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spectively. using elementary methods and techniques the explicit tormula for 1S obtaine where p 1S a
pectively. By using el ry methods and techniq he explicit fa la for S( p*) is obtained where p i
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1 Introduction and Main Results

In 1918 studied the formula of the

value min{ m: me N nlm!} for a fixed positive inte—

Kempner '

ger n. In 1993 Smarandache raised some interesting
number theory problems and put forword the defini—
tion of the Smarandache function S( n) =min{ m: m e
N nlm!} for a positive integer n. From the defini—
tion S(1) =1 S(2) =2 S(3) =3
far there are some good related results '

the distribution of S( n) was dis—

and so on. So
~? . For ex—
ample in 2
cussed and the asymptotic formula of S( n) was given

as follows

3
2

3
24( )«
3lnx *

where P( n) is the maximum prime factor of n and

o( )

2
In"x

> (S(n) = P(n)? =

n<sx

[(s) is the Riemann-zeta function. In 3  Farris
studied the bound of S( n) and got the following upper
and lower bounds
(p-Da+l1<S(p%) <s(p-1

A Q) 44

where p is a prime. For a positive integer n =p{'p;

I +a+log,a

ar

p." where p, -+ p, are different primes and «,
«, are positive integers. From the definition it is easy

to show that S( n) =max{S(p) 11 <i<r}. Soitis
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enough to compute S( p*) where p is a prime and o

is a positive integer which has not been solved com-
pletely yet.

On the other hand a lot of number theory equa—
tions related to S( n) have been studied in recent
years. Especially for a given positive integer & many
properties for positive integer solutions of the equation
o(n) =S(n") were studied where ¢ is the Euler
function. Easy to see that this is equivalent to solve
the equation

e(pm) = S(p*) (*)
where p is a prime ged(p m) =1 and S(p*) =
S(m" .

By using elementary methods and techniques the
present paper gives the explicit formula for S( p®)
where p is a prime and « is a positive integer and
then some properties for positive integer solutions of
o(2%)
S(2%)

where ¢ is an odd prime and o ( n) is the sum of the

the equations @( n) =S(n") or are given

different positive factors for n. In fact we prove the
following main results.
Theorem 1.1 Let p be a prime and « be a pos—

itive integer.
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1) For any positive nztflager rrand a=p" we have 2 < o(m) < 2k +3k 1 k= 2(mod 3)
S(p*) =p™ -p +p
2) For any positive integer r te 1 r and a = 2K +k

p' —t we have
S(p*) =p" -1
3) For any positive integer r te r+1 p -
p~' and a=p’ —t.
(n I

n-1

a=p —r=Y(=-1)"7(p"-k) +(-1)"p"

iz
with
k; < pkrl(P -1) -1

then we have

(10) 1f
n-1

a=p —r= (=17 (p" ~k) +

i=1

(-1"(p" -1)
withte 1 k, and
E,<p'(p-1) -1 1<i<n-1

then

S(p%) =(p—1)(pf+g(—1)"p’*f). (2)

Corollary 1.2 Let « be a positive integer. If

n

a=;2’”—n 1<k <k <= <k

then we have S(2%) =« +n.

For £ =2 3 4 the solutions of the equation
(* ) have been discussed in 7 . In the present pa—
per we complement their results and obtain some nec—
essary conditions for solutions of the equation ( * ) .

Theorem 1. 3

there are no any prime p and positive integer m

1) For any positive integer k

coprime with p such that ¢( pm) =S(p") and S(p")
=S(m").

2) For any positive integer k if there are some
prime p and positive integer m coprime with p such
that o( p°m) =S(p*) and S(p*) =S(m"). Then p
=2k +1 or 2<p<k. Furthermore

(I) if2k+1=p then

(pm) =(2k+11) (26+12) (23);

(M) otherwise i.e. 2<p=<k then k=3 and

2 <gp(m) < otherwise.

3

3) For any positive integer k£ if there are some
prime p and positive integer m coprime with p such
that o( p“m) =S(p*) and S(p™) =S(m"). Then
ak+1>p*(p> =1) and 1<¢p(m) <q where

ak +1 = gp*(p° = 1) +r
0<r<p(p -1).

4) For any positive integer k£ there exist some
prime p and positive integer m coprime with p such
that o( p’m) =S(p”) and S(p™) =S(m")
m=1 2.

Theorem 1.4 1) For any prime p there is no
a(p%)
S(p7)

namely

any positive integer a such that is a positive

integer.

2) Let p be an odd prime «a=1 and n =2%p.

(n 1r ; % = o and g(( Z)) is a positive inte—

ger then 2°*'= 1(mod p) .

S o(n)

(I 1f ; 5 < o and S(n)

o(n) _ 2% -1 _8(2)

teger then S(n) =m = and p=m p) 1
where d = ged(2%"' =1 S(2%)) and 0 <m<d.

Corollary 1. 5

is a positive in—

1) Let r be a positive integer

and 2" +1 be a prime. If n=2"(2" +1) then a(n).
S(n)
:22’+1 _1
2) If n=2"""(2" -1) is an even perfect num—

o(n)
S( n)

3) If2" -1 is a prime and n =2°""(2" - 1)
then

ber i.e. o(n) =2n then =2r.

Remark For convenience throughout the pa—

per we denote to be the Gauss function.

2 The Proofs for Our Main Results

Before proving our main results the following

Lemmas are necessary.
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1) Suppose n =p{'py?+-p*is a

- p, are different primes

Lemma 2.1 *
positive integer where p,
and o, ** @, are positive integers. Then

S(n) =max{S(p!) | 1 <i<r}.

2) For any prime p and positive integer k with &
<p we have
S(p) = kp.

For any positive integer o and
prime p we have S(p®) <(a-Fk,) p where k (p+
1) <a<(k, +1)(p+1).

Proof ForO<a<p+1 by2) of Lemma 2.1
p*) =ap=(a-k)p ie k, =0.
Namely in this case Lemma 2.2 is true.

=(m-k,)p

Lemma 2. 2

we have S(

Now fora=m=p +1 if S(p")
with
E(p+1) sm<(k, +1)(p+1)
then
E(p+1) +1<sm+1 <(k,+1)(p+1) +1.
Thus for a =m +1 we know that
kpa(p+1) sm+1 < (k,, +1)(p+1).
Hence we have two cases as following.
(n It
E(p+1) +1<sm+1 < (k,+1)(p+1)
then k, ., =k,. By the definition of S( n)

S(p"") <5

we have
p") +p and so

S(p™') < S(p") +p <
(m-k)p+p=(m+1-k)p=

— k) p

therefore in this case Lemma 2.2 is true.
(I) Otherwise we have m+1=(Fk, +1) (p+
1) andthenk, =k, +1l and m -k, =(k, +1)p

where

(m+1

m+

S(p") < (m—-k,)p =(k,+1)p
Note that

> (k. +1)p°
Chy + D p i)p =(k, +1)p+k, +1 +
i=1 P
> (k +1)p
2 M =(m+1)
i=3 P
therefore

This means that Lemma 2.2 is true.
By the definition of S( n)
the following.

we immediately have

Lemma 2.3 Let p be a prime and m be a posi—
tive integer. Then

S(p") +p i

i=1

. S m
S(p™) m < z (LL) )
i=1 14
1) Since p is a

The Proof for Theorem 1.1

prime and so

* r+ r r+l

v L —p+p -y 2 —11?’+p

izl i=1 P
Zp (p-1) +L& =

(p=-1D(p" +-

-1 .
(p—l)%+1 =p.

Thus by the definition of S(n) we have S(p”) =
p"' = p +p and then (1) of Theorem 1. 1 is

proved.
2) Since
2 p +1 _ 2 p +1 _ r _
Y P p-0) =(p-1(pT 4 +p) =
=
ro_ 1 .
(p-1) pj =p -1

and p" || (p"*' =p’) and so for any positive integer r

we have S(p*) =p"*'
—p" thus (2) of Theorem 1.1 is true.

and a=p" -t withte 1 r
3) Fora=p —twithr+1<p —p'andte
r+1 p -p

(1sm<p -p™'=r) e
r—1

r—1

. Setm=t—-r thena=p -r-m
r+me r+1 p -
. We can conclude that
S(p*) =p" =p =S(p7) =
pr-p = S(p"). (3)
In fact form—l i.e. a=p —r-1 we have

p_—p —-p _P -p

l

=p -r-1

p=p =2p
i=1 pl
And then by the definition of S(n) we can obtain

=p —-r-2



S(p"y =pt =p -p =
pr+1 _pr _ S(pl)
which means that (3) is true for m =1. Now suppose
that (3) is true for any m =k( =1) i.e.
S(p"™™) =p" - p = S(p").
Then for m =k +1 by Lemma 2.3 we have
S = = =S —p ()

or
S(p") = p =p = S(p") . (B)
For the case ( A) by Lemma 2.3 we have
p-r—-k-1=
i P =p = S(p) —p
i=1 Pl
-0 =p =S -p
i=1 pl
r pr+1 _pr ._ S( pk) <
i=1 pl
r r+1 r r k
yr-r .y S(pﬁ) =
i=1 p i=1 P
r k
p’—r—l _ 2 S(PL_)
i=1 P
and then

Thus by the definition of S ( p*)
v S(p) ¢ S(p')
z - hence k = z —— . Then by Lem—
i=1 )4 i=1 14
ma2.3 S(p"*') =S(p") +p and so
S( pp'—r—k—l) — pr+l _ pr _ S( pk) -p =
pr+1 _ pr _ S( pk+1)

which means that (3) is true.

we have £k <

r K
Now for the case ( B) we have k < z S(p )

i

i=1 )4

r K
Otherwise by k = z M we have the case ((A)
i=1 P
S(p")

i

which is a contradiction. Hence k£ < Z thus

i=1 p
by Lemma 2.3 we have S(p"*') =S(p")
S( pp”—r—k—l) — pr+1 _pr _ S( pk) —
pr+l _pr _ S( pk+1)
which means that the identity (3) is satisfied.

and so

From the above the identity ( 3) is true.

Now we prove (3) of Theorem 1. 1.

1) Suppose that for any positive integer k, and m =

p" such that ¢ =p" —r —p

Mo Fromr+me r+1 p -

r—1

p we have r +p" e r+1 p —p'™"  thus by the

identity (3) and (1) of Theorem 1.1 we can obtain
S(r) = S
P =p =S
pr+l _Pr _ (p"'l+1 _pkl +P) —
(p =1 (p =p") -p
2) Suppose that for any positive integer k, s e

ky

1 k and m=p" —s such that a=p" —r—(p" -
hode. r+ph—s

e r+1 p =p™"  (3) and (2) of Theorem 1. 1

we have

s). Fromr+me r+1 p" -p

S(p*) = S(p )
pr+1 _pr _ S( ppkl’-‘)

r+l r Fr+1 kl)
- P

P -p = (p
(p-1)(p -p").

3) Suppose that there is some positive integer k,

andee k, +1 p"" —p"™'  such that m =p" —e

namely a=p —r—(p" —e). Fromr+me r+1

p-p7" wehaver+pft—ee r+1 p -p!
Now set
m, =p" -k -m
I<sm $Pkli](P -1) -k
then

1

r+pt -k -m e r+1p -p~

Similar to the previous discussions we have the fol-
lowing three cases.

1°) If there is some positive integer k, such that

— ok
m, =p” i.e.

ky ky

a=p —-r—(p' —k) +p

and

ky 1

r+pkl -k -p?e r+1p -p~

Thus by (3) and (1) of Theorem 1.1 we have
S(p*) =p - p = S(ph) =

P =p = (P = p" = S(p™))

P = = (P =Pt = S(p™)

Pl = (T =" = (P = pR 4 p)) =

(p-1)(p =p" +p") +p =
(p=-D(p +(-1)"p" +(-1)%p") +(-1)7p

ky+1
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which satisfies (1) of Theorem 1. 1.
2°) Suppose that there is some positive integer k,

and t, e 1 k,

a=p —r—(p"-k) +(p”-1)
t, e 1k

such that m, =p" -1, i.e.

and so

r+pt -k —( pr-1) e r+l1p -p

Thus by (3) and (2) of Theorem 1.1 we have
S( pa) pr+1 _p _ S( pkl k- ”71)
pr+l _pr _ (pk1+1 _p _ S( pm])) —
r+ r + k21
P =p = (P = pt = S(pT)) =

r+1 r kp+1 ky

P = -t = (p
(p=1)(p =p" +p") =
(p=1(p +(=1)"p" +(-1)°p")
which satisfies (2) of Theorem 1. 1.

3”) Suppose that there is some positive integer k,

ky+1 _pkz)) _

Ty -1 ks

andt, e k,+1 p —p such that m, =p™ -,
1. e.

a=p —r—(p" k) +(p” -1).
Now set

m, = sz =k, —m
I <m, $Pk271(P -1) -k
then
a=p _r_(pkl - k) +(pk2 - k) - m,

and so

r+(p - k) - (P -k) +m, e

o+ 1 pr _pr—l

Similar to the previous discussions we know that o €

r—1

2

the above discussions 1) —3) .

is a positive integer. Thus one can repeat

From the above discussions Theorem 1. 1 is
proved.

The Proof for Corollary 1.2 For any positive
integers k,( 1 <i<n) with 1<k, <k, <+ <k,

sz n iz’ﬂ‘
Z lzéj =

" zzkrf D WX
2{ l:éj +,2 lzéj +

b izkf
. i=1
+,-:/§‘1+1 T (% %)

Note that for any k,(l<m=<n-1) we have

n
km+] z 2k[

i=1 _
i 2k 2 2k Y 2t
i2=klm+| + i2=klm+2 ot 1 =

n n
2kj»—(k,,,+l) + z zk,—(kmn) n

j=m+l j=m+1

-t z Zﬁ 1) —

j=m+l

( 2km1= (km+1) + zk,ywz*(kmﬂ) +
e ) ) +
( Dkmer=Ckn+2) L gk =(hy+2)
- 2k” (fp+2) ) +
. +( Uman) =Chms) g bmea=Cht)
o g 2k Uk ) —

km+]
2%*/ +( 2(/fm+l) =(kp+1) +
j=hptl
2(I‘m+2) =(kp+1) +oeee 4 2(’»”"71) =(kp+1) ) +

( 2 (ki +2) ~(hy +2) 2 (b #3) =(ky#2)

g QU Gy

. +( 2<km+l) (k1) + 2 ky2) =(kpi) +
L L R
km+]

2km+l_j + z zkm+z-j 4o 4 2 212,1-1'

k1 J=kp+l

Fm 1 m+1

J=ky+1

m

j=
Thus from ( * *) we can get

ki ki ky
(Z ks 4 Z 2k 4 e 4 z 2 kai ) +
j=1 j=1 j=1
iy ‘ ky . ky .
2 ki 4 2 2k 4 e 4 2 2kui ) +
J=kp+1 Jj=ky+1 J=ki+1
k"
. +( 2 zkn-j )
jhpoptl
ky ky ky
z 2k1-j + z 2k2-j 4o 4 z zkn-j +
j=1 j=1 j=1
ky ky
ok 2k 4 el 4
/=k‘21+1 j—k21+1
k
2k e 4 z 2kn=i
j=ky+l kpo1+1
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ky ky
2 2’»’1*/' +( 2 2’»’2*1' + z 2’»’2*1' ) + oo 4
j=1 j=1

J=ky+1
ky ky ky,
(> 287+ Y 2hT e Y 20T
j=1 j=hy 1 j=hy o+l
Hence

. Yan
i=1 _
%y C
ki gk . S ki
; 2 + 2,-=1 2 4o 4 ;
(2" =1) + (22 -1) + (- 42" -1) =

z 2k _ p.

i=1

Thus by the definition of S( n)
= z 2" for
=y

a=;2’"-n 1<k <k <= <k

ky

we know that S(2%)

Thus Corollary 1.2 is proved.

The Proof for Theorem 1.3 1) If there are
some prime p and positive integer m coprime with p
such that S(p*) =¢(pm) and S(p") =S(m"). Then
for p=2 we have

o(2m) = g(m) = 5(2) = 0(mod2)

S(2") = S(m".
By ¢(2m) = 0( mod 2) we have m=3. While by
S(2") =S(m")
tion. And so p=3 thus from the definition of S( n)

we have m =1 this is a contradic—

and the assumption that p is coprime with m we have
(p=1De(m) =¢(pm) =
S(p") = 0(mod p)
0( mod p) .

hence ¢ ( m) = In particular if m =

r

pr“' is the prime factors decomposition then

i=1

e(m) = J]pi"(p; = 1) =0(mod p).
Note that ged( pl_m) =1 therefore there exists some
p,(1<i<r) such that plp, -1 and so p, >p name-
ly S(p!) >S(p"). On the other hand S(m") =
max{ S( p]l”) 1<j<r} this is a contradiction to the
assumption S( p*) =S(m"). Thus we prove (1) of

Theorem 1. 3.

2) Suppose that there exist some positive integer
o prime p and positive integer m coprime with p
such that ¢( p*m) =S(p™) and S(p™) =S(m") .
(I) For the case 2k<p by (2) of Lemma 2.1
we have
2kp = S(p™) = @(p'm) = p(p -1)¢(m)
i.e. 2k=(p-1)¢(m). Note that p is a prime if p
=2 then by 2k<p =2 we have k=1 and so ¢( m)
=2 thus m=3 4 6. Hence from ged(p m) =1 and
p =2 we can get m =3. In this case
S(p") =5(4) =4 o(p'm) =¢(12) =4
which means that (p m) =(2 3) is a solution.
Now for p=3 by 2k<p we have
:p%lgpﬁl
m=1or2and p=2k+1

o( m) <2

and so ¢(m) =1 i.e.
hence
(pm) =(2k+11) (2k+1 2).
(I) For the case 2k >p suppose that ¢, and ¢,
are both nonnegative integers such that
S(p™) = (2k-1))p (4)
and
Lip+1) <2k <(t, +1)(p+1).
Then by S(p™) =¢(p’m) and Lemma 2.2 we have

2k
p+1

t, =1, >

-1 (5)

and

(2k=1)p = @(p'm) = p(p~1)¢(m).
Now from ( 5)

we know that

2k

2% = (p=1glm) =1, > =5

-1

which means that

2kp > (p* = 1) @(m) - (p+1). (6)
Note that 2k >p i.e. 2kp >p° thus we have three
cases as following.
1) For the case
(p" =D e(m) —(p+1) =p°
which means that

and sop’ —=1lp+2 i.e. p+2=p° —1. While
p+2=p -lep’ -p -3 <0
p(p-1) <3cp =2
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Hence p =2 and then we have %5

which is a contradiction.

2) For the case

(p*-1)g(m) —=(p+1) <p’

p+p+1_1 p+2

P -1 o1

e(m) <

Thus if p =2 then ¢( m) <2 and som:] 23 4or
6. Note that ged(p m) =1 hence m =1 or 3. From
m=1 we can get S(2%) =¢(2°m) =2 this is a
contradiction since S(2%) =S(4) =4. From m =3

we have S(2%) =¢(2* *3) =4 andso k=1 thisis

a contradiction to the assumption 2 =2k > p = 2.

Therefore p=3 thus 0 < p2 21 <1 and so
P -

e(m) =1 S(p™) =e(p’) =plp-1).

Now from Z p — 1 = p — 1 and the definition
=1

of S(p™)
to the assumption 2k > p.

we have 2k<p -1 this is a contradiction

3) Therefore we must have (p° - 1) ¢(m) -

(p+1) > namely
+ +1 +2
o(m) > P P =1+p2 .
p -1 Pl
By (6) we have
2kp +p +1
SE R g(m) >
pz-zl-p+1:1+pz+2
p-1 Pl
i.e.
2<qo(m)<(2k+l) +1 (7)
p- -1
thus 2p° = (2k +1) p =3<0 and so
p(2p - (2k+1)) <3. (8)

Note that p is a prime and so 2p —(2k +1) <1. If

—(2k+1) =1 then by (8) we know that (p &)
=(21) (32). From(p k) =(2 1)
=p =2 this is a contradiction to 2k >p. So k=2 p
=3 or2p<2k+1. Byk=2 p=3 and (7)
¢(m) =2 and then m =3 4 6. Note that ged(p m)
=1 and then for p =3 we have m =4 thus

12 = ¢(3%+4) #

we have 2k

we have

S(3*«4*) =5(3%) =9

which is a contradiction. Therefore 2p <2k +1 i.e.
p<k +%. From ( 8) and p is a prime we have 2<p

<k. Now by (7)

2 <g(m) < 2131"*717"'1\
p -1
2kp +p+1 _ 2K +k+1
3 - 3
namely
2K +k +1
2 <¢p(m) < 3 (9)
Note that
2k +k -1
= k=- d3
2 k41 3 (mod 3)
3 26 + k .
— otherwise
3
2
thus min { 26" +k -1 2k +k} =2 i.e k=2

3
Hence by k=2 and 2<p<k we have p =k =2. Now
by (9) we have ¢( m) =2 and so m=3 4 6. Since
p=2and ged(p m) =1 and so m=3 thus
olpim) =(12) =428 =
S(2%) = S(p*)
which is a contradiction. Hence k=3 thus we prove

(2) of Theorem 1. 3.

3) For a =3. If ak <p then by (2) of
Lemma 2.1 we have
akp = S(p*) =
e(p*m) =p*"(p - 1) ¢(m)
thus
p=ak=pT(p-1)¢e(m) =p(p-1)

hence ok =p =2 which is a contradiction to the as—
sumption =3. And so ak >p. Now suppose that ¢,
and ¢, are both nonnegative integers such that
S(p™) = (ak =1,)p (10)
and
Lip+1l) sak < (t, +1)(p+1). (11)
ak

Then by Lemma 2.2 we can obtain t, =1, > ?

1. Now by p*'(p—=1) ¢(m) =S(p™) and (10) we
know that
(ak —1,)p =p*'(p~1)e(m)



8 ) 40
namely this means p®~> +p =p* . Note that p is a prime
_ _ _n3 _
wk - p(p-1)g(m) =1t > ak thus we have p =2 and o =4. And so 4k +1=2" -2
p+l =6 which is a contradiction.
thus From the above we must have ok +1 > p*7*(p°
ok > Pa-3(p2 “De(m) -1 - 1 —1) =p +1. Without loss of the generality set
P ak +1 =" (p" =1) +r
and so o 0<r<p(pt-1).
ak +1=p"(p" - 1) ¢(m) Now by (12) we have
i.e.
ak + 1
p(m) S -5+ =
o(m) < —2rl (12) Pt - 1)
p(p” -1) . s
Note that for any positive integer m we have ¢( m) = 7+ P (p* - 1) (15)

1 therefore we must have ok + 1 2}7‘173(p2 -1).
If
ak +1 = p7(p* = 1) =p*

1 3

— pa_
i.e. @(m) =1. In this case for &« =3 we have 3£ +

1=p" -1 i.e. p>=3k+2 which is impossible. So
a >3 and then
ak = pl =t 1 =
P = (a-) 7 - (a=-3 +1.
We can conclude that
a-3<pHp-1 -1 (13)
Otherwise from o =3=p* *(p-1) =1 we have
a=ptp-1) +2. (14)

It is easy to see that for « =4 there is no any prime p
>5 satisfying ( 14) . Hence p =2 or 3. By p =3 and
(14) we have a=2(3*"* +1). While2(3** +1) >
o for a=5. Therefore from ( 14) we have o =4 and
then 4k +1 =3*"" =3%7° =24 which is a contradic—
tion. Thus we must have p =2.
Now from p =2 and ( 14)
and so a« =4 5 6. Thus by ok +1 =p*~' —p
=4 we have ak +1=4k+1=2"-2=6 which is a

contradiction. For ¢ =5 we have 5k +1 =12 which

we have @ >2°7* +2

a-3

and «

is also a contradiction. For « =6 6k +1 =24 itis al-
so a contradiction. Hence ( 14) is not true and so
a-3<p**(p-1) —1. Thus by (1) of (3) for The—
orem 1.1 we have
S(p™y = p* = p —p* 4 p* T 4.

Now by ¢(m) =1 ged(p m) =1 and @(p*m) =
S(p*)

P p=1) =pt = pt =T A 4 p

we have

and so | <¢@( m) <g. Thus we prove (3) of Theorem
1.3.

4) Fora=3 ¢g=1andr=1. By (15) we have
3k+1 =p> and so p = /3k+1. Since ¢ =1 and
o(m) =1 hence m=1 2. Thus ¢(p’m) =p’(p -
1) o(m) =p*(p—1). Now by S(p*m") =S(p") =
S(p”™") and (2) of Theorem 1.1 we can get

S(p") =pt -0t =pp-1) = e(p’m).
Thus we prove (4) of Theorem 1.3.
From the above Theorem 1.3 is proved.

The Proof for Theorem 1.4 1) If there is
(p%)

some positive integer o such that g —— =k is a posi-
S(p*)
tive integer i. e. o (p“) =kS(p“). Note that

o(p”) = 2}# = 1( mod p) and S(p*) =0( mod

p) then 1=0( mod p)
Thus we prove (1) of Theorem 1.4.

which is a contradiction.

2) Note that p is an odd prime and n =2%p =
max{ S(2%) S(p)}. For the case 2 % =a we
i=1
have S(2%) <S(p)
from
o(n) =oa(2%) = (2" =1)(1 +p)

we have

and then S(n) =S(p) =p. Now

o(n) _ (27 -1)(1+p) _

S(n) p

(2(x+1 _1) +2a+1 _1 e Z+
P

2*"" = 1(mod p) .
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For the case z Pl

- < a we have S(n) =
i=1 2

a (T(n) _ + .
S(2%) . Now setis(n) =keZ" i.e.

o(n) = kS(n). (16)
Thus from
o(2) = (2

we have

1) (1 +p) =0(mod2*" -1)

kS(2%) = 0(mod 2" -1). (17)
Set ged( S(2%) 2**' =1) =d S(2%) =sd and 2**" —
1 =td where ged(s t) =1. Then d=1(mod 2) and

by (16) { 17) we have t 1k andwzkzmt

s
which means that p =ms —1. Now from
sd = 8(2%) =8(n) =
max{ S(2%) S(p)} >p =ms -1
we can obtain 1 <m<d.
Thus we prove Theorem 1.4.
The Proof for Corollary 1.5 1) If p=2"+1
is a prime and @ =2" n=2"(2"+1). Then

P _i2'+1

©

- = . =2"" <2 =
i=1 21 i=1 21
Thus by (2) of Theorem 1.4 and (1) of Theorem
1.1 Wehavep:m'%—lzm'%—l by

p=2"+1 we have m =d and by (II) of Theorem

0'( n) _ 2+l
1.4(2) we have S(n) =2 1.

On the other hand by the definition of o( n) and

(1) of Theorem 1.1 we also have

o(n) _(27+2)(2"" -1) _ o
= =27 - 1.
S(n) 2" +2
Thus from n =2 (2" +1) and 2" +1 is a prime we

(n)

o
know that

S( n)
2) Since n=2"""'(2" —1) is a perfect number
so o(n) =2"(2" —1). Thus from (1) of Lemma 2.1
and 2” -1 is a prime number we have
S(n) = max{S(2"") S(2" -1)}
max{ S(2""") 2" - 1}.

=2" —1 is a positive integer.

Note that
S(2"") <1 +p-1+log(p-1)
p+log,(p-1) <2" -1

and so
S(n) = max{S(2""") 2" -1} =2" -1
0'( n) _ AP

thus S(n) =27,

By the similar way we can prove part (3) .

Thus we prove Corollary 1.5.
3 Some Examples

In this section some examples for both Theorem
1.1 and Corollary 1.2 are given.
Example 3.1 Let p =3 « =3 =243 then by
(1) of Theorem 1.1 we have
S(3*) =3°-3" +3 =489.
On the other hand from

©

489 & 489
23"";3“"

=1

163 +54 +18 +6 +2 +0 = 243
and the definition of S(n) we also have S(3°") =
489.
Example 3.2 et p =3 « =3° -4 =725,
Namely be taking r =6 ¢t =4 in (2) of Theorem 1.1

we know that

S(3™) =37 -3° =2 x3° =1458.
On the other hand from

o145 L1458
25t oy T

486 + 162 +54 +18 +6 +2 +0 = 728
i 1457  « 1457
= 3 = 3

485 + 161 +53 +17 +5+1 +0 =722

and the definition of S( n)
1 458.
Example 3.3 Letp=3 «a=5017 i.e.
a=(3"-8 —(3"-7) +
(3°-6) - (3" -3)
thus from (2) of Theorem 1.1 we have
S(3°%) =2 x (3% -3 +3°-3%) =
2x(2x3 +8x3%) =
4 x2 187 +16 x 81 = 10 044.
On the other hand from
i 10044 28: 10 044
. ~ 3

we also have S(3) =
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3348 +1 116 +372 + 124 + S(p*) where p is a prime and « is a positive integer.
41 +13 +4 +1 =5019 As a corollary some properties for positive integer so—
and lutions of the equations ¢( n) =S(n") or @ are
S(2%)

i=1 3' i=1 3L
3347 +1 115 +371 + 123 +
41 +13 +4 +1 =5015
we also have S(3°°7) =10 044.

=10 043 .10 043
> =

4 Conclusion

In the present paper by using elementary meth—

ods and techniques we obtain the explicit formula for
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