文章编号:1671-1114(2012)03-0006-03

包含 Smarandache 对偶函数的方程的正整数解

陈斌

(渭南师范学院 数学系,陕西 渭南 714000)

摘 要:利用初等数论及组合方法研究了一个包含 Smarandache 对偶函数及素因子函数方程 $\sum_{d|n} \frac{1}{S_*(d)} = 2\Omega(n)$ 的可解性. 给出了这个方程所有正整数解的具体形式,即证明了该方程所有偶数解为 $n=2^4 \cdot 3^{50}$ 、 $n=2^6 \cdot 3^{12}$ 、 $n=8p^7$ 、 $n=16p^5$ 、 $n=64p^4$ 、n=2pq,其中 p 、 $q \gg 5$ 为奇素数;所有奇数解为 n=p 、 $n=p^aq$,其中 $a \gg 1$,p 、q 为奇素数.

关键词: Smarandache 对偶函数; Ω 函数; 正整数解

中图分类号: O156. 4 文献标志码: A

Positive integer solutions of an equation involving Smarandache dual function

CHEN Bin

(Department of Mathematics, Weinan Teachers University, Weinan 714000, Shaanxi Province, China)

Abstract: By using the elementary number theory and combinational methods, the positive integer solutions of a function equation involving both of the Smarandache dual function and the Ω function is studied. All the exact positive integer solutions are given for the equation, and it is proved that the even n satisfy the equation only if $n=2^4$. 3^{30} , $n=2^6 \cdot 3^{12}$, $n=8p^7$, $n=16p^5$, $n=64p^4$, n=2pq, where p, $q \ge 5$ are both odd primes, and the odd n satisfy the equation only if n=p, $n=p^aq$, where p, q are both odd primes, $q \ge 1$.

Key words: Smarandache dual function; Ω function; positive integer solutions

1 引言及结论

对于任意正整数 n,著名的 Smarandache 函数 S(n)定义为最小的正整数 m,使得 $n \mid m$!即 $S(n) = \min\{m: m \in \mathbf{N}, n \mid m !\}$,它是数论专家 F. Smarandache 教授在其所著的《Only Problems,Not Solutions》一书中引入的,并建议人们研究它的性质。由 S(n)的定义容易推得,如果 $n = p_1^{q_1} p_2^{q_2} \cdots p_k^{q_k}$ 为正整数 n 的标准分解式,那么 $S(n) = \max\{S(p_1^{q_1}), S(p_2^{q_2}), \cdots, S(p_k^{q_k})\}$ 。而关于 S(n)的算术性质,已有不少有趣的结果 $[1^{-6}]$ 。文献[7]引入了 Smarandache 函数 S(n)的对偶函数 $S_*(n)$ 如下:对于任意正整数 n, $S_*(n)$ 定义为最大的正整数 m,使得 $m \mid n$ 。即 $S_*(n) = \max\{m: m \in \mathbf{N}, m \mid n\}$ 。关于 $S_*(n)$ 的算术性质也有一系列研究成果 $[8^{-13}]$ 。如王妤研究了 $S_*(n)$ 的函数方程 $\sum_{d \mid n} SL^*(d) = \sum_{d \mid n} S_*(d)$ 的可解性 $[1^{4}]$,并得到了一个有趣的结

论:设 $A = \{n: \sum_{d \mid n} SL^*(d) = \sum_{d \mid n} S_*(d), n \in \mathbb{N}\}$,则对于任意的实数 s,Drichlet 级数 $f(s) = \sum_{\substack{n=1 \ n \in A}} \frac{1}{n^s}$ 当 $s \leqslant 1$

时发散;当 s>1 时收敛,且有恒等式 $f(s)=\zeta(s)\left(1-\frac{1}{12^s}\right)$,其中: $SL^*(n)$ 为 Smarandache LCM 函数的对

收稿日期: 2012-12-10

基金项目: 国家自然科学基金资助项目(11071194); 陕西省科技厅自然科学基金资助项目(2012JM1021); 陕西省教育厅自然科学科研计划资助项目(12JK0880); 陕西省军民融合研究院 2011 年基金资助项目(11JMR10); 渭南师范学院科研基金资助项目(12YKS024); 信息安全国家重点实验室(中国科学院软件研究所)资助项目 100190(2011NO;01-01-2)

第一作者: 陈 斌(1979—), 男, 讲师, 主要从事数论方面的研究.

偶函数, ζ(s)表示 Riemann Zeta-函数.

现设 $\Omega(n)$ 表示正整数 n 的所有素因子的个数(按重数计算),即若 $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ 为正整数 n 的标准分解式,则 $\Omega(n)=\alpha_1+\alpha_2+\cdots+\alpha_k$. 考虑函数方程

$$\sum_{d} \frac{1}{S_*(d)} = 2\Omega(n) \tag{1}$$

张文鹏教授建议笔者研究方程(1)的可解性,本研究得到了这个方程的所有正整数解. 即证明了如下定理: 定理 方程(1)所有偶数解为 $n=2^4 \cdot 3^{30}$ 、 $n=2^6 \cdot 3^{12}$ 、 $n=8p^7$ 、 $n=16p^5$ 、 $n=64p^4$ 、n=2pq,其中 p、 $q \gg 5$ 为奇素数; 所有奇数解为 n=p、 $n=p^aq$,其中 $a \gg 1$,p、q 为奇素数.

2 定理的证明

显然,由 $S_*(n)$ 和 $\Omega(n)$ 的定义知, n=1 不是方程(1)的解,下面假设 n>1.

I. 若 n 为偶数,分以下几种情况讨论:

① 若
$$n=2^{\alpha}$$
, $\alpha \geqslant 1$ 满足方程(1), 易得 $2\Omega(n)=2\alpha$, $\sum_{d \mid 2^{\alpha}} \frac{1}{S_{*}(d)} = 1 + \sum_{i=1}^{\alpha} \frac{1}{S_{*}(2^{i})} = 1 + \frac{\alpha}{2}$, 则有 $1 + \frac{\alpha}{2} = 1$

 2α , 即 $\alpha = \frac{2}{3}$, 矛盾. 故 $n = 2^{\alpha}$, $\alpha \geqslant 1$ 不是方程(1)的解.

② 若 $n=2 \cdot 3^{\alpha}$, $\alpha \ge 1$ 满足方程(1), 易得 $2\Omega(n)=2(\alpha+1)$,

$$\sum_{d|2\cdot3^{\alpha}} \frac{1}{S_{*}(d)} = 1 + \frac{1}{2} + \sum_{i=1}^{\alpha} \frac{1}{S_{*}(3^{i})} + \sum_{i=1}^{\alpha} \frac{1}{S_{*}(2\cdot3^{i})} = \frac{3}{2} + \alpha + \frac{\alpha}{3} = \frac{3}{2} + \frac{4\alpha}{3}$$

则 $\frac{3}{2} + \frac{4\alpha}{3} = 2(\alpha + 1)$,即 $\alpha = -\frac{3}{4}$,矛盾. 故 $n = 2 \cdot 3^{\alpha}$, $\alpha \geqslant 1$ 不是方程(1)的解.

③ 若 $n=2^{\alpha}3^{\beta}$, $\alpha \geqslant 2$, $\beta \geqslant 1$ 满足方程(1), 易得 $2\Omega(n)=2(\alpha+\beta)$,

$$\begin{split} & \sum_{d \mid 2^{\alpha} \beta^{\beta}} \frac{1}{S_{\star} (d)} = 1 + \sum_{i=1}^{\alpha} \frac{1}{S_{\star} (2^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{\star} (3^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{\star} (2^{\bullet} 3^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{\star} (2^{2} 3^{i})} + \sum_{i=3}^{\alpha} \sum_{j=1}^{\beta} \frac{1}{S_{\star} (2^{i} 3^{j})} = \\ & 1 + \frac{\alpha}{2} + \beta + \frac{2\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{5\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{5\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{(\alpha - 2)\beta}{4} = 1 + \frac{\alpha}{2} + \frac{\beta}{3} + \frac{\alpha}{3} + \frac{\alpha}{3}$$

则有 $1+\frac{\alpha}{2}+\frac{5\beta}{3}+\frac{(\alpha-2)\beta}{4}=2(\alpha+\beta)$,即 $18\alpha+10\beta=12+3\alpha\beta$ 或 $\beta=6+\frac{48}{3\alpha-10}$,这个不定方程有 2 组解 $\alpha_1=4$, $\beta_1=30$ 和 $\alpha_2=6$, $\beta_2=12$,此时方程(1)有解当且仅当 $n=2^4 \cdot 3^{30}$ 或 $n=2^6 \cdot 3^{12}$.

④ 若 $n=2^{\alpha}3^{\beta}p^{\gamma}(\alpha \geqslant 1, \beta \geqslant 1, \gamma \geqslant 1), p \geqslant 5$ 为奇素数满足方程(1),易得 $2\Omega(n)=2(\alpha+\beta+\gamma)$,

$$\begin{split} &\sum_{\substack{d \mid 2^a 3^\beta p^\gamma}} \frac{1}{S_{\star}(d)} = 1 + \sum_{i=1}^a \frac{1}{S_{\star}(2^i)} + \sum_{i=1}^\beta \frac{1}{S_{\star}(3^i)} + \sum_{i=1}^\beta \frac{1}{S_{\star}(p^i)} + \sum_{i=1}^2 \sum_{j=1}^\beta \frac{1}{S_{\star}(2^i 3^j)} + \sum_{i=3}^a \sum_{j=1}^\beta \frac{1}{S_{\star}(2^i 3^j)} + \sum_{i=3}^a \sum_{j=1}^\beta \frac{1}{S_{\star}(2^i 3^j)} + \sum_{i=1}^a \sum_{j=1}^\beta \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^i 3^j p^k)} + \sum_{i=1}^a \sum_{j=1}^\beta \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^3 3^j p^k)} + \sum_{i=1}^\beta \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^3 3^j p^k)} + \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^3 3^j p^k)} + \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^4 \cdot 3 p^k)} + \sum_{i=4}^a \sum_{j=2}^\beta \sum_{k=1}^\gamma \frac{1}{S_{\star}(2^i 3^j p^k)} = \\ & \left[1 + \frac{\alpha}{2} + \beta + \gamma + \frac{2\beta}{3} + \frac{(\alpha - 2)\beta}{4} + \frac{\alpha\gamma}{2} + \beta\gamma + \frac{2\gamma}{3} + \frac{2\beta\gamma}{3} + \frac{\beta\gamma}{4} + \frac{\gamma}{4} + \frac{(\alpha - 3)(\beta - 1)\gamma}{4} \right] p > 5 \end{split}$$

则有

$$1 + \frac{\alpha}{2} + \beta + \gamma + \frac{2\beta}{3} + \frac{(\alpha - 2)\beta}{4} + \frac{\alpha\gamma}{2} + \beta\gamma + \frac{2\gamma}{3} + \frac{2\beta\gamma}{3} + \frac{\beta\gamma}{5} + \frac{\gamma}{5} + \frac{(\alpha - 3)(\beta - 1)\gamma}{6} = 2(\alpha + \beta + \gamma)$$

或

$$1 + \frac{\alpha}{2} + \beta + \gamma + \frac{2\beta}{3} + \frac{(\alpha - 2)\beta}{4} + \frac{\alpha\gamma}{2} + \beta\gamma + \frac{2\gamma}{3} + \frac{2\beta\gamma}{3} + \frac{\beta\gamma}{4} + \frac{\gamma}{4} + \frac{(\alpha - 3)(\beta - 1)\gamma}{4} = 2(\alpha + \beta + \gamma)$$

化简得

$$[6\alpha+24\beta+2(\alpha-3)(\beta-1)]\gamma=18\alpha+10\beta-3\alpha\beta-12$$

或

 $[6\alpha + 23\beta + 3(\alpha - 3)(\beta - 1)]\gamma = 18\alpha + 10\beta - 3\alpha\beta - 12$

当 $\alpha \geqslant 1$, $\beta \geqslant 1$, $\gamma \geqslant 1$ 时,这 2 个不定方程均无正整数解. 故正整数 $n = 2^a 3^\beta p^{\gamma} (\alpha \geqslant 1, \beta \geqslant 1, \gamma \geqslant 1)$, $p \geqslant 5$ 为奇素数不是方程(1)的解.

同理可证 $n=2^{\alpha}3^{\beta}p_{3}^{\alpha_3}p_{4}^{\alpha_4}\cdots p_{k}^{\alpha_k}$, $\alpha \geqslant 1$; $\beta \geqslant 1$; $\alpha_i \geqslant 1$,i=4,5,…,k, $k \geqslant 4$; $p_i \geqslant 5$ 为奇素数也不是方程 (1)的解.

⑤ 若 $n=2^{\alpha}p^{\beta}(\alpha \geqslant 1, \beta \geqslant 1), p \geqslant 5$ 为奇素数满足方程(1), 易得 $2\Omega(n)=2(\alpha+\beta)$,

$$\sum_{d \mid 2^{\alpha}, p^{\beta}} \frac{1}{S_{*}(d)} = 1 + \sum_{i=1}^{a} \frac{1}{S_{*}(2^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{*}(p^{i})} + \sum_{i=1}^{a} \sum_{j=1}^{\beta} \frac{1}{S_{*}(2^{i}p^{j})} = 1 + \frac{\alpha}{2} + \beta + \frac{\alpha\beta}{2}$$

即得 $1+\frac{\alpha}{2}+\beta+\frac{\alpha\beta}{2}=2(\alpha+\beta)$,化简得 $\beta=3+\frac{4}{\alpha-2}$,这个不定方程有 3 组解: $\alpha_1=3$, $\beta_1=7$; $\alpha_2=4$, $\beta_2=5$; $\alpha_3=6$, $\beta_3=4$. 故此时方程(1)有解当且仅当 $n=2^3$ p^7 、 $n=2^4$ p^5 、 $n=2^6$ p^4 ,其中 $p\geqslant 5$ 为奇素数.

⑥ 若 $n=2^{\alpha}p_{\beta}^{\beta}p_{\beta}^{\gamma}(\alpha \geqslant 1, \beta \geqslant 1, \gamma \geqslant 1)$, $p_{i} \geqslant 5$ 为奇素数满足方程(1),易得 $2\Omega(n)=2(\alpha+\beta+\gamma)$,

$$\begin{split} &\sum_{d\mid 2^{a}p_{2}^{\beta}p_{2}^{\gamma}} \frac{1}{S_{\star}\left(d\right)} = 1 + \sum_{i=1}^{a} \frac{1}{S_{\star}\left(2^{i}\right)} + \sum_{i=1}^{\beta} \frac{1}{S_{\star}\left(p_{2}^{i}\right)} + \sum_{i=1}^{\gamma} \frac{1}{S_{\star}\left(p_{3}^{i}\right)} + \sum_{i=1}^{a} \sum_{j=1}^{\beta} \frac{1}{S_{\star}\left(2^{i}p_{2}^{j}\right)} + \sum_{i=1}^{\alpha} \sum_{j=1}^{\gamma} \frac{1}{S_{\star}\left(2^{i}p_{3}^{j}\right)} + \sum_{i=1}^{\beta} \sum_{j=1}^{\gamma} \frac{1}{S_{\star}\left(2^{i}p_{2}^{j}p_{3}^{j}\right)} = \\ &1 + \frac{\alpha}{2} + \beta + \gamma + \frac{\alpha\beta}{2} + \frac{\alpha\gamma}{2} + \beta\gamma + \frac{\alpha\beta\gamma}{2} \end{split}$$

故可得 $1+\frac{\alpha}{2}+\beta+\gamma+\frac{\alpha\beta}{2}+\frac{\alpha\gamma}{2}+\beta\gamma+\frac{\alpha\beta\gamma}{2}=2(\alpha+\beta+\gamma)$,化简得 $(\alpha+2\beta+\alpha\beta-2)\gamma=3\alpha+2\beta-\alpha\beta-2$,这个不定方程的正整数解为 $\alpha=\beta=\gamma=1$. 故此时方程(1)有解当且仅当 $n=2p_2p_3$, $p_i\geqslant 5$ 为奇素数,i=2、3.

又容易计算得当 $n=2 \cdot 5 \cdot 7 \cdot 11$ 时, $\sum_{d \mid 2 \cdot 5 \cdot 7 \cdot 11} \frac{1}{S_*(d)} = 12$,而 $2\Omega(n) = 8$,所以此时方程(1)无解.

同理可得 $n=2^{\alpha}p^{\alpha} p^{\alpha} p^{\alpha} \cdots p^{\alpha} p^{\alpha} n \gg 1$; $\alpha_i \gg 1$, $i=2,3,\cdots,k$, $k \gg 4$; $p_i \gg 5$ 为奇素数也不是方程(1)的解. \parallel . 若 n 为奇数,分以下几种情况讨论:

⑦ 若 $n = p^{\alpha}(\alpha \geqslant 1)$,p 为奇素数满足方程(1),易得 $2\Omega(n) = 2\alpha$, $\sum_{\substack{d \mid p^{\alpha} \ }} \frac{1}{S_{*}(d)} = 1 + \sum_{i=1}^{\alpha} \frac{1}{S_{*}(p^{i})} = 1 + \alpha$,则有 $1 + \alpha = 2\alpha$,即 $\alpha = 1$. 故此时方程(1)有解当且仅当 n = p,p 为奇素数.

⑧ 若 $n = p^{\alpha}q^{\beta}(\alpha \ge 1, \beta \ge 1)$, $p \setminus q$ 为奇素数满足方程(1), 易得 $2\Omega(n) = 2(\alpha + \beta)$,

$$\sum_{d \mid p^{\alpha}q^{\beta}} \frac{1}{S_{*}(d)} = 1 + \sum_{i=1}^{\alpha} \frac{1}{S_{*}(p^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{*}(q^{i})} + \sum_{i=1}^{\alpha} \sum_{j=1}^{\beta} \frac{1}{S_{*}(p^{i}q^{j})} = 1 + \alpha + \beta + \alpha\beta$$

故可得 $1+\alpha+\beta+\alpha\beta=2(\alpha+\beta)$,即 $1+\alpha\beta=\alpha+\beta$,这个不定方程的解为 $\alpha=1$, $\beta\in\mathbb{N}$ 或 $\alpha\in\mathbb{N}$, $\beta=1$. 故此时方程(1)有解当且仅当 $n=pq^{\beta}$ 或 $n=p^{\alpha}q(\alpha\geqslant 1,\beta\geqslant 1)$,p、q 为奇素数.

⑨ 若 $n=p^{\alpha}q^{\beta}h^{\gamma}(\alpha\geqslant 1, \beta\geqslant 1, \gamma\geqslant 1)$, p, q, h 为奇素数满足方程(1), 易得 $2\Omega(n)=2(\alpha+\beta+\gamma)$,

$$\begin{split} &\sum_{d\mid p^{a}q^{\beta}h^{\gamma}} \frac{1}{S_{*}(d)} = 1 + \sum_{i=1}^{a} \frac{1}{S_{*}(p^{i})} + \sum_{i=1}^{\beta} \frac{1}{S_{*}(q^{i})} + \sum_{i=1}^{\gamma} \frac{1}{S_{*}(h^{i})} + \sum_{i=1}^{a} \sum_{j=1}^{\beta} \frac{1}{S_{*}(p^{i}q^{j})} + \\ &\sum_{i=1}^{a} \sum_{j=1}^{\gamma} \frac{1}{S_{*}(p^{i}h^{j})} + \sum_{i=1}^{\beta} \sum_{j=1}^{\gamma} \frac{1}{S_{*}(q^{i}h^{j})} + \sum_{i=1}^{a} \sum_{j=1}^{\beta} \sum_{k=1}^{\gamma} \frac{1}{S_{*}(p^{i}q^{j}h^{k})} = \\ &1 + \alpha + \beta + \gamma + \alpha\beta + \alpha\gamma + \beta\gamma + \alpha\beta\gamma \end{split}$$

故可得 $1+\alpha+\beta+\gamma+\alpha\beta+\alpha\gamma+\beta\gamma+\alpha\beta\gamma=2(\alpha+\beta+\gamma)$,即 $(\alpha+\beta+\alpha\beta-1)\gamma=\alpha+\beta-\alpha\beta-1$,当 $\alpha\geqslant 1$, $\beta\geqslant 1$, $\gamma\geqslant 1$ 时,这个不定方程没有正整数解. 故此时方程(1)无解.

同理可得 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $\alpha_i \ge 1$, $i = 1, 2, \dots, k$, $k \ge 4$; p_i 为奇素数不是方程(1)的解.

综合上述 Ⅰ 和 Ⅱ 的讨论情况, 定理证毕.

参考文献:

- [1] SMARANDACHE F. Only Problems, Not Solutions[M]. Chicageo: Xiquan Publishing House, 1993.
- [2] 潘承洞,潘承彪.初等数论[M].北京:北京大学出版社,1992.

(下转第17页)

E(G). 令 $a_2 = i$,其中 $i \in [2, 3]$, $a_3 = j \in [m-1, m]$,那么共有 n-1 种颜色染 H 的顶点子集 $[2, m+1] \setminus [i, j]$ 中的 m-2 个点,使得每一种颜色恰染满足条件 $v_5 - v_0 \le 7$ 的 6 个点 $(2 \le v_0 < v_1 \cdot v_1 + 1 \cdot v_1 + 2 \cdot v_1 + 3 < v_5 (\le m+1)$. 由引理 6 知,点 m+6 必染 α 色,但它与 $a_3 \cdot a_2 \cdot a_4$ 导出一个 4-圈,矛盾.

2.2) 若 $a_4 \in \{a_6 - i | i \in [1, 3]\}$,假设 $a_3 a_4 \in E(H)$,那么 $a_4 \geqslant m+1$ 且 $4 \leqslant a_3 \leqslant a_4 - 4$. 显然, $a_2 a_4 \leqslant a_3 \leqslant a_5 \in E(G)$,故 $a_2 a_3 \leqslant a_5 \notin E(G)$,那么 $a_2 = 2$ 且 $4 \leqslant a_3 \leqslant 5$. 令 $a_3 = i$,其中 $i \in [4, 5]$,并令 $a_4 = j$,其中 $j \in [m+1, m+2]$. 共有 n-1 种颜色染 H 中 m-2 个点 $[3, m+2] \setminus \{i, j\}$,使得每一种颜色恰染满足条件 $v_5 - v_0 \leqslant 7$ 的 6 个点 $(3 \leqslant) v_0 \leqslant v_1 \leqslant v_1 + 1 \leqslant v_1 + 2 \leqslant v_1 + 3 \leqslant v_5 \leqslant m+2$). 从而点 m+7 必染 a 色,但它与 $a_4 \leqslant a_3 \leqslant a_5 \leqslant a_$

综上可得, $a_3 = m+1$, 那么 $a_4 = m+2$. 从而断言成立.

若 $4 \le a_2 \le m-3$,则顶点 a_1 、 a_2 、 a_3 导出一个 3-圈,矛盾. 从而有 $a_2 \le 4$ 或者 $a_2 \ge m-2$. 若 $a_2 \le 4$,则 a_2a_3 、 $a_2a_4 \in E(H)$. 共有 n-1 种颜色染 H 中 m-2 个点 $[2,m]\setminus \{a_2\}$,由引理 $4\sim 6$ 知,每一种颜色恰染满足条件 $v_5-v_0 \le 7$ 的 6 个点 $(2 \le)v_0 < v_1$ 、 v_1+1 、 v_1+2 、 $v_1+3 < v_5$ ($\le m$),由引理 6 知,顶点 m+6 必染 α 色,但它与 a_4 、 a_2 、 a_3 导出一个圈,矛盾. 若 $a_2 \ge m-2$,则 a_1a_2 、 $a_1a_3 \in E(H)$. 同样只有 n-1 种颜色染 H 中 m-2 个点 $[2,m]\setminus \{a_2\}$,由引理 $4\sim 6$ 知,每一种颜色恰染满足条件 $v_5-v_0 \le 7$ 的 6 个点 $(2 \le)v_0 < v_1$ 、 v_1+1 、 v_1+2 、 $v_1+3 < v_5$ ($\le m$). 那么顶点 m+5 必染 α 色,但它与 a_3 、 a_1 、 a_2 导出一个 4-圈,亦推出矛盾.

综上所述,对于
$$m=6q+2 \geqslant 8$$
,有 $va(G(D_m)) \geqslant \lceil \frac{m+5}{6} \rceil$.

若 $m \neq 6q + 2$ 且 m > 8,则 m 可以表示成 m = 6q + i,其中 $3 \le i \le 7$. 因为

$$D_{6q+7} \supseteq D_{6q+6} \supseteq D_{6q+5} \supseteq D_{6q+4} \supseteq D_{6q+3} \supseteq D_{6q+2}$$

所以有

$$va(G(D_{6q+7})) \geqslant \cdots \geqslant va(G(D_{6q+2})) \geqslant \left\lceil \frac{6q+2+5}{6} \right\rceil = \left\lceil \frac{6q+7+5}{6} \right\rceil$$

从而,对于任意正整数 m>8,有 $va(G(D_m))\geqslant \lceil \frac{m+5}{6} \rceil$.

参考文献:

- [1] CATLIN P A, LAI H J. Vertex arboricity and maximum degree[J]. Discrete Mathematics, 1995, 141: 37-46.
- [2] ŠKREKOVSKI R. On the critical point-arboricity graphs[J]. J Graph Theory, 2002, 39: 50-61.
- [3] EGGLETON R B, ERDÖS P, SKILTON D K. Colouring the real line[J]. J Combin Theory: Ser B, 1985, 39: 86-100.
- [4] CHANG G J, LIU D F, ZHU X D. Distance graphs and T-coloring[J]. J Combin Theory: Ser B, 1999, 75: 259-269.
- [5] YU Q L, ZUO L C. The fractional vertex arboricity of graphs[J]. Lecture Notes in Computer Science, 2007(1): 245-252.
- [6] ZUO L C, YU Q, WU J L. Vertex aboricity of integer distance graph $G(D_{m, k})$ [J]. Discrete Mathematics, 2009, 309; 1649 –1657.

(责任编校 马新光)

(上接第8页)

- [3] 易媛, 亢小玉. Smarandache 函数问题研究[M]. 西安: 西北大学出版社, 2006.
- [4] 张文鹏. 关于 F. Smarandache 函数的两个问题[J]. 西北大学学报: 自然科学版, 2008, 38(2): 173-176.
- [5] 徐哲峰. Smarandache 函数的值分布性质[J]. 数学学报, 2006, 49(5): 1009-1012.
- [6] 李梵蓓. 一个与 Smarandache 函数有关的函数方程及其正整数解[J]. 西北大学学报: 自然科学版, 2008, 38(6): 892-893.
- [7] SANDOR J. On certain generalizations of the Smarandache function[J]. Notes Number Theory and Discrete Mathematics, 1999, 5(2): 41-51.
- [8] SANDOR J. On a dual of the pseudo Smarandache function[J]. Smarandache Notions Journal, 2002, 13: 18-23.
- [9] 张文鹏. 初等数论[M]. 西安:陕西师范大学出版社,2007.
- [10] APOSTOL T M. Introduction to Analytic Number Theory[M]. New York: Spring-Verlag, 1976.
- [11] LOU Y B. On the pseudo Smarandache function [J]. Scientia Magna, 2007, 3(4): 48-50.
- [12] ZHENG Y N. On the pseudo Smarandache function and its two conjectures[J]. Scientia Magna, 2007, 3(4): 51-53.
- [13] **张爱玲**. 关于伪 Smarandache 函数的一个方程及其正整数解[J]. 西北大学学报:自然科学版, 2008, 38(4): 535-536.
- [14] 王妤. 一个包含 Smarandache LCM 对偶函数的方程[J]. 黑龙江大学自然科学学报,2008,25(5): 23 -27.

(责任编校 马新光)