FIED(M " ||M,)

FIED(M,) = FIED(M” || M;)+FIED(M~[|M;))’

(30)
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Step 4: Rank the optionsM,,1=12,...,m  according to the values ofFJED(Mi),

i=12,..,m, in ascending order. The leading M,, with smallest value of FJED(Mi), is the
best option.

In order to illustrate the applicability of the proposed algorithm, we consider below an
example of investment company decision-making problem.

Example [33]: Consider an investment company problem. Assume that an investment
company desires to invest a definite amount of money in the best option among five options:
(i) a car company M, , (ii) a food company M,, (iii) a computer company M,, (iv) an arms
company M, and (v) a TV company M, . The investment company wants to take a decision
according to the following four criteria:

i. C,, the risk analysis,
ii. C,, the growth analysis,
iii. C;, the social-political impact analysis,
iv. C,, the environmental impact analysis.
After evaluation of options, the decision maker forms the following fuzzy sets, given by

M, ={(C,,0.5),(C,,0.6),(C,,0.3),(C,,0.2)},

M, ={(C,,0.7),(C,,0.7),(C;,0.7),(C,,0.4)},
M, ={(C,,0.6),(C,,0.5),(C;,0.5),(C,,0.6)},
M, ={(C,,0.8),(C,,0.6),(C,,0.3),(C,,0.2)},
M, ={(C,,0.6),(C,,0.4),(C,,0.7),(C,,0.5)} .

We need to find a ranking of the feasible options, with a view to find the best option.
Step 1: Obtaining the M "and M~ given by

M* ={(C,,08),(C,,0.7),(C,,0.7),(C,,06)},

M* ={(C,,0.5),(C,,0.4),(C;,0.3),(C,,0.2)}.

Step 2: Using (28) and (29) to calculate FISD(M " | M;) and FISD(M ™ | M,), respectively, we
have the following tables:
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Table 1:

R R R R R R R o R R R R R R R R A R R R AR R R R R R AR R R R R R R R R R R R R e e e

Table 2:

*hhhhkhkhkkkhkhkhkhhrhhhkhkhkhkhkhhrrrhhhkhhhkhiirrihiihhhiix

Step 3. Calculating the relative fuzzy Jensen-exponential divergence measure FJED(Mi) of

M.’s with respect to M ™ and M ~ by using (30). We obtain the following table:

Table 3

kkhkhkhhhhkhkhkhkhkhkhirrrhkhkhhhkhkhiirrirhhhhkhkhiiiiiiihhii

Based on Table 3, the ranking order of options is given by,

M, >M;>M,>~M, >~M,.

Therefore, M, is the most preferable option, which is in agreement as obtained in [33].

6. Conclusion

In this paper, we proposed a new information measure called ‘fuzzy Jensen-exponential
divergence’ in the setting of fuzzy set theory. A number of properties of the proposed
measure have been stated and proved. Then, based on fuzzy Jensen-exponential divergence,
we have developed an algorithm to deal the problems of multi-criteria decision making with
fuzzy information. Further study of this measure will be reported separately.
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Table 1: Values of FISD(M™ | M,)

FJSD(M™ | M,) | 0.0403

FJSD(M* | M,) | 0.0048

FISD(M* | M) | 0.0116

FISD(M™ | M,) | 0.0316

FJSD(M™ | M) | 0.0135

Table 2: Values of FJSD(M™ | M,)

FJSD(M ™ | M,) | 0.0038

FISD(M™ | M,) | 0.0315

FISD(M™ | M) | 0.0211

FJSD(M™ | M,) | 0.0125

FISD(M™ | M) | 0.0249

Table 3: Values of Relative FJED (M i)

FJED(M,) |0.9143

FJED(M,) | 0.1319
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