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Introductory Note

We approach several themes of classical
geometry of the circle and complete them
with some original results, showing that not
everything in traditional math is revealed,
and that it still has an open character.

The topics were chosen according to
authors’ aspiration and attraction, as a poet
writes lyrics about spring according to his
emotions.

15
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Lemoine’s Circles

In this article, we get to Lemoine's circles

in a different manner than the known one.

1** Theorem.

Let ABC atriangle and K its simedian center. We
take through K the parallel A;4, to BC, A; € (AB), A, €
(AC); through A, we take the antiparallels A,B; to AB
in relation to CA and CB, B, € (BC); through B; we
take the parallel B;B, to AC, B, € AB; through B, we
take the antiparallels B;C; to BC, C; € (AC), and
through C; we take the parallel C,C, to AB, C; € (BC).

Then:
i.

ii.

iil.

Proof.

C,A, is an antiparallel of AC;

BB, N (1C; = {K};

The points 44,4, , By , B,,C;,C, are
concyclical (the first Lemoine’s circle).

The quadrilateral  BC,KA is a
parallelogram, and its center, i.e. the
middle of the segment (C,A,), belongs to
the simedian BK; it follows that C,A4, is
an antiparallel to AC(see Figure 1).

17
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ii.

iii.

Let {K'}=A;A,nNB;B, , because the
quadrilateral K'B;CA, is a parallelogram,;
it follows that CK' is a simedian; also,
CK is a simedian, and since K,K' € A;4,, it
follows that we have K' = K.

B,C; being an antiparallel to BC and
A{A, | BC , it means that B,(C; is an
antiparallel to A4;4, , so the points
B,,Cy,A5,A; are concyclical. From B;B, |l
AC, ¥B,C;A = ¥ABC, ¥B;A,C = <ABC we
get that the quadrilateral B,(;A4,B; is an
isosceles trapezoid, so the points
B,, (4, A5, B; are concyclical. Analogously,
it can be shown that the quadrilateral
C,B1A,A, is an isosceles trapezoid,
therefore the points C(,,B;,4,,4; are
concyclical.

A

B2 G

Al Az

Cz\\_/ B1 C

Figure 1

18
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From the previous three quartets of concyclical
points, it results the concyclicity of the points
belonging to the first Lemoine’s circle.

2" Theorem.

In the scalene triangle ABC, let K be the simedian
center. We take from K the antiparallel 4,4, to BC;
A{ € AB,A, € AC; through A, we build 4,B; I| AB; B, €
(BC), then through B; we build B;B, the antiparallel
to AC, B, € (AB), and through B, we build B,C, Il BC,
C; € AC , and, finally, through (; we take the
antiparallel C,C, to AB, C, € (BC).

Then:

i. A1 I AC;

ii. BB, N C,C, = {K};

iil. The points Aq,45,B1,B,,Cq,Cy are

concyclical (the second Lemoine’s circle).

Proof.

i Let {K'} = A;4, N ByB,, having %444, =
XACB and <«BB;B, = ¥«BAC because A A,
si BB, are antiparallels to BC , AC,
respectively, it follows that «K'A;B, =
%K'B,A;, so K'A; = K'B, ; having A;B, |
B,A, as well, it follows that also K'A, =
K'B;, so A;A, = B;B,. Because C;C, and
B;B, are antiparallels to AB and AC, we

19
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ii.

have K"C, = K"B;; we noted {K"} = B;B, N
C,C,; since C;B, || B;C,, we have that the
triangle K"C; B, is also isosceles, therefore
K"C; = CyB,, and we get that B;B, = C,C,.
Let {K"'} = A{A, N C;C, ; since A;A, and
C,C, are antiparallels to BC and AB, we
get that the triangle K'"A,C; is isosceles,
so K"'A, = K'""C;, but A4;4, = C,C, implies
that K'"'C, =K'"'A; , then <K'"'A,C, =
2K'"A,C, and, accordingly, C,A; Il AC.

Figure 2

We noted {K'}=A4,A,NB;B,; let {X}=
B,C; N B;A, ; obviously, BB{XB, is a
parallelogram; if K, is the middle of
(B1B,), then BK, is a simedian, since B;B,
is an antiparallel to AC, and the middle of
the antiparallels of AC are situated on the

20
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simedian BK. If K, #K, then KK || A{B,
(because A;A, = B;B, and B4, |l A1B; ),
on the other hand, B, Ky, K are collinear
(they belong to the simedian BK ),
therefore KK intersects AB in B, which is
absurd, so K, =K, and, accordingly, B;B, N
A4, = {K}. Analogously, we prove that
C,C, N AA, = {K}, so B;B, N C,C, = {K}.

iii. K is the middle of the congruent
antiparalells A;4,, BiB,, C;C,, so KA, =
KA2=KB1=KBZ=KC1=KCZ . The

simedian center K is the center of the
second Lemoine’s circle.

Remark.

The center of the first Lemoine’s circle is the
middle of the segment [OK], where O is the center of
the circle circumscribed to the triangle ABC. Indeed,
the perpendiculars taken from A,B,C on the
antiparallels B,C; , A;C, , B;A, respectively pass
through O, the center of the circumscribed circle (the
antiparallels have the directions of the tangents taken
to the circumscribed circle in A4, B, C). The mediatrix of
the segment B,(; pass though the middle of B,(;,
which coincides with the middle of AK, so is the
middle line in the triangle AKO passing through the
middle of (OK). Analogously, it follows that the
mediatrix of A;C, pass through the middle L, of [OK].

21
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Lemoine’s Circles Radius

Calculus

For the calculus of the first Lemoine’s

circle, we will first prove:

1** Theorem

(E. Lemoine - 1873)

The first Lemoine’s circle divides the sides of a
triangle in segments proportional to the squares of the
triangle’s sides.

Each extreme segment is proportional to the
corresponding adjacent side, and the chord-segment
in the Lemoine’s circle is proportional to the square of
the side that contains it.

Proof.

BC, _ C3B; _ BiC

c2 a2 p2

In figure 1, K represents the symmedian center
of the triangle ABC, and A;A,; B{B,; C,C, represent
Lemoine parallels.

The triangles BC,A, ; CB;A, and K(C,A; have
heights relative to the sides B(C,; B;C and C,B; equal

(4142 1| BC).

We will prove that

23
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Hence:
Areap BA1C;  Areap KCyA; _ Areap CB14, (1)
BC, - C,B, - B;C :

Figure 1

On the other hand: A;C, and B;A, being
antiparallels with respect to AC and AB, it follows that
ABC,A{~ABAC and ACB;A,~ACAB, likewise KC, || AC
implies: AKC,B,~AABC.

We obtain:

AreayBC,A; _ BCF

Areap ABC - 6_2 !

Areap KCyB; _ C,B? .

Areap ABC ~ a? ’

Areap CB14; _ [4:14 (2)
Areap ABC bz °

If we denote Areap ABC = S, we obtain from the

relations (1) and (2) that:

c? a? b2 °

24
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Consequences.

1. According to the 1°* Theorem, we find that:
ac? ab? a

3
BCy =———; BiC =5——; B1(C; =5—— .
27 az4p24c2’ 1 a?+b2+c2’ 172 T q24p2yc?

2. We also find that:
B1Cy; _ ACy  A1Bp

a3 b3 c3
meaning that:
“The chords determined by the first Lemoine’s
circle on the triangle’s sides are proportional to
the cubes of the sides.”
Due to this property, the first Lemoine’s circle is
known in England by the name of triplicate ratio circle.

1% Proposition.

The radius of the first Lemoine’s circle, R is

given by the formula:
2 _ 1 R*(a®+b*+c?)+a’b?c?

Ry, = 4 (a2+b2+c?)? ’ (3)
where R represents the radius of the circle inscribed

in the triangle ABC.

Proof.

Let L be the center of the first Lemoine’s circle
that is known to represent the middle of the segment
(OK) - O being the center of the circle inscribed in the
triangle ABC.
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a (c?+a?)
az+b2+c2 ’
Taking into account the power of point B in

Considering C1, we obtain BB, =

relation to the first Lemoine’s circle, we have:
BC, BB, = BT? — LT?,
(BT is the tangent traced from B to the first Lemoine’s
circle, see Figure 1).
Hence: Rf = BL?> — BC, * BB;. (4)
The median theorem in triangle BOK implies

that:
2 _ 2/(BK?*+B0%)-0K?
- 4

BL

2 2
It is known that K=% ; Sb=2aa;%
where S, and m;, are the lengths of the symmedian
3a2b?c?

)

and the median from B, and OK? = R? —

(3)-

see

2a?c?(a%+c?)-a?b?c?
(a?+b2+c?)?
4a?c?(a%+c?)+a?b?c?
(a?+b?+c?)?
a?c?(a%+c?)
(a%+b%+c?)?2’

we obtain formula (3).

Consequently: BK? = , and

4BL? = R? +

As: BC, -BB; = by replacing in (4),

2" Proposition.

The radius of the second Lemoine’s circle, R, , is

given by the formula:
abc

R, =" (5)

a?+b?+c?
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Proof.

B C2 B G

Figure 2

In Figure 2 above, A,4,; B1B,; C;C, are Lemoine
antiparallels traced through symmedian center K that
is the center of the second Lemoine’s circle, thence:

R, = KAy = KA,.

If we note with S and M the feet of the
symmedian and the median from 4, it is known that:

AK _ b?+c?
KS ~ a%
From the similarity of triangles AA,A, and ABC,
A1A, AK
we have: —==—.
BC  AM
2 2
But: 28= ¥ and A4S = 225

= Mg,
AS  a?+b%+c? b2+¢2 a
AjA; = 2R,,, BC = a, therefore:

AK-a
R, =
Ly 2mg ’
and as AK = 2bc mg_ , formula (5) is a consequence.
a?+b?+c?
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Remarks.

1. If we use tgw = w being the Brocard’s

4
a?+b2+c?’
angle (see [2]), we obtain: R;, =R tgw.

2. If, in Figure 1, we denote with M, the middle
of the antiparallel B,(;, which is equal to R;, (due to
their similarity), we thus find from the rectangular
triangle LM, C; that:

LCZ = LM} + M, C?, but LM? =-a? and M,C, =
lRL ; it follows that:

2 L2

R? —(R2 +RE) = —(1 + tg2w).
We obtain:

Ry, =§-w/1+tgzw.

1

3'¢ Proposition.

The chords determined by the sides of the
triangle in the second Lemoine’s circle are
respectively proportional to the opposing angles
cosines.

Proof.
KC,B, is an isosceles triangle, <«K(C,B;, =
<KB,C, = %A; as KC; = Ry, we have that cos4 =22,
LZ
deci - Cobr = 2R,,, similary: A6 B _ op,
0sA cosB  cosC 2-
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Remark.

Due to this property of the Lemoine’s second
circle, in England this circle is known as the cosine
circle.
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Radical Axis of Lemoine’s

Circles

In this article, we emphasize the radical
axis of the Lemoine’s circles.

For the start, let us remind:

1** Theorem.

The parallels taken through the simmedian
center K of a triangle to the sides of the triangle
determine on them six concyclic points (the first
Lemoine’s circle).

2"4 Theorem.

The antiparallels taken through the triangle’s
simmedian center to the sides of a triangle determine
six concyclic points (the second Lemoine’s circle).

1°** Remark.

If ABC is a scalene triangle and K is its
simmedian center, then L, the center of the first
Lemoine’s circle, is the middle of the segment [OK],
where O is the center of the circumscribed circle, and
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the center of the second Lemoine’s circle is K. It
follows that the radical axis of Lemoine’s circles is
perpendicular on the line of the centers LK, therefore
on the line OK.

1% Proposition.

The radical axis of Lemoine’s circles is perpendi-
cular on the line OK raised in the simmedian center K.

Proof.

Let A;A, be the antiparallel to BC taken through
K, then KA, is the radius R;, of the second Lemoine’s

circle; we have:
_ abc
L2 ™ a24p2+4c¢2 °

Figure 1

32



Complements to Classic Topics of Circles Geometry

Let AjA) be the Lemoine’s parallel taken to BC;
we evaluate the power of K towards the first
Lemoine’s circle. We have:

KA} - KA, = LK? — R},. (1)

Let S be the simmedian leg from A; it follows

that:
KAy _ AK _ KAy
BS AS sc

We obtain:
AK AK
KA} = BS-— and KA, = SC-—,
AS AS
BS 2 AK b2+c?
but—=—- and—=—7+—.
Ssc b2 AS a?+b2+4c?
Therefore:

KA" -KA, = —BS - SC (AK)Z _ @b
v AS) — (b% +c?)?’
(b2+c?)*

(a?+b%+c?)?

We draw the perpendicular in K on the line

= —Rf, . (2)

LK and denote by P and Q its intersection to the first
Lemoine’s circle.

We have KP-KQ = —Rf,; by the other hand,
KP = KQ (PQ is a chord which is perpendicular to the
diameter passing through K).

It follows that KP = KQ =R;,, so P and Q are
situated on the second Lemoine’s circle.

Because PQ is a chord which is common to the
Lemoine’s circles, it obviously follows that PQ is the
radical axis.
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Comment.

Equalizing (1) and (2), or by the Pythagorean
theorem in the triangle PKL, we can calculate R;_ .

2122
It is known that: OK? = R? —% , and
since LK = %OK, we find that:
2 l. [ 2 a2b2c2 ]
Ri, = 4 R®+ (aZ+b2+c2)2]’

2" Remark.

The 1% Proposition, ref. the radical axis of the
Lemoine’s circles, is a particular case of the following
Proposition, which we leave to the reader to prove.

2"! Proposition.

If C(04,R;) si C(0,,R,) are two circles such as
the power of center 0, towards C(0,, R,) is —R?, then
the radical axis of the circles is the perpendicular in
0, on the line of centers 0,0,.
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Generating Lemoine’s circles

In this paper, we generalize the theorem
relative to the first Lemoine’s circle and
thereby highlight a method to build
Lemoine’s circles.

Firstly, we review some notions and results.

1% Definition.

It is called a simedian of a triangle the symmetric
of a median of the triangle with respect to the internal
bisector of the triangle that has in common with the
median the peak of the triangle.

1% Proposition.

In the triangle ABC, the cevian AS, S € (BC), is a

. . .. SB AB\2
simedian if and only if = (E) . For Proof, see [2].

24 Definition.

It is called a simedian center of a triangle (or
Lemoine’s point) the intersection of triangle’s
simedians.
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1°* Theorem.

The parallels to the sides of a triangle taken
through the simedian center intersect the triangle’s
sides in six concyclic points (the first Lemoine’s circle

- 1873).

A Proof of this theorem can be found in [2].

3" Definition.

We assert that in a scalene triangle ABC the line
MN,where M € AB and N € AC, is an antiparallel to BC
if *xMNA = «ABC.

1% Lemma.

In the triangle ABC, let AS be a simedian, S €
(BC). If P is the middle of the segment (MN), having
M € (AB) and N € (AC), belonging to the simedian AS,
then MN and BC are antiparallels.

Proof.

We draw through M and N, MT || AC and NR || AB,
R, T € (BC), see Figure 1. Let {Q} = MT N NR; since
MP = PN and AMQN is a parallelogram, it follows that
Q € AS.
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Figure 1.

Thales's Theorem provides the relations:
AN BR

E - BC' (1)
AB BC
- cor (2)

From (1) and (2), by multiplication, we obtain:
AN AB _ BR

AM Ac~ TC® 3)

Using again Thales's Theorem, we obtain:
=22 (4)
BS ~ A4S’ 4
e _ 49
sc as’ (5)

From these relations, we get

BR TC

Tl (6)

BS BR

- Tc” (7)

In view of Proposition 1, the relations (7) and (3)

lead to j—g = ':—?, which shows that AAMN~AACB, so
IAMN = «ABC.
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Therefore, MN and B(C are antiparallels in
relation to AB and AC.

Remark.

1. The reciprocal of Lemma 1 is also valid,
meaning that if P is the middle of the antiparallel MN
to BC, then P belongs to the simedian from A.

2" Theorem.

(Generalization of the 15t Theorem)

Let ABC be a scalene triangle and K its simedian
center. We take M € AK and draw MN || AB,MP || AC,
where N € BK, P € CK. Then:

i. NP || BC;

ii. MN,NP and MP intersect the sides of

triangle ABC in six concyclic points.

Proof.

In triangle ABC, let AA,, BB,,C(C; the simedians
concurrent in K (see Figure 2).
We have from Thales' Theorem that:

AM _ BN

K = NE (1)
AM _ CP

K= PR (2)
From relations (1) and (2), it follows that
=== (3)
NK ~ PK’ 3

which shows that NP || BC.
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Let R,S,V,W,U,T be the intersection points of
the parallels MN, MP, NP of the sides of the triangles to
the other sides.

Obviously, by construction, the quadrilaterals
ASMW; CUPV; BRNT are parallelograms.

The middle of the diagonal WS falls on AM, so on
the simedian AK, and from 1 Lemma we get that WS
is an antiparallel to BC.

Since TU || BC, it follows that WS and TU are
antiparallels, therefore the points W,S,U,T are
concyclic (4).

Figure 2.

Analogously, we show that the points U,V,R,S
are concyclic (5). From WS and BC antiparallels, UV
and AB antiparallels, we have that <WSA = «ABC and
AVUC = xABC, therefore: <WSA = «VUC, and since
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VW |l AC, it follows that the trapeze WSUV is isosceles,
therefore the points W, S, U,V are concyclic (6).

The relations (4), (5), (6) drive to the
concyclicality of the points R,U,V,S,W,T, and the
theorem is proved.

Further Remarks.

2. For any point M found on the simedian A4,, by
performing the constructions from hypothesis, we get
a circumscribed circle of the 6 points of intersection
of the parallels taken to the sides of triangle.

3. The 2™ Theorem generalizes the 15 Theorem
because we get the second in the case the parallels are
taken to the sides through the simedian center k.

4. We get a circle built as in 2" Theorem from
the first Lemoine’s circle by homothety of pole k and
of ratio 1 € R.

5. The centers of Lemoine’s circles built as above
belong to the line OK, where O is the center of the
circle circumscribed to the triangle ABC.
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The Radical Circle of Ex-

Inscribed Circles of a Triangle

In this article, we prove several theorems
about the radical center and the radical
circle of ex-inscribed circles of a triangle
and calculate the radius of the circle from

vectorial considerations.

1° Theorem.

The radical center of the ex-inscribed circles of
the triangle ABC is the Spiecker’s point of the triangle
(the center of the circle inscribed in the median
triangle of the triangle ABC).

Proof.

We refer in the following to the notation in
Figure 1. Let I, I, I. be the centers of the ex-inscribed
circles of a triangle (the intersections of two external
bisectors with the internal bisector of the other angle).
Using tangents property taken from a point to a circle
to be congruent, we calculate and find that:

AF, = AE, = BD,, = BF, = CD, = CE, = p,
BD, =BF, =CDy = CEy, =p —aq,
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CE, =CD, = AF. = AE. =p — b,
AF, = AE, = BF, =BD. =p —c.

If A; is the middle of segment D.D,, it follows
that A; has equal powers to the ex-inscribed circles
(Iy) and (I.). Of the previously set, we obtain that 4;
is the middle of the side BC.

Figure 1.

Also, the middles of the segments E,E. and F,F,,
which we denote U and V, have equal powers to the
circles (I,) and (/.).

The radical axis of the circles (I,), (I;) will
include the points 4,,U, V.

Because AE, = AF, and AE, = AF_, it follows that

AU = AY and we find that <AUV = %{A, therefore the
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radical axis of the ex-inscribed circles (F) and (I.) is
the parallel taken through the middle A; of the side BC
to the bisector of the angle BAC.

Denoting B; and C; the middles of the sides AC,
AB, respectively, we find that the radical center of the
ex-inscribed circles is the center of the circle inscribed
in the median triangle A,B;C; of the triangle ABC.

This point, denoted S, is the Spiecker’s point of
the triangle ABC.

2" Theorem.

The radical center of the inscribed circle (/) and
of the B —ex-inscribed and C —ex-inscribed circles of
the triangle ABC is the center of the A; — ex-inscribed
circle of the median triangle A,B,(;, corresponding to
the triangle ABC).

Proof.

If E is the contact of the inscribed circle with AC
and E; is the contact of the B —ex-inscribed circle with
AC, it is known that these points are isotomic,
therefore the middle of the segment EEj, is the middle
of the side AC, which is B;.

This point has equal powers to the inscribed
circle (I) and to the B —ex-inscribed circle (/,), so it
belongs to their radical axis.
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Analogously, C; is on the radical axis of the
circles (I) and (/1,.).

The radical axis of the circles (/), (I,) is the
perpendicular taken from B, to the bisector I1,.

This bisector is parallel with the internal
bisector of the angle A;B,C; , therefore the
perpendicular in B; on I], is the external bisector of
the angle A;B;(C; from the median triangle.

Analogously, it follows that the radical axis of
the circles (1), (I.) is the external bisector of the angle
A4,C;B; from the median triangle.

Because the bisectors intersect in the center of
the circle A, -ex-inscribed to the median triangle
A1B,C4, this point S, is the center of the radical center
of the circles (1), (I), (I.).

Remark.

The theorem for the circles (1), (I,), (I;) and (1),
(1), (I;) can be proved analogously, obtaining the
points S, and S,,.

3" Theorem.

The radical circle’s radius of the circles ex-
inscribed to the triangle ABC is given by the formula:

17— > . . . . .
2 A/ 7% + p%, where r is the radius of the inscribed circle.
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Proof.

The position vector of the circle I of the
inscribed circle in the triangle ABC is:

Fl)zi(aﬁ+bﬁ+cﬁ).

Spiecker’s point S is the center of radical circle
of ex-inscribed circle and is the center of the inscribed

circle in the median triangle A, B;(;, therefore:

PS =2 (1aPA; +1bPB; +3cPC;).

p
A
Cy/ -.:._Bi
5 [
g |
| ™ !
B Da . _\“ﬁi A
- --._'___. - | -._H
-~ T
e | m AR
_-|I| 1 I.- / 'I )
:-[.1 |

Figure 2.

We denote by T the contact point with the A-ex-
inscribed circle of the tangent taken from S to this
circle (see Figure 2).
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The radical circle’s radius is given by:

ST = JSZ— 12

—_ 1
IaS = E(aIaAl + b[aBl + Clacl).

We evaluate the product of the scales IS - IS ;

we have:
1,52 = ﬁ(azlaAi + b2I,B? + c2I,C? + 2abl A, -

I[,By + 2bcl By - 1,C; + 2acl Ay - 1,Cy).

From the law of cosines applied in the triangle
1,A1B,, we find that:

21,A; " 1,B, = 1,A% + 1,B? — icz, therefore:

2abl,A; - 1,B, = ab(I,A? + I,B? — %abcz.

Analogously, we obtain:

2bcIgBy 14C; = be(IgBE + 1,02 — < a?be,

2aclA; - 1,C, = ac(l,A% + 1,C2 — %abzc.

1,5% = ﬁ[(az + ab + ac)lA? + (b? + ab +
LL@+b+0),
1,52 = ﬁ [2p(al A2 + b1 B? + cl,C}) — 2RS,),

bc)I,B? + (c? + bc + ac)l,C? —

1,5% = % (algA? + blBE + clyCE) — S Rr.
From the right triangle I,D,A4,, we have that:
a 2

oA} =12 + 4D = 12 4+ |5~ (0 —0)] =

_ .2, (c=b)?

=15+ s
From the right triangles I,E,B; si I,F,C;, we

find:
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1,B =12+ BiEZ =12 + [g— (p— b)]2 =
=12 +i(a +¢)?,
1,C? =17 +i(a + b)2.
Evaluating al,A? + bl,B? + cl,C?, we obtain:
al,A? + bl,B? + cl,C? =
=2pr? + %p(ab + ac + bc) — %abc.

But:

ab + ac + bc = r? + p? + 4Rr.

It follows that:

i[aIaA% +blBf + cl CF] =17 +%(T2 +p?) + %RT
and

1,S? =12 +i(r2 + p?).
Then, we obtain:

ST = %w/rz + p2.
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The Polars of a Radical Center

In [1], the late mathematician Cezar
Cosnita, using the barycenter coordinates,
proves two theorems which are the subject
of this article.

In a remark made after proving the first
theorem, C. Cosnita  suggests an
elementary proof by employing the concept
of polar.

In the following, we prove the theorems
based on the indicated path, and state that
the second theorem is a particular case of
the former. Also, we highlight other

particular cases of these theorems.

1** Theorem.

Let ABC be a given triangle; through the pairs of
points (B,C), (C,A) and (4,B) we take three circles
such that their radical center is on the outside.

The polar lines of the radical center of these
circles in relation to each of them cut the sides BC, CA
and AB respectively in three collinear points.
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Proof.

We denote by D,P,F the second point of
intersection of the pairs of circles passing through
(A,B) and (B,C); (B,C) and (4,C), (B,C) and (4,B)
respectively (see Figure 1).

Figure 1

Let R be the radical center of those circles. In
fact, {R} = AFNnBD n CE.

We take from R the tangents RD; = RD, to the
circle (B,(C), RE; = RE, to the circle (4,C) and RF, =
RF, to the circle passing through (4, B). Actually, we
build the radical circle C(R, RD;) of the given circles.

The polar lines of R to these circles are the lines
D,D,, E1E,, F;F,. These three lines cut BC,AC and AB
in the points X,Y and Z , and these lines are
respectively the polar lines of R in respect to the
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circles passing through (B,(),(C,A) and (A4,B). The
polar lines are the radical axis of the radical circle
with each of the circles passing through
(B,0),(C,A), (A, B), respectively. The points belong to
the radical axis having equal powers to those circles,
thereby XD, - XD, = XC - XB.

This relationship shows that the point X has
equal powers relative to the radical circle and to the
circle circumscribed to the triangle ABC; analogically,
the point Y has equal powers relative to the radical
circle and to the circle circumscribed to the triangle
ABC ; and, likewise, the point Z has equal powers
relative to the radical circle and to the circle
circumscribed to the triangle ABC.

Because the locus of the points having equal
powers to two circles is generally a line, i.e. their
radical axis, we get that the points X,Y and Z are
collinear, belonging to the radical axis of the radical
circle and to the circle circumscribed to the given
triangle.

2" Theorem.

If M is a point in the plane of the triangle ABC
and the tangents in this point to the circles
circumscribed to triangles C, MAC, MAB, respectively,
cut BC,CA and AB, respectively, in the points X,Y,Z,
then these points are collinear.
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Proof.

The point M is the radical center for the circles
(MBC), (MAC), and (MAB), and the tangents in M to
these circles are the polar lines to M in relation to
these circles.

If X,Y,Z are the intersections of these tangents
(polar lines) with BC, CA, AB, then they belong to the
radical axis of the circumscribed circle to the triangle
ABC and to the circle “reduced” to the point M (XM? =
XB - XC, etc.).

Being located on the radical axis of the two
circles, the points X, Y, Z are collinear.

Remarks.

1. Another elementary proof of this theorem is
to be found in [3].

2. If the circles from the 1% theorem are adjoint
circles of the triangle ABC , then they
intersect in € (the Brocard’s point).
Therefore, we get that the tangents taken in
Q to the adjoin circles cut the sides BC, CA
and AB in collinear points.

52



Complements to Classic Topics of Circles Geometry

References.

[1] C. Cosnita: Coordonées baricentrique [Barycentric
Coordinates], Bucarest - Paris: Librairie
Vuibert, 1941.

[3] I. Pdtrascu: Axe si centre radicale ale cercului
adjuncte unui triunghi [Axis and radical centers
of the adjoin circle of a triangle], in “Recreatii
matematice”, year XII, no. 1, 2010.

[3] C. Mihalescu: Geometria elementelor remarcabile
[The Geometry of Outstanding Elements],
Bucharest: Editura Tehnica, 1957.

[4] F. Smarandache, I. Patrascu: Geometry of
Homological Triangle, Columbus: The
Educational Publisher Inc., 2012.

53






Complements to Classic Topics of Circles Geometry

Regarding the First Droz-

Farny’s Circle

In this article, we define the first Droz-
Farny’s circle, we establish a connection
between it and a concyclicity theorem,
then we generalize this theorem, leading to
the generalization of Droz-Farny’s circle.
The first theorem of this article was

enunciated by J. Steiner and it was proven

by Droz-Farny (Mathésis, 1901).

1°* Theorem.

Let ABC be a triangle, H its orthocenter and
A4, B4, C; the means of sides (BC), (CA), (AB).

If a circle, having its center H, intersects B;(; in
P;,Qq; C1A; in P,,Q, and A{B; in P;,Q3, then AP, =
AQ, = BP, = BQ, = CP; = CQ5.

Proof.

Naturally, HP]_ = HQl,Blcl " BC,AH 1 BC.
It follows that AH 1 B,(C;.
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Figure 1.

Therefore, AH is the mediator of segment P,(Q;
similarly, BH and CH are the mediators of segments
P,Q, and P;Q5.

Let T; be the intersection of lines AH and B;(C;
(see Figure 1); we have QA% — Q;H? = T;A*> — T{H?. We
denote R, = HP,. It follows that Q4% = R4 + (T,A +
T,H)(T;A —TH) = R34 + AH - (T;A — T,H).

However, TyA = T; H;, where H, is the projection
of A on BC; we find that Q;A? = R} + AH - HH,.

It is known that the symmetric of orthocenter H
towards BC belongs to the circle of circumscribed
triangle ABC.

Denoting this point by H;, we have AH - HH; =
R?> — OH? (the power of point H towards the
circumscribed circle).
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We obtain that AH-HH; = % (R? — 0H?), and
therefore AQ? = R + % (R? — 0H?), where O is the
center of the circumscribed triangle ABC.

Similarly, we find BQ3 =CQ2 =RE + (R -
OH?), therefore AQ, = BQ, = CQ5.

Remarks.

a. The proof adjusts analogously for the
obtuse triangle.

b. 1t Theorem can be equivalently
formulated in this way:

2" Theorem.

If we draw three congruent circles centered in a
given triangle’s vertices, the intersection points of
these circles with the sides of the median triangle of
given triangle (middle lines) are six points situated on
a circle having its center in triangle’s orthocenter.

If we denote by p the radius of three congruent
circles having 4, B, C as their centers, we get:

R} = p? + 2 (OH? — R?).

However, in a triangle, OH? = 9R? — (a® + b% +
c?), R being the radius of the circumscribed circle; it
follows that:

R} = p? + 4R? —~(a? + b? + c2).
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Remark.

A special case is the one in which p = R, where
we find that R = R? = 5R? —%(a2 + b2 +c2) = %(RZ +
OH?).

Definition.

The circle C(H,R,), where:

Ry = JSRZ —>(@? +b% +c?),

is called the first Droz-Farny’s circle of the triangle
ABC.

Remark.

Another way to build the first Droz-Farny’s circle
is offered by the following theorem, which, according
to [1], was the subject of a problem proposed in 1910
by V. Thébault in the jJournal de Mathématiques
Elementaire.

3" Theorem.

The circles centered on the feet of a triangle’s
altitudes passing through the center of the circle
circumscribed to the triangle cut the triangle’s sides
in six concyclical points.
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Proof.

We consider ABC an acute triangle and Hy, H,, H3
the altitudes’ feet. We denote by A4, A4,; By, By; C1,Cy
the intersection points of circles having their centers
H,,H,,H; to BC,CA, AB, respectively.

We calculate HA, of the right angled triangle
HH, A, (see Figure 2). We have HA = HH? + H,A3.

Because H;A, = H;0 , it follows that HA3% =
HH? + H;0%?. We denote by 0, the mean of segment
OH ; the median theorem in triangle H;HO leads to
H,H? + H,0? = 2H,0% + OH?.

It is known that OgH, is the nine-points circle’s
radius, so H,04 = %R ; we get: HA? = %(R2 + OH?) ;
similarly, we find that HB? = HC? = %(R2 + 0OH?)
which shows that the points A4, A4,; By, By; C4,C,
belong to the first Droz-Farny’s circle.

Figure 2.
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Remark.

The 2™ and the 3™ theorems show that the first
Droz-Farny’s circle pass through 12 points, situated
two on each side of the triangle and two on each side
of the median triangle of the given triangle.

The following theorem generates the 3" Theorem.

4" Theorem.

The circles centered on the feet of altitudes of a
given triangle intersect the sides in six concyclical
points if and only if their radical center is the center
of the circle circumscribed to the given triangle.

Proof.

Let A;,A,; B1,By; C,C, be the points of
intersection with the sides of triangle ABC of circles
having their centers in altitudes’ feet H,, H,, Hs.

Suppose the points are concyclical; it follows
that their circle’s radical center and of circles centered
in H, and H; is the point A (sides AB and AC are
radical axes), therefore the perpendicular from 4 on
H,H; is radical axis of centers having their centers H,
and H;.

Since H,H; is antiparallel to BC, it is parallel to
tangent taken in A to the circle circumscribed to
triangle ABC.
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Consequently, the radical axis 1is the
perpendicular taken in A on the tangent to the
circumscribed circle, therefore it is A0.

Similarly, the other radical axis of circles
centered in H;, H, and of circles centered in H,, H; pass
through O, therefore O is the radical center of these
circles.

Reciprocally.

Let O be the radical center of the circles having
their centers in the feet of altitudes. Since AO is
perpendicular on H,H;, it follows that A0 is the
radical axis of circles having their centers in H,, Hs,
therefore AB; - AB, = AC; - AC,.

From this relationship, it follows that the points
B4, B,; Cy, C, are concyclic; the circle on which these
points are located has its center in the orthocenter H
of triangle ABC.

Indeed, the mediators’ chords BB, and C;(, in
the two circles are the altitudes from C and B of
triangle ABC, therefore HB; = HB, = HC; = HC,.

This reasoning leads to the conclusion that BO is
the radical axis of circles having their centers H; and
H;, and from here the concyclicality of the points
Aq,A,; C,C, on a circle having its center in H,
therefore HA; = HA, = HC; = HC,. We obtained that
HA, = HA, = HB, = HB, = HC; = HC, , which shows
the concyclicality of points A4, 4,, By, B3, Cy, Cs.

61



Ion Patrascu, Florentin Smarandache

Remark.

The circles from the 3™ Theorem, passing
through 0 and having noncollinear centers, admit O
as radical center, and therefore the 3¢ Theorem is a
particular case of the 4™ Theorem.
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Regarding the Second Droz-

Farny’s Circle

In this article, we prove the theorem
relative to the second Droz-Farny’s circle,
and a sentence that generalizes it.

The paper [1] informs that the following
Theorem is attributed to J. Neuberg
(Mathesis, 1911).

1° Theorem.

The circles with its centers in the middles of
triangle ABC passing through its orthocenter H
intersect the sides BC, CA and AB respectively in the
points A4, 4,, B;, B, and (y, C,, situated on a concentric
circle with the circle circumscribed to the triangle ABC
(the second Droz-Farny’s circle).

Proof.

We denote by M;,M,,M; the middles of ABC
triangle’s sides, see Figure 1. Because AH 1 M,M; and
H belongs to the circles with centers in M, and M3, it
follows that AH is the radical axis of these circles,
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therefore we have AC, - AC, = AB, - AB,. This relation
shows that B4, B,, €4, C, are concyclic points, because
the center of the circle on which they are situated is O,
the center of the circle circumscribed to the triangle
ABC, hence we have that:

OB; = 0C, = 0C, = OB,. (1)

/ C\/_\ \

/

(

b ;/ \. \,/b

"

Figure 1.

Analogously, O is the center of the circle on
which the points A4, 4,, C;, C, are situated, hence:

04, =0C, = 0C, = 0A,. (2)

Also, O is the center of the circle on which the
points A4, A,, B,, B, are situated, and therefore:

0A; = 0B; = 0B, = 04,. 3

The relations (1), (2), (3) show that the points
Ay, A5, B4, By, (4, C, are situated on a circle having the
center in O, called the second Droz-Farny’s circle.
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1** Proposition.

The radius of the second Droz-Farny’s circle is
given by:

1
R3 = 5e? —E(a2 + b? + ¢?).

Proof.

From the right triangle OM;A4,, using Pitagora’s
theorem, it follows that:
0A3 = OM? + A\M? = OM? + M; M,.
From the triangle BHC , using the median
theorem, we have:

1
HM? = 7 [2(BH? + CH?) — BC?].

But in a triangle,
AH = 20M,, BH = 20M,, CH = 20M3,

hence:
2
a
HM? = 20M3% + 20M% = T
But:
OMZ = R? - ;
1 4
omz=R?-2;
2 4
OM2? = R? — ¢

4
where R is the radius of the circle circumscribed to the

triangle ABC.
We find that 0A% = RZ = 5R? —%(a2 + b2% + c?).
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Remarks.

a.

We can compute OM? + M;M, using the
median theorem in the triangle OM;H for
the median M;04 (Og is the center of the
nine points circle, i.e. the middle of (OH)).

Because 09M1=%R , we obtain: RZ=
%(OM2 + R?). In this way, we can prove

the Theorem computing OB? and 0C?.
The statement of the 1% Theorem was the
subject no. 1 of the 49th International
Olympiad in Mathematics, held at Madrid
in 2008.

The 1 Theorem can be proved in the same
way for an obtuse triangle; it is obvious
that for a right triangle, the second Droz-
Farny’s circle coincides with the circle
circumscribed to the triangle ABC.

The 1% Theorem appears as proposed
problem in [2].

2" Theorem.

The three pairs of points determined by the
intersections of each circle with the center in the

middle of triangle’s side with the respective side are
on a circle if and only these circles have as radical

center the triangle’s orthocenter.
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Proof.

Let M,, M5, M5 the middles of the sides of triangle
ABC and let A4, A,, By, By, C;, C, the intersections with
BC, CA, AB respectively of the circles with centers in
M, M;, M.

Let us suppose that A;,4,, B, B, C;,C, are
concyclic points. The circle on which they are situated
has evidently the center in O, the center of the circle
circumscribed to the triangle ABC.

The radical axis of the circles with centers M,, M3
will be perpendicular on the line of centers M,M;, and
because A has equal powers in relation to these circles,
since AB, - AB, = AC; - AC,, it follows that the radical
axis will be the perpendicular taken from A on M,M,,
i.e. the height from A of triangle ABC.

Furthermore, it ensues that the radical axis of
the circles with centers in M; and M, is the height
from B of triangle ABC and consequently the
intersection of the heights, hence the orthocenter H of
the triangle ABC is the radical center of the three
circles.

Reciprocally.

If the circles having the centers in M, M,, M
have the orthocenter with the radical center, it follows
that the point A, being situated on the height from A
which is the radical axis of the circles of centers M,, M5
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will have equal powers in relation to these circles and,
consequently, AB,-AB, = AC; - AC, , a relation that
implies that By, B,, C;, C, are concyclic points, and the
circle on which these points are situated has O as its
center.

Similarly, BA,-BA, =B(C;-BC, , therefore
A4, 4,,Cy, C, are concyclic points on a circle of center O.
Having 0B, = 0B, = 0C; = 0C, and 0OA,-0A, = 0C; -
0C,, we get that the points A4, A4,,B¢,B;,,Cy,C, are
situated on a circle of center O.

Remarks.

1. The 1% Theorem is a particular case of the
2" Theorem, because the three circles of
centers M;, M,, M3 pass through H, which
means that H is their radical center.

2. The Problem 525 from [3] leads us to the
following Proposition providing a way to
construct the circles of centers M, M,, M5
intersecting the sides in points that
belong to a Droz-Farny’s circle of type 2.

2™ Proposition.

The circles C(Ml,%\/k+a2), C(MZ,%\/k+b2),
C(Mg,%\/k+cz) intersect the sides BC , CA, AB

respectively in six concyclic points; k is a conveniently

68



Complements to Classic Topics of Circles Geometry

chosen constant, and a, b, c are the lengths of the sides
of triangle ABC.

Proof.

According to the 2™ Theorem, it is necessary to
prove that the orthocenter H of triangle ABC is the
radical center for the circles from hypothesis.

A
'3
M: 4 ; 1
f '\ H’\- 0 f’,,.-” / \
By "

Figure 2.

The power of H in relation with
C(M1,§\/k+a2) is equal to HMlz—i(k+a2) . We

b2  ¢? a?

observed that M? =4R? — —— — » therefore
2 2 2
HMlz—i(k+a2)=4R2—$—ik. We use the

same expression for the power of H in relation to the
circles of centers M,, M3, hence H is the radical center

of these three circles.
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Neuberg’s Orthogonal Circles

In this article, we highlight some metric
properties in connection with Neuberg's

circles and triangle.
We recall some results that are necessary.

1** Definition.
It's called Brocard’s point of the triangle ABC the

point ( with the property: «QAB = <QBC = xQCA.
The measure of the angle (0AB is denoted by w and it
is called Brocard's angle. It occurs the relationship:

ctgw = ctgA + ctgB + ctgC (see [1]).

Figure 1.
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2" Definition.

Two triangles are called equibrocardian if they
have the same Brocard’s angle.

3" Definition.

The locus of points M from the plane of the
triangle located on the same side of the line BC as A
and forming with BC an equibrocardian triangle with
ABC, containing the vertex A of the triangle, it's called
A-Neuberg’ circle of the triangle ABC.

We denote by N, the center of A-Neuberg’ circle
by radius n, (analogously, we define B-Neuberg’ and
C-Neuberg’ circles).

We get that m(BN,C) = 2w and n, = %,/ctgzw -3

(see [1]).
The triangle N,N,N,. formed by the centers of
Neuberg’s circles is called Neuberg’s triangle.

1* Proposition.

The distances from the center circumscribed to
the triangle ABC to the vertex of Neuberg’s triangle
are proportional to the cubes of ABC triangle’s sides
lengths.
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Proof.

Let O be the center of the circle circumscribed to
the triangle ABC (see Figure 2).

Figure 2.

The law of cosines applied in the triangle ON,B
provides:
ON, _ R
sin(NgB0O) ~ sinw

But m(«N,B0) = m(xN,BC) — m(X0BC) = A — w.

We have that ,OL = ,R .
sin(A-w) sinw

But
a .
sin(A-w) _ €cQ _ 72Rsinw g3 g3
sinoe ~ AQ  Popsing  abc  4RS’
a

S being the area of the triangle ABC.
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3
It follows that ON, = Z—S , and we get that % =
ONp _ ON.
R
Consequence.

In a triangle ABC, we have:

1) ON,-ON,-ON, = R3;

ONg | ONp | ONc
b

2) ctgw = — put

2" Proposition.

If N,N,N. is the Neuberg’s triangle of the
triangle ABC, then:
(a? + b?)(a* + b*) — a®b?c?
2a2b? + 2b2c? + 2c%a?% —a* — b* — c*’
(The formulas for NyN. and N.N, are obtained

NgN,? =

from the previous one, by circular permutations.)

Proof.

We apply the law of cosines in the triangle
N,ON_:

& 3
ONg = 7=, ONy = < ,m(«N,ON,) = 180° — ¢.
, a®+b®—2a3b3cos(180° — ¢)
NalNp™ = 1652
_ a®+b°®+2a*b3cosC
B 1652
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But the law of cosines in the triangle ABC
provides
a? + b? — c?

2ab

and, from din Heron’s formula, we find that

16S? = 2a®b? + 2b%c? + 2c%a? — a* — b* — c*.

Substituting the results above, we obtain, after a
few calculations, the stated formula.

2cosC =

4" Definition.

Two circles are called orthogonal if they are
secant and their tangents in the common points are
perpendicular.

3" Proposition.
(Gaultier - 18B)
Two circles C(04,11), C(0,,1,) are orthogonal if

and only if
2 + 12 = 0,02

Proof.

Let C(04,11), C(0,,1,) be orthogonal (see Figure
3); then, if A is one of the common points, the triangle
0,40, is aright triangle and the Pythagorean Theorem
applied to it, leads to ;2 + 1,2 = 0,0,°.
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Reciprocally.

If the metric relationship from the statement
occurs, it means that the triangle 0,40, is a right
triangle, therefore A is their common point (the
relationship 72+ 1,2 = 0,0, implies 1n2+1,2>
0,0,%), then 0,4 1 0,4, so 0,4 is tangent to the circle
C(0,,1,) because it is perpendicular in A on radius 0,4,
and as well 0,4 is tangent to the circle C(0,17),
therefore the circles are orthogonal.

NP4

Figure 3.

4™ Proposition.

B-Neuberg’s and C-Neuberg’s circles associated
to the right triangle ABC (in A) are orthogonal.

76



Complements to Classic Topics of Circles Geometry

Proof.

bo+c®

If m(4) = 90°, then N,NZ = ——.

n, = gw/ctgzw -3;n, = g,/ctgzw - 3.

2.p20 2 2,2 2
a“+b“+c b“+c a

But ctgw — = =—.
45 28 bc

It was taken into account that a? = b? + ¢? and
2S = bc.

5 a* (b?% + ¢?)? — 3b?%c?
ctg a)—3=b262—3: h2c?
5 3 b* + c* — b?c?
ctg?w — 3 = i
s, b*+ct—b%c? (b +c?
np +ne = b2c? 4
(B + A (b* +c* —b*c?) b+t
B 4b2c2 1682

By N?Z + N2 = N,NZ2, it follows that B-Neuberg’s
and C-Neuberg’s circles are orthogonal.
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Lucas’s Inner Circles

In this article, we define the Lucas’s inner
circles and we highlight some of their

properties.

1. Definition of the Lucas’s Inner Circles

Let ABC be a random triangle; we aim to
construct the square inscribed in the triangle ABC,
having one side on BC.

Figure 1.

In order to do this, we construct a square A'B'C'D’
with A’ € (AB), B’,C’ € (BC) (see Figure 1).

We trace the line BD' and we note with D, its
intersection with (AC) ; through D, we trace the
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parallel D,A, to BC with A, € (AB) and we project
onto BC the points 4,, D, in B, respectively C,.

We affirm that the quadrilateral A,B,C,D, is the
required square.

Indeed, A,B,C,D, is a square, because [Zfif‘ =
BDg _ Aala and, as D'C' = A'D, it follows that A,D, =
BD A'D:
D,C,.
Definition.

It is called A-Lucas’s inner circle of the triangle
ABC the circle circumscribed to the triangle AAaDa.

We will note with L, the center of the A-Lucas’s
inner circle and with [, its radius.

Analogously, we define the B-Lucas’s inner circle
and the C-Lucas’s inner circle of the triangle ABC.

2. Calculation of the Radius of
the A-Lucas Inner Circle

We note A,D, = x, BC = a; let h, be the height
from A of the triangle ABC.
The similarity of the triangles AA4,D, and ABC

x  hg ¥ ah
leads to: = = 2—, therefore x = —= .
a hq a+hg
l x . R.h
From -+ = = we obtain [, = —%*. (1)
R a a+hg
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Note.

Relation (1) and the analogues have been
deduced by Eduard Lucas (1842-1891) in 1879 and
they constitute the “birth certificate of the Lucas’s
circles”.

1°* Remark.

If in (1) we replace h, = % and we also keep into

consideration the formula abc = 4RS, where R is the
radius of the circumscribed circle of the triangle ABC
and S represents its area, we obtain:

R
l, = @ [see Ref. 2].

3. Properties of the Lucas’s Inner Circles

1** Theorem.

The Lucas’s inner circles of a triangle are inner
tangents of the circle circumscribed to the triangle and
they are exteriorly tangent pairwise.

Proof.

The triangles AA,D, and ABC are homothetic
ha
a+hg’

through the homothetic center A and the rapport:
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hq
a+hg’

circle and the circle circumscribed to the triangle ABC
are inner tangents in A.

l . .
Because E“ = it means that the A-Lucas’s inner

Analogously, it follows that the B-Lucas’s and C-
Lucas’s inner circles are inner tangents of the circle
circumscribed to ABC.

Figure 2.

We will prove that the A-Lucas’s and C-Lucas’s
circles are exterior tangents by verifying

Lol =1, + 1. (2)

We have:

OL, =R —lg;

OL.=R-1,
and

m(A0C) = 2B
(if m(B) > 90° then m(40C) = 360° — 2B).
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The theorem of the cosine applied to the triangle
OL,L. implies, keeping into consideration (2), that:
R-1)?+(R—-1,)?—2(R—1,)(R—l.)cos2B =
= (lg + 1%
Because cos2B = 1 — 2sin?B, it is found that (2)
is equivalent to:

T 1
sin?B = g - (3)

R%ab?c
But we have: [ ], =
a*¢c " (2aR+bc)(2cR+ab) ’

c a
lg+ 1= Rb(ZaR+bc 2cR+ab)'

o ) . o, _ ab’c _
By replacing in (3), we find that sin “B = — =

b? . b . . .
Vi sinB = g 1s true according to the sines theorem.

So, the exterior tangent of the A-Lucas’s and C-Lucas’s
circles is proven.
Analogously, we prove the other tangents.

2"4 Definition.

It is called an A-Apollonius’s circle of the random
triangle ABC the circle constructed on the segment
determined by the feet of the bisectors of angle A as
diameter.

Remark.

Analogously, the B-Apollonius’s and C-
Apollonius’s circles are defined. If ABC is an isosceles
triangle with AB = AC then the A-Apollonius’s circle
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isn’t defined for ABC, and if ABC is an equilateral
triangle, its Apollonius’s circle isn’t defined.

2" Theorem.

The A-Apollonius’s circle of the random triangle

is the geometrical point of the points M from the plane
c

of the triangle with the property: % =

34 Definition.

We call a fascicle of circles the bunch of circles

that do not have the same radical axis.

a. If the radical axis of the circles’ fascicle is
exterior to them, we say that the fascicle
is of the first type.

b. If the radical axis of the circles’ fascicle is
secant to the circles, we say that the
fascicle is of the second type.

C. If the radical axis of the circles’ fascicle is
tangent to the circles, we say that the
fascicle is of the third type.

3" Theorem.

The A-Apollonius’s circle and the B-Lucas’s and
C-Lucas’s inner circles of the random triangle ABC
form a fascicle of the third type.
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Proof.

Let {04} = L,L. N BC (see Figure 3).

Menelaus’s theorem applied to the triangle OBC
implies that:

04B LpB LO _

04C " Lp0 " L.C ’
so:

04B W Rl _ 4

04C R-1p " I,
and by replacing [, and [., we find that:

048 _ b2

04C 2’

This relation shows that the point 0, is the foot
of the exterior symmedian from A of the triangle ABC
(so the tangent in A to the circumscribed circle),
namely the center of the A-Apollonius’s circle.

Let N; be the contact point of the B-Lucas’s and
C-Lucas’s circles. The radical center of the B-Lucas’s,
C-Lucas’s circles and the circle circumscribed to the
triangle ABC is the intersection T, of the tangents
traced in B and in C to the circle circumscribed to the
triangle ABC.

It follows that BT, = CT4, = N, T4, so N; belongs to
the circle C4 that has the center in T, and orthogonally
cuts the circle circumscribed in B and €. The radical
axis of the B-Lucas’s and C-Lucas’s circles is T,N;, and
04N, is tangent in N; to the circle C4. Considering the
power of the point 04 in relation to C4, we have:

04N, = 0,B.0,C.
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Figure 3.

Also, 0,0% =0,B-0,C ; it thus follows that
044 = 0O4N;, which proves that N; belongs to the A-
Apollonius’s circle and is the radical center of the A-

Apollonius’s, B-Lucas’s and C-Lucas’s circles.

Remarks.

If the triangle ABC is right in A then
LyL.||BC, the radius of the A-Apollonius’s

. The point N; is

. . abc
circle is equal to: 7]

|b2
the foot of the bisector from A. We find

that OAN1 = abc

——, so the theorem stands
|b2-c?|

true.
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2. The A-Apollonius’s and A-Lucas’s circles
are orthogonal. Indeed, the radius of the
A-Apollonius’s circle is perpendicular to
the radius of the circumscribed circle, 0A,
so, to the radius of the A-Lucas’s circle
also.

4 Definition.

The triangle T4,T5T, determined by the tangents
traced in 4,B,C to the circle circumscribed to the
triangle ABC is called the tangential triangle of the
triangle ABC.

1* Property.

The triangle ABC and the Lucas’s triangle L L, L,
are homological.

Proof.

Obviously, AL, BL,,CL, are concurrent in O,
therefore O, the center of the circle circumscribed to
the triangle ABC, is the homology center.

We have seen that {0,} = L, L. N BC and 0, is the
center of the A-Apollonius’s circle, therefore the
homology axis is the Apollonius’s line 0,050, (the line
determined by the centers of the Apollonius’s circle).
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2" Property.

The tangential triangle and the Lucas’s triangle
of the triangle ABC are orthogonal triangles.

Proof.

The line T4 N; is the radical axis of the B-Lucas’s
inner circle and the C-Lucas’s inner circle, therefore it
is perpendicular on the line of the centers L,L..
Analogously, Tz N, is perpendicular on L.L,, because
the radical axes of the Lucas’s circles are concurrent
in L, which is the radical center of the Lucas’s circles;
it follows that T4yTzT; and L,L,L. are orthological and
L is the center of orthology. The other center of
orthology is O the center of the circle circumscribed to
ABC.
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Theorems with Parallels Taken
through a Triangle’s Vertices
and Constructions Performed

only with the Ruler

In this article, we solve problems of
geometric constructions only with the

ruler, using known theorems.

1% Problem.

Being given a triangle ABC, its circumscribed
circle (its center known) and a point M fixed on the
circle, construct, using only the ruler, a transversal
line A4, B4, Cy, with A; € BC,B; € CA,C; € AB, such that
IMA,C = XMB,C = ¥MC(C;A (the lines taken though M
to generate congruent angles with the sides BC, CA
and AB, respectively).

2"¢ Problem.

Being given a triangle ABC, its circumscribed
circle (its center known) and 4,, B, C;, such that 4; €
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BC,B; € CA,C; € AB and A4, B;, C; collinear, construct,
using only the ruler, a point M on the circle
circumscribing the triangle, such that the lines
MA4,MB;,MC; to generate congruent angles with BC,
CA and AB, respectively.

3" Problem.

Being given a triangle ABC inscribed in a circle
of given center and AA’ a given cevian, A’ a point on
the circle, construct, using only the ruler, the isogonal
cevian AA; to the cevian AA’.

To solve these problems and to prove the
theorems for problems solving, we need the following
Lemma:

1* Lemma.
(Generalized Simpson's Line)

If M is a point on the circle circumscribed to the
triangle ABC and we take the lines MA;,MB;,M(C;
which generate congruent angles ( A4, € BC,B; €
CA, C; € AB) with BC,CA and AB respectively, then the
points A4, B, C; are collinear.
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Proof.

Let M on the circle circumscribed to the triangle
ABC (see Figure 1), such that:

AIMA,C = <MB,C = <MC;A = ¢. (1)
C1
AL
/| BY— N\ M
.- l“.{\P
/ '/" y / ’ ‘.\'-. \
B > 41 Ye
A
Figure 1.

From the relation (1), we obtain that the
quadrilateral MB;A,C is inscriptible and, therefore:

<A,;BC = <A, MC. (2).

Also from (1), we have that MB;AC; is
inscriptible, and so

IAB,C; = <AMC;. (3)
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The quadrilateral MABC is inscribed, hence:

IMAC; = <BCM. (4)

On the other hand,

%A MC = 180° — (BCM + ¢),

JAMC; = 180° — (MAC; + ¢).

The relation (4) drives us, together with the
above relations, to:

A MC = <AMC,. (5)

Finally, using the relations (5), (2) and (3), we
conclude that: «A;B,C = AB,C,, which justifies the
collinearity of the points A4, By, C;.

Remark.

The Simson’s Line is obtained in the case when
@ =90°.
2" Lemma.

If M is a point on the circle circumscribed to the
triangle ABC and A4, B4, C; are points on BC, CA and
AB , respectively, such that «MA,C =<«MB,C =
IMC;A = ¢, and MA, intersects the circle a second
time in A’, then AA" || A,B;.

Proof.

The quadrilateral MB;A,C is inscriptible (see
Figure 1); it follows that:
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<CMA" = ¥A,B,C. (6)

On the other hand, the quadrilateral MAA'C is
also inscriptible, hence:

ICMA = <A'AC. (7)

The relations (6) and (7) imply: <A'MC = «A'AC,
which gives AA’ || A;B;.

3" Lemma.

(The construction of a parallel with a given diameter
using a ruler)

In a circle of given center, construct, using only
the ruler, a parallel taken through a point of the circle
at a given diameter.

Solution.

In the given circle C(O,R), let be a diameter
(AB)] and let M € ¢(0,R). We construct the line BM
(see Figure 2). We consider on this line the point D (M
between D and B). We join D with 0, A with M and
denote DO n AM = {P}.

We take BP and let {N} = DA n BP. The line MN
is parallel to AB.

Construction’s Proof.

In the triangle DAB, the cevians DO, AM and BN
are concurrent.
Ceva’s Theorem provides:
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0OA MB ND

o8 Mp NA 8)

But DO is a median, DO = BO = R.

From (8), we get B N4 , which, by Thales
MD ~ ND

reciprocal, gives MN || AB.

Remark.

If we have a circle with given center and a
certain line d, we can construct though a given point
M a parallel to that line in such way: we take two
diameters [RS] and [UV] through the center of the
given circle (see Figure 3).
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Figure 5.

We denote RS N d = {P}; because [RO] = [SO], we
can construct, applying the 3™ Lemma, the parallels
through U and V to RS which intersect d in K and L,
respectively. Since we have on the line d the points
K,P,L, such that [KP] = [PL], we can construct the
parallel through M to d based on the construction
from 3™ Lemma.

1st Theorem.
(P. Aubert - 1899)

If, through the vertices of the triangle ABC, we
take three lines parallel to each other, which intersect
the circumscribed circle in A’, B’ and C’, and M is a
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point on the circumscribed circle, as well MA' N BC =
{Al}) MB, NCA= {31}7 MC, NAB = {Cl}’ then Al'Bl'Cl
are collinear and their line is parallel to AA'.

Proof.

The point of the proof is to show that MA,, MB;,
MC(,; generate congruent angles with BC, CA and AB,

respectively.
m(MAC) = 2 [m(4C) + m(BA")] (9)
m(MBC) = 2 [m(¥C) + m(4B")] (10)

But AA’ || BB' implies m(BA') = m(AB'), hence,
from (9) and (10), it follows that:

AIMA,C = <MB,C, (11)

m(MCA) = %[m(ﬁfl) —m(AC")]. (12)

But AA’ || CC' implies that m(AC') = m(A'C); by

returning to (12), we have that:

m(IC;4) = 3 [m(8W) ~ m(AT")] =

=2 [m(BA") + m(iTC)]. (13)
The relations (9) and (13) show that:
IMA,C = xMC,A. (14)

From (11) and (14), we obtain: «<MA,C =
IMB,C = <MC;A, which, by 1% Lemma, verifies the
collinearity of points A,, B;,C;. Now, applying the 2™
Lemma, we obtain the parallelism of lines AA’ and
A1B;.
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Ci
| S
ﬂi_:f_ \ T - — i
;o M
y D77}
B .I B“:‘"—_ ._-'": |I|
r
| |
I'.._I. A\ -.::r: ) _u.':.- le c
BH:'-.;\_ T S AL ,’a
A
Figure 4.

2nd Theorem.
(M’Kensie - 1887)

If A;B;C; is a transversal line in the triangle ABC
(A, € BC,B, € CA,C; € AB), and through the triangle’s
vertices we take the chords AA’, BB',CC’ of a circle
circumscribed to the triangle, parallels with the
transversal line, then the lines AA', BB',CC' are
concurrent on the circumscribed circle.
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Proof.

We denote by M the intersection of the line 4; A’
with the circumscribed circle (see Figure 5) and with

Bi, respectively C; the intersection of the line MB'
with AC and of the line MC' with AB.

/ﬁ T M
CJl'II C III| A
| Bi1 Il
|III I|I'
! A
B C
g

Figure 5.

A;Bj is parallel to AA'.

According to the P. Aubert’s theorem, we have
that the points A;, B;, C; are collinear and that the line

From hypothesis, we have that 4,B, || AA’; from
the uniqueness of the parallel taken through A; to AA4’,

it follows that A;B; = A;B;, therefore B; = B;, and
analogously C; = C;.
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Remark.

We have that: MA;, MB,, MC; generate congruent
angles with BC, CA and AB, respectively.

3" Theorem.

(Beltrami - 1862)

If three parallels are taken through the three
vertices of a given triangle, then their isogonals
intersect each other on the circle circumscribed to the
triangle, and vice versa.

Proof.

Let AA’, BB',CC' the three parallel lines with a
certain direction (see Figure 6).

B.l

I
II
B \

W /
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Figure 6.

To construct the isogonal of the cevian AA’, we
take A'M || BC, M belonging to the circle circumscribed
to the triangle, having BA’' = CM, it follows that AM
will be the isogonal of the cevian AA’. (Indeed, from
BA' = CM it follows that <BAA’ = <CAM.)

On the other hand, BB’ | AA’ implies BA' =
AB’, and since BA’ =CM we have that AB' =(CM,
which shows that the isogonal of the parallel BB’ is
BM. From CC' || AA', it follows that A'C = AC’, having
IB'CM = <ACC’, therefore the isogonal of the parallel
CC'"isCM'.

Reciprocally.

If AM,BM,CM are concurrent cevians in M, the
point on the circle circumscribed to the triangle ABC,
let us prove that their isogonals are parallel lines. To
construct an isogonal of AM, we take MA' || BC, A’
belonging to the circumscribed circle. We have MC =
BA'. Constructing the isogonal BB’ of BM, with B’ on
the circumscribed circle, we will have CM = AB’, it
follows that BA’' = AB’ and, consequently, <ABB’ =
XBAA’, which shows that AA’ || BB'. Analogously, we
show that CC' || AA'.

We are now able to solve the proposed problems.
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Solution to the 1°* problem.

Using the 3™ Lemma, we construct the parallels
AA',BB’,CC' with a certain directions of a diameter of
the circle circumscribed to the given triangle.

We join M with A’ , B’,C’ and denote the
intersection between MA' and BC, A;; MB' N CA = {B}
and MA' n AV = {C,}.

According to the Aubert’s Theorem, the points
A4, B;, C; will be collinear, and MA', MB', MC' generate
congruent angles with BC, CA and AB, respectively.

Solution to the 2™ problem.

Using the 3™ Lemma and the remark that follows
it, we construct through 4, B, C the parallels to A;B;;
we denote by A’,B’,C' their intersections with the
circle circumscribed to the triangle ABC. (It is enough
to build a single parallel to the transversal line A, B, (C;,
for example AA").

We join A’ with A; and denote by M the
intersection with the circle. The point M will be the
point we searched for. The construction’s proof
follows from the M’Kensie Theorem.
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Solution to the 3" problem.

We suppose that A’ belongs to the little arc
determined by the chord BC in the circle
circumscribed to the triangle ABC.

In this case, in order to find the isogonal A4, we
construct (by help of the 3 Lemma and of the remark
that follows it) the parallel A’A4; to BC, A, being on the
circumscribed circle, it is obvious that AA’ and AA,
will be isogonal cevians.

We suppose that A’ belongs to the high arc
determined by the chord BC; we consider A’ € AB (the
arc AB does not contain the point €). In this situation,
we firstly construct the parallel BP to AA’, P belongs
to the circumscribed circle, and then through P we
construct the parallel PA; to AC, A; belongs to the
circumscribed circle. The isogonal of the line A4’ will
be AA,. The construction’s proof follows from 3™
Lemma and from the proof of Beltrami’s Theorem.
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Apollonius’s Circles

of k" Rank

The purpose of this article is to introduce

the notion of Apollonius’s circle of k™" rank.

1°* Definition.

It is called an internal cevian of k" rank the line

BA AB\k
AA, where A, € (BC), such that Y (E) (k € R).

If A}, is the harmonic conjugate of the point 4 in
relation to B and C, we call the line A4, an external
cevian of k™ rank.

2"4 Definition.

We call Apollonius’s circle of k™ rank with
respect to the side BC of ABC triangle the circle which
has as diameter the segment line A4 Aj.

1% Theorem.

Apollonius’s circle of k™ rank is the locus of
points M from ABC triangle's plan, satisfying the
B

; M AB\K
relation: — = (—) .
MC AC
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Proof.

Let 0,4, the center of the Apollonius’s circle of Kkt
rank relative to the side BC of ABC triangle (see
Figure 1) and U, V the points of intersection of this
circle with the circle circumscribed to the triangle ABC.
We denote by D the middle of arc BC, and we extend
DA, to intersect the circle circumscribed in U’.

In BU'C triangle, U'D is bisector; it follows that
BA _U'B _
AC U'C

The perpendicular in U’ on U'Aj, intersects BC on
Ay , which is the foot of the BUC triangle's outer
bisector, so the harmonic conjugate of 4; in relation
to B and C, thus Ay = Aj,.

Therefore, U’ is on the Apollonius’s circle of rank
k relative to the side BC, hence U' = U.

k
(E) , so U’ belongs to the locus.
AC

M

Figure 3
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Let M a point that satisfies the relation from the

statement; thus MB =B ; it follows - by using the
MC ArC

reciprocal of bisector's theorem - that MA, is the
internal bisector of angle BMC. Now let us proceed as
before, taking the external bisector; it follows that M
belongs to the Apollonius’s circle of center 0, . We
consider now a point M on this circle, and we
construct C’ such that <BNA; = <A, NC' (thus (NAj is
the internal bisector of the angle BNC'). Because
AN L NA;, it follows that A, and A} are harmonically
conjugated with respect to B and C’'. On the other
hand, the same points are harmonically conjugated
with respect to B and C; from here, it follows that C' =

K
NB BA AB

C, and we have — = = = (—) )
NC  AkC  \4c

3" Definition.

It is called a complete quadrilateral the
geometric figure obtained from a convex quadrilateral
by extending the opposite sides until they intersect. A
complete quadrilateral has 6 vertices, 4 sides and 3
diagonals.

2"4 Theorem.

In a complete quadrilateral, the three diagonals'
middles are collinear (Gauss - 1810).
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Proof.

Let ABCDEF a given complete quadrilateral (see
Figure 2). We denote by H,, H,, H3, H, respectively the
orthocenters of ABF, ADE, CBE, CDF triangles, and
let A4, By, F; the feet of the heights of ABF triangle.

Figure 4

As previously shown, the following relations
occur: H{A.H{A; — H{B.H,B, = H{F.HF;; they express
that the point H; has equal powers to the circles of
diameters AC,BD,EF , because those circles contain
respectively the points A4;, By, F;, and H, is an internal
point.

It is shown analogously that the points H,, H;, H,
have equal powers to the same circles, so those points
are situated on the radical axis (common to the
circles), therefore the circles are part of a fascicle, as
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such their centers - which are the middles of the
complete quadrilateral's diagonals - are collinear.

The line formed by the middles of a complete
quadrilateral's diagonals is called Gauss’s line or
Gauss-Newton’s line.

3" Theorem.

The Apollonius’s circle of k™ rank of a triangle
are part of a fascicle.

Proof.

Let AA,, BBy, CC, be concurrent cevians of k"
rank and AAj, BBy, CCy be the external cevians of k'
rank (see Figure 3). The figure B, CyB,C AL A} is a
complete quadrilateral and 2" theorem is applied.

Figure 5
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4" Theorem.

The Apollonius’s circle of k* rank of a triangle
are the orthogonals of the circle circumscribed to the
triangle.

Proof.

We unite O to D and U (see Figure 1), OD 1 BC
and m(4,UA},) = 90°, it follows that UA}A; = ODA; =
OUA.

The congruence UZ’,;Z,( = OUA, shows that OU
is tangent to the Apollonius’s circle of center Oy, .

Analogously, it can be demonstrated for the
other Apollonius’s Circle.

1** Remark.

The previous theorem indicates that the radical
axis of Apollonius’s circle of k™ rank is the perpen-
dicular taken from O to the line 0y, Og, .

5 Theorem.

The centers of Apollonius’s Circle of k™ rank of a
triangle are situated on the trilinear polar associated
to the intersection point of the cevians of 2k rank.
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Proof.

From the previous theorem, it results that OU L
UO,,, so UO,, is an external cevian of rank 2 for BCU

triangle, thus an external symmedian. Henceforth,

0a,B _ (BU\?2 _ (AB\%K .
L — (—) = (—) (the last equality occurs because
04,C cu AC

U belong to the Apollonius’s circle of rank k associated
to the vertex A).

6" Theorem.

The Apollonius’s circle of k™ rank of a triangle
intersects the circle circumscribed to the triangle in
two points that belong to the internal and external
cevians of k+1'" rank.

Proof.

Let U and V points of intersection of the
Apollonius’s circle of center 0,4, with the circle
circumscribed to the ABC (see Figure 1). We take from
U and V the perpendiculars UU;, UU, and VV;,VV, on
AB and AC respectively. The quadrilaterals ABVC ,
ABCU are inscribed, it follows the similarity of
triangles BVV,, CVV, and BUU,, CUU,, from where we
get the relations:

BV Vv UB UU;

cvovy,  UC UUy
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Bv (aBNk us  raB\K vv, raB\¥ UU;
But —= (=) ,—==(=) ,=—=2=(=) and—=*=
cv ~ \ac) >uvc ~ \ac) > vy, ~ \ac uu,

k
(%) , relations that show that V and U belong

respectively to the internal cevian and the external
cevian of rank k + 1.

4" Definition.

If the Apollonius’s circle of k' rank associated
with a triangle has two common points, then we call
these points isodynamic points of k* rank (and we
denote them W, Wy).

1* Property.

If Wy, W, are isodynamic centers of k" rank,
then:

W,A.BCk = W,,B.AC* = W,.C. AB¥;

WyA.BCk = W;B.AC¥ = W,C.AB¥.

The proof of this property follows immediately
from 1% Theorem.

2" Remark.

The Apollonius’s circle of 1% rank is the
investigated Apollonius’s circle (the bisectors are
cevians of 1%t rank). If k = 2, the internal cevians of 2™
rank are the symmedians, and the external cevians of
2" rank are the external symmedians, i.e. the tangents
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in triangle’s vertices to the circumscribed circle. In
this case, for the Apollonius’s circle of 2" rank, the 3rd
Theorem becomes:

7" Theorem.

The Apollonius’s circle of 2" rank intersects the
circumscribed circle to the triangle in two points
belonging respectively to the antibisector's isogonal
and to the cevian outside of it.

Proof.

It follows from the proof of the 6™ theorem. We
mention that the antibisector is isotomic to the
bisector, and a cevian of 3™ rank is isogonic to the
antibisector.
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Apollonius’s Circle of Second

Rank

This article highlights some properties of
Apollonius’s circle of second rank in
connection with the adjoint circles and the

second Brocard’s triangle.

1% Definition.

It is called Apollonius’s circle of second rank
relative to the vertex A of the triangle ABC the circle
constructed on the segment determined on the
simedians’ feet from A4 on BC as diameter.

1** Theorem.

The Apollonius’s circle of second rank relative to
the vertex A of the triangle ABC intersect the
circumscribed circle of the triangle ABC in two points
belonging respectively to the cevian of third rank
(antibisector’s isogonal) and to its external cevian.

The theorem’s proof follows from the theorem
relative to the Apollonius’s circle of k' rank (see [1]).
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1** Proposition.

The Apollonius’s circle of second rank relative to
the vertex A of the triangle ABC intersects the
circumscribed circle in two points @ and P (Q on the
same side of BC as A). Then, (QS is a bisector in the
triangle QBC, S is the simedian’s foot from A of the
triangle ABC.

Proof.

Q belongs to the Apollonius’s circle of second
rank, therefore:

@ _ (4)" (™

QC AC

Figure 1.

On the other hand, § being the simedian’s foot,
we have:

114



Complements to Classic Topics of Circles Geometry

SB AB\ 2

w=0a)- (2)
From relations (1) and (2), we note that

B _sB

oc ~ sc’

a relation showing that QS is bisector in the triangle

QBC.

Remarks.

The Apollonius’s circle of second relative
to the vertex A of the triangle ABC (see
Figure 1) is an Apollonius’s circle for the
triangle QBC. Indeed, we proved that QS
is an internal bisector in the triangle QBC,
and since S’, the external simedian’s foot
of the triangle ABC , belongs to the
Apollonius’s Circle of second rank, we
have m(xS'QS) = 90°, therefore QS’ is an
external bisector in the triangle QBC.

QP is a simedian in QBC . Indeed, the
Apollonius’s circle of second rank, being
an Apollonius’s circle for QBC, intersects
the circle circum-scribed to QBC after QP,
which is simedian in this triangle.

2" Definition.

It is called adjoint circle of a triangle the circle

that passes through two vertices of the triangle and in
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one of them is tangent to the triangle’s side. We denote
(BA) the adjoint circle that passes through B and 4,
and is tangent to the side AC in A.

About the circles (BA) and (CA), we say that they
are adjoint to the vertex A of the triangle ABC.

3" Definition.

It is called the second Brocard’s triangle the
triangle A,B,C, whose vertices are the projections of
the center of the circle circumscribed to the triangle
ABC on triangle’s simedians.

2"! Proposition.

The Apollonius’s circle of second rank relative to
the vertex A of triangle ABC and the adjoint circles
relative to the same vertex A intersect in vertex A, of
the second Brocard’s triangle.

Proof.

It is known that the adjoint circles (BA) and (CA)
intersect in a point belonging to the simedian AS; we
denote this point 4, (see [3]).

We have:

*BA,S = <A,BA + <A,AB,
but:

*A,BA = 4BA,S = <4,AB + A,AC = XA.
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Analogously, <CA,S = <A, therefore (4,5 is the
bisector of the angle BA,C. The bisector’s theorem in
this triangle leads to:

SB _ BA,
sc T cay’
but:
SB _ (AB)?
= (o)
consequently:

BA, _ (AB)Z
c4, \ac/’

so A, is a point that belongs to the Apollonius’s circle
of second rank.

Figure 2.

We prove that A4, is a vertex in the second
Brocard’s triangle, i.e. 04, L AS, O the center of the
circle circumscribed to the triangle ABC.
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We pointed (see Figure 2) that m(BA,C) = 24, if
%A is an acute angle, then also m(BOC) =24,

therefore the quadrilateral OCA,B is inscriptible.
Because m(0CB) = 90° —m(4), it follows that
m(BA,0) = 90° + m(4).
On the other hand, m(44,B) = 180° — m(4), so
m(BTf\ZO) + m(ATél_z\B) = 270° and, consequently, 04, 1

AS.
Remarks.
1.
2.
3.

If m(A) <90°, then four remarkable
circles pass through A,: the two circles
adjoint to the vertex A of the triangle ABC,
the circle circumscribed to the triangle
BOC (where 0O is the center of the
circumscribed circle) and the Apollonius’s
circle of second rank corresponding to the
vertex A.

The vertex A, of the second Brocard’s
triangle is the middle of the chord of the
circle circumscribed to the triangle ABC
containing the simedian AS.

The points 0, A, and S’ (the foot of the
external simedian to ABC) are collinear.
Indeed, we proved that OA, 1 AS; on the
other hand, we proved that (4,S is an
internal bisector in the triangle BA,C, and
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since S'A, 1L AS, the outlined collinearity
follows from the uniqueness of the
perpendicular in 4, on AS.

Open Problem.

The Apollonius’s circle of second rank relative to
the vertex A of the triangle ABC intersects the circle
circumscribed to the triangle ABC in two points P and
Q (P and A apart of BC).

We denote by X the second point of intersection
between the line AP and the Apollonius’s circle of
second rank.

What can we say about X?

Is X a remarkable point in triangle’s geometry?
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A Sufficient Condition for
the Circle of the 6 Points

to Become Euler’s Circle

In this article, we prove the theorem
relative to the circle of the 6 points and,
requiring on this circle to have three other
remarkable triangle’s points, we obtain the

circle of 9 points (the Euler’s Circle).
1** Definition.

It is called cevian of a triangle the line that
passes through the vertex of a triangle and an opposite
side’s point, other than the two left vertices.

A

B A D A:
Figure 1.
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1** Remark.

The name cevian was given in honor of the
italian geometrician Giovanni Ceva (1647 - 1734).

2" Definition.

Two cevians of the same triangle’s vertex are
called isogonal cevians if they create congruent angles
with triangle’s bisector taken through the same vertex.

2" Remark.

In the Figure 1 we represented the bisector AD
and the isogonal cevians AA; and A4,. The following
relations take place:

ALAD = A,AD;

-

BAA, = CAA,.

1** Proposition.

In a triangle, the height and the radius of the
circumscribed circle corresponding to a vertex are
isogonal cevians.

Proof.

Let ABC an acute-angled triangle with the height
AA'" and the radius A0 (see Figure 2).
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Figure 2.

The angle AOC is a central angle, and the angle
ABC is an inscribed angle, so AOC = 2ABC. It follows
that AOC = 90° — B.

On the other hand, BAA' = 90° — B, so AA’ and
AO are isogonal cevians.

The theorem can be analogously proved for the
obtuse triangle.

3¢ Remark.

One can easily prove that in a triangle, if A0 is
circumscribed circle’s radius, its isogonal cevian is the
triangle’s height from vertex A.

34 Definition.

Two points P;, P, in the plane of triangle ABC are
called isogonals (isogonal conjugated) if the cevians’
pairs (AP;, AP,), (BP;, BP,), (CP;, CP,), are composed
of isogonal cevians.
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4™ Remark.

In a triangle, the orthocenter and circumscribed
circle’s center are isogonal points.

1°* Theorem.

(The 6 points circle)

If P, and P, are two isogonal points in the
triangle ABC, and A, By, C; respectively A,, B,,C, are
their projections on the sides BC, CA and AB of the
triangle, then the points A,,4,,B4,B,,C;,C, are
concyclical.

Proof.

The mediator of segment [A;4,] passes through
the middle P of segment [P;, P,] because the trapezoid
P;A1A,P, is rectangular and the mediator of [A;4,]
contains its middle line, therefore (see Figure 3), we
have: PA; = PA, (1). Analogously, it follows that the
mediators of segments [B;B,] and [C;C,] pass through
P, so PB; = PB, (2) and P(C; = PC, (3). We denote by
A; and A, respectively the middles of segments [AP;]
and [AP,]. We prove that the triangles PA;C; and

B,A4P are congruent. Indeed, PA; = %APZ (middle
line), and B,A, = %APZ, because it is a median in the
rectangular triangle P,B,A , so PA;=DBA, ;

analogously, we obtain that A,P = A3(; .
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Figure 3.

We have that:
PA3CI =PA3P1+P1A361 =P1AP2 +2P1ACl =

= A+ P{AB;
BzA4P = BzA4_P2 + PA4P2 = P]_APZ + 2P2ABZ =
= A + P,AC.

But P,AB = P,AC, because the cevians AP, and
AP, are isogonal and therefore PA;C; = B,A,P. Since
APA;C; = AB,A,P, it follows that PB, = PC; (4).

Repeating the previous reasoning for triangles
PB;C; and A,B,P, where B; and B, are respectively
the middles of segments (BP;) and (BP,), we find that
they are congruent and it follows that PC; = PA, (5).

The relations (1) - (5) lead to PA; = PA, = PB; =
PB, = PC; = PC, , which shows that the points
A4, A5, By, By, €y, C, are located on a circle centered in P,
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the middle of the segment determined by isogonal
points given by P; and P,.

4" Definition.

It is called the 9 points circle or Euler’s circle of
the triangle ABC the circle that contains the middles
of triangle’s sides, the triangle heights’ feet and the
middles of the segments determined by the
orthocenter with triangle’s vertex.

2™ Proposition.

If P,, P, are isogonal points in the triangle ABC
and if on the circle of their corresponding 6 points
there also are the middles of the segments (AP;), (BP,),
(CP;), then the 6 points circle coincides with the
Euler’s circle of the triangle ABC.

1** Proof.

We keep notations from Figure 3; we proved that
the points A4, 4,, B4, By, C1, C, are on the 6 points circle
of the triangle ABC, having its center in P, the middle
of segment [P, P,].

If on this circle are also situated the middles
Az, B3, C3 of segments (AP;), (BP;), (CP,), then we have
PA; = PB; = PCs.
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We determined that PA; is middle line in the
triangle P,P,A, therefore PA; = %APZ , analogously

PB3 = ~BP, and PC; = ~CP,, and we obtain that P,A =

P,B = P,C, consequently P is the center of the circle
circumscribed to the triangle ABC, so P, = 0.

Because P; is the isogonal of O, it follows that
P, = H, therefore the circle of 6 points of the isogonal
points O and H is the circle of 9 points.

2" Proof.

Because A;B; is middle line in the triangle P;AB,
it follows that

4P, AB = <P, A,Bs;. (1)

Also, A3C3 is middle line in the triangle P;AC, and
A3C5 is middle line in the triangle P, AP,, therefore we
get

*PA;C; = <P,AC. (2)

The relations (1), (2) and the fact that AP, and
AP, are isogonal cevians lead to:

<P,;A,B; = PA3Cs. 3

The point P is the center of the circle
circumscribed to A3;B;C;; then, from (3) and from
isogonal cevians’ properties, one of which is
circumscribed circle radius, it follows that in the
triangle A;B3C; the line P, A5 is a height, as B;C; || BC,
we get that P;A is a height in the triangle ABC and,
therefore, P; will be the orthocenter of the triangle
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ABC , and P, will be the center of the circle
circumscribed to the triangle ABC.

5" Remark.

Of those shown, we get that the center of the
circle of 9 points is the middle of the line determined
by triangle’s orthocenter and by the circumscribed
circle’s center, and the fact that Euler’s circle radius is
half the radius of the circumscribed circle.
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An Extension of a Problem

of Fixed Point

In this article, we extend the requirement
of the Problem 9.2 proposed at Varna 2015
Spring Competition, both in terms of
membership of the measure y, and the case
for the problem for the ex-inscribed circle
C. We also try to guide the student in the
search and identification of the fixed point,
for succeeding in solving any problem of

this type.

The statement of the problem is as follows:

“We fix an angle y € (0,90°) and the line
AB which divides the plane in two half-planes y
and y. The point C in the half-plane y is situated
such that m(ACB) = y. The circle inscribed in the
triangle ABC with the center ] is tangent to the
sides AC and BC in the points F and E ,
respectively. The point P is located on the
segment line (/E, the point E between [ and P
such that PE 1 BC and PE = AF. The point Q is
situated on the segment line (IF, such that F is
between [ and Q; QF L AC and QF = BE. Prove
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that the mediator of segment PQ passes through
a fixed point.” (Stanislav Chobanov)

Proof.

Firstly, it is useful to note that the point C varies
in the half-plane i on the arc capable of angle y; we
know as well that m(ATB) =90° + %, so I varies on the
arc capable of angle of measure 90° +§ situated in the
half-plane .

Another useful remark is about the segments AF
and BE, which in a triangle have the lengths p —a,
respectively p — b, where p is the half-perimeter of
the triangle ABC with AB = c - constant; therefore,
we have APEB = AAFQ with the consequence PB = QA.
Considering the vertex C of the triangle ABC the
middle of the arc capable of angle y built on AB, we
observe that PQ is parallel to AB; more than that,
ABP(Q is an isosceles trapezoid, and segment PQ
mediator will be a symmetry axis of the trapezoid, so
it will coincide with the mediator of AB, which is a
fixed line, so we're looking for the fixed point on
mediator of AB.

Let D be the intersection of the mediators of
segments PQ and AB , see Figure 1, where we
considered m(4) <m(B). The point D is on the
mediator of AB, so we have DA = DB; the point D is
also on the mediator of PQ, so we have DP = DQ; it
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follows that: APBD = AQAD, a relation from where we
get that «QAD = «PBD.

Figure 1

If we denote m(QAF) = x and m(DAB) =y, we
have QAD =x+ A+7y, PBD =360° — B —y — (90° — x).

Fromx +A+y =360°—-B —y —90° + x, we find
that A+ B + 2y = 270°, and since A + B = 180° — y, we
find that 2y = 90° — y, therefore the requested fixed
point D is the vertex of triangle DAB, situated in ¥
such that m(4ADB) = 90° —y.
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1** Remark.

If y = 90°, we propose to the reader to prove that
the quadrilateral ABPQ is a parallelogram; in this case,
the requested fixed point does not exist (or is the point
at infinity of the perpendicular lines to AB).

2" Remark.

If y € (90°,180°), the problem applies, and we
find that the fixed point D is located in the half-plane
1, such that the triangle DAB is isosceles, having
m(A0B) =y —90°.

We suggest to the reader to solve the following
problem:

We fix an angle y € (0%, 180°) and the line
AB which divides the plane in two half-planes, ¥
and 1. The point C in the half-plane 1 is located
such that m(ACB) =y . The circle C - ex-
inscribed to the triangle ABC with center I, is
tangent to the sides AC and BC in the points F
and E, respectively. The point P is located on the
line segment (I.E, E is between I. and P such
that PE 1L BC and PE = AF . The point Q is
located on the line segment (I/.F such that F is
between [ and @, QF L AC and QF = BE. Prove
that the mediator of the segment PQ passes
through a fixed point.

132



Complements to Classic Topics of Circles Geometry

34 Remark.

As seen, this problem is also true in the case y =
90°%, more than that, in this case, the fixed point is the
middle of AB. Prove!
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Some Properties of the

Harmonic Quadrilateral

In this article, we review some properties
of the harmonic quadrilateral related to

triangle simedians and to Apollonius’s

Circle.

1°* Definition.

A convex circumscribable quadrilateral ABCD
having the property AB-CD =BC-AD is called
harmonic quadrilateral.

2" Definition.

A triangle simedian is the isogonal cevian of a
triangle median.

1% Proposition.

In the triangle ABC, the cevian AA;, A, € (BC) is

2
B4 (ﬂ) . For Proof of this

a simedian if and only if =
Ac - \Ac

property, see infra.
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Figura 1.

2™ Proposition.

In an harmonic quadrilateral, the diagonals are
simedians of the triangles determined by two
consecutive sides of a quadrilateral with its diagonal.

Proof.

Let ABCD be an harmonic quadrilateral and
{K} = AC N BD (see Figure 1). We prove that BK is
simedian in the triangle ABC.

From the similarity of the triangles ABK and

DCK, we find that:
AB _ AK _ BK
DC T DK ek 1)
From the similarity of the triangles BCK si ADK,

we conclude that:

136



Complements to Classic Topics of Circles Geometry

BC CK BK
a0 T DK Ak’ (2)
From the relations (1) and (2), by division, it
follows that:
AB AD _ AK
BC'DC  CK'
But ABCD is an harmonic quadrilateral;

(3)

consequently,

AB AD

BC DC’
substituting this relation in (3), it follows that:
AB\* AK
(5e) =cx

As shown by Proposition 1, BK is a simedian in
the triangle ABC. Similarly, it can be shown that AK is
a simedian in the triangle ABD, that CK is a simedian
in the triangle BCD, and that DK is a simedian in the
triangle ADC.

Remark 1.

The converse of the 2™ Proposition is proved
similarly, i.e.:

3'4 Proposition.

If in a convex circumscribable quadrilateral, a
diagonal is a simedian in the triangle formed by the
other diagonal with two consecutive sides of the
quadrilateral, then the quadrilateral is an harmonic
quadrilateral.
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Remark 2.

From 2™ and 3" Propositions above, it results a
simple way to build an harmonic quadrilateral.

In a circle, let a triangle ABC be considered; we
construct the simedian of A, be it AK, and we denote
by D the intersection of the simedian AK with the
circle. The quadrilateral ABCD is an harmonic
quadrilateral.

Proposition 4.

In a triangle ABC, the points of the simedian of A
are situated at proportional lengths to the sides AB
and AC.

Figura 2.
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Proof.

We have the simedian AA; in the triangle ABC
(see Figure 2). We denote by D and E the projections
of A; on AB, and AC respectively.

We get:

BA, Areay(ABA,) AB-AiD

CA, Areap(ACA,) AC-AE’

Moreover, from 1% Proposition, we know that

BA; [AB\?

ae i)

Substituting in the previous relation, we obtain
that:

AD AB

AE T AC

On the other hand, DA; = AA,. From BAA; and
A,E = AA; - sinCAA;, hence:

==t 4)

If M is a point on the simedian and MM; and MM,

are its projections on AB, and AC respectively, we
have:
MM, = AM - sinBAA,, = MM, = AM - sinCAA,,

hence:

MM, _ sinBAA;

MM,  sinCAA,’

Taking (4) into account, we obtain that:

MM, AB

MM, AC
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34 Remark.

The converse of the property in the statement
above is valid, meaning that, if M is a point inside a
triangle, its distances to two sides are proportional to
the lengths of these sides. The point belongs to the
simedian of the triangle having the vertex joint to the
two sides.

5" Proposition.

In an harmonic quadrilateral, the point of
intersection of the diagonals is located towards the
sides of the quadrilateral to proportional distances to
the length of these sides. The Proof of this Proposition
relies on 2" and 4™ Propositions.

6" Proposition.
(R. Tucker)

The point of intersection of the diagonals of an
harmonic quadrilateral minimizes the sum of squares
of distances from a point inside the quadrilateral to
the quadrilateral sides.

Proof.

Let ABCD be an harmonic quadrilateral and M
any point within.

140



Complements to Classic Topics of Circles Geometry

We denote by x,y,z,u the distances of M to the
AB, BC, CD, DA sides of lenghts a,b,c,andd (see
Figure 3).

Figure 3.

Let S be the ABCD quadrilateral area.

We have:

ax + by + cz + du = 28S.

This is true for x,y,z,u and a, b, ¢, d real numbers.

Following Cauchy-Buniakowski-Schwarz Ine-
quality, we get:

(@®>+b%2+c?+d>)(x?+y? +z2 +u?)

> (ax + by + cz + du)?,
and it is obvious that:
452

a?+b?+c?+d?

We note that the minimum sum of squared
distances is:

x2+y?+z2+u? >
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452
a? + b? 4+ c? + d?
In Cauchy-Buniakowski-Schwarz Inequality, the

equality occurs if:

X Yy z u

aTbh e d

Since {K} = AC n BD is the only point with this
property, it ensues that M = K, so K has the property

= const.

of the minimum in the statement.

34 Definition.

We call external simedian of ABC triangle a
cevian AA,’ corresponding to the vertex A, where A’
is the harmonic conjugate of the point 4; - simedian’s
foot from A relative to points B and C.

4™ Remark.

In Figure 4, the cevian AA; is an internal
simedian, and AA;’ is an external simedian.

We have:

A,B  A,'B

A4,C AC

In view of 1% Proposition, we get that:
A;'B  [AB\*

ave=lac)
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7' Proposition.

The tangents taken to the extremes of a diagonal
of a circle circumscribed to the harmonic quadrilateral
intersect on the other diagonal.

Proof.

Let P be the intersection of a tangent taken in D
to the circle circumscribed to the harmonic
quadrilateral ABCD with AC (see Figure 4).

Figure 4.

Since triangles PDC and PAD are alike, we

conclude that:
PD _ PC _ DC

PA_ PD AD (5)
From relations (5), we find that:

PA AD\ 2

ve=(50) - (6)
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This relationship indicates that P is the harmonic
conjugate of K with respect to A and C, so DP is an
external simedian from D of the triangle ADC.

Similarly, if we denote by P’ the intersection of
the tangent taken in B to the circle circumscribed with

AC, we get:
PIA BA\?
o = (3) - 7)

From (6) and (7), as well as from the properties
of the harmonic quadrilateral, we know that:

AB AD

BC  DC’
which means that:

PA PA

PC PC’
hence P = P'.

Similarly, it is shown that the tangents taken to
A and C intersect at point Q located on the diagonal BD.

5" Remark.

a. The points P and Q are the diagonal poles of
BD and AC in relation to the circle
circumscribed to the quadrilateral.

b. From the previous Proposition, it follows that
in a triangle the internal simedian of an angle
is consecutive to the external simedians of
the other two angles.
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Figure 5.

8" Proposition.

Let ABCD be an harmonic quadrilateral inscribed
in the circle of center O and let P and Q be the
intersections of the tangents taken in B and D,
respectively in A and C to the circle circumscribed to
the quadrilateral.

If {K}=ACnBD, then the orthocenter of
triangle PKQ is O.

Proof.

From the properties of tangents taken from a
point to a circle, we conclude that PO 1L BD and QO 1
AC. These relations show that in the triangle PKQ, PO
and QO are heights, so O is the orthocenter of this
triangle.
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4" Definition.

The Apollonius’s circle related to the vertex A of
the triangle ABC is the circle built on the segment [DE]
in diameter, where D and E are the feet of the internal,
respectively external, bisectors taken from A to the
triangle ABC.

6" Remark.

If the triangle ABC is isosceles with AB = AC,
the Apollonius’s circle corresponding to vertex A is not
defined.

9" Proposition.

The Apollonius’s circle relative to the vertex A of
the triangle ABC has as center the feet of the external
simedian taken from A.

Proof.

Let O, be the intersection of the external
simedian of the triangle ABC with BC (see Figure 6).
Assuming that m(B) > m(C), we find that:
—_— 1 -~ A
m(EAB) = ~[m(B) + m(C)].
Oabeing a tangent, we find that m(0,4B) = m(C).
Withal,
1 ~ A
m(EAO,) =3 [m(B) —m(C)]
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and

m(AEO,) = %[m(l?) -m(C)].

It results that OaE = Oad; onward, EAD being a
right angled triangle, we obtain: OaA = OaD; hence O,
is the center of Apollonius’s circle corresponding to
the vertex A.

Figura 6.

10" Proposition.

Apollonius’s circle relative to the vertex A of
triangle ABC cuts the circle circumscribed to the
triangle following the internal simedian taken from A.

Proof.

Let S be the second point of intersection of
Apollonius’s Circle relative to vertex A and the circle
circumscribing the triangle ABC.
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Because 0,4 is tangent to the circle circum-
scribed in A, it results, for reasons of symmetry, that
0,S will be tangent in S to the circumscribed circle.

For triangle ACS , 0O,Aand 0,S are external
simedians; it results that CO, is internal simedian in
the triangle ACS, furthermore, it results that the
quadrilateral ABSC is an harmonic quadrilateral.

Consequently, AS is the internal simedian of the
triangle ABC and the property is proven.

7" Remark.

From this, in view of Figure 5, it results that the
circle of center Q passing through A and C is an
Apollonius’s circle relative to the vertex A for the
triangle ABD. This circle (of center Q and radius QC)
is also an Apollonius’s circle relative to the vertex C of
the triangle BCD.

Similarly, the Apollonius’s circle corresponding
to vertexes B and D and to the triangles ABC, and ADC
respectively, coincide.

We can now formulate the following:

11" Proposition.

In an harmonic quadrilateral, the Apollonius’s
circle - associated with the vertexes of a diagonal and
to the triangles determined by those vertexes to the
other diagonal - coincide.
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Radical axis of the Apollonius’s circle is the right
determined by the center of the circle circumscribed
to the harmonic quadrilateral and by the intersection
of its diagonals.

Proof.

Referring to Fig. 5, we observe that the power of
O towards the Apollonius’s Circle relative to vertexes
B and C of triangles ABC and BCU is:

0B% = 0C?>.

So O belongs to the radical axis of the circles.

We also have KA-KC =KB-KD , relatives
indicating that the point K has equal powers towards
the highlighted Apollonius’s circle.
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Triangulation of a Triangle
with Triangles having Equal

Inscribed Circles

In this article, we solve the following
problem:

Any triangle can be divided by a
cevian in two triangles that have

congruent inscribed circles.

Solution.

We consider a given triangle ABC and we show

that there is a point D on the side (BC) so that the
inscribed circles in the triangles ABD , ACD are
congruent. If ABC is an isosceles triangle (AB = AC),
where D is the middle of the base (B(C), we assume
that ABC is a non-isosceles triangle. We note I, I, the

centers of the inscribed congruent circles; obviously,
L1, is parallel to the BC. (1)

We observe that:
1 N
m(<LAlL) = Em(A). (2)
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Figure 1.

If T}, T, are contacts with the circles of the cevian
AD , we have ALTIM=ALT,M ; let M be the
intersection of I;I, with AD, see Figure 1.

From this congruence, it is obvious that:

(LM) = (I;M). (3)

Let I be the center of the circle inscribed in the
triangle ABC; we prove that: Al is a simedian in the
triangle [, AL. (4)

Indeed, noting a =m(BAL), it follows that
m(xl;AM) = a. From <I;Al, = <BAI, it follows that
¥BAIl, = «lAl,, therefore «I;AM = «IAl,, indicating
that AM and Al are isogonal cevians in the triangle
LAIL.

Since in this triangle AM is a median, it follows
that Al is a bimedian.
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Now, we show how we build the point D, using
the conditions (1) - (4), and then we prove that this
construction satisfies the enunciation requirements.

Building the point D.

1°: We build the circumscribed circle of the given
triangle ABC; we build the bisector of the
angle BAC and denote by P its intersection
with the circumscribed circle (see Figure
2).

2°: We build the perpendicular on € to CP and
(BC) side mediator; we denote 0, the
intersection of these lines.

3°: We build the circle C(04; 0,C) and denote A’
the intersection of this circle with the
bisector Al (A’ is on the same side of the
line BC as A).

4°: We build through A the parallel to 4’0, and
we denote it 10;.

5°: We build the circle C(01; 0;4) and we denote
I;,1, its intersections with BI, and CI
respectively.

6°: We build the middle M of the segment (I;1,)
and denote by D the intersection of the
lines AM and BC.
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Figure 2.

Proof.

The point P is the middle of the arc BC, then
m(PCB) = Sm(A).

The circle C(04; 0,C) contains the arc from
which points the segment (BC) ,,is shown” under angle
measurement %m(/i).

The circle C(0;; 01A) is homothetical to the
circle C(0;; 0,C) by the homothety of center I and by
the report 11_,:’; therefore, it follows that I;1, will be

parallel to the BC, and from the points of circle
C(01; 014A) of the same side of BC as A4, the segment
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(L 1,) ,is shown” at an angle of measure %m(/i). Since

the tangents taken in B and C to the circle C(0y; 0,C)
intersect in P, on the bisector Al, as from a property
of simedians, we get that A'l is a simedian in the
triangle A'BC.

Due to the homothetical properties, it follows
also that the tangents in the points /;, I, to the circle
C(01; 01A) intersect in a point P’ located on Al, i.e. AP’
contains the simedian (AS) of the triangle I;Al,, noted
{S} = AP' n L1 1,.

In the triangle I;Al,, AM is a median, and AS is
simedian, therefore «I;AM = [, AS; on the other hand,
ABAS = «1,Al; it follows that «BAI; = [,AS, and more:
«1,AM = BAI;, which shows that Al; is a bisector in the
triangle BAD; plus, I;, being located on the bisector of
the angle B, it follows that this point is the center of
the circle inscribed in the triangle BAD.

Analogous considerations lead to the conclusion
that I, is the center of the circle inscribed in the
triangle ACD. Because 1,1, is parallel to BC, it follows
that the rays of the circles inscribed in the triangles
ABD and ACD are equal.

Discussion.

The circles C(04; 0,4"), C(01; 0;A) are unique;
also, the triangle [ Al, is unique; therefore,
determined as before, the point D is unique.
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Remark.

At the beginning of the Proof, we assumed that
ABC is a non-isosceles triangle with the stated
property. There exist such triangles; we can construct
such a triangle starting "backwards". We consider two
given congruent external circles and, by tangent
constructions, we highlight the ABC triangle.

Open problem.

Given a scalene triangle ABC , could it be
triangulated by the cevians AD, AE, with D, E
belonging to (BC), so that the inscribed circles in the
triangles ABD, DAE and the EAC to be congruent?
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An Application of a Theorem
of Orthology

In this short article, we make connections
between Problem 21 of [1] and the theory

of orthological triangles.

The enunciation of the competitional problem is:

Let (T,), (Tg), (T;) be the tangents in the
peaks A4,B,C of the triangle ABC to the circle
circumscribed to the triangle. Prove that the
perpendiculars drawn from the middles of the
opposite sides on (Ty), (Tg), (T¢) are concurrent
and determine their concurrent point.

We formulate and we demonstrate below a
sentence containing in its proof the solution of the
competitional problem in this case.

Proposition.

The tangential triangle and the median triangle
of a given triangle ABC are orthological. The
orthological centers are O - the center of the circle
circumscribed to the triangle ABC, and Oq - the center
of the circle of ABC triangle’s 9 points.
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Proof.

Let MMM, be the median triangle of triangle
ABC and T,T,T, the tangential triangle of the triangle
ABC. It is obvious that the triangle T,T,T, and the
triangle ABC are orthological and that O is the
orthological center.

Verily, the perpendiculars taken from T,,T,,T,
on BC; CA; AB respectively are internal bisectors in
the triangle T, T, T, and consequently passing through
0, which is center of the circle inscribed in triangle
T,TyT.. Moreover, T,0 is the mediator of (BC) and
accordingly passing through M, , and T M, is
perpendicular on BC, being a mediator, but also on
M, M, which is a median line.

158



Complements to Classic Topics of Circles Geometry

From orthological triangles theorem, it follows
that the perpendiculars taken from M,, My, M. on T, T,
T.T,, T,T, respectively, are concurrent. The point of
concurrency is the second orthological center of
triangles T,T, T, and M,M,M_.. We prove that this point
is 09 - the center of Euler circle of triangle ABC. We
take M M, L T, T, and denote by {H,} = M;M; N AH, H
being the orthocenter of the triangle ABC. We know
that AH = 20M,; we prove this relation vectorially.

From Sylvester’s relation, we have that: OH =
04 + 0B +0C, but OB +0C = ZO—M,;; it follows that
OH—-04 = ZO—Ma), so AH = 20—1\/1‘;; changing to module,
we have AH = 20M,. Uniting O to A, we have OA 1
TyT, , and because M,M; L T,T, and AH || OM, , it
follows that the quadrilateral OM HA is a
parallelogram.

From AH, = OM, and AH = 20M, we get that H;
is the middle of (AH), so H; is situated on the circle of
the 9 points of triangle ABC. On this circle, we find as
well the points A’ - the height foot from A and M,;
since «AA'M, =90° , it follows that M H; is the
diameter of Euler circle, therefore the middle of
(M,H,), which we denote by 0, is the center of Euler’s
circle; we observe that the quadrilateral H{HM,O0 is as
well a parallelogram; it follows that Og is the middle
of segment [OH].

In conclusion, the perpendicular from M, on T, T,
pass through 0.
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Analogously, we show that the perpendicular
taken from M, on T,T, pass through 0Oy and
consequently Oyq is the enunciated orthological center.

Remark.

The triangles M,MyM., and T,T,T, are
homological as well, since T,M,, TyM, , T M. are
concurrent in O, as we already observed, therefore the
triangles T, T, T, and M,M,M_ are orthohomological of
rank I (see [2]).

From P. Sondat theorem (see [4]), it follows that
the Euler line 00, is perpendicular on the homological
axis of the median triangle and of the tangential
triangle corresponding to the given triangle ABC.

Note.

(Regarding the triangles that are simultaneously
orthological and homological)

In the article A Theorem about Simultaneous
Orthological and Homological Triangles, by Ion
Patrascu and Florentin Smarandache, we stated and
proved a theorem which was called by Mihai Dicu in
[2] and [3] The Smarandache-Patrascu Theorem of
Orthohomological Triangle; then, in [4], we used the
term ortohomological triangles for the triangles that
are simultaneously orthological and homological.

The term ortohomological triangles was used by
J. Neuberg in Nouvelles Annales de Mathematiques
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(1885) to name the triangles that are simultaneously
orthogonal (one has the sides perpendicular to the
sides of the other) and homological.

We suggest that the triangles that are
simultaneously orthogonal and homological to be
called ortohomological triangles of first rank, and
triangles that are simultaneously orthological and
homological to be called ortohomological triangles of
second rank.
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The Dual of a Theorem
Relative to the Orthocenter

of a Triangle

In [1] we introduced the notion of
Bobillier’s transversal relative to a point
O in the plane of a triangle ABC; we use
this notion in what follows.

We transform by duality with respect to a
circle C(o,r) the following theorem

relative to the orthocenter of a triangle.

1** Theorem.

If ABC is a nonisosceles triangle, H its
orthocenter, and AA,, BB;, CC; are cevians of a triangle
concurrent at point Q different from H, and M, N, P are
the intersections of the perpendiculars taken from H
on given cevians respectively, with BC,CA, AB, then
the points M, N, P are collinear.
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Proof.

We note with @ = m(¥BAA;); 8 = m(«CBB;),y =
m(<xACC,), see Figure 1.

According to Ceva’s theorem, trigonometric form,
we have the relation:

sina sinf ,_siny
sin(A-a) sin(B-B) sin(C-y) -
We notice that:
MB _ Area(MHB) _ MH-HB'sin sin(MHB)
MC ~ Area(MHC) ~ MH-HC-sin(MHC)
Because:
IMHB = ¥A,AC,
as angles of perpendicular sides, it follows that
m(XMHB) = m(/i) - a.
Therewith:
m(XMHC) = m(MHB) + m(BHC) = 180°a.
We thus get that:
MB sin(A —a) HB
MC  sina  HC
Analogously, we find that:
NC _ sin(B—f3) JHC |

(1)

NA ~  sinf  HA’
PA _ sin(C-y) HA
PB~  siny HB'®

Applying the reciprocal of Menelaus' theorem,
we find, in view of (1), that:

This shows that M, N, P are collinear.
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Figure 1.

Note.

18t Theorem 1is true even if ABC is an obtuse,
nonisosceles triangle.
The proof is adapted analogously.

2" Theorem.

(The Dual of the Theorem 1)

If ABC is a triangle, O a certain point in his plan,
and A4, B;,C; Bobillier’s transversals relative to O of
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ABC triangle, as well as A, — B, —(C, a certain
transversal in ABC, and the perpendiculars in 0, and
on OA,, 0B,, 0C, respectively, intersect the Bobillier’s
transversals in the points Aj, B3, (3, then the ceviens
AA3,BB3, CC5 are concurrent.

Proof.

We convert by duality with respect to a circle
C(o,r) the figure indicated by the statement of this
theorem, i.e. Figure 2. Let a, b, c be the polars of the
points 4, B, C with respect to the circle C(o,7). To the
lines BC,CA,AB will correspond their poles {4'4 =
bnc; {B'4 = cna; {C'4 = anb.

To the points A;,B;,C; will respectively
correspond their polars a4, b;,c; concurrent in
transversal’s pole A; — B; — C;.

Since OA; 1 OA, it means that the polars a and a,
are perpendicular, so a; 1 B'C’, but a; pass through 4’,
which means that Q' contains the height from A’ of
A'B'C' triangle and similarly b, contains the height
from B’ and c¢; contains the height from C' of A'B'C’
triangle.

Consequently, the ©pole of A;—-B;—(;
transversal is the orthocenter H' of A'B'C’ triangle. In
the same way, to the points 4,, B,, C, will correspond
the polars to a,, b,, c, which pass respectively through
A',B',C" and are concurrent in a point Q’, the pole of
the line A, — B, — C, with respect to the circle C(o,r).
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Cy

Figure 2.

Given OA, 1 0A;, it means that the polar a, and
a; are perpendicular, a, correspond to the cevian
A'Q’', also a; passes through the the pole of the
transversal A; — B; — Cy, so through H', in other words
Q5 is perpendicular taken from H' on A'Q’; similarly,
b, L b3, c, L c3, so bsis perpendicular taken from H’
on C'Q’. To the cevian AA; will correspond by duality
considered to its pole, which is the intersection of the
polars of A and A3, i.e. the intersection of lines a and
as; , namely the intersection of B’'C’ with the
perpendicular taken from H' on A'Q’; we denote this
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point by M'. Analogously, we get the points N’ and P’.
Thereby, we got the configuration from 1% Theorem
and Figure 1, written for triangle A'B'C’ of orthocenter
H'. Since from 1% Theorem we know that M',N’, P' are
collinear, we get the the cevians AAj;, BB;,C(C; are
concurrent in the pole of transversal M’ — N’ — P’ with
respect to the circle C(o,7), and 2™ Theorem is proved.

References.

[1] Ion Patrascu, Florentin Smarandache: The Dual
Theorem concerning Aubert’s Line, below.

[2] Florentin Smarandache, Ion Patrascu: The
Geometry of Homological Triangles. The
Education Publisher Inc., Columbus, Ohio, USA
- 2012.

168



Complements to Classic Topics of Circles Geometry

The Dual Theorem Concerning

Aubert’s Line

In this article we introduce the concept of
Bobillier’s transversal of a triangle with
respect to a point in its plan; we prove the
Aubert’s Theorem about the collinearity of
the  orthocenters in  the  triangles
determined by the sides and the diagonals
of a complete quadrilateral, and we obtain

the Dual Theorem of this Theorem.

1°* Theorem.

(E. Bobillier)

Let ABC be a triangle and M a point in the plane
of the triangle so that the perpendiculars taken in M,
and MA,MB,MC respectively, intersect the sides
BC,CA and AB at Am, Bm si Cm. Then the points Am,
Bm and Cm are collinear.

Proof.

AmB aria (BMAm
We note that = — ( )
AmC aria (CMAm)

(see Figure 1).
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Figure 1.

Area (BMAm) = %-BM - MAm - sin(BMAm).
Area (CMAm) = 3 - CM - MAm - sin(CMAm).
Since
m(Cmm) = 3771 — m(m),
it explains that
sin(Cmm) = — cos(m);
sin(Bmm) = sin (ZA/TB - g) = — cos(m).
Therefore:
AmB _ MB - COS(/T]VI\B)
AmC  MC- cos(m)
In the same way, we find that:

(1).
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BmC MC cos(El\TC)
BmA ~ MA  cos(AMB)
% _ M_A cos(ZM\C) 3)
CmB  MB cos(BMC) =~
The relations (1), (2), (3), and the reciprocal
Theorem of Menelaus lead to the collinearity of points

Am,Bm, Cm.

(2);

Note.

Bobillier's Theorem can be obtained - by
converting the duality with respect to a circle - from
the theorem relative to the concurrency of the heights
of a triangle.

1°* Definition.

It is called Bobillier’s transversal of a triangle
ABC with respect to the point M the line containing
the intersections of the perpendiculars taken in M on
AM, BM, and CM respectively, with sides BC, CA and
AB.

Note.

The Bobillier’s transversal is not defined for any
point M in the plane of the triangle ABC, for example,
where M is one of the vertices or the orthocenter H of
the triangle.
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2" Definition.

If ABCD is a convex quadrilateral and E, F are the
intersections of the lines AB and CD, BC and AD
respectively, we say that the figure ABCDEF is a
complete quadrilateral. The complete quadrilateral
sides are AB,BC,CD,DA, and AC,BD and EF are
diagonals.

2" Theorem.

(Newton-Gauss)

The diagonals’ middles of a complete
quadrilateral are three collinear points. To prove 2™
theorem, refer to [1].

Note.

It is called Newton-Gauss Line of a quadrilateral
the line to which the diagonals’ middles of a complete
quadrilateral belong.

3" Theorem.

(Aubert)

If ABCDEF is a complete quadrilateral, then the
orthocenters H,, H,, H3, H, of the traingles ABF, AED,
BCE, and CDF respectively, are collinear points.
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Proof.

Let A4, By, F; be the feet of the heights of the
triangle ABF and H, its orthocenter (see Fig. 2).
Considering the power of the point H; relative to the
circle circumscribed to the triangle ABF, and given the
triangle orthocenter’s property according to which its
symmetrics to the triangle sides belong to the
circumscribed circle, we find that:

H{A-H,A; = HiB-H,B; = HF - H;F,.

Hs

Figure 2.

This relationship shows that the orthocenter H;
has equal power with respect to the circles of
diameters [AC], [BD], [EF]. As well, we establish that
the orthocenters H,, H;, H, have equal powers to these
circles. Since the circles of diameters [AC], [BD], [EF]
have collinear centers (belonging to the Newton-
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Gauss line of the ABCDEF quadrilateral), it follows
that the points Hy, H,, H3, H, belong to the radical axis
of the circles, and they are, therefore, collinear points.

Notes.

1. It is called the Aubert Line or the line of the
complete quadrilateral’s orthocenters the line to
which the orthocenters H,;, H,, H3, H, belong.

2. The Aubert Line is perpendicular on the
Newton-Gauss line of the quadrilateral (radical axis of
two circles is perpendicular to their centers’ line).

4" Theorem.

(The Dual Theorem of the 3¢ Theorem)

If ABCD is a convex quadrilateral and M is a
point in its plane for which there are the Bobillier’s
transversals of triangles ABC, BCD, CDA and DAB;
thereupon these transversals are concurrent.

Proof.

Let us transform the configuration in Fig. 2, by
duality with respect to a circle of center M.

By the considered duality, the lines a,b,c,d, e si
f correspond to the points 4, B,C, D, E, F (their polars).

It is known that polars of collinear points are
concurrent lines, therefore we have: anbne = {4'},
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bnenf={B'}, cndne={C'},dnfna={D'}, an
c={E'},bnd ={F'}.

Consequently, by applicable duality, the points
A',B',C',D',E" and F' correspond to the straight lines
AB,BC,CD,DA,AC,BD.

To the orthocenter H; of the triangle AED, it
corresponds, by duality, its polar, which we denote
Aj - B; — C{, and which is the Bobillier’s transversal of
the triangle A’C’D’ in relation to the point M. Indeed,
the point €’ corresponds to the line ED by duality; to
the height from A of the triangle AED, also by duality,
it corresponds its pole, which is the point C; located
on A’D’ such that m(C'MC;) = 90°.

To the height from E of the triangle AED, it
corresponds the point Bj € A'C’ such that m(D'MB]) =
90°.

Also, to the height from D, it corresponds A] €
C'D’ on C such that m(4A’'MA}) =90°. To the
orthocenter H, of the triangle ABF, it will correspond,
by applicable duality, the Bobillier’s transversal A, —
B) — C, in the triangle A'B'D’ relative to the point M.
To the orthocenter H; of the triangle BCE, it will
correspond the Bobillier’s transversal A3 — B'; — C5'
in the triangle A'B'C’ relative to the point M, and to
the orthocenter H, of the triangle CDF , it will
correspond the transversal A, — B, — C, in the triangle
C'D'B' relative to the point M.
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The Bobillier’s transversals A; —B; —C/, i = 1,4
correspond to the collinear points H;, i = 1,4.

These transversals are concurrent in the pole of
the line of the orthocenters towards the considered
duality.

It results that, given the quadrilateral A’'B'C’'D’,
the Bobillier’s transversals of the triangles A'C’'D’,
A'B’'D’, A’B’'C’ and C’'D’B’ relative to the point M are
concurrent.
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We approach several themes of clas-
sical geometry of the circle and complete
them with some original results, showing
that not everything in traditional math is
revealed, and that it still has an open
character.

The topics were chosen according to
authors’ aspiration and attraction, as a
poet writes lyrics about spring according to
his emotions.
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