SEQUENGES OF INTIEGERS, CONJECTURES AND NEW ARITIHMETICAL TOOLS

Eciucanon Publisime 2015

SEQUENCES OF INTEGERS, CONJECTURES
 AND NEW ARITHMETICAL TOOLS

(COLLECTED PAPERS)

Education Publishing

Copyright 2015 by Marius Caman

Education Publishing

1313 Chesapeake Avenue
Columbus, Ohio 43212
USA
Tel. (614) 485-0721

Peer-Reviewers:

Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt.
Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco.
Pabitra Kumar Maji, Math Department, K. N.
University, WB, India.
S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia.
Mumtaz Ali, Department of Mathematics, Quaid-iazam, University Islamabad, Pakistan

EAN: 9781599733432
ISBN: 978---59973-343-2

INTRODUCTION

In three of my previous published books, namely "Two hundred conjectures and one hundred and fifty open problems on Fermat pseudoprimes", "Conjectures on primes and Fermat pseudoprimes, many based on Smarandache function" and "Two hundred and thirteen conjectures on primes", I showed my passion for conjectures on sequences of integers. In spite the fact that some mathematicians stubbornly understand mathematics as being just the science of solving and proving, my books of conjectures have been well received by many enthusiasts of elementary number theory, which gave me confidence to continue in this direction.

Part One of this book brings together papers regarding conjectures on primes, twin primes, squares of primes, semiprimes, different types of pairs or triplets of primes, recurrent sequences, sequences of integers created through concatenation and other sequences of integers related to primes.

Part Two of this book brings together several articles which present the notions of cprimes, m-primes, c-composites and m-composites (c / m-integers), also the notions of g -primes, s-primes, g-composites and s-composites (g / s-integers) and show some of the applications of these notions (because this is not a book structured unitary from the beginning but a book of collected papers, I defined the notions mentioned in various papers, but the best definition of them can be found in Addenda to the paper numbered tweny-nine), in the study of the squares of primes, Fermat pseudoprimes and generally in Diophantine analysis.

Part Three of this book presents the notions of "Coman constants" and "SmarandacheComan constants", useful to highlight the periodicity of some infinite sequences of positive integers (sequences of squares, cubes, triangular numbers, polygonal numbers), respectively in the analysis of Smarandache concatenated sequences.

Part Four of this book presents the notion of Smarandache-Coman sequences, id est sequences of primes formed through different arithmetical operations on the terms of Smarandache concatenated sequences.

Part Five of this book presents the notion of Smarandache-Coman function, a function based on the well known Smarandache function which seems to be particularly interesting: beside other characteristics, it seems to have as values all the prime numbers and, more than that, they seem to appear, leaving aside the non-prime values, in natural order.

This book of collected papers seeks to expand the knowledge on some well known classes of numbers and also to define new classes of primes or classes of integers directly related to primes.

CONTENTS

Part One. Conjectures on twin primes, squares of primes, semiprimes and other classes of integers related to primes 5

1. Formula involving primorials that produces from any prime p probably an infinity of semiprimes qr such that $\mathrm{r}+\mathrm{q}-1=\mathrm{np}$ 5
2. A formula that produces from any prime p of the form $11+30 \mathrm{k}$ probably an infinity of semiprimes $q r$ such that $r+q=30 \mathrm{~m}$ 6
3. Two conjectures on squares of primes involving the sum of consecutive primes 7
4. Two conjectures on squares of primes, involving twin primes and pairs of primes p, q, where $\mathrm{q}=\mathrm{p}+4$ 8
5. Three conjectures on twin primes involving the sum of their digits 9
6. Seven conjectures on the triplets of primes p, q, r where $q=p+4$ and $r=p+6$ 11
7. An interesting recurrent sequence whose first 150 terms are either primes, powers of primes or products of two prime factors 14
8. Three conjectures on probably infinite sequences of primes created through concatenation of primes with the powers of 2 16
9. Conjecture on the infinity of a set of primes obtained from Sophie Germain primes. 18
10. Conjecture which states that there exist an infinity of squares of primes of the form $109+420 \mathrm{k}$ 19
11. Seven conjectures on the squares of primes involving the number 4320respectively deconcatenation.. 21
12. Three conjectures on a sequence based on concatenation and the odd powers of the number 2 24
13. Two conjectures on the numbers obtained concatenating the integers of the form $6 \mathrm{k}+1$ with the digits 081 26
14. Three conjectures on the numbers obtained concatenating the multiples of 30 with the squares of primes 27
Part Two. The notions of \mathbf{c} / \mathbf{m}-integers and \mathbf{g} / \mathbf{s}-integers 29
15. Operation based on squares of primes for obtaining twin primes and twin c-primes and the definition of a c-prime 29
16. Operation based on multiples of three and concatenation for obtaining primes and m -primes and the definition of a m-prime 32
17. Conjecture that states that any Carmichael number is a cm-composite 34
18. Conjecture that states that, beside few definable exceptions, Poulet numbers are either c-primes, m-primes, c-composites or m-composites 37
19. Formula based on squares of primes which conducts to primes, c-primes and m- primes. 39
20. Formula for generating c-primes and m-primes based on squares of primes 41
21. Two formulas based on c-chameleonic numbers which conducts to c-primes and the notion of c-chameleonic number 43
22. The notions of c-reached prime and m-reached prime 45
23. A property of repdigit numbers and the notion of cm -integer 47
24. The property of Poulet numbers to create through concatenation semiprimes which are c-primes or m-primes 49
25. The property of squares of primes to create through concatenation semiprimes which are c-primes or m-primes 52
26. The property of a type of numbers to be often m-primes and m-composites 54
27. The property of a type of numbers to be often c-primes and c-composites 56
28. Two formulas for obtaining primes and cm -integers 58
29. Formula based on squares of primes and concatenation which leads to primes and cm-primes 60
30. Formula based on squares of primes having the same digital sum that leads to primes and cm-primes 62
31. An analysis of four Smarandache concatenated sequences using the notion of $\mathrm{cm}-$ integers 65
32. An analysis of seven Smarandache concatenated sequences using the notion of cm-integers 68
33. On the special relation between the numbers of the form $505+1008 \mathrm{k}$ and the squares of primes 72
34. The notion of s-primes and a generic formula of 2-Poulet numbers 77
Part Three. The notions of Coman constants and Smarandache-Coman constants 80
35. The notion of Coman constants 80
36. Two classes of numbers which not seem to be characterized by a Coman constant 82
37. The Smarandache concatenated sequences and the definition of Smarandache- Coman constants 83
Part Four. The notion of Smarandache-Coman sequences 87
38. Fourteen Smarandache-Coman sequences of primes 87
Part Five. The Smarandache-Coman function 94
39. The Smarandache-Coman function and nine conjectures on it 94

Part One.
 Conjectures on twin primes, squares of primes, semiprimes and other classes of integers related to primes

1. Formula involving primorials that produces from any prime p probably an infinity of semiprimes $q \mathbf{r}$ such that $\mathbf{r}+\mathbf{q - 1}=\mathbf{n p}$

Abstract

In this paper I make a conjecture involving primorials which states that from any odd prime p can be obtained, through a certain formula, an infinity of semiprimes $\mathrm{q}^{*} \mathrm{r}$ such that $\mathrm{r}+\mathrm{q}-1=\mathrm{n}$ * , where n non-null positive integer.

Conjecture:

For any odd prime p there exist an infinity of positive integers m such that $\mathrm{p}+\mathrm{m}^{*} \pi=\mathrm{q}^{*} \mathrm{r}$, where π is the product of all primes less than p and q, r are primes such that $r+q-1=$ n *p, where n is non-null positive integer.

Note that, for $\mathrm{p}=3$, the conjecture states that there exist an infinity of positive integers m such that $3+2 * m=q^{*} r$, where q and r primes and $r+q-1=n * p$, where n is non-null positive integer; for $\mathrm{p}=5$, the conjecture states that there exist an infinity of positive integers m such that $5+6^{*} \mathrm{~m}=\mathrm{q} * \mathrm{r}(\ldots)$; for $\mathrm{p}=7$, the conjecture states that there exist an infinity of positive integers m such that $7+30 * \mathrm{~m}=\mathrm{q}^{*} \mathrm{r}(\ldots)$; for $\mathrm{p}=11$, the conjecture states that there exist an infinity of positive integers m such that $11+210 * \mathrm{~m}=\mathrm{q}^{*} \mathrm{r}(\ldots)$ etc.
Note also that m can be or not divisible by p .

Examples:

For $\mathrm{p}=3$ we have the following relations:
: $\quad 3+2 * 11=25=5 * 5$, where $5+5-1=9=3 * 3$;
$: \quad 3+2 * 18=39=3 * 13$, where $3+13-1=15=3 * 5$;
The sequence of m is: 11,18 (...). Note that m can be or not divisible by p .
For $\mathrm{p}=5$ we have the following relations:
: $5+6 * 25=155=5 * 31$, where $5+31-1=35=7 * 5$;
$: \quad 5+6 * 33=203=7 * 29$, where $7+29-1=35=7 * 5$;
The sequence of m is: 25,33 (...)
For $\mathrm{p}=7$ we have the following relations:
: $\quad 7+30 * 34=1027=13 * 79$, where $13+79-1=91=7 * 13$;
$: \quad 7+30 * 49=1477=7 * 211$, where $7+211-1=217=7 * 31$.
The sequence of m is: 34,49 (...)
For $\mathrm{p}=13$ we have the following relations:
$: \quad 13+2310 * 5=11563=31 * 373$, where $31+373-1=403=31 * 13$;
$: \quad 13+2310 * 17=39283=163 * 241$, where $163+241-1=403=31 * 13$.
The sequence of m is: 5, $17(\ldots)$

2. A formula that produces from any prime p of the form $11+30 k$ probably an infinity of semiprimes $q r$ such that $r+q=30 \mathrm{~m}$

Abstract

In this paper I make a conjecture which states that from any prime p of the form $11+30^{*} k$ can be obtained, through a certain formula, an infinity of semiprimes $q^{*} \mathrm{r}$ such that $\mathrm{r}+\mathrm{q}=30 * \mathrm{~m}$, where m non-null positive integer.

Conjecture:

For any prime p of the form $11+30 * \mathrm{k}$ there exist an infinity of positive integers h such that $11+30 * \mathrm{k}+210^{*} \mathrm{~h}=\mathrm{q} * \mathrm{r}$, where q , r are primes such that $\mathrm{r}+\mathrm{q}=30^{*} \mathrm{~m}$, where m is non-null positive integer.

Examples:

Let $\mathrm{n}=11+210 * \mathrm{k}$
$: \quad$ for $\mathrm{k}=1, \mathrm{n}=221=13 * 17$ and $13+17=1 * 30$;
$: \quad$ for $\mathrm{k}=4, \mathrm{n}=851=23 * 37$ and $23+37=2 * 30$;
$: \quad$ for $\mathrm{k}=14, \mathrm{n}=2951=13 * 227$ and $13+227=8 * 30$;
$: \quad$ for $\mathrm{k}=18, \mathrm{n}=221=17 * 223$ and $17+223=8 * 30$.
Let $\mathrm{n}=41+210^{*} \mathrm{k}$
$: \quad$ for $\mathrm{k}=12, \mathrm{n}=2561=13 * 197$ and $13+197=7 * 30$;
$: \quad$ for $\mathrm{k}=13, \mathrm{n}=2771=17 * 163$ and $17+163=6 * 30$;
$: \quad$ for $\mathrm{k}=17, \mathrm{n}=3611=23 * 157$ and $23+157=6 * 30$;
$: \quad$ for $\mathrm{k}=30, \mathrm{n}=6341=17 * 373$ and $17+373=13 * 30$.
Let $\mathrm{n}=71+210^{*} \mathrm{k}$
: \quad for $\mathrm{k}=7, \mathrm{n}=1541=23 * 67$ and $23+67=3 * 30$;
$: \quad$ for $\mathrm{k}=8, \mathrm{n}=1751=17^{*} 103$ and $17+103=4 * 30$;
$: \quad$ for $\mathrm{k}=9, \mathrm{n}=1961=37 * 53$ and $37+53=3 * 30$;
$: \quad$ for $\mathrm{k}=10, \mathrm{n}=2171=13 * 167$ and $13+167=6 * 30$.
Let $\mathrm{n}=101+210^{*} \mathrm{k}$
$: \quad$ for $\mathrm{k}=3, \mathrm{n}=731=17 * 43$ and $17+43=2 * 30$;
$: \quad$ for $\mathrm{k}=8, \mathrm{n}=1781=13 * 137$ and $13+137=5 * 30$;
$: \quad$ for $\mathrm{k}=21, \mathrm{n}=4511=13 * 347$ and $13+347=12 * 30$;
$: \quad$ for $\mathrm{k}=24, \mathrm{n}=5141=53 * 97$ and $53+97=5 * 30$.
Let $\mathrm{n}=131+210^{*} \mathrm{k}$
: \quad for $\mathrm{k}=5, \mathrm{n}=1391=13 * 107$ and $13+107=4 * 30$;
$: \quad$ for $\mathrm{k}=8, \mathrm{n}=2021=43 * 47$ and $43+47=3 * 30$;
$: \quad$ for $\mathrm{k}=9, \mathrm{n}=2231=23 * 97$ and $23+97=4 * 30$;
$: \quad$ for $\mathrm{k}=13, \mathrm{n}=3071=37 * 83$ and $37+83=4 * 30$.

Note:

The formula $11+30 * \mathrm{k}+210 * \mathrm{~h}$ (where $11+30 * \mathrm{k}$ is prime) seems also to produce sets of many consecutive primes; examples:
: $\quad \mathrm{n}=41+210^{*} \mathrm{k}$ is prime for $\mathrm{k}=4,5,6,7,8,9,10,11$;
$: \quad \mathrm{n}=101+210^{*} \mathrm{k}$ is prime for $\mathrm{k}=14,15,16,17,18,19$.

3. Two conjectures on squares of primes involving the sum of consecutive primes

Abstract

In this paper I make a conjecture which states that there exist an infinity of squares of primes of the form $6 * \mathrm{k}-1$ that can be written as a sum of two consecutive primes plus one and also a conjecture that states that the sequence of the partial sums of odd primes contains an infinity of terms which are squares of primes of the form $6 * k+1$.

Conjecture 1:

There exist an infinity of squares of primes of the form $6 * \mathrm{k}-1$ that can be written as a sum of two consecutive primes plus one.

First ten terms from this sequence:

$$
\begin{array}{ll}
: & 5^{\wedge} 2=11+13+1 ; \\
\vdots & 11^{\wedge} 2=59+61+1 ; \\
\vdots & 17^{\wedge} 2=139+149+1 ; \\
\vdots & 29^{\wedge} 2=419+421+1 ; \\
\vdots & 53^{\wedge} 2=1399+1409+1 ; \\
\vdots & 101^{\wedge} 2=5099+5101+1 ; \\
\vdots & 137^{\wedge} 2=9377+9391+1 ; \\
\vdots & 179^{\wedge} 2=16007+16033+1 ; \\
\vdots & 251^{\wedge} 2=31489+31511+1 ; \\
281^{\wedge} 2=39461+39499+1 .
\end{array}
$$

Note other interesting related results:
: $\quad 41^{\wedge} 2=839+841+1$, where 839 is prime and $841=29^{\wedge} 2$ square of prime;
$: \quad 47 \wedge 2=1103+1105+1$, where 1103 is prime and 1105 is absolute Fermat pseudoprime.

Note that I haven't found in OEIS any sequence to contain the consecutive terms 5, 11, $17,29,53,101 \ldots$, so I presume that the conjecture above has not been enunciated before.

Note also the amount of squares of the primes of the form $6 * \mathrm{k}-1$ that can be written this way (10 from the first 31 such primes).

Conjecture 2:

The sequence of the partial sums of odd primes (see the sequence A071148 in OLEIS) contains an infinity of terms which are squares of primes of the form $6 * k+1$.

First three terms from this sequence:

```
: 31^2 = 3 + 5 +...+89;
: 37^2 = 3+5+\ldots+ 107;
: 43^2 = 3+5+\ldots+131.
```


4. Two conjectures on squares of primes, involving twin primes and pairs of primes p, q, where $q=p+4$

Abstract

In this paper I make a conjecture which states that there exist an infinity of squares of primes that can be written as $\mathrm{p}+\mathrm{q}+13$, where p and q are twin primes, also a conjecture that there exist an infinity of squares of primes that can be written as $3 * q-p$ 1 , where p and q are primes and $\mathrm{q}=\mathrm{p}+4$.

Conjecture 1:

There exist an infinity of squares of primes that can be written as $p+q+13$, where p and q are twin primes.

First five terms from this sequence:

$$
\begin{array}{ll}
: & 5^{\wedge} 2=5+7+13 ; \\
\vdots & 7^{\wedge} 2=17+19+13 ; \\
\vdots & 17^{\wedge} 2=137+139+13 ; \\
\vdots & \\
67^{\wedge} 2=2237+2239+13 ; \\
: & \\
73^{\wedge} 2=2657+2659+13 .
\end{array}
$$

Conjecture 2:

There exist an infinity of squares of primes that can be written as $3 * q-p-1$, where p and q are primes and $\mathrm{q}=\mathrm{p}+4$.

First three terms from this sequence:

$: \quad 5^{\wedge} 2=3 * 11-7-1$;
$: \quad 7 \wedge 2=3 * 23-19-1$;
$: \quad 13 \wedge 2=3 * 83-79-1$.
Note that I also conjecture that the formula 3*q-p-1, where p and q are primes and $\mathrm{q}=$ $p+4$, produces an infinity of primes, an infinity of semiprimes $a^{*} b$ such that $b-a+1$ is prime and an infinity of semiprimes $\mathrm{a}^{*} \mathrm{~b}$ such that $\mathrm{b}+\mathrm{a}-1$ is prime.

5. Three conjectures on twin primes involving the sum of their digits

Abstract

Observing the sum of the digits of a number of twin primes, I make in this paper the following three conjectures: (1) for any m the lesser term from a pair of twin primes having as the sum of its digits an odd number there exist an infinity of lesser terms n from pairs of twin primes having as the sum of its digits an even number such that $\mathrm{m}+\mathrm{n}+1$ is prime, (2) for any m the lesser term from a pair of twin primes having as the sum of its digits an even number there exist an infinity of lesser terms n from pairs of twin primes having as the sum of its digits an odd number such that $m+n+1$ is prime and (3) if a, b, c, d are four distinct terms of the sequence of lesser from a pair of twin primes and $\mathrm{a}+\mathrm{b}+1=\mathrm{c}+\mathrm{d}+1=\mathrm{x}$, then x is a semiprime, product of twin primes.

Conjecture 1:

For any m the lesser term from a pair of twin primes having as the sum of its digits an odd number there exist an infinity of lesser terms n from pairs of twin primes having as the sum of its digits an even number such that $\mathrm{m}+\mathrm{n}+1$ is prime.

Example:

(considering the first 100 terms of the sequence of the lesser from a pair of twin primes)
: \quad For $\mathrm{m}=41$ (the sum of digits 5 , an odd number), $\mathrm{p}=\mathrm{m}+\mathrm{n}+1$ is prime for a number of 28 values of n having the sum of the digits an even number from 47 such values:

$$
\begin{aligned}
& (\mathrm{n}, \mathrm{p})=(11,53),(17,59),(59,101),(71,113),(107,149),(149,191),(239,281),(347, \\
& 389),(419,461),(521,563),(617,659),(659,701),(1049,1091),(1061,1103),(1151, \\
& 1193),(1229,1361),(1481,1523),(1667,1709),(1931,1973),(1997,2039),(2309, \\
& 2351),(2381,2423),(2549,2591),(2657,2699),(2969,3011),(3371,3413),(3539, \\
& 3581),(3821,3863) .
\end{aligned}
$$

Conjecture 2:

For any m the lesser term from a pair of twin primes having as the sum of its digits an even number there exist an infinity of lesser terms n from pairs of twin primes having as the sum of its digits an odd number such that $\mathrm{m}+\mathrm{n}+1$ is prime.

Example:

(considering the first 100 terms of the sequence of the lesser from a pair of twin primes)
: \quad For $\mathrm{m}=71$ (the sum of digits 8 , an even number), $\mathrm{p}=\mathrm{m}+\mathrm{n}+1$ is prime for a number of 23 values of n having the sum of the digits an odd number from 53 such values:
$(\mathrm{n}, \mathrm{p})=(29,101),(41,113),(191,263),(197,269),(281,353),(311,383),(809,881)$, (881, 953), (1019, 1091), (1031, 1103), (1301, 1373), (1091, 1163), (1451, 1523), (1877, 1949), (2027, 2099), (2081, 2153), (2267, 2339), (2339, 2441), (2591, 2663), (3251, $3323)$, (3257, 3329), (3299, 3371), (3389, 3461).

Conjecture 3:

If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are four distinct terms of the sequence of lesser from a pair of twin primes and $\mathrm{a}+\mathrm{b}+1=\mathrm{c}+\mathrm{d}+1=\mathrm{x}$, then x is a semiprime, product of twin primes.

Just two such cases I met so far, verifying the examples from the two conjectures above:
$: \quad(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(41,857,71,827)$ and, indeed, $\mathrm{x}=899=29 * 31$;
$: \quad(a, b, c, d)=(41,3557,71,3527)$ and, indeed, $x=3599=59^{*} 61$.

6. Seven conjectures on the triplets of primes p, q, r where $q=p+4$ and r $=p+6$

Abstract

In this paper I make seven conjectures on the triplets of primes [p, q, r], where $\mathrm{q}=\mathrm{p}+4$ and $\mathrm{r}=\mathrm{p}+6$, conjectures involving primes, squares of primes, c -primes, $\mathrm{m}-$ primes, c-composites and m-composites (the last four notions are defined in previous papers, see for instance the paper "Conjecture that states that any Carmichael number is a cm-composite".

Conjecture 1:

There exist an infinity of triplets of primes $[p, q, r]$, where $q=p+4$ and $r=p+6$.
The ordered sequence of these triplets is:
[7, 11, 13], [13, 17, 19], [37, 41, 43], [97, 101, 103], [103, 107, 109], [193, 197, 199], [223, 227, 229], [307, 311, 313], [457, 461, 463], [613, 617, 619], [823, 827, 829], [853, 857, 859], [877, 881, 883], [1087, 1091, 1093], [1297, 1301, 1303], [1423, 1427, 1429], [1447, 1451, 1453], [1483, 1487, 1489], [1663, 1667, 1669], [1693, 1697, 1699], [1783, 1787, 1789], [1873, 1877, 1879], [1993, 1997, 1999], [2083, 2087, 2089], [2137, 2141, 2143], [2377, 2381, 2383] ...

Conjecture 2:

There exist an infinity of triplets of primes [p, q, r], where $q=p+4$ and $r=p+6$, such that $\mathrm{s}=\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a prime.

The ordered sequence of the quadruplets $[\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}]$ is:
[7, 11, 13, 31], [457, 461, 463, 1381], [1087, 1091, 1093, 3271], [1663, 1667, 1669, 4999], [2137, 2141, 2143, 6421] ...

Conjecture 3:

There exist an infinity of triplets of primes [p, q, r], where $q=p+4$ and $r=p+6$, such that $\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a square of a prime s .

The ordered sequence of the quadruplets $[\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}]$ is: [13, 17, 19, 7], [37, 41, 43, 11], [613, 617, 619, 43] ...

Conjecture 4:

There exist an infinity of triplets of primes $[p, q, r]$, where $q=p+4$ and $r=p+6$, such that $\mathrm{s}=\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a c-prime, without being a prime or a square of a prime.

The first such quadruplets $[p, q, r, s]$ are:
: $\quad[97,101,103,301]$, because $301=7 * 43$ and $43-7+1=37$, prime;
$: \quad[103,107,109,319]$, because $319=11 * 29$ and $29-11+1=19$, prime;
: $\quad[193,197,199,589]$, because $589=19 * 31$ and $31-19+1=13$, prime;
: $\quad[223,227,229,679]$, because $679=7^{*} 97$ and $97-7+1=91=7^{*} 13$ and $13-7+$ $1=7$, prime;
: $\quad[823,827,829,2479]$, because $2479=37 * 67$ and $67-37+1=31$, prime;
: $\quad[853,857,859,2569]$, because $2569=7 * 367$ and $367-7+1=361$, square of prime;
: $\quad[877,881,883,2641]$, because $2641=19 * 139$ and $139-19+1=121$, square of prime;
: $\quad[1297,1301,1303,3901]$, because $3901=47 * 83$ and $83-47+1=37$, prime;
: $\quad[1423,1427,1429,4279]$, because $4279=11 * 389$ and $389-11+1=379$, prime; [1447, 1451, 1453, 4351], because $4351=19 * 229$ and $229-19+1=211$, prime; [1693, 1697, 1699, 5089], because $5089=7 * 727$ and $727-7+1=721=7 * 103$ and $103-7+1=97$, prime;
: $\quad[1783,1787,1789,5359]$, because $5359=23 * 233$ and $233-23+1=211$, prime;
: $\quad[1867,1871,1873,5611]$, because $5611=31 * 181$ and $181-31+1=151$, prime;
: $\quad[1873,1877,1879,5629]$, because $5629=13 * 433$ and $433-13+1=421$, prime;
: $\quad[1993,1997,1999,5989]$, because $5989=53 * 113$ and $113-53+1=61$, prime;
: $\quad[2083,2087,2089,6259]$, because $6259=11 * 569$ and $569-11+1=559=$ $13 * 43$ and $43-13+1=31$, prime;
: $\quad[2377,2381,2383,7141]$, because $7141=37^{*} 193$ and $193-37+1=157$, prime.

Conjecture 5:

There exist an infinity of triplets of primes [$\mathrm{p}, \mathrm{q}, \mathrm{r}$, where $\mathrm{q}=\mathrm{p}+4$ and $\mathrm{r}=\mathrm{p}+6$, such that $\mathrm{s}=\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a m-prime, without being a prime or a square of a prime.

The first such quadruplets $[p, q, r, s]$ are:

$[103,107,109,319]$, because $319=11 * 29$ and $29+11-1=39=3 * 13$ and $3+$ $13-1=15=3 * 5$ and $3+5-1=7$, prime; [193, 197, 199, 589], because $589=19 * 31$ and $31+19-1=49$, square of prime; [223, 227, 229, 679], because $679=7 * 97$ and $97+7-1=103$, prime; [823, 827, 829, 2479], because $2479=37 * 67$ and $67+37-1=103$, prime; [853, 857, 859, 2569], because $2569=7 * 367$ and $367+7-1=373$, prime; [877, 881, 883, 2641], because $2641=19 * 139$ and $139+19+1=157$, prime; [1447, 1451, 1453, 4351], because $4351=19 * 229$ and $229+19+1=247$, prime; [1693, 1697, 1699, 5089], because $5089=7 * 727$ and $727+7-1=733$, prime; [1867, 1871, 1873, 5611], because $5611=31 * 181$ and $181+31-1=151$, prime. [2083, 2087, 2089, 6259], because $6259=11 * 569$ and $569+11-1=573=$ 3*193 and $193-3+1=191$, prime; [2377, 2381, 2383, 7141], because $7141=37 * 193$ and $193+37-1=229$, prime.

Conjecture 6:

There exist an infinity of triplets of primes [p, q, r], where $q=p+4$ and $r=p+6$, such that $\mathrm{s}=\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a c -composite.

The first such quadruplets $[\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$] are:
: $\quad[307,311,313,931]$, because $931=7 * 7 * 19$ and $7 * 7-19+1=31$, prime;
: $\quad[1483,1487,1489,4459]$, because $4459=7 * 7 * 7 * 13$ and $7 * 13-7 * 7+1=43$, prime.

Conjecture 7:

There exist an infinity of triplets of primes [p, q, r], where $q=p+4$ and $r=p+6$, such that $\mathrm{s}=\mathrm{p}+\mathrm{q}+\mathrm{r}$ is a c -composite.

The first such quadruplets [p, q, r, s] are:
: $\quad[307,311,313,931]$, because $931=7 * 7 * 19$ and $7 * 7+19-1=67$, prime;
$: \quad[1483,1487,1489,4459]$, because $4459=7 * 7 * 7 * 13$ and $7 * 13+7 * 7-1=139$, prime.

Observations:

: It can be seen that any from the first 26 triplets [$\mathrm{p}, \mathrm{q}, \mathrm{r}]$ falls at least in one of the cases involved by the Conjectures 2-7;
$: \quad$ For all the first 26 triplets $[p, q, r]$ the number $s=p+q+r$ is a prime or a product of two prime factors;
: Both of the triplets from above that are c-composites are also m-composites so they are cm-composites;
: Most of the triplets from above that are c-primes are also m-primes so they are cm-primes.

7. An interesting recurrent sequence whose first $\mathbf{1 5 0}$ terms are either primes, powers of primes or products of two prime factors

Abstract

I started this paper in ideea to present the recurrence relation defined as follows: the first term, $a(0)$, is 13 , then the n-th term is defined as $a(n)=a(n-1)+6$ if n is odd and as $a(n)=a(n-1)+24$, if n is even. This recurrence formula produce an amount of primes and odd numbers having very few prime factors: the first 150 terms of the sequence produced by this formula are either primes, power of primes or products of two prime factors. But then I discovered easily formulas even more interesting, for instance $\mathrm{a}(0)=13, \mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{n}-1)+10$ if n is odd and $\mathrm{a}(\mathrm{n})=\mathrm{a}(\mathrm{n}-1)+80$, if n is even (which produces 16 primes in first 20 terms!). Because what seems to matter in order to generate primes for such a recurrent defined formula $a(0)=13, a(n)=a(n-1)+x$ if n is odd and as $a(n)=a(n-1)+y$, if n is even, is that $x+y$ to be a multiple of 30 (probably the choice of the first term doesn't matter either but I like the number 13).

Conjecture:

The sequence produced by the recurrent formula $a(0)=13, a(n)=a(n-1)+6$ if n is odd respectively $a(n)=a(n-1)+24$ if n is even contains an infinity of terms which are primes, also an infinity of terms which are powers of primes, also an infinity of terms which are products of two prime factors.

From the first 150 terms of the sequence the following 83 are primes:
: $\quad 13,19,43,73,79,103,109,139,163,193,199,223,277,283,307,313,337,367,373$, $397,433,457,463,487,523,547,577,607,613,643,673,727,733,757,787,823,853$, 877, 883, 907, 937, 967, 997, 1033, 1063, 1087, 1093, 1117, 1123, 1153, 1213, 1237, 1297, 1303, 1327, 1423, 1447, 1453, 1483, 1543, 1567, 1597, 1627, 1657, 1663, 1693, 1723, 1747, 1753, 1777, 1783, 1867, 1873, 1933, 1987, 1993, 2017, 2053, 2083, 2113, 2137, 2143, 2203.

From the first 150 terms of the sequence the following are products of two prime factors but not semiprimes:
$: \quad 637\left(=7^{\wedge} 2^{*} 13\right), 847\left(=7^{*} 11^{\wedge} 2\right), 1183(=7 * 13 \wedge 2), 1573\left(=11^{\wedge} 2^{*} 13\right), 1813\left(=7^{\wedge} 2^{*} 37\right)$, $2023\left(=7 * 17^{\wedge} 2\right), 2107(=7 \wedge 2 * 43)$.

From the first 150 terms of the sequence the following are powers of primes:

$$
: \quad 49\left(=7^{\wedge} 2\right), 169\left(=13^{\wedge} 2\right), 343\left(=7^{\wedge} 3\right), 2197\left(=13^{\wedge} 3\right) .
$$

The rest terms up to 150 -th term are semiprimes.

Comment:

I haven't yet studied the sequence enough to know how important is to chose the term $\mathrm{a}(0)$ the number 13 (I chose it because is my favourite number); I think that rather the
amount of primes generated has something to do with the fact that $6+24$ is a multiple of 30. I'll try to apply the definition for, for instance, $4+56=60$.

Indeed, the formula $a(0)=13, a(n)=a(n-1)+4$ if n is odd and as $a(n)=a(n-1)+56$, if n is even, generates, from the first 50 terms, 32 primes and 18 semiprimes (and a chain of 6 consecutive primes: $557,613,617,673,677,733$) so seems to be a formula even more interesting that the one presented above.

Let's try the formula $a(0)=13, a(n)=a(n-1)+10$ if n is odd and as $a(n)=a(n-1)+80$, if n is even. Only in the first 20 terms we have 16 primes!

Conclusion:

The formula defined as $a(0)=13, a(n)=a(n-1)+x$ if n is odd and as $a(n)=a(n-1)+y$, if n is even, where x, y even numbers, seems to generate an amount of primes when $x+y$ is a multiple of 30 (probably the choice of the first term doesn't matter but I like the number 13).

8. Three conjectures on probably infinite sequences of primes created through concatenation of primes with the powers of 2

Abstract

In this paper I present three conjectures, i.e.: (1) For any prime p greater than or equal to 7 there exist n, a power of 2 , such that, concatenating to the left p with n the number resulted is a prime (2) For any odd prime p there exist n, a power of 2 , such that, subtracting one from the number resulted concatenating to the right p with n , is obtained a prime (3) For any odd prime p there exist n, a power of 2, such that, adding one to the number resulted concatenating to the right p with n , is obtained a prime.

Conjecture 1:

For any prime p greater than or equal to 7 there exist n , a power of 2 , such that, concatenating to the left p with n the number resulted is a prime.

The sequence of the primes obtained, for $\mathrm{p} \geq 7$ and the least n for which the number obtained through concatenation is prime:

47, 211, 1613, 3217, 419, 223, 229, 431, 1637, 241, 443, 1638447, 853, 859, 461, 467, 271, 6473, 479, 283, 12889, 1697, 8101, 16103, 2048107, 64109, 2113, 4127, 2131 (...)

The corresponding sequence of the exponents of 2 for which a prime is obtaiend:
$2,1,4,5,2,1,1,2,4,1,2,14,3,3,2,2,1,6,2,1,7,4,3,4,11,6,1,2,1(\ldots)$
Note: I also conjecture that there exist an infinity of pairs of primes ($\mathrm{p}, \mathrm{p}+6$) such that n has that same value: such pairs are: $(23,29),(53,59),(61,67)$, which create the primes $(223,229),(853,859),(461,467)$.

Conjecture 2:

For any odd prime p there exist n , a power of 2 , such that, subtracting one from the number resulted concatenating to the right p with n , is obtained a prime.

The sequence of the primes obtained, for odd p and the least n for which the number obtained through concatenation is prime:
$31,53,71,113,131,173,191,233,293,311,373,41257,431,47262143,531023,593$, 613, 673, 71257 (...)

The corresponding sequence of the exponents of 2 for which a prime is obtaiend:
$1,2,1,2,1,2,1,2,2,1,2,8,1,18,10,2,2,2,8(\ldots)$
Note: I also conjecture that there exist an infinity of pairs of primes $(p, p+6)$ such that n has that same value: such pairs are: $(5,11),(7,13),(11,17),(23,29),(31,37),(61,67)$ which create the primes $(53,113),(71,131),(113,173),(233,239),(311,317),(613$, 673).

Conjecture 3:

For any odd prime p there exist n , a power of 2 , such that, adding one to the number resulted concatenating to the right p with n, is obtained a prime.

The sequence of the primes obtained, for odd p and the least n for which the number obtained through concatenation is prime:
$317,53,73,113,139,173,193,233,293,313,373,419,479,5333,613,673,719,733$, 7933, 839, 163, 8933 (...)

The corresponding sequence of the exponents of 2 for which a prime is obtaiend:
$4,1,1,1,3,1,1,1,1,1,1,3,5,1,1,3,1,5,3,1,5(\ldots)$
Note: I also conjecture that there exist an infinity of pairs of primes ($p, p+6$) such that n has that same value: such pairs are: $(5,11),(11,17),(17,23)$ which create the primes $(53$, $113),(113,173),(173,233)$.

9. Conjecture on the infinity of a set of primes obtained from Sophie Germain primes

Abstract

In this paper I conjecture that there exist an infinity of primes of the form $2^{*} p^{\wedge} 2-p-2$, where p is a Sophie Germain prime, I show first few terms from this set and few larger ones.

Conjecture:

There exist an infinity of primes of the form $q=2^{*} p^{\wedge} 2-p-2$, where p is a Sophie Germain prime (that obviously implies that there are infinitely many Sophie Germain primes).

The first few terms of this set:

$\mathrm{q}=13,43,229,1033,3319,5563,13693,25423,63901,108343,114001,157639$, 171403, 257401, 392053, 1103353, 2051323, 2432113, 3969151, 4140001, 4209349 (...), obtained for $\mathrm{p}=3,5,11,23,41,53,83,113,179,233,239,281,293,359,443,743$, 1013, 1103, 1409, 1439, 1451 (...)

Five consecutive larger terms:

$$
\begin{aligned}
& \mathrm{q}=751577599183783 \text { for } \mathrm{p}=19385273 \text {; } \\
& \mathrm{q}=751743236079151 \text { for } \mathrm{p}=19387409 ; \\
& \mathrm{q}=751746493167349 \text { for } \mathrm{p}=19387451 ; \\
& \mathrm{q}=751876782481189 \text { for } \mathrm{p}=19389131 \text {; } \\
& \mathrm{q}=751901445657751 \text { for } \mathrm{p}=19389449 .
\end{aligned}
$$

Note:

Beside the first two Sophie Germain primes, the numbers 2 and 3, all the others are odd primes of the form $9 * \mathrm{k}+2,9 * \mathrm{k}+5$ or $9 * \mathrm{k}+8$ (and all the numbers q from the set presented above are of the form $9 * \mathrm{k}+1,9 * \mathrm{k}+4$ or $9 * \mathrm{k}+7$). I conjecture that there exist an infinity of primes of the form $\mathrm{q}=2^{*} \mathrm{p}^{\wedge} 2-\mathrm{p}-2$, where p is a Sophie Germain prime, such that, reiterating the operation of addition of the digits of q, is eventually reached the number 13 (e.g. the sum of the digits of $q=751577599183783$ is 85 and $8+5=13$, the sum of the digits of $q=751746493167349$ is 76 and $7+6=13$ and the sum of the digits of $q=751901445657751$ is 67 and $6+7=13$).

10. Conjecture which states that there exist an infinity of squares of primes of the form 109+420k

Abstract

In this paper I conjecture that there exist an infinity of squares of primes of the form $109+420 * \mathrm{k}$, also an infinity of primes of this form and an infinity of semiprimes $p^{*} g$ of this form such that $q-p=60$.

Conjecture:

There exist an infinity of squares of primes of the form $\mathrm{p}^{\wedge} 2=109+420 * \mathrm{k}$, where k positive integer.

The first eight terms of this set:

$\mathrm{p}^{\wedge} 2=529\left(=23^{\wedge} 2\right), \quad 1369\left(=37^{\wedge} 2\right), \quad 2209\left(=47^{\wedge} 2\right), \quad 10609\left(=10 \wedge^{\wedge} 2\right), \quad 11449\left(=107^{\wedge} 2\right)$, $26569\left(=163^{\wedge} 2\right), 29929\left(=173^{\wedge} 2\right), 54289\left(=233^{\wedge} 2\right)(\ldots)$, obtained for $\mathrm{k}=1,3,5,25,27,63$, 71, 129 (...)

Conjecture:

There exist an infinity of primes of the form $\mathrm{p}=109+420 * \mathrm{k}$, where k positive integer.

The first twenty terms of this set:

$\mathrm{p}=109,1789,3049,3469,3889,4729,5569,6829,7669,8089,8929,9349,9769$, $12289,14389,15649,16069,17749,18169,19009(\ldots)$, obtained for $\mathrm{k}=0,4,7,8,9,11$, $13,16,18,19,21,22,23,29,34,37,38,42,43,45$ (...)

Note that, for k from 55 to 60 , the formula creates a chain of six consecutive primes (23209, 23629, 24049, 24469, 24889, 25309).

Conjecture:

There exist an infinity of semiprimes of the form $\mathrm{p} * \mathrm{q}=109+420 * \mathrm{k}$, where k positive integer, such that $\mathrm{q}-\mathrm{p}=60$.

The first six terms of this set:

$\mathrm{p} * \mathrm{q}=60483(=13 * 73), \quad 5989(=53 * 113), \quad 8509(67 * 127), \quad 15229(=97 * 157)$, $21509(=137 * 197), 37909(=167 * 227)(\ldots)$, obtained for $\mathrm{k}=2,14,20,36,64,90(\ldots)$

Comment:

The conjectures above inspired me a way to find larger primes when you know two primes p, q such that $\mathrm{q}-\mathrm{p}=60$, both primes of the form $10 * \mathrm{k}+3$ or of the form $10^{*} \mathrm{k}+$ 7. There are almost sure easy to find primes between the numbers of the form $\mathrm{p} * \mathrm{q}-$ $210^{*} \mathrm{k}$, where k positive integer.

Examples:

: $\quad \mathrm{m}=13 * 73-210 * \mathrm{k}$ is prime for $\mathrm{k}=1(\mathrm{~m}=739)$;
: $\quad \mathrm{m}=23 * 83-210 * \mathrm{k}$ is prime for $\mathrm{k}=1(\mathrm{~m}=1699)$;
: $\quad \mathrm{m}=37 * 97-210 * \mathrm{k}$ is prime for $\mathrm{k}=2(\mathrm{~m}=3169)$;
: $\quad \mathrm{m}=43 * 103-210 * \mathrm{k}$ is prime for $\mathrm{k}=1(\mathrm{~m}=4219)$;
: $\quad \mathrm{m}=104123 * 104183-210 * \mathrm{k}$ is prime for $\mathrm{k}=7(\mathrm{~m}=10847845039)$;
: $\quad \mathrm{m}=104183 * 104243-210 * \mathrm{k}$ is prime for $\mathrm{k}=1(\mathrm{~m}=10860348259)$;
: $\quad \mathrm{m}=104323 * 104383-210 * \mathrm{k}$ is prime for $\mathrm{k}=3(\mathrm{~m}=10889547079)$;
: $\quad \mathrm{m}=104537^{*} 104597-210^{*} \mathrm{k}$ is prime for $\mathrm{k}=6(\mathrm{~m}=10934255329)$;
: $\quad \mathrm{m}=104623 * 104683-210 * \mathrm{k}$ is prime for $\mathrm{k}=1(\mathrm{~m}=10952249299)$.
Note that the formula $\mathrm{p} * \mathrm{q}+210 * \mathrm{k}$ (under the given conditions) seems also to conduct pretty soon to primes; for m from the last five examples above we have:
$: \quad 104123 * 104183+210 * 3=10847847139$, prime;
$: \quad 104183 * 104243+210 * 9=10860350359$, prime;
$: \quad 104323 * 104383+210 * 2=10889548129$, prime;
$: \quad 104537 * 104597+210^{*} 4=10934257429$, prime;
$: \quad 104623 * 104683+210 * 1=10952249719$, prime.

11. Seven conjectures on the squares of primes involving the number 4320 respectively deconcatenation

Abstract

In this paper I make three conjectures regarding a certain relation between the number 4320 and the squares of primes respectively four conjectures on squares of primes involving deconcatenation.

Conjecture 1:

There exist an infinity of primes of the form $\mathrm{p}^{\wedge} 2+4320$, where p is prime.

Such primes are:

$$
\begin{array}{ll}
: & 4339=4320+19^{\wedge} 2 ; \\
: & 4441=4320+11^{\wedge} 2 ; \\
: & 5281=4320+31^{\wedge} 2 ; \\
: & 5689=4320+37^{\wedge} 2 ; \\
: & 6529=4320+47^{\wedge} 2 ; \\
: & 7129=4320+53^{\wedge} 2 ; \\
: & \\
\vdots & 9649=4320+73^{\wedge} 2 ; \\
: & 12241=4320+89^{\wedge} 2 ; \\
: & 13729=4320+97^{\wedge} 2 ; \\
: & 14929=4320+103^{\wedge} 2 ; \\
21481=4320+131^{\wedge} 2 .
\end{array}
$$

Conjecture 2:

There exist an infinity of semiprimes of the form $q 1 * q 2=p^{\wedge} 2+4320$, where p is prime, such that $\mathrm{q} 2-\mathrm{q} 1+1$ is prime.

Such semiprimes are:

$$
\begin{array}{ll}
: & 4369=4320+7^{\wedge} 2=17^{*} * 257(257-17+1=241, \text { prime }) ; \\
: & 4609=4320+17^{\wedge} 2=11^{*} 419(419-11+1=409, \text {, prime }) ; \\
: & 6001=4320+41^{\wedge} 2=17^{*} 353(353-17+1=337, \text { prime }) ; \\
: & 7801=4320+59^{\wedge} 2=29^{*} 269(269-29+1=241, \text { prime }) ; \\
: & 11209=4320+83^{\wedge} 2=11^{*} 1019(1019-11+1=1009, \text { prime }) ; \\
: & 15769=4320+107^{\wedge} 2=13^{*} 1213(1213-13+1=1201, \text { prime }) ; \\
: & 16201=4320+109^{\wedge} 2=17^{*} 953(953-17+1=937, \text { prime }) ; \\
: & 23089=4320+137^{\wedge} 2=11^{*} 2099(2099-11+1=2089, \text { prime }) ; \\
: & 23641=4320+139^{\wedge} 2=47^{*} 503(503-47+1=457, \text { prime }) ; \\
: & 28969=4320+157^{\wedge} 2=59^{*} 491(491-59+1=433, \text { prime }) ; \\
: & 32209=4320+167^{\wedge} 2=31^{*} 1039(1039-31+1=1009, \text { prime }) ; \\
: & 34249=4320+173^{\wedge} 2=29^{*} 1181(1181-29+1=1153, \text { prime }) .
\end{array}
$$

Conjecture 3:

There exist an infinity of semiprimes of the form $\mathrm{q} 1 * \mathrm{q} 2=\mathrm{p}^{\wedge} 2+4320$, where p is prime, such that $\mathrm{q} 2-\mathrm{q} 1+1$ is a power of prime.

Such semiprimes are:

$$
\begin{array}{ll}
: & 4681=4320+19^{\wedge} 2=31^{*} 151\left(151-31+1=121=11^{\wedge} 2\right) ; \\
: & 4849=4320+23^{\wedge} 2=13^{*} 373\left(373-13+1=361=19^{\wedge} 2\right) ; \\
: & 6169=4320+43^{\wedge} 2=31^{*} 199\left(199-31+1=169=13^{\wedge} 2\right) ; \\
: & 8809=4320+67^{\wedge} 2=23^{*} 383\left(383-23+1=361=19^{\wedge} 2\right) ; \\
: & 10561=4320+79^{\wedge} 2=59^{*} 179\left(179-59+1=121=11^{\wedge} 2\right) ; \\
: & 26521=4320+149^{\wedge} 2=11^{*} 2411\left(2411-11+1=2401=7^{\wedge} \wedge\right) .
\end{array}
$$

Note:

For the squares of the 27 from the first 35 primes p greater than or equal to 7 the number $\mathrm{p}^{\wedge} 2+4320$ is either prime either semiprime $\mathrm{q} 1 * \mathrm{q} 2$ such that $\mathrm{q} 2-\mathrm{q} 1+1$ is prime or square of prime. For other two primes p the number $\mathrm{p}^{\wedge} 2+4320=\mathrm{q} 1 * q 2 * q 3$ such that q 1 $+\mathrm{q} 2+\mathrm{q} 3$ is prime $\left(8041=61^{\wedge} 2+4320=11^{*} 17 * 43\right.$ and $11+17+43=71 ; 9361=71^{\wedge} 2$ $+4320=11^{*} 23 * 37$ and $11+23+37=71$) and for other two primes p the number $p^{\wedge} 2+$ 4320 is a square $\left(13^{\wedge} 2+4320=4489=67^{\wedge} 2\right.$ and $127^{\wedge} 2+4320=20449=11^{\wedge} 2^{*} 13^{\wedge} 2$.

Conjecture 4:

There exist an infinity of primes formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such primes are:

: $\quad 409$ formed from $49=7 \wedge 2$;
$: \quad 1021$ formed from $121=11^{\wedge} 2$;
: $\quad 1069$ formed from $169=13^{\wedge} 2$;
: $\quad 2089$ formed from $289=17 \wedge 2 ;$
: $\quad 3061$ formed from $361=19^{\wedge} 2$;
: 10369 formed from $1369=37^{\wedge} 2$;
: $\quad 20809$ formed from $2809=53^{\wedge} 2$;
: $\quad 50329$ formed from $5329=73^{\wedge} 2$;
: $\quad 60889$ formed from $6889=83^{\wedge} 2$;
: $\quad 70921$ formed from $7921=89^{\wedge} 2$;
: 100609 formed from $10609=103 \wedge 2$;
$: \quad 101449$ formed from $11449=107^{\wedge} 2$;
$: \quad 102769$ formed from $12769=113 \wedge 2$;
$: \quad 106129$ formed from $16129=127^{\wedge} 2$;
: $\quad 108769$ formed from $18769=137 \wedge 2$;
$: \quad 109321$ formed from $19321=139^{\wedge} 2$;
$: \quad 202201$ formed from $22201=149^{\wedge} 2$.

Conjecture 5:

There exist an infinity of semiprimes $\mathrm{q} 1 * \mathrm{q} 2$ such that $\mathrm{q} 2-\mathrm{q} 1+1$ is prime or square of prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such semiprimes are:

$: \quad 5029=47 * 107$ formed from $529=23 \wedge 2(107-47+1=61$, prime $)$;
$: \quad 10681=11^{*} 971$ formed from $1681=41^{\wedge} 2\left(971-11+1=961=31^{\wedge} 2\right)$;
$: \quad 30721=31^{*} 991$ formed from $3721=61^{\wedge} 2\left(991-31+1=961=31^{\wedge} 2\right)$;
: $\quad 40489=19 * 2131$ formed from $4489=67 \wedge 2(2131-19+1=2113$, prime $)$;
$: \quad 60241=107 * 563$ formed from $6241=79^{\wedge} 2(563-107+1=457$, prime $)$;
: $\quad 90409=11 * 8219$ formed from $9409=97 \wedge 2(8219-11+1=8209$, prime $)$;
$: \quad 100201=97^{*} 1033$ formed from $9409=101^{\wedge} 2(1033-97+1=937$, prime $)$;
$: \quad 107161=101^{*} 1061$ formed from $17161=131^{\wedge} 2\left(1061-101+1=961=31^{\wedge} 2\right)$;
$: \quad 202801=139 * 1459$ formed from $22801=151^{\wedge} 2(1459-139+1=1321$, prime $)$;
$: \quad 204649=19 * 10771$ formed from $24649=157 \wedge 2(10771-19+1=10753$, prime).

Conjecture 6:

There exist an infinity of semiprimes $\mathrm{q} 1 * \mathrm{q} 2$ such that $\mathrm{q} 2-\mathrm{q} 1+1=\mathrm{q} 3 * \mathrm{q} 4$ where $\mathrm{q} 4-\mathrm{q} 3$ +1 is prime or square of prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such semiprimes are:

$$
\begin{array}{ll}
: & 10849=19^{*} 571 \text { formed from } 1849=43^{\wedge} 2(571-19+1=553=7 * 79 \text { and } 79-7 \\
+1=73, \text { prime }) ; \\
: & 20209=7^{*} 2887 \text { formed from } 2209=47^{\wedge} 2(2887-7+1=2881=43 * 67 \text { and } 67 \\
& \left.-43+1=25=5^{\wedge} 2\right) ; \\
: & 50041=163^{* 307} \text { formed from } 5041=71^{\wedge} 2(307-163+1=145=5 * 29 \text { and } 29 \\
& \left.-5+1=25=5^{\wedge} 2\right) .
\end{array}
$$

Conjecture 7:

There exist an infinity of composites $\mathrm{q} 1 * \mathrm{q} 2 * \mathrm{q} 3$ such that $\mathrm{q} 1+\mathrm{q} 2+\mathrm{q} 3$ is prime formed by deconcatenating a square of a prime and inserting the digit 0 between the first of its digits and the others.

Such composites are:

: $\quad 8041=11^{*} 17^{*} 43$ formed from $841=29^{\wedge} 2(11+17+43=71$, prime $) ;$
$: \quad 9061=13^{*} 17 * 41$ formed from $961=31^{\wedge} 2(13+17+41=71$, prime $)$;
$: \quad 30481=11^{*} 17^{*} 163$ formed from $3481=59^{\wedge} 2(11+17+163=71$, prime $)$;
$: \quad 101881=13^{*} 17^{*} 461$ formed from $11881=109^{\wedge} 2(13+17+461=491$, prime $)$;
$: \quad 206569=11^{*} 89^{*} 211$ formed from $26569=163^{\wedge} 2(11+89+211=311$, prime $)$.

Note:

For all 35 from the first 35 primes greater than or equal to 7 the number formed in the way mentioned satisfies one of the conditions defined in the four conjectures above.

12. Three conjectures on a sequence based on concatenation and the odd powers of the number 2

Abstract

In this paper I make three conjectures regarding the infinity of prime terms respectively the infinity of a certain kind of semiprime terms of the sequence obtained concatenating the odd powers of the number 2 to the left respectively to the right with the digit 1.

The sequence of the numbers obtained concatenating the odd powers of the number 2 to the left respectively to the right with the digit 1 (see A004171 in OEIS for the odd powers of the number 2):

121, 181, 1321, 11281, 15121, 120481, 181921, 1327681, 11310721, 15242881, 120971521, 183886081, 1335544321, 11342177281, 15368709121, 121474836481, 185899345921, 1343597383681, 11374389534721, 15497558138881, 121990232555521, 187960930222081, 1351843720888321, 11407374883553281, 15629499534213121 (...)

Conjecture 1:

There exist an infinity of primes of the form 1 n 1 (where 1 n 1 is a number formed by concatenation, not $1 * \mathrm{n}$ * 1 , where n is an odd power of 2 .

Such primes are:

181, 1321, 15121, 1335544321, 121474836481, 1351843720888321, 194447329657392904273921, 1405648192073033408478945025720321 , 125961484292674138142652481646100481 , 1425352958651173079329218259289710264321 , 16805647338418769269267492148635364229121 (...)

Conjecture 2:

There exist an infinity of semiprimes $\mathrm{q} 1 * \mathrm{q} 2$ of the form 1 n 1 , where n is an odd power of 2 , such that $\mathrm{q} 2-\mathrm{q} 1+1$ is prime or square of prime.

```
: 11281 = 29*389(389-29+1 = 361 = 19^2);
: 120481 = 211*571 (571-211+1 = 361 = 19^2);
: 1327681=467*2843 (2843-467+1=2377, prime);
: }\quad11310721=2777*4073(4073-2777+1=1297, prime);
: 185899345921=61*3047530261 (3047530261-61+1=3047530201, prime);
:127222589353675077077069968594541456916481 =
535583191189*237540295227039642622315748029
(237540295227039642622315748029 - 535583191189 + 1 =
237540295227039642086732556841, prime).
```


Conjecture 3:

There exist an infinity of semiprimes $\mathrm{q} 1 * \mathrm{q} 2$ of the form 1 n 1 , where n is an odd power of 2 , such that $\mathrm{q} 2-\mathrm{q} 1+1=\mathrm{q} 3 * \mathrm{q} 4$, where $\mathrm{q} 4-\mathrm{q} 3+1$ is prime, square of prime or semiprime with the property that, reiterating the operation described, it's finnaly reached a prime or a square of prime.
$: \quad 181921=109 * 1669(1669-109+1=1561=7 * 223$ and $223-7+1=217=$ 7*31 and $31-7+1=25=5^{\wedge} 2$);
$: \quad 15242881=331 * 46051(46051-331+1=45721=13 * 3517$ and $3517-13+1$ $=3505=5 * 701$ and $701-5+1=697=17 * 41$ and $41-17+1=25=5 \wedge 2$);
$: \quad 120971521=11 * 10997411(10997411-11+1=10997401=137 * 80273$ and $80273-137+1=80137=127^{*} 631$ and $631-127+1=505=5 * 101$ and $101-$ $5+1=97$, prime);
$: \quad 11407374883553281=61 * 187006145632021(187006145632021-61+1=$ $187006145631961=19813 * 9438557797$ and $9438557797-19813+1=$ $9438537985=5^{*} 1887707597$ and $1887707597-5+1=1887707597$, prime $)$.

13. Two conjectures on the numbers obtained concatenating the integers of the form $6 \mathrm{k}+1$ with the digits 081

Abstract

In this paper I conjecture that there exist an infinity of positive integers m of the form $6 * k+1$ such that the numbers formed by concatenation $n=m 081$ are primes or powers of primes, respectively semiprimes $p^{*} q$ such that $q-p+1$ is prime or power of prime.

Conjecture 1:

There exist an infinity of positive integers m of the form $6 * k+1$ such that the numbers formed by concatenation $\mathrm{n}=\mathrm{m} 081$ are primes or powers of primes.

Such pairs [m, n] are:

: [19, 19081]; [31, 31081]; [97, 97081]; [49, 49081]; [85, 85081]; [91, 91081]; [121, 121081]; [127, 127081]; [157, 157081]; [175, 175081]; [181, 181081]; [187, 187081]; [199, 199081]; [205, 205081]; [217, 217081]; [229, 229081]; [241, 241081 = 491^2]; [253, 253081]; [259, 259081 = 509^2]; [295, 295081]; [313, 313081]; [325, 325081]; [331, 331081]; [337, 337081]; [343, 343081]; [349, 349081]; [379, 379081]; [385, 385081]; [409, 409081]; [421, 421081]; [427, 427081]; [439, 439081]; [475, 475081]; [517, 517081]; [559, 559081]; [577, 577081]; [563, 563081]; [569, 569081]; [595, 595081]; [607, 607081]...

Conjecture 2:

There exist an infinity of positive integers m of the form $6 * k+1$ such that the numbers formed by concatenation $\mathrm{n}=\mathrm{m} 081$ are semiprimes $\mathrm{p} * \mathrm{q}$ such that $\mathrm{q}-\mathrm{p}+1$ is prime or power of prime.

Such pairs [m, n] are:

```
: [1, 1081 = 23*47 and 47-23+1=25 = 5^2];
: [7,7081 = 73*97 and 97-73+1=25 = 5^2];
: [13,13081 = 103*127 and 127-103+1=25 = 5^2];
: [37,37081=11*3371 and 3371-11+1=3361];
: [43,43081 = 67*643 and 643-67 + 1 = 577];
: [73,73081 = 107*683 and 683-107 + 1 = 577];
: [79,79081 = 31*2551 and 2551-31+1=2521];
: [115,115081 = 157*733 and 733-157 + 1 = 577];
: [145, 145081 = 59*2459 and 2459-59+1=2401 = 7^4];
: [247, 247081 = 211*1171 and 1171-211+1=961 = 31^2];
: [271, 271081 = 307*883 and 883-307 + 1 = 577];
: [463,463081=571*811 and 811-571+1=241];
: [529,529081 = 7*75583 and 75583-7+1=75577];
: [535,535081 = 109*4909 and 4909-109 + 1 = 4801];
: [541,541081 = 199*2719 and 2719-199 + 1 = 2521];
: [547,547081 = 229*2389 and 2389-229 + 1 = 2161][...]
```


14. Three conjectures on the numbers obtained concatenating the multiples of 30 with the squares of primes

Abstract

In this paper I conjecture that there exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are primes or powers of primes, respectively semiprimes $p^{*} q$ such that $q-p+1$ is prime or power of prime, respectively semiprimes $\mathrm{p} 1 * \mathrm{q} 1$ such that $\mathrm{q} 1-\mathrm{p} 1+1$ is semiprime $\mathrm{p} 2 * \mathrm{q} 2$ such that $\mathrm{q} 2-\mathrm{p} 2+1$ is prime or power of prime.

Conjecture 1:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b, which are primes or powers of primes.

Such triplets $[a, b, a b]$ are:

: $\quad[30,49,3049] ;[30,169,30169] ;[30,529,30529] ;[30,841,30841] ;[30,1681$, 301681]; [30, 4489, 304489]; [30, 5329, 305329]; [60, 169, 60169]; [60, 289, 60289]; [60, 961, 60961]; [60, 1849, 601849]; [60, 5329, 605329]; [60, 6241, 606241]; [60, 7921, 607921]; [90, 49, 9049]; [90, 121, 90121]; [90, 289, 90289]; [90, 529, 90529]; [90, 841, 90841]; [90, 4489, 904489]; [90, 5329, 905329]; [90, 9409, 909409]; [120, 49, 12049]; [120, 121, 120121]; [150, 169, 150169]; [180, 49, 18049]; [180, 289, 180289]; [210, 361, 210361]; [240, 49, 24049]; [270, 121, 270121]; [300, 961, 300961]; [330, 49, 33049]...

Note:

Two interesting sequences can be made:
(1) The least prime p for which the numbers formed by concatenation $\mathrm{mp}^{\wedge} 2$, where m $=30 * \mathrm{n}$, n taking positive integer values, are primes:

$$
: 7,13,11,11,13,7,19,7,11,31,7\{\ldots)
$$

(2) The least positive integer n for which the numbers formed by concatenation $m \wedge^{\wedge} 2$, where $m=30^{*} n, p$ taking the values of primes greater than or equal to 7 , are primes:

$$
: 1,3,1,2,6,1,1,2,5,1,2,5,7(\ldots)
$$

Conjecture 2:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b , which are semiprimes $\mathrm{p}^{*} \mathrm{q}$ such that $\mathrm{q}-\mathrm{p}+1$ is prime or power of prime.

Such triplets [a, b, ab] are:

$$
\begin{array}{rlrl}
: & & {\left[30,1849,301849=151 * 1999 \text { and } 1999-151+1=1849=43^{\wedge} 2\right] ;} \\
: & & {\left[30,3481,303481=157^{*} 1933 \text { and } 1933-157+1=1777\right] ;} \\
: & {\left[30,9409,309409=277^{*} 1117 \text { and } 1117-277+1=841=29^{\wedge} 2\right] ;}
\end{array}
$$

$$
\begin{array}{ll}
: & {\left[60,49,6049=23^{*} 263 \text { and } 263-23+1=241\right] ;} \\
: & {[60,121,60121=59 * 1019 \text { and } 1019-59+1=961=31 \wedge 2] ;} \\
: & {[60,529,60529=7 * 8647 \text { and } 8647-7+1=8641] ;} \\
: & {\left[60,841,60841=11^{*} 5531 \text { and } 5531-11+1=5521\right] ;} \\
: & {\left[60,2209,602209=23^{*} 26183 \text { and } 26183-23+1=26161\right] ;} \\
: & {\left[60,2809,602809=617^{*} 977 \text { and } 977-617+1=361=19^{\wedge} 2\right] ;} \\
: & {\left[60,3481,603481=79^{*} 7639 \text { and } 7639-79+1=7561\right] ;} \\
: & {[60,5041,605041=167 * 3623 \text { and } 3623-167+1=3457] ;} \\
: & {[60,9409,609409=113 * 5393 \text { and } 5393-113+1=5281] ;} \\
: & {[90,169,90169=37 * 2437 \text { and } 2437-37+1=2401=7 \wedge 4] ;} \\
: & {[90,1369,901369=7 * 128767 \text { and } 128767-7+1=128761] ;} \\
: & {\left[90,2809,902809=859^{*} 1051 \text { and } 1051-859+1=193\right] ;} \\
: & {\left[120,169,120169=7 * 17167 \text { and } 17167-7+1=17161=131^{\wedge} 2\right] ;} \\
: & {\left[150,49,15049=101^{*} 149 \text { and } 149-101+1=49=7^{\wedge} 2\right] ;} \\
: & {\left[150,289,150289=137^{*} 1097 \text { and } 1097-137+1=961=31 \wedge 2\right] ;} \\
: & {\left[180,121,180121=281^{*} 641 \text { and } 641-281+1=361=19^{\wedge} 2\right] ;} \\
{[\cdots]} & {\left[180,529,180529=73^{*} 2473 \text { and } 2473-73+1=2401=7^{\wedge}\right] ;} \\
. . . &
\end{array}
$$

Conjecture 3:

There exist an infinity of numbers ab formed by concatenation from a multiple of 30 , a, and a square of a prime, b , which are semiprimes $\mathrm{p} 1 * \mathrm{q} 1$ such that $\mathrm{q} 1-\mathrm{p} 1+1$ is semiprime $\mathrm{p} 2 * \mathrm{q} 2$ such that $\mathrm{q} 2-\mathrm{p} 2+1$ is prime or power of prime.

Such triplets [a, b, ab] are:

```
: [30,289,30289 = 7*4327 and 4327-7 + 1 = 4321 = 29*149 and 149-29 + 1 =
    121 = 11^2];
: [30,361, 30361 = 97*313 and 313-97+1=217= 7*31 and 31-7+1=25=
    5^2];
: [ [30, 961, 30961 = 7*4423 and 4423-7 + 1 = 4417 = 7*631 and 631-7 + 1 =
    625 = 5^4];
: [ [30, 1369,301369 = 23*13103 and 13103-23+1 = 13081 = 103*127 and 127-
    103+1 = 25 = 5^2];
: [ [60, 4489,604489 = 83*7283 and 7283-83+1=7201 = 19*379 and 379-19 +
    1 = 361 = 19^2];
: [90,5041, 905041 = 89*10169 and 10169-89 + 1 = 10081 = 17*593 and 593-
    17 + 1 = 577];
: [120,529,120529=43*2803 and 2803-43+1=2761 = 11*251 and 251-11+
    1 = 241];
[...]
```


Part Two.
 The notions of \mathbf{c} / \mathbf{m}-integers and \mathbf{g} / \mathbf{s}-integers

15. Operation based on squares of primes for obtaining twin primes and twin c-primes and the definition of a c-prime

Abstract

In this paper I show how, concatenating to the right the squares of primes with the digit 1 , are obtained primes or composites $\mathrm{n}=\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} . .{ }^{*} \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2)$, $\ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which seems to have often (I conjecture that always) the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the numbers $\mathrm{p}(\mathrm{k})+\mathrm{p}(\mathrm{h}) \pm 1$ are twin primes or twin c-primes and I also define the notion of a c-prime.

Conjecture:

Concatenating to the right the squares of primes, greater than or equal to 5 , with the digit 1 , are obtained always either primes either composites $\mathrm{n}=\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots * \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which have the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the numbers $p(k)+p(h) \pm 1$ are twin primes or twin c-primes.

Definition:

We name a c-prime a positive odd integer which is either prime either semiprime of the form $\mathrm{p}(1) * \mathrm{q}(1), \mathrm{p}(1)<\mathrm{q}(1)$, with the property that the number $\mathrm{q}(1)-\mathrm{p}(1)+1$ is either prime either semiprime $\mathrm{p}(2) * \mathrm{q}(2)$ with the property that the number $\mathrm{q}(2)-\mathrm{p}(2)+1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 4979 is a c-prime because $4979=13 * 383$, where $383-13+1=371=7 * 53$, where $53-7+1=47$, a prime.

Verifying the conjecture:

(for the first n primes greater than or equal to 5)
For $\mathrm{p}=5, \mathrm{p}^{\wedge} 2=25$;
: the number 251 is prime;
For $\mathrm{p}=7, \mathrm{p}^{\wedge} 2=49$;
: the number 491 is prime;
For $\mathrm{p}=11, \mathrm{p}^{\wedge} 2=121$;
: $\quad 1211=7 * 173$; indeed, the numbers $7+173 \pm 1$ are twin primes (179 and 181);
For $\mathrm{p}=13, \mathrm{p}^{\wedge} 2=169$;
: $\quad 1691=19 * 89$; indeed, the numbers $19+89 \pm 1$ are twin primes (107 and 109);

For $\mathrm{p}=17, \mathrm{p}^{\wedge} 2=289$;
$: \quad 2891=49 * 59$; indeed, the numbers $49+59 \pm 1$ are twin primes (107 and 109);
For $\mathrm{p}=19, \mathrm{p}^{\wedge} 2=361$;
: $\quad 3611=23^{*} 157$; indeed, the numbers $23+157 \pm 1$ are twin primes (179 and 181);
For $\mathrm{p}=23, \mathrm{p}^{\wedge} 2=529$;
$: \quad 5291=11 * 13 * 37$; indeed, the numbers $11 * 13+37 \pm 1$ are twin primes (179 and 181);

For $\mathrm{p}=29, \mathrm{p}^{\wedge} 2=841$;
: $\quad 8411=13^{*} 647$; indeed, the numbers $13+647 \pm 1$ are twin primes (659 and 661);
For $\mathrm{p}=31, \mathrm{p}^{\wedge} 2=961$;
$9611=7 * 1373$; indeed, the numbers $7+1373 \pm 1$ are twin c-primes (1381 is prime and 1379 is c-prime because is equal to $7 * 197$, where $197-7+1=191$, which is prime);
For $\mathrm{p}=37, \mathrm{p}^{\wedge} 2=1369$;
: the number 13691 is prime;
For $\mathrm{p}=41, \mathrm{p}^{\wedge} 2=1681$;
: the number 16811 is prime;
For $\mathrm{p}=43, \mathrm{p}^{\wedge} 2=1849$;
$18491=11^{*} 41^{\wedge} 2$; indeed, the numbers $11+1681 \pm 1$ are twin c-primes (1693 is prime and 1691 is c-prime because is equal to $19 * 89$, where $89-19+1=71$, which is prime);
For $\mathrm{p}=47, \mathrm{p}^{\wedge} 2=2209$;
: the number 22091 is prime;
For $\mathrm{p}=53, \mathrm{p}^{\wedge} 2=2809$;
: $\quad 28091=7 * 4013$; indeed, the numbers $7+4013 \pm 1$ are twin primes (4019 and 4021);

For $\mathrm{p}=59, \mathrm{p}^{\wedge} 2=3481$;
: $\quad 34811=7 * 4973$; indeed, the numbers $7+4973 \pm 1$ are twin c-primes (4981 is cprime because is equal to $17 * 293$, where $293-17+1=277$, which is prime, and 4979 is c-prime because is equal to $13 * 383$, where $383-13+1=371=7 * 53$, where $53-7+1=47$, which is prime);
For $\mathrm{p}=61, \mathrm{p}^{\wedge} 2=3721$;
: $\quad 37211=127 * 293$; indeed, the numbers $127+293 \pm 1$ are twin primes (419 and 421);

For $\mathrm{p}=67, \mathrm{p}^{\wedge} 2=4489$;
$: \quad 44891=7 * 11^{\wedge} 2 * 53$; indeed, the numbers $7 * 53+11^{\wedge} 2 \pm 1$ are twin c-primes (491 is prime and 493 is c-prime because is equal to $17 * 29$, where $29-17+1=13$, which is prime);
For $\mathrm{p}=71, \mathrm{p}^{\wedge} 2=5041$;
the number 50411 is prime;
For $\mathrm{p}=73, \mathrm{p}^{\wedge} 2=5329$;
$53291=7 * 23 * 331$; indeed, the numbers $7 * 23+331 \pm 1$ are twin c-primes (491 is prime and 493 is c-prime because is equal to $17 * 29$, where $29-17+1=13$, which is prime);

Note that, coming to confirm the potential of the operation of concatenation used on squares of primes, concatenating to the right with the digit one the squares of the primes 67 and 73 are obtained the numbers $44891=7 * 11 \wedge 2 * 53$ and $53291=$ $7 * 23 * 331$ with the property that $7 * 53+1 \wedge^{\wedge} 2=7 * 23+331=492$, which is a fact interesting enough by itself.

For $\mathrm{p}=79, \mathrm{p}^{\wedge} 2=6241$;
$62411=139 * 449$; indeed, the numbers $139+449 \pm 1$ are twin c-primes (587 is prime and 589 is c-prime because is equal to $19 * 31$, where $31-19+1=13$, which is prime);
For $\mathrm{p}=83, \mathrm{p}^{\wedge} 2=6889$;
: the number 68891 is prime;
For $\mathrm{p}=89, \mathrm{p}^{\wedge} 2=7921$;
$79211=11^{*} 19^{*} 379$; indeed, the numbers $11 * 19+379 \pm 1$ are twin c-primes (587 is prime and 589 is c-prime because is equal to $19 * 31$, where $31-19+1=13$, which is prime);

Note that (see the note above also) concatenating to the right with the digit one the squares of the primes 79 and 89 are obtained the numbers $62411=139 * 449$ and $79211=11 * 19 * 379$ with the property that $139+449=11 * 19+379=588$.

For $\mathrm{p}=97, \mathrm{p}^{\wedge} 2=9409$;
: $\quad 94091=37 * 2543$; indeed, the numbers $37+2543 \pm 1$ are twin c-primes (2579 is prime and 2581 is c-prime because is equal to $29 * 89$, where $89-29+1=61$, which is prime).
For $\mathrm{p}=101, \mathrm{p}^{\wedge} 2=10201$;
$102011=7 * 13 * 19 * 59$; indeed, the numbers $7 * 13+19 * 59 \pm 1$ are twin c-primes (1213 is prime and 1211 is c-prime because is equal to $7 * 173$, where $173-7+1$ $=167$, which is prime).

16. Operation based on multiples of three and concatenation for obtaining primes and m-primes and the definition of a m-prime

Abstract

In this paper I show how, concatenating to the right the multiples of 3 with the digit 1 , obtaining the number m , respectively with the number 11 , obtaining the number n , by the simple operation $\mathrm{n}-\mathrm{m}+1$, under the condition that both m and n are primes, is obtained often (I conjecture that always) a prime or a composite $r=p(1) * p(2) * \ldots$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots$ are the prime factors of r , which have the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of r and $p(h)$ the product of the other distinct prime factors such that the number $p(k)+p(h)-1$ is mprime and I also define a m-prime.

Conjecture:

Concatenating to the right the multiples of 3 with the digit 1 , obtaining the number m , respectively with the number 11 , obtaining the number n, by the simple operation $n-m+$ 1 , under the condition that both m and n are primes, is obtained always a prime or a composite $\mathrm{r}=\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots$ are the prime factors of r , which have the following property: there exist $\mathrm{p}(\mathrm{k})$ and $\mathrm{p}(\mathrm{h})$, where $\mathrm{p}(\mathrm{k})$ is the product of some distinct prime factors of r and $p(h)$ the product of the other distinct prime factors such that the number $p(k)+p(h)-1$ is m-prime.

Definition:

We name a m-prime a positive odd integer which is either prime either semiprime of the form $p(1) * q(1)$, with the property that the number $p(1)+q(1)-1$ is either prime either semiprime $\mathrm{p}(2) * \mathrm{q}(2)$ with the property that the number $\mathrm{p}(2)+\mathrm{q}(2)-1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 5411 is a m-prime because $5411=7 * 773$, where $7+773-1=779=19 * 41$, where $19+41-1=59$, a prime.

Verifying the conjecture:

(for the first 20 multiples of 3 for which both numbers obtained by concatenation with 1 respectively with 11 are primes)

For 3, both 31 and 311 are primes; the number $311-31+1=281$ is prime;
For 15, both 151 and 1511 are primes;
: the number $1511-151+1=1361$ is prime;
For 18, both 181 and 1811 are primes;
: \quad the number $1811-181+1=1631$ is m-prime because is equal to $7 * 233$ and $7+$ $233-1=239$ which is prime;
For 21, both 211 and 2111 are primes;
: the number $2111-211+1=1901$ is prime;
For 24, both 241 and 2411 are primes;
: \quad the number $2411-241+1=2171$ is m -prime because is equal to $13 * 167$ and 13 $+167-1=179$ which is prime;
For 27, both 271 and 2711 are primes;
: \quad the number $2711-271+1=2441$ is prime;
For 42 , both 421 and 4211 are primes;
: the number $4211-421+1=3791$ is m-prime because is equal to $17 * 223$ and 17 $+223-1=239$ which is prime;
For 57, both 571 and 5711 are primes;
: the number $5711-571+1=5141$ is m-prime because is equal to $53 * 97$ and $53+$ $97-1=149$ which is prime;
For 60, both 601 and 6011 are primes;
: the number $6011-601+1=5411$ is m-prime because is equal to $7 * 773$ and $7+$ $773-1=779=19 * 41$, where $19+41-1=59$, which is prime;
For 63, both 631 and 6311 are primes;
: the number $6311-631+1=5681$ is m-prime because is equal to $13 * 19 * 23$ and $13 * 19+23-1=269$ which is prime;
For 69, both 691 and 6911 are primes;
: the number $6911-691+1=6221$ is prime;
For 81, both 811 and 8111 are primes;
: the number $8111-811+1=7301$ is m-prime because is equal to $7 \wedge 2 * 149$ and $7 \wedge 2+149-1=197$ which is prime;
For 102, both 1021 and 10211 are primes;
: the number $10211-1021+1=9191$ is m-prime because is equal to $7 * 13 * 101$ and $7 * 13+101-1=191$ which is prime;
For 120, both 1201 and 12011 are primes;
: the number $12011-1201+1=10811$ is m-prime because is equal to $19 * 569$ and $19+569-1=587$ which is prime;
For 129, both 1291 and 12911 are primes;
: \quad the number $12911-1291+1=11621$ is prime;
For 183, both 1831 and 18311 are primes;
: the number $18311-1831+1=16481$ is prime;
For 216, both 2161 and 21611 are primes;
: the number $21611-2161+1=19451$ is m-prime because is equal to $53 * 367$ and $53+367-1=419$ which is prime;
For 225 , both 2251 and 22511 are primes;
: the number $22511-2251+1=20261$ is prime;
For 228 , both 2281 and 22811 are primes;
: the number $22811-2281+1=20531$ is m-prime because is equal to $7 \wedge 2 * 419$ and $7^{\wedge} 2+419-1=467$ which is prime;
For 267, both 2671 and 26711 are primes;
: the number $26711-2671+1=24041$ is m-prime because is equal to $29 * 829$ and $29+829-1=857$ which is prime.

17. Conjecture that states that any Carmichael number is a cm-composite

Abstract

In two of my previous papers I defined the notions of c-prime respectively mprime. In this paper I will define the notion of cm -prime and the notions of c-composite, m -composite and cm -composite and I will conjecture that any Carmichael number is a cm-composite.

Introduction:

Though, as I mentioned in Abstract, I already defined the notions of c-prime and m-prime in previous papers, in order to be, this paper, self-contained, I shall define them here too.

Definition 1:

We name a c-prime a positive odd integer which is either prime either semiprime of the form $\mathrm{p}(1) * \mathrm{q}(1), \mathrm{p}(1)<\mathrm{q}(1)$, with the property that the number $\mathrm{q}(1)-\mathrm{p}(1)+1$ is either prime either semiprime $p(2)^{*} q(2)$ with the property that the number $q(2)-p(2)+1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 4979 is a c-prime because $4979=13 * 383$, where $383-13+1=371=7 * 53$, where $53-7+1=47$, a prime.

Definition 2:

We name a m-prime a positive odd integer which is either prime either semiprime of the form $\mathrm{p}(1) * \mathrm{q}(1)$, with the property that the number $\mathrm{p}(1)+\mathrm{q}(1)-1$ is either prime either semiprime $p(2) * q(2)$ with the property that the number $p(2)+q(2)-1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 5411 is a m-prime because $5411=7 * 773$, where $7+773-1=779=19 * 41$, where $19+41-1=59$, a prime.

Definition 3:

We name a cm-prime a number which is both c-prime and m-prime.

Definition 4:

We name a c-composite the composite number with three or more prime factors $\mathrm{n}=$ $\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots * \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which has the following property: there exist $\mathrm{p}(\mathrm{k})$ and $\mathrm{p}(\mathrm{h})$, where $\mathrm{p}(\mathrm{k})$ is the product of some distinct prime factors of n and $\mathrm{p}(\mathrm{h})$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})-\mathrm{p}(\mathrm{h})+1$ is a c-prime.

Definition 5:

We name a m-composite the composite number with three or more prime factors $\mathrm{n}=$ $p(1)^{*} p(2)^{*} \ldots * p(m)$, where $p(1), p(2), \ldots, p(m)$ are the prime factors of n, which has the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})+\mathrm{p}(\mathrm{h})-1$ is a m-prime.

Definition 6:

We name a cm-composite a number which is both c -composite and m -composite.
Note: We will consider the number 1 to be a prime in the six definitions from above; we will not discuss the controversed nature of number 1 , just not to repeat in definitions "a prime or number 1".

Conjecture: Any Carmichael number is a cm-composite.

Verifying the conjecture

(for the first 11 Carmichael numbers):
For $561=3 * 11 * 17$ we have:
: the number $3 * 17-11+1=41$, a prime;
: \quad the number $3^{*} 17+11-1=61$, a prime.
For $1105=5^{*} 13^{*} 17$ we have:
: \quad the number $5 * 17-13+1=73$, a prime;
: \quad the number $5^{*} 17+13-1=97$, a prime.
For $1729=7 * 13 * 19$ we have:
: the number 7* $13-19+1=73$, a prime;
: the number $7 * 13+19-1=109$, a prime.
For $2465=5^{*} 17^{*} 29$ we have:
: the number $5 * 17-29+1=57=3 * 19$, a c-prime because $19-3+1=17$, a prime;
: the number $5^{*} 17+29-1=113$, a prime.
For $2821=7 * 13 * 31$ we have:
: the number $7 * 31-13+1=205=5 * 41$, a c-prime because $41-5+1=37$, a prime;
: the number 7*31+13-1=229, a prime.
For $6601=7 * 23 * 41$ we have:
: the number $23 * 41-7+1=937$, a prime;
: \quad the number $23 * 41+7-1=949=13 * 73$, a m-prime because $13+73-1=85=$ $5 * 17$ and $5+17-1=21=3 * 7$ and $3+7-1=9=3 * 3$ and $3+3-1=5$, a prime.
For $8911=7 * 19^{*} 67$ we have:
: the number $7 * 19-67+1=67$, a prime;
: the number $7 * 19+67-1=199$, a prime.
For $10585=5 * 29 * 73$ we have:
: the number $5 * 29-73+1=73$, a prime;
: the number $5 * 29+73-1=217=7 * 31$, a m-prime because $7+31-1=37$, a prime.

For $15841=7 * 31 * 73$ we have:
: \quad the number $7 * 31-73+1=145=5 * 29$, a c-prime because $29-5+1=25$ and 5 $-5+1=1$;
: \quad the number $7 * 31+73-1=289$, a m-prime because $17+17-1=33=3 * 11$ and $3+11-1=13$, a prime.
For $29341=13 * 37 * 61$ we have:
: the number $13 * 37-61+1=421$, a prime;
$: \quad$ the number $13 * 37+61-1=541$, a prime.
For $41041=7 * 11^{*} 13 * 41$ we have:
: the number $11 * 41-7 * 13+1=361$, a c-prime because $19-19+1=1$;
the number $11^{*} 41+7^{*} 13-1=541$, a prime.

18. Conjecture that states that, beside few definable exceptions, Poulet numbers are either c-primes, m-primes, c-composites or m-composites

Abstract

In one of my previous paper, "Conjecture that states than any Carmichael number is a cm-composite", I defined the notions of c-prime, m-prime, cm-prime, ccomposite, m -composite and cm -composite. I conjecture that all Poulet numbers but a set of few definable exceptions belong to one of these six sets of numbers.

Conjecture:

All Poulet numbers but a set of few definable exceptions belong to one of the following six sets of numbers: c-primes, m-primes, cm-primes, c-composites, m-composites and cm-composites.

Note:

Because the Poulet numbers with three or more prime factors have a nature which is nearer than the nature of Carmichael numbers (which, all of them, have three or more prime factors), we will verify the conjecture only for 2-Poulet numbers. We highlight that only 2-Poulet numbers can be c-primes, m-primes or cm-primes, because, by definition, these numbers can only be primes or semiprimes. That means that the conjecture implies that all Poulet numbers with three or more prime factors (beside the exceptions mentioned) are c -composites, m -composites or cm -composites.

Verifying the conjecture (for the first fifteen 2-Poulet numbers):
For $341=11 * 31$ we have:
: $\quad 31-11+1=21=3 * 7$ and $7-3+1=5$, a prime;
$: \quad 31+11-1=41$, a prime.
The number 341 is a cm-prime.
For $1387=19 * 73$ we have:
: $\quad 73-19+1=55=5 * 11$ and $11-5+1=7$, a prime;
$: \quad 73+19-1=91=7 * 13$ and $7+13-1=19$, a prime.
The number 1387 is a cm-prime.
For $2701=37 * 73$ we have:
: $\quad 73-37+1=37$, a prime;
$: \quad 73+37-1=109$, a prime.
The number 2701 is a cm-prime.
For $3277=29 * 113$ we have:
: $113-29+1=85=5^{*} 17$ and $17-15+1=3$, a prime;
: $\quad 29+113-1=141=3^{*} 47$ and $3+47-1=49=7 \wedge 2$ and $7+7-1=13$, a prime.
The number 3277 is a cm-prime.
For $4033=37 * 109$ we have:
: $109-37+1=73$, a prime;
$: \quad 37+109-1=145=5 * 29$ and $5+29-1=33=3 * 11$ and $3+11-1=13$, a prime.
The number 4033 is a cm-prime.

For $4369=17 * 257$ we have:
: $\quad 257-17+1=241$, a prime;
: $\quad 17+257-1=273=3 * 7 * 13$;
The number 4369 is a c-prime.
For $4681=31 * 151$ we have:
$: \quad 151-31+1=121=11^{\wedge} 2$, square of prime;
: $151+31-1=181$, prime;
The number 4681 is a cm-prime.
For $5461=43 * 127$ we have:
: $\quad 127-43+1=85=5^{*} 17$ and $17-5+1=13$, a prime;
$: \quad 127+43-1=169=13^{\wedge} 2$ and $13+13-1=25=5^{\wedge} 2$ and $5+5-1=9-3^{\wedge} 2$ and $3+3-1=5$, a prime;
The number 5461 is a cm-prime.
For $7957=73 * 109$ we have:
$: \quad 109-73+1=37$, prime;
: $73+109-1=181$, prime;
The number 7957 is a cm-prime.
For $8321=53 * 157$ we have:
$: \quad 157-53+1=105=3 * 5 * 7$;
$: \quad 53+157-1=209=11 * 19$ and $11+19-1=29$, prime;
The number 4681 is a m-prime.
For $10261=31 * 331$ we have:
$: \quad 331-31+1=301=7 * 43$ and $43-7+1=37$, prime;
$: \quad 31+331-1=361=19^{\wedge} 2$ and $19+19-1=37$, prime;
The number 10261 is a cm-prime.
For $13747=59 * 233$ we have:
: $\quad 233-59+1=175=5 \wedge 2 * 7$;
$: \quad 59+233-1=291=3^{*} 97$ and $3+97-1=99=3^{\wedge} 2^{*} 11$;
The number 13747 is not a c-number.
For $14491=43 * 337$ we have:
: $\quad 337-43+1=295=5 * 59$ and $59-5+1=55=5 * 11$ and $11-5+1=7$, prime;
$: \quad 43+337-1=379$, prime;
The number 14491 is a cm-prime.
For $15709=23 * 683$ we have:
$: \quad 683-23+1=661$, prime;
: $23+683-1=705=3 * 5 * 47$;
The number 15709 is a c-prime.
For $18721=97 * 193$ we have:
$: \quad 193-97+1=97$, prime;
$: \quad 97+193-1=289=17^{\wedge} 2$ and $17+17-1=33=3^{*} 11$ and $3+11-1=13$, prime;
The number 18721 is a cm-prime.

19. Formula based on squares of primes which conducts to primes, c-primes and m-primes

Abstract

In my previous paper "Conjecture that states that any Carmichael number is a cm -composite" I defined the notions of c-prime, m-prime and cm-prime, odd positive integers that can be either primes either semiprimes having certain properties, and also the notions of c-composites, m -composites and cm-composites. In this paper I present a formula based on squares of primes which seems to lead often to primes, c-primes, mprimes and cm-primes.

Observation:

Many terms (beside the first) of the sequence obtained through the iterative formula $\mathrm{a}(\mathrm{n}+$ $1)=2 * a(n)-1$, where $a(1)$ is a square of prime minus nine, are primes, c-primes, mprimes or a cm-primes.

Verifying the observation:

(for the first 14 terms of the sequence, beside $\mathrm{a}(1)$, when the prime is 5,7 or 11)
For $\mathrm{a}(1)=5^{\wedge} 2-9=16$ we obtain the following terms:
$: \quad a(2)=31$, a prime;
: $\quad a(3)=61$, a prime;
: $\quad \mathrm{a}(4)=121=11^{\wedge} 2$, a cm-prime (c-prime because is square of prime and $\mathrm{p}-\mathrm{p}+1=1$, a cprime by definition, and m-prime because $11+11-1=2=3 * 7$ and $7+3-1=9$ and $3+$ $3-1=5$, a prime);
: $\quad a(5)=241$, a prime;
$: \mathrm{a}(6)=481=13 * 37$, a cm-prime (c-prime because $37-13+1=25=5^{\wedge} 2$ and m-prime because $37+13-1=49=7 * 7$ and $7+7-1=13$, a prime;
$: \quad \mathrm{a}(7)=961=31^{\wedge} 2$, a cm-prime (c-prime because is a square of prime and m-prime because $31+31-1=61$, a prime;
: $\quad a(8)=1921=17 * 113$, a c-prime because $113-7+1=97$, a prime;
$: \quad \mathrm{a}(9)=3841=23 * 167$, a c-prime because $167-23=145=5 * 29$ and $29-5+1=25$, a square;
$: \quad \mathrm{a}(10)=7681$, a prime;
$: \quad a(11)=15361$, a prime;
$: \quad \mathrm{a}(12)=30721=31^{*} 991$, a cm-prime (c-prime because $991-31=961=31^{\wedge} 2$, a square and m-prime because $31+991-1=1021$, a prime;
$: \quad a(13)=61441$, a prime;
$: \quad \mathrm{a}(14)=122881=11 * 11171$, a c-prime because $11171-11+1=11161$, a prime;
For $\mathrm{a}(1)=7 \wedge 2-9=40$ we obtain the following terms:
: $\quad a(2)=79$, a prime;
$: \quad a(3)=157$, a prime;
$: \quad a(4)=313$, a prime;
: $\quad \mathrm{a}(5)=625=5 \wedge 4$, a mc-composite (c-composite because $5 * 5-5 * 5+1=1$, a c-prime by definition, and m -composite because $5 * 5+5 * 5-1=49=7 * 7$, a m-prime because $7-7$ $+1=1$);
$: \quad \mathrm{a}(6)=1249$, a prime;
$: \quad \mathrm{a}(7)=2497=11 * 227$, a c-prime because $227-11+1=217=7 * 31$ and $31-7+1=25$ $=5 * 5$ and $5-5+1=1$;
$: \quad \mathrm{a}(8)=4993$, a prime;
$: \quad \mathrm{a}(9)=9985=5 * 1997$, a c-prime because $1997-5+1=1993$, a prime;
$: \quad \mathrm{a}(10)=19969=19 * 1051$, a cm-prime (c-prime because $1051-19+1=1033$, a prime, and m-prime because $19+1051-1=1069$, a prime;
$: \quad \mathrm{a}(11)=39937$, a prime;
$: \quad a(12)=79873$, a prime;
$: \quad \mathrm{a}(13)=159745=5 * 43 * 743$, a c-composite because $5^{*} 743-43+1=3673$, a prime;
$: \quad \mathrm{a}(14)=319489$, a prime;
$: \quad \mathrm{a}(15)=638977$, a prime;
$: \quad \mathrm{a}(16)=1277953=101 * 12653$, a c-prime because $12653-101+1=12553$, a prime.
For $\mathrm{a}(1)=11^{\wedge} 2-9=112$ we obtain the following terms:
$: \quad a(2)=223$, a prime;
$: \quad \mathrm{a}(3)=445=5 * 89$, a cm-prime (a c-prime because $89-5+1=85=5 * 17$ and $17-5+1$ $=13$, a prime and m-prime because $89+5-1=93=3 * 31$ and $3+31-1=33=3 * 11$ and $3+11-1=13$, a prime);
$: \quad \mathrm{a}(4)=889=7 * 127$, a cm-prime (c-prime because $127-7+1=11^{\wedge} 2$, a square and $\mathrm{m}-$ prime because $7+127=133$, a prime);
$: \quad a(5)=1777$, a prime;
$: \quad \mathrm{a}(6)=3553=11^{*} 17^{*} 19$, a c-composite because $11^{*} 17-19+1=169=13 \wedge 2$, a square;
$: \quad \mathrm{a}(7)=7105=5 * 7^{\wedge} 2 * 29$, a cm-composite (c-composite because $5^{*} 29-7 * 7+1=97$, a prime and m -composite because $5 * 29+7 * 7-1=193$, a prime);
$: \quad \mathrm{a}(8)=14209=13 * 1093$, a c-prime because $1093-13+1=1081=23 * 47$ and $47-23+$ $1=25=5^{\wedge} 2$, a square;
$: \quad \mathrm{a}(9)=28417=157^{*} 181$, a cm-prime (c-prime because $181-157+1=25=5^{\wedge} 2$, a square and $\mathrm{m}=$ prime because $157+181-1=337$, a prime);
$: \quad \mathrm{a}(10)=56833=7 * 23 * 353$, a c-prime because $353-7 * 23=193$, a prime;
$: \quad \mathrm{a}(11)=113665=5 * 127^{*} 179$, a cm-prime (c-prime because $5^{*} 179-127+1=769$, a prime and m-prime because $5 * 179+127-1=1021$, a prime;
$: \quad \mathrm{a}(12)=227329=281 * 809$, a c-prime because $809-281+1=529=23 \wedge 2$, a square;
$: \quad \mathrm{a}(13)=454657=7 * 64951$, a c-composite because $64951-7+1=64945=5 * 31 * 419$ and $419-5 * 31+1=265=5 * 53$ and $53-5+1=47$, a prime;
$: \quad \mathrm{a}(14)=909313=17 * 89 * 601$, a cm-composite $(\mathrm{c}$-composite because $17 * 89-601+1=$ $913=11 * 83$ and $83-11+1=73$, a prime and m-composite because $17 * 89+601-1=$ 2113, a prime;
$: \quad \mathrm{a}(15)=1818625=5^{\wedge} 3 * 14549$ is a c-composite because $5^{\wedge} 2 * 14549-5+1=557 * 653$ and $653-557+1=97$, a prime.

20. Formula for generating c-primes and m-primes based on squares of primes

Abstract

In this paper I present a formula, based on squares of primes, which seems to generate a large amount of c-primes and m-primes (I defined the notions of c-primes and m -primes in my previous paper "Conjecture that states that any Carmichael number is a cm-composite").

Observation:

The formula $\mathrm{m}=\left(5^{*} \mathrm{n}+1\right)^{*} \mathrm{p}^{\wedge} 2-5^{*} \mathrm{n}$, where p is prime, $\mathrm{p} \geq 7$, and n positive integer, seems to generate often c-primes and m -primes.

Examples:

: \quad For $\mathrm{n}=1$ we have the formula $\mathrm{m}=6^{*} \mathrm{p}^{\wedge} 2-5$ and the following values for m for the first twelve such primes:
: \quad for $\mathrm{p}=7, \mathrm{~m}=289=17^{\wedge} 2$, so m is c-prime (square of prime); also $17+17-1=$ $33=3 * 11$ and $3+11-1=13$, prime, so m is m-prime too;
: \quad for $\mathrm{p}=11, \mathrm{~m}=721=7^{*} 103$ and $103-7+1=97$, prime, so m is c-prime; also $103+7-1=109$, prime, so m is m -prime too;
: \quad for $p=13, m=1009$, prime, so m is implicitly c-prime and m-prime;
: \quad for $\mathrm{p}=17, \mathrm{~m}=1729$, which is not semiprime so it can't be c-prime or m-prime (but it is, as I conjectured in the paper mentioned in Abstract, as a Carmichael number, cm-composite - notion defined in the same paper);
: \quad for $\mathrm{p}=19, \mathrm{~m}=2161$, prime, so m is implicitly c-prime and m -prime;
: \quad for $\mathrm{p}=23, \mathrm{~m}=3169$, prime, so m is implicitly c-prime and m -prime;
: \quad for $\mathrm{p}=29, \mathrm{~m}=5041=71 \wedge 2$, so m is c-prime (square of prime); also $71+71-1$ $=141=3 * 47$ and $3+47-1=49=7 * 7$ and $7+7-1=13$, prime, so m is $\mathrm{m}-$ prime too;
: \quad for $\mathrm{p}=31, \mathrm{~m}=5761=7 * 823$ and $823-7+1=817=19 * 43$ and $43-19+1=$ $25=5^{\wedge} 2$, square of prime, so m is c-prime; also $823+7-1=829$, prime, so m is m-prime too;
: for $\mathrm{p}=37, \mathrm{~m}=8209$, prime, so m is implicitly c-prime and m -prime;
: \quad for $\mathrm{p}=41, \mathrm{~m}=10081=17 * 593$ and $593-17+1=577$, prime, so m is c-prime;
: \quad for $\mathrm{p}=43, \mathrm{~m}=11089=13 * 853$ and $853-13+1=841=29^{\wedge} 2$, so m is c-prime; also $853+13-1=865=5 * 173$ and $5+173-1=177=3 * 59$ and $3+59-1=$ 61 , prime, so m is m-prime too;
: for $\mathrm{p}=47, \mathrm{~m}=13249$, prime, so m is implicitly c-prime and m -prime.
: \quad For $\mathrm{n}=2$ we have the formula $\mathrm{m}=11^{*} \mathrm{p}^{\wedge} 2-10$ and the following values for m for the first twelve such primes:
: for $\mathrm{p}=7, \mathrm{~m}=529=23^{\wedge} 2$, so m is c-prime (square of prime);
: \quad for $\mathrm{p}=11, \mathrm{~m}=1321=7^{*} 103$ and $103-7+1=97$, prime, so m is c-prime; also $103+7-1=109$, prime, so m is m -prime too;
: \quad for $\mathrm{p}=13, \mathrm{~m}=1849=43^{\wedge} 2$, so m is c-prime (square of prime); also $43+43-1$ $=85=5 * 17$ and $5+17-1=21=3 * 7$ and $3+7-1=9=3 * 3$ and $3+3-1=5$, prime, so m is also m -prime;
: \quad for $\mathrm{p}=17, \mathrm{~m}=3169$, prime, so m is implicitly c-prime and m -prime;
$: \quad$ for $\mathrm{p}=19, \mathrm{~m}=3961=17 * 233$ and $233-17+1=217=7 * 31$ and $31-7+1=$ $25=5^{\wedge} 2$, square of prime, so m is c-prime; also $233+17-1=249=3 * 83$ and 3 $+83-1=85$, so m is m -prime too (see above);
$: \quad$ for $\mathrm{p}=23, \mathrm{~m}=5809=37^{*} 157$ and $157-37+1=121=11^{\wedge} 2$, square of prime, so m is c-prime; also $157+37-1=193$, prime, so m is m -prime too;
: for $\mathrm{p}=29, \mathrm{~m}=9241$, prime, so m is implicitly c-prime and m -prime;
$: \quad$ for $\mathrm{p}=31, \mathrm{~m}=10561=59^{*} 179$ and $179-59+1=121=11^{\wedge} 2$, square of prime, so m is c-prime;
: \quad for $\mathrm{p}=37, \mathrm{~m}=15049=101^{*} 149$ and $149-101+1=49=7 \wedge 2$, square of prime, so m is c-prime; also $149+101-1=249=3 * 83$ and $3+83-2=85$ so m is m prime too (see above);
: \quad for $\mathrm{p}=41, \mathrm{~m}=18481$, prime, so m is implicitly c-prime and m -prime;
: \quad for $\mathrm{p}=43, \mathrm{~m}=20329=29^{*} 701$ and $701-29+1=673$, prime, so m is c-prime;
: \quad for $\mathrm{p}=47, \mathrm{~m}=24289=101 * 227$ and $227-101+1=127$, prime, so m is $\mathrm{c}-$ prime; also $101+227-1=327=3^{*} 109$ and $3+109-1=111=3 * 37$ and $3+$ $37-1=39=3 * 13$ and $3+13-1=15=3 * 5$ and $3+5-1=7$, prime, so m is $\mathrm{m}-$ prime too.

21. Two formulas based on c-chameleonic numbers which conducts to cprimes and the notion of \mathbf{c}-chameleonic number

Abstract

In one of my previous papers I defined chameleonic numbers as the positive composite squarefree integers C not divisible by 2,3 or 5 having the property that the absolute value of the number $\mathrm{P}-\mathrm{d}+1$ is always a prime or a power of a prime, where d is one of the prime factors of C and P is the product of all prime factors of C but d . In this paper I revise this definition, I introduce the notions of c-chameleonic numbers and mchameleonic numbers and I show few interesting connections between c-primes and cchameleonic numbers (I defined the notions of a c-prime in my paper "Conjecture that states that any Carmichael number is a cm-composite").

Definition 1:

We name a chameleonic number a number which is either c-chameleonic or mchameleonic.

Definition 2:

We name a c-chameleonic number a positive integer, not necessary squarefree, not divisible by 2 or 3 , with three or more prime factors, having the property that the absolute value of all the numbers $\mathrm{P}-\mathrm{d}+1$, where d is one of its prime factors and P the product of all the others, is prime.

Example: $1309=7^{*} 11^{*} 17$ is a c-chameleonic number because $7^{*} 11-17+1=61$, prime, $7 * 17-11+1=109$, prime and $11 * 17-7+1=181$, prime (in fact, 1309 is the smallest c -chameleonic squarefree number with three prime factors).

Definition 3:

We name a m-chameleonic number a positive integer, not necessary squarefree, not divisible by 2 or 3 , with three or more prime factors, having the property that the absolute value of all the numbers $\mathrm{P}+\mathrm{d}-1$, where d is one of its prime factors and P the product of all the others, is prime.

Example: The Carmichael number $29341=13 * 37 * 61$ is a m-chameleonic number because $13 * 37+61-1=541$, prime, $13 * 61+37-1=829$, prime and $37 * 61+13-1=$ 2269 , prime.

Observation 1:

Let $\mathrm{p}^{*} \mathrm{q} * \mathrm{r}$ be a c -chameleonic number with three prime factors; then the number ($\mathrm{p}+$ $1)^{*}(\mathrm{q}+1)^{*}(\mathrm{r}+1)+1$ seems to be often a c-prime.

Examples:

: \quad For $\mathrm{p}=\mathrm{q}=5$ we have the following ordered sequence of c -chameleonic numbers: : $\quad 5 * 5 * 7$ because $5 * 5-7+1=19$, prime and $5 * 7-5+1=31$, prime;

Indeed, the number $6 * 6^{*} 8+1=289=17^{\wedge} 2$ is a c-prime (is a square of prime);
: $\quad 5 * 5 * 13$ because $5 * 5-13+1=13$, prime and $5 * 13-5+1=61$, prime; Indeed, the number $6^{*} 6^{*} 14+1=505=5^{*} 101$ is a c-prime $(101-5+1=97$, prime);
: $\quad 5 * 5 * 31$ because $31-5 * 5+1=7$, prime and $31 * 5-5+1=151$, prime; Indeed, the number $6 * 6 * 32+1=1153$ is prime, implicitly a c-prime;
: $\quad 5 * 5 * 37$ because $37-5 * 5+1=13$, prime and $37 * 5-5+1=181$, prime; Indeed, the number $6^{*} 6^{*} 38+1=1369=37^{\wedge} 2$ is a c-prime (is a square of prime);
: $\quad 5 * 5 * 43$ because $43-5 * 5+1=19$, prime and $43 * 5-5+1=211$, prime; Indeed, the number $6^{*} 6^{*} 44+1=1585=5 * 317$ is a c-prime $(317-5+1=313$, prime);
: $\quad 5 * 5 * 67$ because $67-5 * 5+1=43$, prime and $67 * 5-5+1=331$, prime; Indeed, the number 6*6*68+1=2449=31*79 is a c-prime $(79-31+1=49=$ $7^{\wedge} 2$, a square of prime);
: $\quad 5 * 5 * 127$ because $127-5 * 5+1=103$, prime and $127 * 5-5+1=631$, prime; Indeed, the number $6^{*} 6^{*} 128+1=4609=11^{*} 419$ is a c-prime $(419-11+1=$ 409, prime);
(...)

Note:

A very interesting thing is that, through the formula above, is obtained from the cchameleonic number $1309=7 * 11 * 17$ the Hardy-Ramanujan number $1729=7 * 13 * 19$; indeed, $8 * 12 * 18+1=1729$.

Observation 2:

Let $\mathrm{C}=\mathrm{p}^{*} \mathrm{q}^{*} \mathrm{r}$ be a c-chameleonic number with three prime factors; then the numbers $\mathrm{C}+$ $30^{*}(\mathrm{p}-1), \mathrm{C}+30^{*}(\mathrm{q}-1)$ and $\mathrm{C}+30^{*}(\mathrm{r}-1)$ seems to be often c-primes.

Examples:

For $\mathrm{C}=1309=7 * 11^{*} 17$ we have:
: $1309+30 * 6=1489$, prime, implicitly a c-prime;
: $1309+30^{*} 10=1609$, prime, implicitly a c-prime;
: $1309+30 * 16=1789$, prime, implicitly a c-prime.

22. The notions of \mathbf{c}-reached prime and \mathbf{m}-reached prime

Abstract

In spite the fact that I wrote seven papers on the notions (defined by myself) of c-primes, m-primes, c-composites and m-composites (see in my paper "Conjecture that states that any Carmichael number is a cm-composite" the definitions of all these notions), I haven't thinking until now to find a connection, beside the one that defines, of course, such an odd composite n, namely that, after few iterative operations on n, is reached a prime p , between the number n and the prime p . This is what I try to do in this paper, and also to give a name to this prime p, namely, say, "reached prime", and, in order to distinguish, because a number can be same time c-prime and m-prime, respectively c-composite and m-composite, "c-reached prime" or "m-reached prime".

Notes:

We name "the c-reached prime" the prime number that is reached, after the iterative operations that defines a c-prime. We also name "the m-reached prime" the prime number that is reached, after the iterative operations that defines a m-prime.

We name "a c-reached prime" a prime number that is reached, after the iterative operations that defines a c-composite. We also name "a m-reached prime" a prime number that is reached, after the iterative operations that defines a m-composite.

Note that I used "a" beside "the" because a c-composite (m-composite) can have more than one c -reached prime (m-reached prime).

This names do not indicate an intrinsic quality of the respective primes, because any prime can be "reached", they have sence just in association with the respective c-prime, c-composite, m-prime or m-composite and it is just useful to simplify the reference to it, not to adress to this number with the syntagma "that prime hwo is reached after the operations...".

Examples:

: \quad The number 37 is the c-reached prime for the c-prime $4237=19 * 223$ because $223-19+$ $1=205=5 * 41$ and $41-5+1=37$;
: \quad The number 241 is the m-reached prime for the m-prime $4237=19^{*} 223$ because $223+$ $19-1=241$, prime.
(in the example above, the number 4237 is a cm-prime, i.e. both c-prime and m-prime, but, of course, this is not a rule)
: \quad The number 73 is a c-reached prime for the c-composite $1729=7 * 13 * 19$ because 7*13$19+1=73$ and the number 241 is another c-reached prime for 1729 because $13 * 19-7+$ $1=241$;
: The number 109 is a m-reached prime for the m-composite $1729=7 * 13 * 19$ because $7 * 13+19-1=109$.
(in the example above, the number 1729 is a cm-composite, i.e. both c-composite and m composite, but, of course, this is not a rule)

Comment:

As I mentioned in Abstract, I haven't thinking until now to find other connections between a c-prime n (m-prime) and the c -reached prime p (m -reached prime) respectively between a c-composite n (m-composite) and a c-reached prime p (m-reached prime). I'm sure that such connections exist, one of them being that $\mathrm{n}-\mathrm{p}+1$ is often a c-prime (ccomposite) respectively that $\mathrm{n}+\mathrm{p}-1$ is often a m-prime (m -composite). I shall randomly choose some such numbers from my previous papers to prove this fact.
: $\quad 71$ is the c-reached prime for $1691=19 * 89$, because $89-19+1=71$; and, indeed, 1691 $-71+1=1621$ prime, so $\mathrm{n}-\mathrm{p}+1=1621$ is c-prime;
: $\quad 277$ is the c-reached prime for $4981=17 * 293$, because $293-17+1=277$; and, indeed, $4981-277+1=4705=5 * 941$ and $941-5+1=937$ prime, so $n-p+1=4705$ is $\mathrm{c}-$ prime;
: $\quad 47$ is the reached c-prime for $4979=13 * 383$, because $383-13+1=371=7 * 53$ and 53 $-7+1=47$; and, indeed, $4979-47+1=4933$ prime, so $n-p+1=4933$ is c-prime;
: $\quad 13$ is the reached c-prime for $589=19 * 31$ because $31-19+1=13$; and, indeed, 589 $13=577$, prime, so $\mathrm{n}-\mathrm{p}+1=577$ is c-prime.
: $\quad 61$ is the c-reached prime for 2581 and $2521=2581-61+1$ is a prime (implicitly, by definition c-prime);
: $\quad 167$ is the c-reached prime for 1213 and $1045=1211-167+1$ is a c-composite because $1045=5^{*} 11^{*} 19$ and $5^{*} 11-19+1=37$ prime;
: $\quad 239$ is the c-reached prime for 1811 and $1811+239-1=2049=3 * 683$ is a m-prime because $683+3-1=685=5 * 137$ and $137+5-1=141=3 * 47$ and $47+3-1=49$ and $7+7-1=13$, prime;
: $\quad 179$ is the m-reached prime for 2171 and $2171+179-1=2349$ is a m-composite because $2349=3 \wedge 4^{*} 29$ and $3^{\wedge} 4+29-1=109$, prime;
: $\quad 541$ is the m-reached prime for 41041 and $41041+541-1=41581$ is a m-composite because $41581=43 * 967$ and $967+43-1=1009$, prime;
: $\quad 541$ is the m -reached prime for 29341 and $29341+541-1=29881$ is a prime.

Conclusion:

Indeed, I am already convinced by this connection between the numbers described above, so I stop here with the examples and I shall try in future papers to highlight other such conections.

23. A property of repdigit numbers and the notion of cm-integer

Abstract

In this paper I want to name generically all the numbers which are either cprimes, m-primes, cm-primes, c-composites, m-composites or cm-composites with the name "cm-integers" and to present what seems to be a special quality of repdigit numbers (it's about the odd ones) namely that are often cm -integers.

Observation:

The odd repdigit numbers (by definition, only odd numbers can be cm-integers) seems to be often cm-integers (either c-primes, m-primes, cm-primes, c-composites, m-composites or cm-composites).

Verifying the observation for the first few repdigit numbers:

(I shall not show here how I calculated the c-reached primes and the m-reached primes, see the paper "The notions of c-reached prime and m-reached prime")

For digit 1:

: $\quad 11$ is prime;
: $\quad 111$ is cm-prime having the c-reached prime equal to 3 and the m-reached prime equal to 7 ;
: $\quad 1111$ is cm-prime having the c-reached prime equal to the m-reached prime and equal to 7 ;
: $\quad 11111$ is m-prime having the m -reached prime equal to 311 .
For digit 3:
: $\quad 33$ is cm-prime having the c-reached prime equal to 1 and the m-reached prime equal to 13 ;
: $\quad 333$ is cm-composite having two c-reached primes, equal to 29 and 109, and one m-reached prime equal, to 113;
: $\quad 3333$ is cm-composite having three c-reached primes, equal to 5,293 and 1109, and two m-reached primes, equal to 5 and 313;
: $\quad 33333$ is cm-composite having two c-reached primes, equal to 151 and 773 , and two m-reached primes, equal to 153 and 853 .
For digit 5:
: $\quad 55$ is cm-prime having the c-reached prime equal to the m -reached prime and equal to 7 ;
: $\quad 555$ is cm-composite having three c-reached primes, equal to 1,59 and 107 , and one m-reached prime, equal to 19 ;
: $\quad 5555$ is cm-composite having one c-reached prime, equal to 19 , and three m reached primes, equal to 11,47 and 227 ;
: $\quad 55555$ is c-composite having three c-reached primes, equal to 31 and 67.

For digit 7:
: $\quad 77$ is cm-prime having the c-reached prime equal to 5 and the m-reached prime and equal to 17 ;
: $\quad 777$ is cm-composite having two c-reached primes, equal to 17 and 257 , and one m-reached prime, equal to 5 ;
: $\quad 7777$ is cm-composite having one c-reached prime, equal to 1 , and three m reached primes, equal to 1117,241 and 61 ;
: $\quad 77777$ is cm-composite having two c-reached primes, equal to 17 and 617 , and three m-reached primes, equal to 29,557 and 11117.

For digit 9:
: $\quad 99$ is cm-composite having two c-reached primes, equal to 1 and 31 , and two $m-$ reached primes, equal to 11 and 19 ;
: $\quad 999$ is cm-composite having three c-reached primes, equal to 11,103 and 331 , and two m-reached primes, equal to 7 and 23;
: $\quad 9999$ is cm-composite having four c-reached primes, equal to $3,271,1103$ and 3331, and three m-reached primes, equal to 71, 199 and 919.

24. The property of Poulet numbers to create through concatenation semiprimes which are c-primes or m-primes

Abstract

In this paper I present a very interesting characteristic of Poulet numbers, namely the property that, concatenating two of such numbers, is often obtained a semiprime which is either c-prime or m-prime. Using just the first 13 Poulet numbers are obtained 9 semiprimes which are c-primes, 20 semiprimes which are m-primes and 9 semiprimes which are cm-primes (both c-primes and m-primes).

Observation:

Concatenating two Poulet numbers, is often obtained a semiprime which is either c-prime or m-prime.

The sequence of Poulet numbers:

(A001567 in OEIS)
$341,561,645,1105,1387,1729,1905,2047,2465,2701,2821,3277,4033,4369,4371$, 4681, 5461, 6601, 7957, 8321, 8481, 8911, 10261, 10585, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 29341 (...)

There are obtained, using just the first 13 terms from this sequence:
Nine semiprimes which are c-primes:
$: 1105561=17 * 65033$ is c-prime because $65033-17+1=65017=79 * 823$ and $823-$ $79+1=745=5 * 149$ and $149-5+1=145=5 * 29$ and $29-5+1=25=5 * 5$ and $5-5$ $+1=1$, c-prime by definition);
$: 1387561=7^{*} 198223$ is c-prime because $198223-7+1=198217=379 * 523$ and $523-$ $379+1=145=5 * 29$ and $29-5+1=25=5 * 5$ and $5-5+1=1$, c-prime by definition);
: $5611729=73 * 76873$ is c-prime because $76873-73+1=76801$, prime;
: $5614033=643 * 8731$ is c-prime because $8731-643+1=8089$, prime;
: $4033561=7 * 576223$ is c-prime because $576223-7+1=576217$, prime;
: $6451729=571 * 11299$ is c-prime because $11299-571+1=10729$, prime;
: $6452701=1559 * 4139$ is c-prime because $4139-1559+1=2581=29 * 89$ and $89-29$ $+1=61$, prime;
: $6454033=17 * 379649$ is c-prime because $379649-17+1=25379633$, prime;
$: 19051105=5 * 3810221$ is c-prime because $3810221-5+1=3810217=587 * 6491$ and $6491-587+1=5905=5 * 1181$ and $1181-5+1=1177=11 * 107$ and $107-11+1=$ 97, prime.
: Note that the following numbers are also c-primes: 17293277 (with c-reached prime 22277).

Twenty semiprimes which are m-primes:
: $341561=11 * 31051$ is m-prime because $31051+11-1=31061=89 * 349$ and $89+$ $349-1=437=19 * 23$ and $19+23-1=41$, prime;
: $561341=11 * 51031$ is m-prime because $51031+11-1=51041=43 * 1187$ and $1187+$ $43-1=1229$, prime;
: $341645=5 * 68329$ is m-prime because $68329+5-1=68333=23 * 2971$ and $23+$ $2971-1=2993=41 * 73$ and $41+73-1=103$, prime;
: $1105341=3 * 368447$ is m-prime because $368447+3-1=368449=607 \wedge 2$ and $607+$ $607-1=1213$, prime;
: $1905341=251 * 7591$ is m-prime because $7591+251-1=7841$, prime;
: $5611387=337 * 16651$ is m-prime because $16651+337-1=16987$, prime;
: $2701561=43 * 62827$ is m-prime because $62827+43-1=62869$, prime;
: $2047645=5 * 409529$ is m-prime because $409529+5-1=409533=3 * 136511$ and $136511+3-1=136513=13 * 10501$ and $10501+13-1=10513$, prime.
: Note that the following numbers are also m-primes: 13871729 (with m-reached prime 113), 28211387 (with m-reached prime 57947), 17292701 (with m-reached prime 17), 32771729 (with m-reached prime 16349), 17294033 (with m-reached prime 1181), 40331729 (with m-reached prime 17), 19052047 (with m-reached prime 2721727), 19052465 (with m-reached prime 3810497), 20472701 (with m-reached prime 15809), 27012047 (with m-reached prime 2399), 27012821 (with m-reached prime 27013277), 40333277 (with m-reached prime 14657).

Nine semiprimes which are cm-primes (both c-primes and m-primes):
: $645341=97 * 6653$ is cm-prime because is c-prime $(6653-97+1=6557=79 * 83$ and $83-79+1=5$, prime) and is m-prime ($653+97-1=6749=17 * 397$ and $17+397-1$ $=413=7 * 59$ and $7+59-1=65=5 * 13$ and $5+13-1=17$, prime);
$: 2465341=1237^{*} 1993$ is cm-prime because is c-prime (1993-1237+1=757, prime) and is m-prime (1993 $+1237-1=3229$, prime $)$;
$: 1729561=523 * 3307$ is cm-prime because is c-prime ($3307-523+1=2785=5 * 557$ and $557-5+1=553=7 * 79$ and $79-7+1=73$, prime $)$ and is m-prime $(3307+523-$ $1=3829=7 * 547$ and $7+547-1=553==7 * 79$ and $79-7+1=73$, prime); note that, in the case of this number, the c-reached prime is equal to the m-reached prime (two such special numbers like 561, the first absolute Fermat pseudoprime, and 1729, the HardyRamanujan number, could only hace a special behaviour);
$: 2047561=1327 * 1543$ is cm-prime because is c-prime ($1543-1327+1=217=7 * 31$ and $31-7+1=25=5 * 5$, square of prime) and is m-prime ($1543+1327-1=2869=$ $19^{*} 151$ and $151+19-1=169=13 * 13$ and $13+13-1=25=5 * 5$ and $5+5-1=9=$ $3 * 3$ and $3+3-1=5$, prime);
: $5612701=2011 * 2791$ is cm-prime because is c-prime $(2791-2011+1=781=1 * 71$ and $71-11+1=61$, prime $)$ and is m-prime $(2791+2011-1=4801$, prime $)$;
: $5612821=151 * 37171$ is cm-prime because is c-prime (37171-151+1=37021, prime) and is m -prime ($37171+151-1=37321$, prime $)$;
$: 11051729=13 * 850133$ is cm-prime because is c-prime (850133-13+1=850121, prime) and is m-prime ($850133+13-1=850145=5 * 170029$ and $170029+5-1=$ $170033=193 * 881$ and $881+193-1=1073=29 * 37$ and $29+37-1=65=5 * 13$ and 5 $+13-1=17$, prime).
: Note that the following numbers are also cm-primes: 11053277 (with c-reached prime 1277 and m-reached prime 41057), 19051729 (with c-reached prime 1 and m-reached prime 12589).

25. The property of squares of primes to create through concatenation semiprimes which are c-primes or m-primes

Abstract

In a previous paper I presented a very interesting characteristic of Poulet numbers, namely the property that, concatenating two of such numbers, is often obtained a semiprime which is either c-prime or m-prime. Because the study of Fermat pseudoprimes is a constant passion for me, I observed that in many cases they have a behaviour which is similar with that of the squares of primes. Therefore, I checked if the property mentioned above applies to these numbers too. Indeed, concatenating two squares of primes, are often obtained semiprimes which are either c-primes, m-primes or cm-primes. Using just the squares of the first 13 primes greater than or equal to 7 are obtained not less then: 6 semiprimes which are c-primes, 31 semiprimes which are mprimes and 15 semiprimes which are cm -primes.

Observation:

Concatenating two squares of primes, is often obtained a semiprime which is either cprime or m-prime.

The squares of primes:

(A001248 in OEIS)

$$
\begin{aligned}
& 4,9,25,49,121,169,289,361,529,841,961,1369,1681,1849,2209,2809,3481, \\
& 3721,4489,5041,5329,6241,6889,7921,9409(\ldots)
\end{aligned}
$$

There are obtained, using just the first 13 terms greater than or equal to 49 from this sequence:
Six semiprimes which are c-primes:
: $\quad 52949=13 * 4073$ (c-reached prime $=101$);
: $\quad 361121=331^{*} 1091$ (c-reached prime $=761$);
$: \quad 1212209=97 * 12497($ c-reached prime $=12401)$;
$: \quad 529169=19 * 27851($ c-reached prime $=2129)$;
$: \quad 1681961=367^{*} 4583($ c-reached prime $=4217)$;
: $\quad 28091849=853 * 32933($ c-reached prime $=17)$.
Thirty-one semiprimes which are m-primes:
: $\quad 16949=17 * 997(\mathrm{~m}-$ reached prime $=1013)$;
: $\quad 49289=23 * 2143($ m-reached prime $=41)$;
$: \quad 49361=13 * 3797(\mathrm{~m}$-reached prime $=17)$;
: $\quad 84149=13 * 6473(\mathrm{~m}$-reached prime $=1301)$;
: $\quad 49961=47 * 1063($ m-reached prime $=1109)$;
: $\quad 491369=89 * 5521(\mathrm{~m}$-reached prime $=149)$;
: $\quad 491681=53^{*} 9277(\mathrm{~m}$-reached prime $=509)$;
$: \quad 492809=461^{*} 1069(\mathrm{~m}$-reached prime $=149)$;

$$
\begin{array}{ll}
: & 1211369=17 * 71257(\text { m-reached prime }=53) ; \\
: & 1211681=709 * 1709(\text { m-reached prime }=2417) ; \\
: & 1211849=353 * 3433(\text { m-reached prime }=761) ; \\
: & 169289=41 * 4129(\text { m-reached prime }=389) ; \\
: & 169529=47 * 3607(\text { m-reached prime }=293) ; \\
: & 289529=419 * 691(\text { m-reached prime }=1109) ; \\
: & 1369289=139 * 9851(\text { m-reached prime }=1433) ; \\
: & 2891681=13 * 222437 \text { (m-reached prime }=1409) ; \\
: & 2892809=1217 * 2377 \text { (m-reached prime }=3593) ; \\
: & 841361=41 * 20521(\text { m-reached prime }=17) ; \\
: & 961361=173 * 5557(\text { m-reached prime }=353) ; \\
: & 1849361=23 * 80407(\text { m-reached prime }=80429) ; \\
: & 5291681=317 * 16693 \text { (m-reached prime }=17) ; \\
: & 1681529=503 * 3343(\text { m-reached prime }=773) ; \\
: & 5291849=701 * 7549(\text { m-reached prime }=41) ; \\
: & 841961=23 * 36607(\text { m-reached prime }=36629) ; \\
: & 1849841=7 * 264263(\text { m-reached prime }=264269) ; \\
: & 1849961=41 * 45121(\text { m-reached prime }=45161) ; \\
: & 13691849=89 * 153841(\text { m-reached prime }=153929) ; \\
: & 22091369=424 * 5209 \text { (m-reached prime }=89) ; \\
: & 18491681=13 * 1422437(\text { m-reached prime }=203213) ; \\
: & 16812209=461 * 36469(\text { m-reached prime }=36929) .
\end{array}
$$

Fifteen semiprimes which are cm-primes (both c-primes and m-primes):
: $\quad 36149=37^{*} 977$ (c-reached prime $=941$ and m-reached prime $=1013$);
$: \quad 168149=181 * 929($ c-reached prime $=101$ and m-reached prime $=1109)$;
: $\quad 491849=149 * 3301$ (c-reached prime $=1049$ and m -reached prime $=3449$);
: $\quad 492209=61 * 8069$ (c-reached prime $=8009$ and m-reached prime $=113$);
: $\quad 121289=7 * 17327$ (c-reached prime $=17321$ and m-reached prime $=17333$);
: $\quad 121361=157 * 773$ (c-reached prime $=617$ and m-reached prime $=929$);
: $\quad 1692209=1201 * 1409$ (c-reached prime $=1$ and m-reached prime $=2609$);
: $\quad 529289=59 * 8971(\mathrm{c}$-reached prime $=2969$ and m -reached prime $=9029)$;
: $2891849=421 * 6869($ c-reached prime $=6449$ and m -reached prime $=233)$;
: $\quad 2892209=769^{*} 3761$ (c-reached prime $=1$ and m -reached prime $=653$);
: $\quad 361841=487 * 743$ (c-reached prime $=257$ and m-reached prime $=1229$);
$: \quad 3611681=37^{*} 97613$ (c-reached prime $=97577$ and m-reached prime $=97649$);
: $\quad 8411369=1621 * 5189$ (c-reached prime $=41$ and m-reached prime $=53$);
: $\quad 1681841=7 * 240263$ (c-reached prime $=240257$ and m-reached prime $=113$);
$: \quad 9612809=1933 * 4973($ c-reached prime $=3041$ and m-reached prime $=281)$.

26. The property of a type of numbers to be often m-primes and m-composites

Abstract

In previous papers I presented already few types of numbers which conduct through concatenation often to cm -integers. In this paper I present a type of numbers which seem to be often m-primes or m-composites. These are the numbers of the form $1 \mathrm{nn} . . . \mathrm{nn} 1$ (in all of my papers I understand through a number abc the number where a, b, c are digits and through the number $\mathrm{a} * \mathrm{~b}$ * c the product of $\mathrm{a}, \mathrm{b}, \mathrm{c}$), where n is a digit or a group of digits, repetead by an odd number of times.

Observation:

The numbers of the form $1 \mathrm{nn} . . . \mathrm{nn} 1$, where n is a digit or a group of digits, repetead by an odd number of times, seem to be often m-primes or m-composites.

Examples:

: $\quad \mathrm{N}=131$ is prime, so m -prime by definition;
: $\quad \mathrm{N}=13331$ is prime, so m -prime by definition;
: $\quad \mathrm{N}=1333331$ is prime, so m -prime by definition;
: $\quad \mathrm{N}=133333331=11287 * 11813$ and $11287+11813-1=23099$ which is prime so N is m-prime;
$: \quad \mathrm{N}=13333333331=53 * 109 * 2308003$ and $109 * 2308003+53-1=251572379$ which is prime so N is m -composite;
: $\quad \mathrm{N}=141=3 * 47$ and $47+3-1=49=7 * 7$ and $7+7-1=13$ which is prime so N is mprime;
: $\quad \mathrm{N}=14441=7 * 2063$ and $7+2063-1=2069$ which is prime so N is m -prime;
: $\quad \mathrm{N}=1444441$ is prime, so m-prime by definition;
$: \quad \mathrm{N}=14444444441=7 * 67 * 127 * 197 * 1231$ and $67 * 127 * 197 * 1231+7-1=2063492069$ which is prime so N is m -composite;
: $\quad \mathrm{N}=151$ is prime, so m-prime by definition;
: $\quad \mathrm{N}=15551$ is prime, so m -prime by definition;
$: \quad \mathrm{N}=155555551=31 * 61 * 82261$ and $61 * 82261+31-1=5017951$ which is prime so N is m-composite;
$: \quad \mathrm{N}=15555555551=1709 * 9102139$ and $9102139+1709-1=9103847$ which is prime so N is m-prime;
$: \quad \mathrm{N}=1555555555551=3 * 19 * 733 * 2081 * 17891$ and $3 * 19 * 733 * 17891+2081-1=$ 747505951 which is prime so N is m -composite;
: $\quad \mathrm{N}=101$ is prime, so m-prime by definition;
$: \quad \mathrm{N}=1000001=101 * 9901$ and $101+9901-1=10001=73 * 137$ and $73+137-1=209$ $=11 * 19$ and $11+19-1=29$ which is prime so N is m -prime;
$: \quad \mathrm{N}=100000001=17 * 5882353$ and $17+5882353-1=5882369=137 * 42937$ and $137+$ $42937-1=43073=19 * 2267$ and $19+2267-1=2285=5 * 457$ and $5+457-1=461$ which is prime so N is m-prime;
: $\quad \mathrm{N}=12323231=29 * 424939$ and $424939+29-1=424967$ which is prime so N is m prime;
$: \quad \mathrm{N}=13232321=3539 * 3739$ and $3539+3739-1=7277=19 * 383$ and $19+383-1=$ 401 which is prime so N is m -prime;
$: \quad \mathrm{N}=13434341=373 * 36017$ and $373+36017-1=36389$ which is prime so N is m prime;
$: \quad \mathrm{N}=14343431=59 * 243109$ and $59+243109-1=243167$ which is prime so N is m prime;
: $\quad \mathrm{N}=12424241$ is prime, so m-prime by definition;
: $\quad \mathrm{N}=14242421$ is prime, so m-prime by definition;
: $\quad \mathrm{N}=12525251$ is prime, so m -prime by definition;
$: \quad \mathrm{N}=13535351=61 * 221891$ and $61+221891-1=221951$ which is prime so N is m prime;
: $\quad \mathrm{N}=15353531$ is prime, so m -prime by definition;
$: \quad \mathrm{N}=16767671=19 * 79 * 11171$ and $19 * 79+11171-1=12671$ which is prime so N is m composite;
$: \quad \mathrm{N}=17676761=3529 * 5009$ and $5009+3529-1=8537$ which is prime so N is mprime;
$: \quad \mathrm{N}=18989891=131^{*} 144961$ and $131+144961-1=145091$ which is prime so N is m prime;
$: \quad \mathrm{N}=19898981=41 * 43 * 11287$ and $41 * 43+11287-1=13049$ which is prime so N is m composite;
$: \quad \mathrm{N}=12342342341=7 * 61 * 28904783$ and $61 * 28904783+7-1=1763191769$ which is prime so N is m -composite;
$: \quad \mathrm{N}=14324324321=17 * 193 * 283 * 15427$ and $17 * 283 * 15427+193-1=74219489$ which is prime so N is m -composite;
: $\quad \mathrm{N}=14224224221$ is prime, so m-prime by definition;
$: \quad \mathrm{N}=14424424421=11 * 109 * 349 * 34471$ and $109 * 349 * 34471+11-1=1311311321$ which is prime so N is m -composite;
$: \quad \mathrm{N}=12442442441=11 * 13 * 31 * 73 * 38449$ and $11 * 31 * 73 * 38449+13-1=957110969$ which is prime so N is m -composite;
$: \quad \mathrm{N}=12442442441=11 * 13 * 31 * 73 * 38449$ and $11 * 31 * 73 * 38449+13-1=957110969$ which is prime so N is m -composite;
$: \quad \mathrm{N}=14334334331=19 * 3041 * 248089$ and $19 * 3041+248089-1=305867$ which is prime so N is m -composite;
$: \quad \mathrm{N}=13343343341=20047 * 665603$ and $20047+665603-1=685649$ which is prime so N is m-prime.

27. The property of a type of numbers to be often c-primes and c-composites

Abstract

In a previous paper I presented a type of numbers which seem to be often mprimes or m-composites (the numbers of the form $1 \mathrm{nn} . . . \mathrm{nn} 1$, where n is a digit or a group of digits, repetead by an odd number of times). In this paper I present a type of numbers which seem to be often c-primes or c-composites. These are the numbers of the form labc (formed through concatenation, not the product $1 * a * b * c$), where a, b, c are three primes such that $\mathrm{b}=\mathrm{a}+6$ and $\mathrm{c}=\mathrm{b}+6$.

Observation:

The numbers of the form 1 abc (formed through concatenation, not the product $1 * \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c}$), where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three primes such that $\mathrm{b}=\mathrm{a}+6$ and $\mathrm{c}=\mathrm{b}+6$, seem to be often c -primes or c-composites.

Examples:

$: \quad \mathrm{N}=151117=349 * 433$ and $433-349+1=85=5 * 17$ and $17-5+1=13$ which is prime so N is c-prime;
$: \quad \mathrm{N}=171319=67 * 2557$ and $2557-67+1=2491=47 * 53$ and $53-47+1=7$ which is prime so N is c-prime;
: $\quad \mathrm{N}=1111723$ is prime, so N is c-prime by definition;
: $\quad \mathrm{N}=1172329$ is prime, so N is c-prime by definition;
: $\quad \mathrm{N}=1313743=17 * 77279$ and $77279-17+1=77263$ which is prime so N is c-prime;
$: \quad \mathrm{N}=1414753=23 * 61511$ and $61511-23+1=61489=17 * 3617$ and $3617-17+1=$ $3601=13 * 277$ and $277-13+1=265=5 * 53$ and $53-5+1=49$ which is square of prime so N is c-prime by definition;
: $\quad \mathrm{N}=1475359=127^{*} 11617$ and $11617-127+1=11491$ which is prime so N is c-prime;
$: \quad \mathrm{N}=1616773=883 * 1831$ and $1831-883+1=949=13 * 73$ and $73-13+1=61$ which is prime so N is c-prime;
: $\quad \mathrm{N}=197103109=7 * 28157587$ and $28157587-7+1=28157581$ which is prime so N is c-prime;
$: \quad \mathrm{N}=1101107113=173 * 6364781$ and $6364781-173+1=6364609=137 * 46457$ and $46457-137+1=46321=11 * 421$ and $421-11+1=4201$ which is prime so N is $\mathrm{c}-$ prime;
$: \quad \mathrm{N}=1227233239=31 * 39588169$ and $39588169-31+1=39588139=181 * 218719$ and $218719-181+1=218539=83 * 2633$ and $2633-83+1=2551$ which is prime so N is c-prime;
: $\quad \mathrm{N}=1251257263$ is prime, so N is c-prime by definition;
$: \quad \mathrm{N}=1257263269=19 * 97 * 682183$ and $19 * 682183-97+1=12961381$ which is prime so N is c-composite;
$: \quad \mathrm{N}=1347353359=11 * 83 * 1475743$ and $83 * 1475743-11+1=122486659$ which is prime so N is c-composite;
: $\quad \mathrm{N}=1367373379$ is prime, so N is c-prime by definition;
$: \quad \mathrm{N}=1557563569=61 * 2833 * 9013$ and $61 * 9013-2833+1=546961$ which is prime so N is c-composite;
$: \quad \mathrm{N}=1587593599=127^{\wedge} 2 * 257 * 383$ and $127^{\wedge} 2 * 383-257+1=6177151$ which is prime so N is c-composite;
: $\quad \mathrm{N}=1601607613$ is prime, so N is c-prime by definition;
: $\quad \mathrm{N}=1647653659$ is prime, so N is c-prime by definition;
: $\quad \mathrm{N}=1727733739$ is prime, so N is c-prime by definition;
$\mathrm{N}=1971977983=31^{*} 63612193$ and $63612193-31+1==1153^{*} 55171$ and $55171-$
$1153+1=54019=7 * 7717$ and $7717-7+1=7711=11 * 701$ and $701-1+1=691$ which is prime so N is c-composite;
$: \quad \mathrm{N}=1109110971103=19 * 137 * 426089501$ and $137 * 426089501-19+1=58374261619$ which is prime so N is c-composite;
$: \quad \mathrm{N}=1102471025310259=11 * 83 * 2083 * 9343 * 62047$ and $83 * 2083 * 9343 * 62047-11+1$ $=100224638664559$ which is prime so N is c-composite;
: $\quad \mathrm{N}=1100511100517100523$ is prime, so N is c-prime by definition.

Conjecture:

There exist an infinity of primes of the form 1abc (formed through concatenation, not of course the product $1^{*} a^{*} b^{*} \mathrm{c}$), where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three primes such that $\mathrm{b}=\mathrm{a}+6$ and $\mathrm{c}=\mathrm{b}$ +6 (of course, that implies that there exist an infinity of such triplets of primes $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$). The sequence of these primes is: 1111723, 1172329, 1251257263, 1367373379, 1601607613, 1647653659, 1727733739 (...)

28. Two formulas for obtaining primes and cm-integers

Abstract

In this paper I present two very interesting and easy formulas that conduct often to primes or cm-integers (c-primes, m-primes, cm-primes, c-composites, mcomposites, cm-composites).

Formula 1:

: \quad Take two distinct odd primes p and q ;
: \quad Find a prime r such that the numbers $\mathrm{r}+\mathrm{p}-1$ and $\mathrm{r}+\mathrm{q}-1$ are both primes;
: Then the numbers $\mathrm{p}^{*} \mathrm{q}-\mathrm{r}+1, \mathrm{p}^{*} \mathrm{r}-\mathrm{q}+1$ and $\mathrm{q}^{*} \mathrm{r}-\mathrm{p}+1$, in absolute value, are often primes or cm -integers.

Verifying the formula:

(for few randomly chosen values)
We take $(p, q)=(7,13)$:
$r=5$ satisfies the condition and:

```
: 7*13-5 +1=87=3*29, m-prime (29+3-1=31, prime);
: 5*13-7+1=59, prime;
: 5*7-13+1=23, prime.
```

$r=31$ satisfies the condition and:

```
: 7*13-31+1 = 61, prime;
: \(31 * 13-7+1=397\), prime;
\(: 31 * 7-13+1=205=5 * 41\), c-prime \((41-5+1=37\), prime \()\).
```

$r=97$ satisfies the condition and:
: $\quad 97-7 * 13+1=7$, prime;
$: \quad 97 * 13-7+1=1255=5 * 251$, c-prime $(251-5+1=247=13 * 19$ and $19-13+1=7$, prime);
$: \quad 97 * 7-13+1=667=23 * 29$, c-prime $(29-23+1=7$, prime $)$.
$r=14627$ satisfies the condition and:
: $14627-7 * 13+1=14537$, prime;
: $\quad 14627 * 13-7+1=190145=5 * 17 * 2237$, c-composite $(2237-5 * 17+1=2153$, prime $)$;
$: \quad 14627 * 7-13+1=102377=11 * 41 * 227$, m-composite $(11 * 41+227-1=677$, prime $)$.

Formula 2:

: \quad Take two distinct odd primes p and q ;
: Find a prime r such that the numbers $\mathrm{r}-\mathrm{p}+1$ and $\mathrm{r}-\mathrm{q}+1$ are both primes;
$: \quad$ Then the numbers $\mathrm{p}^{*} \mathrm{q}+\mathrm{r}-1, \mathrm{p}^{*} \mathrm{r}+\mathrm{q}-1$ and $\mathrm{q}^{*} \mathrm{r}+\mathrm{p}-1$ are often primes or $\mathrm{cm}-$ integers.

Verifying the formula:

(for few randomly chosen values)
We take $(p, q)=(7,13)$:
$r=109$ satisfies the condition and:

```
\(: \quad 7 * 13+109-1=199\), prime;
: \(\quad 109^{*} 7+13-1=775=5^{\wedge} 2 * 31\), c-compozite \(\left(31-5^{*} 5+1=7\right.\), prime \()\);
\(: \quad 109 * 13+7-1=1423\), prime.
```

$r=163$ satisfies the condition and:

```
: 7 7*13 + 163-1 = 253 = 11*23, c-prime (23-11 + 1 = 13, prime);
: 163*7+13-1 = 1153, prime;
: 163*13+7-1=2125= 5^3*17, cm-composite (5*17-5*5 + 1 = 61, prime and 5*17 +
    5*5 = 109, prime).
```

$r=1439$ satisfies the condition and:
$: \quad 7 * 13+1439-1=1529=11 * 139$, m-prime $(11+139-1=149$, prime $)$;
$: \quad 1439 * 7+13-1=10085=5 * 2017$, m-prime $(5+2017-1=2021$, prime $)$;
$: \quad 1439 * 13+7-1=18713$, prime.
We take $(\mathrm{p}, \mathrm{q})=(23,89)$:
$\mathrm{r}=101$ satisfies the condition and:

```
: 2 23*89 + 101-1=2147=19*113, cm-prime (113-19 + 1 = 97, prime and 113 + 19-1
    = 131, prime);
: 101*23+89-1 = 2411, prime;
: 101*89+23-1 = 9011, prime.
```

$r=131$ satisfies the condition and:

```
\(: \quad 23 * 89+131-1=2177=7 * 311\), m-prime \((7+311+7-1=317\), prime \()\);
\(: \quad 131 * 23+89-1=3101=7 * 443\), cm-prime \((443-7+1=437=19 * 23\) and \(23-19+1\)
    \(=5\), prime and \(443+7-1=449\), prime);
\(: \quad 131 * 89+23-1=11681\), prime.
```


29. Formula based on squares of primes and concatenation which leads to primes and cm-primes

Abstract

In this paper I present the following observation: concatenating to the right the number $p^{\wedge} 2-1$, where p is a prime of the form $6^{*} k-1$, with the digit 1 , is often obtained a prime or a c-prime; also, concatenating to the right the number $p^{\wedge} 2-1$, where p is a prime of the form $6 * k+1$, with the digit 1 , is often obtained a prime or a m-prime.

Conjecture 1:

The sequence of the numbers obtained concatenating to the right the numbers $\mathrm{p}^{\wedge} 2-1$, where p are primes of the form $6^{*} \mathrm{k}-1$, with the digit 1 , contains an infinity of terms which are primes.

Example: because $p^{\wedge} 2=5^{\wedge} 2=25$ and $p^{\wedge} 2-1=24$, the term from the sequence defined above corresponding to 5 is 241 .

The set of primes:

241, 1201, 5281, 28081, 68881, 79201, 102001, 127681, 278881, 299281, 320401, 364801,388081 (...), corresponding to the primes $5,11,23,53,83,89,101,113,167$, 173, 179, 191, 197 (...)

Conjecture 2:

The sequence of the numbers obtained concatenating to the right the numbers $\mathrm{p}^{\wedge} 2-1$, where p are primes of the form $6^{*} \mathrm{k}-1$, with the digit 1 , contains an infinity of terms which are c-primes.

The set of c-primes:

```
: 2881=43*67, which is c-prime because 67-43+1=25= 5^2, a square of
    prime;
: }\quad8401=31*271,\mathrm{ which is c-prime because 271-31+1=241, prime;
: 16801 = 53*317, which is c-prime because 317-53+1=265=5*53 and 53-5
    +1=49=7^2, which is square of prime;
: 22081=71*311, which is c-prime because 311-71+1=241, prime.
: 50401 = 13*3877, which is c-prime because 3877-13+1=3865=5*773 and
    773-5 + 1=769, prime;
: 114481 = 239*479, which is c-prime because 479-239 + 1 = 241, prime;
: 171601 = 157*1093, which is c-prime because 1093-157+1=937, prime;
: 222001=13*17077, which is c-prime because 17077-13+1=17065 = 5*3413
    and 3413-5 +1=3409 = 4*487 and 487-7+1=481 = 13*37 and 37-13+1
    =25, a square of prime.
```

Note that, for the numbers 8401,22081 and 114481, corresponding to the primes 29,53 and 107, we have the same c-reached prime, the number 241.

Conjecture 3:

The sequence of the numbers obtained concatenating to the right the numbers $\mathrm{p}^{\wedge} 2-1$, where p are primes of the form $6 * \mathrm{k}+1$, with the digit 1 , contains an infinity of terms which are primes.

The set of primes:

481, 9601, 13681, 18481, 37201, 53281, 62401, 118801, 161281, 193201, 372481, 396001, 497281 (...), corresponding to the primes 7, 31, 37, 43, 61, 73, 79, 109, 127, 139, 193, 199, 223 (...)

Conjecture 4:

The sequence of the numbers obtained concatenating to the right the numbers $\mathrm{p}^{\wedge} 2-1$, where p are primes of the form $6 * \mathrm{k}+1$, with the digit 1 , contains an infinity of terms which are m-primes.

The set of m-primes:

: $\quad 3601=13^{*} 277$, which is m-prime because $13+277-1=289=17 \wedge 2$ and $17+17$ $-1=33=3 * 11$ and $3+11-1=13$, a prime;
: $\quad 44881=37 * 1213$, which is m-prime because $1213+37-1=1249$, prime;

30. Formula based on squares of primes having the same digital sum that leads to primes and cm-primes

Abstract

In this paper I present the observation that the formula $p^{\wedge} 2-q^{\wedge} 2+1$, where p and q are primes with the special property that the sums of their digits are equal, leads often to primes (of course, having only the digital root equal to 1 due to the property of p and q to have same digital sum implicitly same digital root) or to special kinds of semiprimes: some of them named by me, in few previous papers, c / m-primes, and some of them named by me, in this paper, g-primes respectively s-primes. Note that I chose the names " g / s-primes" instead " g / s-semiprimes" not to exist confusion with the names " g / s composites", which I intend to define and use in further papers.

Definition 1:

We name g -primes the semiprimes of the form $\mathrm{p} * \mathrm{q}, \mathrm{p}<\mathrm{q}$, with the property that q can be written as $\mathrm{k}^{*} \mathrm{p}+\mathrm{k}-1$, where k is positive integer (it can be seen that, for $\mathrm{k}=2, \mathrm{p}$ is a Sophie Germain prime because $\mathrm{q}=2^{*} \mathrm{p}+1$ is also prime).

Examples: $\mathrm{n}=1081=23 * 47$ is a g-prime because $47=23 * 2+1$ and also $\mathrm{n}=1513=$ $17 * 89$ is a g-prime because $89=17 * 5+4$.

Definition 2:

We name s-primes the semiprimes of the form $\mathrm{p} * \mathrm{q}, \mathrm{p}<\mathrm{q}$, with the property that q can be written as $\mathrm{k} * \mathrm{p}-\mathrm{k}+1$, where k is positive integer.

Examples: $\mathrm{n}=91=7 * 13$ is a s-prime because $13=7 * 2-1$ and also $\mathrm{n}=4681=31 * 151$ is a s-prime because $151=31 * 5-4$.

Observation:

The formula $\mathrm{p}^{\wedge} 2-\mathrm{q}^{\wedge} 2+1$, where p and q are primes with the special property that the sums of their digits are equal, leads often to primes (of course, having only the digital root equal to 1) or to c / m-primes or g / s-primes.

SQUARES OF PRIMES WITH THE DIGITAL SUM 4

The sequence of this squares is:
$: \quad 121\left(=11^{\wedge} 2\right), 10201\left(=101^{\wedge} 2\right)$.

SQUARES OF PRIMES WITH THE DIGITAL SUM 10

The sequence of this squares is:
$: \quad 361\left(=19^{\wedge} 2\right), 5041\left(=71^{\wedge} 2\right)$.

SQUARES OF PRIMES WITH THE DIGITAL SUM 13

The sequence of this squares is:

$$
: \quad 49\left(=7^{\wedge} 2\right), 841\left(=29^{\wedge} 2\right), 2209\left(=47^{\wedge} 2\right), 3721\left(=61^{\wedge} 2\right), 6241\left(=79^{\wedge} 2\right) .
$$

SQUARES OF PRIMES WITH THE DIGITAL SUM 16

The sequence of this squares is:

$$
: \quad 169\left(=13^{\wedge} 2\right), 529\left(=23^{\wedge} 2\right), 961\left(=31^{\wedge} 2\right), 1681\left(=41^{\wedge} 2\right), 3481\left(=59^{\wedge} 2\right) .
$$

SQUARES OF PRIMES WITH THE DIGITAL SUM 19

The sequence of this squares is:
$: \quad 289\left(=17^{\wedge} 2\right), 1369\left(=37^{\wedge} 2\right), 2809\left(=53^{\wedge} 2\right), 5329\left(=19^{\wedge} 2\right)$.

SQUARES OF PRIMES WITH THE DIGITAL SUM 22

The sequence of this squares is:

$$
: \quad 1849\left(=43^{\wedge} 2\right), 9409\left(=97^{\wedge} 2\right) .
$$

Verifying the observation:
 (up to the square of 101)

$: \quad 5041-361+1=4681=31 * 151$, a s-prime because $151=31 * 5-4$, a c-prime because $151-31+1=121$, a square of prime, and also a m-prime because $151+31-1=181$, prime;
$: \quad 841-49+1=793=13 * 61$,
a s-prime because $61=13 * 5-4$, a c-prime because $61-13+1=49$, a square of prime and a m-prime because $13+61-1=73$, prime;
: $2209-49+1=2161$, prime;
: $3721-49+1=3673$, prime;
$6241-49+1=6193=11 * 563$,
a g-prime because $11 * 47+46=563$ and a c-prime because $563-11+1=553=$ $7 * 79$ and $79-7+1=73$, prime;
$: \quad 2209-841+1=1369$, square of prime ($37 \wedge 2$);
$: \quad 3721-841+1=2881=43 * 67$,
a c-prime because $67-43+1=25$, square of prime, and a m-prime because $43+$ $67-1=109$, prime;
$: \quad 6241-841+1=5401=11 * 491$,
a g-prime because $491=11 * 41+40$ and a c-prime because $491-11+1=481=$ $13 * 37$ and $37-13+1=25$, square of prime;
$: \quad 3721-2209+1=1513=17 * 89$,
a g-prime because $89=17 * 5+4$ and a c-prime because $89-17+1=73$, prime;
$: \quad 6241-2209+1=4033=37^{*} 109$,
s-prime because $109=37 * 3-2$, also a c-prime and m-prime;
$: \quad 6241-3721+1=2521$, prime;
: $\quad 529-169+1=361$, square of prime (19^2);
: $\quad 961-169+1=793=13 * 61$ (see above);
: $1681-169+1=1513=17 * 89$ (see above);
$: \quad 3481-169+1=3313$, prime;
$: \quad 1681-529+1=1153$, prime;
$: \quad 3481-529+1=2953$, prime;
$: \quad 1681-961+1=721=7 * 103$, a q-prime because $103=7 * 13+12$, a c-prime because $103-7+1=97$, prime, and a m-prime because $103+7-1=109$, prime;
$: \quad 3481-961+1=2521$, prime;
$: \quad 3481-1681+1=1801$, prime;
$: \quad 1369-289+1=1081=23 * 47$, g-prime because $47=23 * 2+1$ and c-prime because $47-23+1=25$, square of prime;
$: \quad 2809-289+1=2521$, prime;
$: \quad 5329-289+1=5041$, square of prime $\left(71^{\wedge} 2\right)$;
$: \quad 2809-1369+1=1441=11 * 131$,
g-prime because $131=11 * 11+10$ and c-prime because $131-11+1=121$, square of prime;
$: \quad 5329-1369+1=3961=17 * 233$, g-prime because $233=17 * 13+12$ and c-prime because $233-17+1=217=$ $7 * 31$ and $31-7+1=25$, square of prime;
$: \quad 5329-2808=2521$, prime;
$: \quad 9409-1849+1=7561$, prime.

Comment:

One of the semiprimes obtained above, $4033(=37 * 109)$, is also a 2-Poulet number; many such numbers are g-primes or s-primes; to give to these semiprimes a name is justified at least in the study of Fermat pseudoprimes to base two with two prime factors (see the sequence A214305 in OEIS).

31. An analysis of four Smarandache concatenated sequences using the notion of cm-integers

Abstract

In this paper I show that Smarandache concatenated sequences presented here (i.e. The consecutive numbers sequence, The concatenated odd sequence, The concatenated even sequence, The concatenated prime sequence), sequences well known for the common feature that contain very few terms which are primes, per contra, contain very many terms which are c-primes, m-primes, c-reached primes and m-reached primes (notions presented in my previous papers, see "Conjecture that states that any Carmichael number is cm-composite" and "A property of repdigit numbers and the notion of cminteger").

Note:

The Smarandache concatenated sequences are well known for sharing a common feature: they all contain a small number of prime terms. Interesting is that, per contra, they seem to contain a large number of c-primes and m-primes. More than that, applying different operations on terms, like the sum of two consecutive terms or partial sums, we obtain again a large number of c -primes and m -primes respectively of c -reached primes and m reached primes.

Note:

In the following analysis I will not show how I calculated the c-reached primes and the m -reached primes, see for that my paper "The notions of c -reached prime and m-reached prime".

Verifying the observation for the following Smarandache concatenated sequences:

(1) The Smarandache consecutive numbers sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n positive integers. The first ten terms of the sequence (A007908 in OEIS) are 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910.

This sequence seems to have the property that the value of the sum of two consecutive terms is often (I conjecture that always) a cm-integer.

The first few such values are:
: $\quad 12+123=135=3^{\wedge} 3 * 5$. This number is cm-composite, having three c-reached primes, $7,23,43$, and three m-reached primes, $23,31,47$;
$: \quad 123+1234=1357=23 * 59$. This number is cm-prime, having the c-reached prime equal to 37 and the m-reached prime equal to 1 ;
: $\quad 1234+12345=13579=37 * 367$. This number is cm-prime, having the c-reached prime equal to 331 and the m-reached prime equal to 43 ;
$: \quad 12345+123456=135801=3 \wedge 2 * 79^{*} 191$. This number is cm-composite, having a c-reached prime, 521, and a m-reached prime, 601;
$: \quad 123456+1234567=1358023=67 * 20269$. This number is c -prime, having the c reached prime equal to 139 ;
$: \quad 1234567+12345678=13580245=5 * 7 * 587 * 661$. This number is cm-composite, having three c-reached primes, 1693, 22549 and 387973, and two m-reache primes, 7561 and 1940041.
(2) The Smarandache concatenated odd sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n odd numbers (the n-th term of the sequence is formed through the concatenation of the odd numbers from 1 to $2 * \mathrm{n}-1$). The first ten terms of the sequence (A019519 in OEIS) are 1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719.

This sequence seems to have the property that the value of the terms is often (I conjecture that always) a cm-integer.

The first few such values are:
: 13. This number is prime, so cm-prime by definition;
$: \quad 135=3^{\wedge} 3^{*} 5$. This number is cm-composite, having four c-reached primes, 5,7 , 23 and 43 , and three m-reached primes, 23, 31 and 47;
: $\quad 1357=23 * 59$. This number is c-prime, having the c-reached prime equal to 47 ;
: $\quad 13579=37 * 367$. This number is cm-prime, having the c-reached prime equal to 331 and the m-reached prime equal to 403 ;
$: \quad 1357911=3^{\wedge} 3^{*} 19^{*} 2647$. This number is cm-composite, having a c-reached prime equal to 23767 and two m-reached primes equal to 8111 and 23879;
$: \quad 135791113=11617 * 11689$. This number is c-prime, having the c-reached prime equal to 73 .
(3) The Smarandache concatenated even sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n even numbers (the n-th term of the sequence is formed through the concatenation of the even numbers from 1 to $2 * \mathrm{n}$). The first ten terms of the sequence (A019520 in OEIS) are 2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 2468101214161820.

This sequence seems to have the property that the value of the numbers $(S-1)$, where S are the partial sums, is often (I conjecture that always) a cm-integer.

The first few such values are:
: $2+24-1=25=5 * 5$. This number is cm-prime, having the c-reached prime equal to 1 and the m-reached prime equal to 5 ;
: $\quad 2+24+246-1=271$. This number is prime, so cm-prime by definition;
$: \quad 2+24+246+2468-1=2739=3 * 11 * 83$. This number is c-composite, having two c-reached primes equal to 239 and 911 ;
$: \quad 2+24+246+2468+246810-1=249549=3^{*} 193 * 431$. This number is cmcomposite, having a c-reached prime equal to 149 and a m-reache primes equal to 8111 and 1009 ;
$: \quad 2+24+246+2468+246810+24681012-1=24930561=3 * 1187 * 7001$. This number is m -reached composite, having a m-reached prime equal to 22189 .

This sequence seems also to have the property that the value of the numbers ($\mathrm{S}-1$), where S is the sum of two consecutive terms, is often a cm-integer.

The first few such values are:
: $2+24-1=25=5 * 5$. This number is cm-prime, having the c-reached prime equal to 1 and the m-reached prime equal to 5 ;
: $24+246-1=269$. This number is prime, so cm-prime by definition;
: $\quad 246+2468-1=2713$. This number is prime, so cm-prime by definition;
: $2468+246810-1=249277=7 * 149 * 249$. This number is m-composite, having a reached m-prime equal to 35617 .
(4) The concatenated prime sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n primes. The first ten terms of the sequence (A019518 in OEIS) are 2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329.

This sequence seems to have the property that the value of the numbers $a(n)-a(n-1)-1$ is often a cm-integer.

The first few such values are:
: $\quad 235-23-1=211$. This number is prime, so cm-prime by definition;
$: \quad 2357-235-1=2121=3 * 7^{*} 101$. This number is m -composite, having two m reached primes, 107 and 709.
: $235711-2357-1=233353$. This number is prime, so cm-prime by definition;
: $23571113-235711-1=23335401$. I haven't completely analyzed the number, but is at least m-composite having a m-reached prime 804697;
$: \quad 2357111317-23571113-1=2333540203=541 * 4313383$. This number is cprime (because $4313383-541+1=4312843=389 * 11087$ and $11087-389+1$ $=10699=13 * 823$ and $823-13+1=811$, which is prime) having the c-reached prime equal to 811 ;
$: \quad 235711131719-2357111317=233354020401=3 \wedge 2 * 25928224489$. This number is m-composite (because $3 * 25928224489+3-1=77784673469$) having the m-reached prime equal to 77784673469 .

32. An analysis of seven Smarandache concatenated sequences using the notion of cm-integers

Abstract

In this paper I show that many Smarandache concatenated sequences, well known for the common feature that contain very few terms which are primes (I present here The concatenated square sequence, The concatenated cubic sequence, The sequence of triangular numbers, The symmetric numbers sequence, The antisymmetric numbers sequence, The mirror sequence, The " n concatenated n times" sequence) contain (or conduct to, through basic operations between terms) very many numbers which are cmintegers (c-primes, m-primes, c-composites, m-composites).

Observation:

Many Smarandache concatenated sequences, well known for the common feature that contain very few terms which are primes, contain (or conduct to, through basic operations between terms) very many numbers which are cm-integers (c-primes, m-primes, ccomposites, m-composites).

Note:

In the following analysis I will not show how I calculated the c-reached primes and the m -reached primes, see for that the paper "The notions of c -reached prime and m-reached prime".

Verifying the observation for the following Smarandache concatenated sequences:

(1) The concatenated square sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n squares. The first ten terms of the sequence (A019521 in OEIS) are 1, 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, 149162536496481, 149162536496481100.

This sequence seems to have the property that the value of the number $a(n+1)-a(n)$, where $\mathrm{a}(\mathrm{n})$ and $\mathrm{a}(\mathrm{n}+1)$ are two consecutive terms and n is odd, is often a c-prime or a ccomposite.

The first few such values are:
: $14-1=13$. This number is prime, so by definition c-prime;
: $\quad 14916-149=14767$. This number is prime, so by definition c-prime;
$: \quad 149162536-1491625=147670911=3 \wedge 3^{*} 109 * 50177$. This number is c composite, having a c-reached prime equal to 149551 ;
$: \quad 1491625364964-14916253649=1476709111315=5 * 449 * 657776887$. This number is c-composite, having a c-reached prime equal to 3288883987 ;
: $149162536496481100-149162536496481=149013373959984619=$ $29 * 5138392205516711$. This number is c-composite, having a c-reached prime equal to 11922023678263 .
(2) The concatenated cubic sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n cubes. The first ten terms of the sequence (A019521 in OEIS) are 1, 18, 1827, 182764, 182764125, 182764125216, 182764125216343, 182764125216343512, 182764125216343512729, 1827641252163435127291000 .

This sequence seems to have the property that the value of the number $a(n)+a(n+2)-$ $\mathrm{a}(\mathrm{n}+1)$, where n is even, is often a mc-integer.

The first few such values are:

$$
\begin{array}{ll}
: & 18+182764-1827=180955=5 * 36191 \text {. This number is c-prime, having a c- } \\
\text { reached prime equal to } 36187 \text {. } \\
: & 182764+182764125216-182764125=182581543855=5 * 17 * 2148018163 . \\
& \text { This number is c-composite, having a c-reached prime equal to } 36516308767 . \\
182764125216+182764125216343512 \quad-\quad 182764125216343
\end{array}=
$$

(3) The sequence of triangular numbers
S_{n} is defined as the sequence obtained through the concatenation of the first n triangular numbers. The triangular numbers are a subset of the polygonal numbers (which are a subset of figurate numbers) constructed with the formula $\mathrm{T}(\mathrm{n})=(\mathrm{n} *(\mathrm{n}+1)) / 2=1+2+3$ $+\ldots+\mathrm{n}$. The first ten terms of the sequence (A078795 in OEIS) are 1, 13, 136, 13610, 1361015, 136101521, 13610152128, 1361015212836, 136101521283645, 13610152128364555.

There are only two terms of this sequence that are primes (among the first 5000 terms, i.e. 13 and 136101521); on the other side, seems that relatively easy can be constructed primes using basic operations between the terms of the sequence, like for instance $a(n)+$ $\mathrm{a}(\mathrm{n}+1)-1$, for n and $\mathrm{n}+1$ even, and $\mathrm{a}(\mathrm{n})+\mathrm{a}(\mathrm{n}+1)+1$, for n and $\mathrm{n}+1$ odd.

Two such values are:
$: \quad 1361015+136101521+1=137462537$, a prime number;
$: \quad 13610152128+1361015212836-1=1374625364963$, a prime number.
(4) The symmetric numbers sequence
S_{n} is defined as the sequence obtained through concatenation in the following way: if n is odd, the n -th term of the sequence is obtained through concatenation $123 \ldots(\mathrm{~m}-1) \mathrm{m}(\mathrm{m}-$ 1)...321, where $m=(n+1) / 2$; if n is even, the n-th term of the sequence is obtained
through concatenation $123 \ldots(\mathrm{~m}-1) \mathrm{mm}(\mathrm{m}-1) \ldots 321$, unde $\mathrm{m}=\mathrm{n} / 2$. The first ten terms of the sequence (A007907 in OEIS) are 1, 11, 121, 1221, 12321, 123321, 1234321, $12344321,123454321,1234554321,12345654321$.

This sequence seems to have the following property: the terms of the form $12 \ldots(n-1) n(n-$ $1) . .21$, where n is odd, are often cm -integers.

Few such values are:
$: \quad 1234567654321=239^{\wedge} 2^{*} 4649^{\wedge} 2$. This number is m -composite, having a mreached prime equal to 21670321 .
: $12345678987654321=3^{\wedge} 4^{*} 37^{\wedge} 2^{*} 333667^{\wedge} 2$. This number is m-composite, having a m-reached prime equal to 457247369913149 ;
: $\quad 123456789101110987654321=7 * 17636684157301569664903$. This number is c-composite, having a c-reached prime equal to 17636684157301569664897 .
(5) The antisymmetric numbers sequence
S_{n} is defined as the sequence obtained through the concatenation in the following way: $12 \ldots(\mathrm{n}) 12 \ldots(\mathrm{n})$. The first ten terms of the sequence (A019524 in OEIS) are 11,1212 , $123123,12341234,1234512345,123456123456,12345671234567,1234567812345678$, 123456789123456789 .

This sequence seems to have the following property: the values of the numbers $2 * a(n)+$ 1 , where $\mathrm{a}(\mathrm{n})$ are the terms corresponding to n odd, are often cm-integers.

Few such values are:
$: \quad 2 * 123123+1=246247$. This number is prime, so c-prime and m-prime (cmprime) by definition;
$: \quad 2 * 1234512345+1=2469024691=7 \wedge 2 * 50388259$. This number is c-composite, having a c-reached prime equal to 50388211 ;
$: \quad 2 * 123456789123456789+1=246913578246913579=17 * 14524328132171387$. This number is c-composite, having a c-reached prime equal to 14524328132171371.
(6) The mirror sequence
S_{n} is defined as the sequence obtained through concatenation in the following way: $\mathrm{n}(\mathrm{n}-$ 1) ... $32123 \ldots(\mathrm{n}-1) \mathrm{n}$. The first ten terms of the sequence (A007942 in OEIS) are 1, 212, 32123, 4321234, 543212345, 65432123456, 7654321234567, 876543212345678, 98765432123456789, 109876543212345678910

This sequence seems to have the following property: the values of the numbers obtained deconcatenating to the right with the last digit the even terms are often cm -integers.

The first few such values are:
: $\quad 21=3 * 7$. This number is cm-prime, having the c-reached prime equal to 5 and the m-reached prime equal to 5 ;
: $\quad 432123=3^{*} 17 * 37 * 229$. This number is cm-composite, having c-reached primes equal to 59 and 8423 and m-reached primes equal to $19,1699,4003$;
: $\quad 6543212345=5 * 71 * 271 * 117779$. This number is m-composite, having a mreached prime equal to 371573 ;
$: \quad 87654321234567=3^{\wedge} 4^{*} 229^{*} 239^{*} 4253 * 4649$. This number is m -composite, having a m-reached prime equal to 87654321234567 ;
$: \quad 1098765432123456789=3 \wedge 2 * 17 * 37 * 333667 * 581699347$. This number is ccomposite, having a c-reached prime equal to 36815221 .
(7) The " n concatenated n times" sequence
S_{n} is defined as the sequence of the numbers obtained concatenating n times the number n . The first ten terms of the sequence (A000461 in OEIS) are 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010.

This sequence seems to have the property that the value of the number $a(n+1)-a(n)$ is often a m-prime or a m-composite.

The first few such values are:
: $\quad 22-1=21=3 * 7$. This number is m -prime, having the m -reached prime equal to 5;
: $\quad 333-22=311$. This number is prime, so m-prime by definition;
: $\quad 4444-333=4111$. This number is prime, so m-prime by definition;
$: \quad 55555-4444=51111=3^{\wedge} 4^{*} 631$. This number is m-composite, having two m reached primes, equal to 23 and 1559 ;
: $\quad 666666-55555=611111$. This number is prime, so m-prime by definition;
$: \quad 7777777-666666=7111111=7 * 19 * 127 * 421$. This number is m -composite, having three m-reached primes, equal to 103,8887 and 374287 ;
$: \quad 88888888-7777777=81111111=3 * 27037037$. This number is m-prime, having the m-reached prime equal to 342319 .

33. On the special relation between the numbers of the form $505+1008 \mathrm{k}$ and the squares of primes

Abstract

The study of the power of primes was for me a constant probably since I first encounter "Fermat's last theorem". The desire to find numbers with special properties, as is, say, Hardy-Ramanujan number, was another constant. In this paper I present a class of numbers, i.e. the numbers of the form $\mathrm{n}=505+1008 * \mathrm{k}$, where k positive integer, which, despite the fact that they don't seem to be, prima facie, "special", seem to have a strong connection with the powers of primes: for a lot of values of k (I show in this paper that for nine from the first twelve and I conjecture that for an infinity of the values of k), there exist p and q primes such that $\mathrm{p}^{\wedge} 2-\mathrm{q}^{\wedge} 2+1=\mathrm{n}$. The special nature of the numbers of the form $505+1008 * \mathrm{k}$ is also highlight by the fact that they are (all the first twelve of them, as much I checked) primes or g / s-integers or c / m-integers (I define in Addenda to this paper the two new notions mentioned).

The sequence of the squares of primes (A001248 in OEIS):

$4,9,25,49,121,169,289,361,529,841,961,1369,1681,1849,2209,2809,3481$, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481 (...)

The sequence of the numbers of the form $505+1008 * k$:

$505,1513,2521,3529,4537,5545,6553,7561,8569,9577,10585,11593(\ldots)$

Conjecture 1:

There exist an infinity of values of k , positive integer, such that the number $\mathrm{n}=505+$ $1008^{*} \mathrm{k}$ can be written as $\mathrm{n}=\mathrm{p}^{\wedge} 2-\mathrm{q}^{\wedge} 2+1$, where p and q are primes.

Note:

The numbers from the sequence above more probably to can be written the way mentioned are the ones that have the last digit 1,3 or 9 , because $p^{\wedge} 2$ and $q^{\wedge} 2$ have, without an exception (I refer only to primes greater than or equal to 5), the number 25 , only the values 1 and 9 for the last digit; that means that the numbers from the sequence above ended in digits 5 or 7 can only satisfy the equation if $q^{\wedge} 2$ is 25 (but the numbers 505 and 10585 do satisfy the equation!).

Examples:

(The ways in which n from the examples below can be written as mentioned is revealed just up to $\mathrm{p}=191$ that means $\mathrm{p}^{\wedge} 2=36481$)
: \quad The number 505 (obtained for $\mathrm{k}=0$) can be written as

$$
: \quad 505=23^{\wedge} 2-5^{\wedge} 2+1 .
$$

: The number 1513 (obtained for $\mathrm{k}=1$) can be written as

$$
: \quad 1513=41^{\wedge} 2-13^{\wedge} 2+1
$$

$: \quad 1513=61^{\wedge} 2-47^{\wedge} 2+1$.
: \quad The number 2521 (obtained for $\mathrm{k}=2$) can be written as

$$
: \quad 2521=53^{\wedge} 2-17^{\wedge} 2+1
$$

$$
: \quad 2521=59^{\wedge} 2-31^{\wedge} 2+1 ;
$$

$$
: \quad 2521=73^{\wedge} 2-53^{\wedge} 2+1 .
$$

: The number 3529 (obtained for $\mathrm{k}=3$) can be written as

$$
: \quad 3529=67^{\wedge} 2-31^{\wedge} 2+1
$$

$$
: \quad 3529=107^{\wedge} 2-89^{\wedge} 2+1 .
$$

: The number 6553 (obtained for $\mathrm{k}=6$) can be written as
$: \quad 6553=89^{\wedge} 2-37 \wedge 2+1$;
$: \quad 6553=109^{\wedge} 2-73^{\wedge} 2+1$;
$: \quad 6553=131^{\wedge} 2-103^{\wedge} 2+1$;
$: \quad 6553=139^{\wedge} 2-113^{\wedge} 2+1$.
: \quad The number 7561 (obtained for $\mathrm{k}=7$) can be written as $: \quad 7561=89^{\wedge} 2-31^{\wedge} 2+1$.
: \quad The number 8569 (obtained for $\mathrm{k}=8$) can be written as

$$
: \quad 8569=137 \wedge 2-101^{\wedge} 2+1
$$

$$
: \quad 8569=167^{\wedge} 2-139^{\wedge} 2+1 .
$$

: The number 10585 (obtained for $\mathrm{k}=10$) can be written as
: $\quad 10585=103^{\wedge} 2-5^{\wedge} 2+1$.
: \quad The number 11593 (obtained for $\mathrm{k}=11$) can be written as
: $11593=109^{\wedge} 2-17^{\wedge} 2+1$;
$: \quad 11593=149^{\wedge} 2-103^{\wedge} 2+1$.

ON THE SPECIAL NATURE OF THE NUMBERS OF THE FORM $505+1008 * \mathrm{~K}$

As I mentioned in Abstract, all the first 12 such numbers are primes or c / m-integers or g / s integers (I defined in Addenda 1 respectively in Addenda 2, see below, these two new notions).

The numbers $2521,3521,6553,7561,11593$ are primes; the rest of the numbers from the sequence checked (up to the term 11593) are both c / m-integers and s / m-integers.

Conjecture 2:

All the numbers of the form $\mathrm{n}=505+1008^{*} \mathrm{k}$, where k positive integer, are either primes either c / m-integers and/or g / s-integers.

Verifying the conjecture:

(for the seven numbers which are not primes from the first twelve from sequence)
: the number $505=5^{*} 101$ is g -prime because $101=5^{*} 17+16$; is also c-prime because $101-5+1=97$, prime;
: the number $1513=17 * 89$ is g-prime because $89=17 * 5+4$; is also c-prime because 89 $17+1=73$, prime;
: the number $4537=13 * 349$ is a g-prime because $349=13 * 25+24$; is also c-prime because $349-13+1=337$, prime; is also m -prime because $349+12-1=361=19^{\wedge} 2$ and $19+19-1=37$, prime;
: the number $5545=5^{*} 1109$ is a g-prime because $1109=5^{*} 185+184$;
: the number $9577=61^{*} 157$ is a c-prime because $157-61+1=97$, a prime;
: the number $8569=11 * 19 * 41$ is a gs-composite, g-composite because $19 * 41=11 * 65+$ 64 and s-composite because $11 * 41=19 * 25-24$; it is also cm-composite, c-composite because 11*41-19+1=433, prime (also 19*41-11+1=769, prime, and $11 * 91-41$ $+1=169$, square of prime) and m-composite because $11 * 41+19-1=7 * 67$ (m-prime because $7+67-1=73$, prime);
: the number $10585=5 * 29^{* 73}$ is a gs-composite, g-composite because $5 * 353+352=$ $29^{*} 73$ and s-composite because $73 * 2-1=5 * 29$ (and also $29 * 13-12=5 * 73$); it is also cm-composite, c-composite because $5 * 29-73+1=73$, prime (and also $5 * 73-29+1=$ 337 , prime and $29 * 73-5+1=2113$, prime) and m-composite because $5 * 29+73-1=$ $217=7 * 31$ and $7+31-1=37$, prime;

Comment:

Note that the number 10585 (obtained for $\mathrm{k}=10$) is also a Carmichael number. In a previous paper, namely "Conjecture that states that any Carmichael number is a cmcomposite", I conjectured that these numbers have the property mentioned in title. In further papers I shall check to what extent the Fermat pseudoprimes (Poulet numbers and Carmichael numbers) are g / s-integers (notion defined for the first time in this paper). Another thing to be checked: the formula $n+q^{\wedge} 2-1$ can lead sometimes to Poulet numbers (it is the case $6553+7^{\wedge} 1-1=6601$).

ADDENDA 1. C/M-INTEGERS

Definition of a c-prime:

We name a c-prime a positive odd integer which is either prime either semiprime of the form $\mathrm{p}(1) * \mathrm{q}(1), \mathrm{p}(1)<\mathrm{q}(1)$, with the property that the number $\mathrm{q}(1)-\mathrm{p}(1)+1$ is either prime either semiprime $p(2)^{*} q(2)$ with the property that the number $q(2)-p(2)+1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 4979 is a c-prime because $4979=13 * 383$, where $383-13+1=371=7 * 53$, where $53-7+1=47$, a prime.

Definition of a m-prime:

We name a m-prime a positive odd integer which is either prime either semiprime of the form $\mathrm{p}(1) * \mathrm{q}(1)$, with the property that the number $\mathrm{p}(1)+\mathrm{q}(1)-1$ is either prime either semiprime $\mathrm{p}(2) * \mathrm{q}(2)$ with the property that the number $\mathrm{p}(2)+\mathrm{q}(2)-1$ is either prime either semiprime with the property showed above... (until, eventualy, is obtained a prime).

Example: 5411 is a m-prime because $5411=7 * 773$, where $7+773-1=779=19 * 41$, where $19+41-1=59$, a prime.

Definition of a cm-prime:

We name a cm-prime a number which is both c-prime and m-prime (not to be confused with the notation c / m-primes which I use to express "c-primes or m-primes").

Definition of a c-composite:

We name a c-composite the composite number with three or more prime factors $\mathrm{n}=$ $\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots{ }^{*} \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which has the following property: there exist $\mathrm{p}(\mathrm{k})$ and $\mathrm{p}(\mathrm{h})$, where $\mathrm{p}(\mathrm{k})$ is the product of some distinct prime factors of n and $\mathrm{p}(\mathrm{h})$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})-\mathrm{p}(\mathrm{h})+1$ is a c-prime.

Definition of a m-composite:

We name a m-composite the composite number with three or more prime factors $\mathrm{n}=$ $\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots * \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which has the following property: there exist $\mathrm{p}(\mathrm{k})$ and $\mathrm{p}(\mathrm{h})$, where $\mathrm{p}(\mathrm{k})$ is the product of some distinct prime factors of n and $\mathrm{p}(\mathrm{h})$ the product of the other distinct prime factors such that the number $\mathrm{p}(\mathrm{k})+\mathrm{p}(\mathrm{h})-1$ is a m-prime.

Definition of a cm-composite:

We name a cm-composite a number which is both c-composite and m-composite (not to be confused with the notation c / m-composites which I use to express "c-composites or m composites").

Definition of a \mathbf{c} / \mathbf{m}-integer:

We name a c/m-integer a number which is either c-prime, m-prime, cm-prime, ccomposite, m-composite or cm-composite.

ADDENDA 2. G/S-INTEGERS

Definition of a g-prime:

We name g-primes the semiprimes of the form $\mathrm{p} * \mathrm{q}, \mathrm{p}<\mathrm{q}$, with the property that q can be written as $\mathrm{k}^{*} \mathrm{p}+\mathrm{k}-1$, where k is positive integer (it can be seen that, for $\mathrm{k}=2, \mathrm{p}$ is a Sophie Germain prime because $\mathrm{q}=2 * \mathrm{p}+1$ is also prime).

Examples: $\mathrm{n}=1081=23 * 47$ is a g-prime because $47=23 * 2+1$ and also $\mathrm{n}=1513=$ $17 * 89$ is a g-prime because $89=17 * 5+4$.

Definition of a s-prime:

We name s-primes the semiprimes of the form $\mathrm{p} * \mathrm{q}, \mathrm{p}<\mathrm{q}$, with the property that q can be written as $\mathrm{k} * \mathrm{p}-\mathrm{k}+1$, where k is positive integer.

Examples: $\mathrm{n}=91=7 * 13$ is a s-prime because $13=7 * 2-1$ and also $\mathrm{n}=4681=31 * 151$ is a s-prime because $151=31 * 5-4$.

Definition of a g-composite:

We name a g-composite the composite number with three or more prime factors $\mathrm{n}=$ $\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots * \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which has the following property: there exist $\mathrm{p}(\mathrm{k})$ and $\mathrm{p}(\mathrm{h})$, where $\mathrm{p}(\mathrm{k})$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors, also there exist the number m, positive integer, such that $p(h)$ can be written as $m^{*} p(k)+m-1$.

Example: $\mathrm{n}=8569=11^{*} 19 * 41$ is a g-composite because $11 * 65+65-1=19 * 41$.

Definition of a s-composite:

We name a s-composite the composite number with three or more prime factors $\mathrm{n}=$ $\mathrm{p}(1)^{*} \mathrm{p}(2)^{*} \ldots * \mathrm{p}(\mathrm{m})$, where $\mathrm{p}(1), \mathrm{p}(2), \ldots, \mathrm{p}(\mathrm{m})$ are the prime factors of n , which has the following property: there exist $p(k)$ and $p(h)$, where $p(k)$ is the product of some distinct prime factors of n and $p(h)$ the product of the other distinct prime factors, also there exist the number m , positive integer, such that $\mathrm{p}(\mathrm{h})$ can be written as $\mathrm{m}^{*} \mathrm{p}(\mathrm{k})-\mathrm{m}+1$.

Example: $\mathrm{n}=8569=11 * 19 * 41$ is a s-composite because $19 * 25-25+1=11 * 41$.

Definition of a gs-composite:

We name a gs-composite a number which is both g-composite and s-composite (not to be confused with the notation g / m-composites which I use to express " g -composites or s composites").

Definition of a \mathbf{g} / \mathbf{s}-integer:

We name a g / s-integer a number which is either g-prime, s-prime, g-composite, scomposite or gs-composite.

34. The notion of s-primes and a generic formula of 2-Poulet numbers

Abstract

In Addenda to my previous paper "On the special relation between the numbers of the form $505+1008 \mathrm{k}$ and the squares of primes" I defined the notions of c / m integers and g / s-integers and showed some of their applications. In a previous paper I conjectured that, beside few definable exceptions, the Fermat pseudoprimes to base 2 with two prime factors are c / m-primes, but I haven't defined the "definable exceptions". However, in this paper I confirm one of my constant beliefs, namely that the relations between the two prime factors of a 2-Poulet number are definable without exceptions and I make a conjecture about a generic formula of these numbers, namely that the most of them are s-primes and the exceptions must satisfy a given Diophantine equation.

Definition of a s-prime:

We name s-primes the semiprimes of the form $\mathrm{p} * \mathrm{q}, \mathrm{p}<\mathrm{q}$, with the property that q can be written as $\mathrm{k}^{*} \mathrm{p}-\mathrm{k}+1$, where k is positive integer.

Preliminary conjecture:

All 2-Poulet numbers but a set of few definable exceptions are s-primes.

Note:

For a list of 2-Poulet numbers see the sequence A214305 submitted by me on OEIS.
Verifying the conjecture (for the first thirty 2-Poulet numbers):
For $341=11 * 31$ we have:
: $\quad 11 * 3-2=31$. The number 341 is a s-prime.
For $1387=19 * 73$ we have:
: $19 * 4-3=73$. The number 1387 is a s-prime.
For $2701=37 * 73$ we have:
: $\quad 37 * 2-1=73$. The number 2701 is a s-prime.
For $3277=29 * 113$ we have:
: $29 * 4-3=113$. The number 3277 is a s-prime.
For $4033=37^{*} 109$ we have:
: $\quad 37 * 3-2=109$. The number 4033 is a s-prime.
For $4369=17 * 257$ we have:
: $\quad 17^{*} 16-15=257$. The number 4369 is a s-prime.
For $4681=31 * 151$ we have:
: $\quad 31 * 3-2=151$. The number 4681 is a s-prime.

For $5461=43 * 127$ we have:
: $\quad 43 * 3-2=127$. The number 5461 is a s-prime.
The number $7957=73 * 109$ is an exception (we will try to define it when more exceptions will occur)

For $8321=53 * 157$ we have:
: $\quad 53 * 3-2=157$. The number 4681 is a s-prime.
For $10261=31 * 331$ we have:
: $\quad 31 * 11-10=331$. The number 10261 is a s-prime.
For $13747=59 * 233$ we have:
: $\quad 59 * 4-3=233$. The number 13747 is a s-prime.
For $14491=43 * 337$ we have:
: $43 * 8-7$. The number 14491 is a s-prime.
For $15709=23 * 683$ we have:
: $\quad 23 * 31-30=683$. The number 15709 is a s-prime.
For $18721=97 * 193$ we have:
: $\quad 97 * 2-1=193$. The number 18721 is a s-prime.
For $19951=71 * 281$ we have:
: $\quad 71 * 3-2=281$. The number 19951 is a s-prime.
The number $23377=97^{*} 241$ is an exception (we will try to define it when more exceptions will occur)

For $31417=89 * 353$ we have:
: $89 * 4-3=353$. The number 31417 is a s-prime.
For $31609=73 * 433$ we have:
: $\quad 73 * 6-5=433$. The number 31609 is a s-prime.
For $31621=103 * 307$ we have:
: $103 * 3-2=307$. The number 31621 is a s-prime.
The number $35333=89^{*} 397$ is an exception (we will try to define it when more exceptions will occur)

The number $42799=127 * 337$ is an exception (we will try to define it when more exceptions will occur)

For $49141=157 * 313$ we have:
: $\quad 157 * 2-1=313$. The number 49141 is a s-prime.
The number $49981=151^{*} 331$ is an exception (we will try to define it when more exceptions will occur)

For $60701=101 * 601$ we have:
: $\quad 101 * 6-5=601$. The number 60701 is a s-prime.
The number $60787=89 * 683$ is an exception (we will try to define it when more exceptions will occur)

For $65281=97 * 673$ we have:
: $\quad 97 * 7-6=673$. The number 65281 is a s-prime.
For $80581=61 * 1321$ we have:
: $\quad 61 * 22-21=1321$. The number 80581 is a s-prime.
For $83333=167 * 499$ we have:
: $\quad 167 * 3-2=499$. The number 83333 is a s-prime.

Conclusion:

I studied the exceptions and I found one thing common to them: they satisfy the equation $\mathrm{a}^{*} \mathrm{q}=\mathrm{b}^{*} \mathrm{p}+\mathrm{c}$, where p and q are the two prime factors, $\mathrm{p}<\mathrm{q}$, a and b positive integers and c integer that satisfy the condition $\mathrm{a}=\mathrm{b}+\mathrm{c}$:
: $\quad 7957=73 * 109:$ satisfies for $(a, b, c)=(3,2,1)$
Indeed, $3 * 73=2 * 109+1$ and $3=2+1$;
: $\quad 23377=97 * 241:$ satisfies for $(a, b, c)=(5,2,3)$
Indeed, $5^{*} 97=2 * 241+3$ and $5=2+3$;
: $\quad 35333=89^{*} 397$: satisfies for $(a, b, c)=(8,36,-28)$
Indeed, $8 * 397=36 * 89-28$ and $8=36-28$;
: $\quad 42799=127 * 337:$ satisfies for $(a, b, c)=(8,3,5)$
Indeed, $8^{*} 127=3 * 337+5$ and $8=3+5$;
$: \quad 49981=151 * 331:$ satisfies for $(a, b, c)=(5,11,-6)$
Indeed, $5 * 331=11 * 151-6$ and $5=11-6$.

Conjecture on a generic formula of 2-Poulet numbers:

All 2-Poulet numbers p * $\mathrm{p}, \mathrm{p}<\mathrm{q}$ (or equal in the two cases known, the squares of the Wieferich primes) satisfy at least one of the following two conditions:
(i) q can be written as $\mathrm{k}^{*} \mathrm{p}-\mathrm{k}+1$, where k is positive integer;
(ii) they satisfy the equation $\mathrm{a}^{*} \mathrm{q}=\mathrm{b} * \mathrm{p}+\mathrm{c}$, where a and b are positive integers and c integer that satisfy the condition $\mathrm{a}=\mathrm{b}+\mathrm{c}$.

Part Three.
 The notions of Coman constants and Smarandache-Coman constants

35. The notion of Coman constants

Abstract

In this paper I present a notion based on the digital root of a number, namely "Coman constant", that highlights the periodicity of some infinite sequences of non-null positive integers (sequences of squares, cubes, triangular numbers, polygonal numbers etc).

Definition:

We understand by "Coman constants" the numbers with n digits obtained by concatenation from the values of the digital root of the first n terms of an infinite sequence of non-null positive integers, if the values of the terms of such a sequence form themselves a periodic sequence, with a periodicity equal to n . We consider that it is interesting to see, from some well known sequences of positive integers, which one is characterized by a Coman constant and which one it isn't.

Example:

The values of the digital root of the terms of the cubic numbers sequence $(1,8,27,64$, $125,216,343,512,729,1000,1331, \ldots)$ are $1,8,9,1,8,9$ (...) so these values form a sequence with a periodicity equal to three, the terms $1,8,9$ repeating infinitely. Concatenating these three values is obtained a Coman constant, i.e. the number 189.

Let's take the following sequences:

(1) The cubic numbers sequence
S_{n} is the sequence of the cubes of positive integers and, as it can be seen in the example above, is characterized by a Coman constant with three digits, the number 189.
(2) The square numbers sequence
S_{n} is the sequence of the square of positive integers (A000290 in OEIS): $1,4,9,16,25$, $36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441(\ldots)$ and is characterised by a Coman constant with nine digits, the number 149779419 .
(3) The triangular numbers sequence
S_{n} is the sequence of the numbers of the form $\left(\mathrm{n}^{*}(\mathrm{n}+1)\right) / 2=1+2+3+\ldots+\mathrm{n}$ (A000217 in OEIS): $1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153$, $171,190,210,231,253,276,300(\ldots)$ and is characterised by a Coman constant with nine digits, the number 136163199.
(4) The centered square numbers sequence
S_{n} is the sequence of the numbers of the form $\mathrm{m}=2 * \mathrm{n} *(\mathrm{n}+1)+1$ (A001844 in OEIS): $1,5,13,25,41,61,85,113,145,181,221,265,313,365,421,481,545,613(\ldots)$ and is characterised by a Coman constant with nine digits, the number 154757451 .
(5) The centered triangular numbers sequence
S_{n} is the sequence of the numbers of the form $\mathrm{m}=3 * \mathrm{n} *(\mathrm{n}+1) / 2+1$ (A005448 in OEIS): $1,4,10,19,31,46,64,85,109,136,166,199,235,274,316,361,409,460(\ldots)$ and is characterised by a Coman constant with three digits, the number 141.
(6) The Devlali numbers sequence
S_{n} is the sequence of the Devlali numbers (defined by the Indian mathematician D.R. Kaprekar, born in Devlali), which are the numbers that can not be expressed like $\mathrm{n}+$ $\mathrm{S}(\mathrm{n})$, where n is integer and $\mathrm{S}(\mathrm{n})$ is the sum of the digits of n . The sequence of these numbers is (A003052 in OEIS): 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198 (...).

This sequence is characterized by a Coman constant with 9 digits, the number 135792468.
(7) The Demlo numbers sequence
S_{n} is the sequence of the Demlo numbers (defined by the Indian mathematician D.R. Kaprekar and named by him after a train station near Bombay), which are the numbers of the form $\left.\left(10^{\wedge} \mathrm{n}-1\right) / 9\right)^{\wedge} 2$. The sequence of these numbers is (A002477 in OEIS): 1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321,1234567900987654321 (...).

This sequence is characterized by a Coman constant with 9 digits, the number 149779419.

Comment:

I conjecture that any sequence of polygonal numbers, i.e. numbers with generic formula $\left(\left(k^{\wedge} 2^{*}(n-2)-k^{*}(n-4)\right) / 2\right.$, is characterized by a Coman constant:
: The sequence of pentagonal numbers, numbers of the form $n *(3 * n-1) / 2$, i.e. 1,5 , $12,22,35,51,70,92,117,145,176,210,247,287,330,376,425,477,532,590$, ...(A000326) is characterized by the Coman constant 153486729 ;
: The sequence of hexagonal numbers, numbers of the form $n *(2 * n-1)$, i.e. $1,6,15$, $28,45,66,91,120,153,190,231,276,325,378,435,496,561,630,703,780$, ...(A000326) is characterized by the Coman constant 166193139 etc.

Conclusion:

We found so far eight Coman constants, six with nine digits, i.e. the numbers 149779419 , $136163199,154757451,135792468,153486729,166193139$ and two with three digits, i.e. the numbers 189 and 141.

36. Two classes of numbers which not seem to be characterized by a Coman constant

Abstract

In a previous paper I defined the notion of "Coman constant", based on the digital root of a number and useful to highlight the periodicity of some infinite sequences of non-null positive integers. In this paper I present two sequences that, in spite the fact that their terms can have only few values for digital root, don't seem to have a periodicity, in other words don't seem to be characterized by a Coman constant.

Note:

There are some known sequences of integers that, in spite the fact that their terms can have only few values for digital root, don't seem to have a periodicity, in other words don't seem to be characterized by a Coman constant. Such sequences are:
(1) The EPRN numbers sequence
S_{n} is the sequence of the EPRN numbers (defined by the Indian mathematician Shyam Sunder Gupta), which are the numbers that can be expressed in at least two different ways as the product of a number and its reversal (for instance, such a number is $2520=$ $120 * 021=210^{*} 012$). The sequence of these numbers is (A066531 in OEIS): 2520, 4030, 5740, 7360, 7650, 9760, 10080, 12070, 13000, 14580, 14620, 16120, 17290, 18550, 19440 (...). Though the value of digital root for the terms of this sequence can only be 1 , 4,7 or 9 , the sequence of the values of digital root $(9,7,7,7,9,4,9,1,4,9,4,1,1,1,9$, ...) don't seem to have a periodicity.
(2) The congrua numbers sequence
S_{n} is the sequence of the congrua numbers n , numbers which are the possible solutions to the congruum problem ($n=x^{\wedge} 2-y^{\wedge} 2=z^{\wedge} 2-x^{\wedge} 2$). The sequence of these numbers is (A057102 in OEIS): 24, 96, 120, 240, 336, 384, 480, 720, 840, 960, 1320, 1344, 1536, 1920, 1944, 2016, 2184, 2520, 2880, 3360 (...). Though the value of digital root for the terms of this sequence can only be 3,6 or 9 , the sequence of the values of digital root (6 , $6,3,6,3,6,3,9,3,6,6,3,6,3,9,9,6,9, \ldots)$ don't seem to have a periodicity.

37. The Smarandache concatenated sequences and the definition of Smarandache-Coman constants

Abstract

In two previous papers I presented the notion of "Mar constant" and showed how could highlight the periodicity of some infinite sequences of integers. In this paper I present the notion of "Smarandache-Coman constant", useful in Diophantine analysis of Smarandache concatenated sequences.

Definition:

We understand by "Smarandache-Coman constants" the numbers with n digits obtained by concatenation from the digital root of the first n terms of a Smarandache concatenated sequence, if the digital root of the terms of such a sequence form themselves a periodic sequence, with a periodicity equal to n. Note that not every Smarandache concatenated sequence is characterized by a Smarandache-Coman constant, just some of them; it is interesting to study what are the properties these sequences have in common; it is also interesting that sometimes more such sequences have the same value of SmarandacheComan constant and also to study what these have in common.

Example:

The values of the digital root of the terms of the Smarandache consecutive sequence (12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, $1234567891011, \ldots)$ are: $1,3,6,1,6,3,1,9,9,1,3,6,1,6,3,1,9,9(\ldots)$ so these values form a sequence with a periodicity equal to nine, the terms $1,3,6,1,6,3,1,9,9$ repeating infinitely. Concatenating these nine values is obtained a Smarandache-Coman constant, i.e. the number 136163199.

Let's take the following Smarandache concatenated sequences:

(1) The Smarandache consecutive numbers sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n positive integers. The first ten terms of the sequence (A007908 in OEIS) are 12, 123, 1234, $12345,123456,1234567,12345678,123456789,12345678910$.

This sequence is characterized by a Smarandache-Coman constant with 9 digits, the number 136163199. Note that, obviously, the same constant will be obtained from the Smarandache reverse sequence (A000422), defined as the sequence obtained through the concatenation of the first n positive integers, in reverse order.
(2) The Smarandache concatenated odd sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n odd numbers (the n-th term of the sequence is formed through the concatenation of the odd numbers from 1 to $2 * \mathrm{n}-1$). The first ten terms of the sequence (A019519 in OEIS) are 1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 149779419.
(3) The Smarandache concatenated even sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n even numbers (the n-th term of the sequence is formed through the concatenation of the even numbers from 1 to $2 * n$). The first ten terms of the sequence (A019520 in OEIS) are 2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 2468101214161820.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 263236299.
(4) The concatenated cubic sequence
S_{n} is defined as the sequence obtained through the concatenation of the first n cubes: $1\left(2^{\wedge} 3\right)\left(3^{\wedge} 3\right) \ldots\left(n^{\wedge} 3\right)$. The first ten terms of the sequence (A019522 in OEIS) are 1,18 , 1827, 182764, 182764125, 182764125216, 182764125216343, 182764125216343512, $182764125216343512729,1827641252163435127291000$.

This sequence is characterized by a Smarandache-Coman constant with three digits, the number 199.
(5) The antysimmetric numbers sequence
S_{n} is defined as the sequence obtained through the concatenation in the following way: $12 \ldots(\mathrm{n}) 12 \ldots(\mathrm{n})$. The first ten terms of the sequence (A019524 in OEIS) are 11, 1212, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 123456789123456789.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 26323629. Note that the same Smarandache-Coman constant characterizes the Smarandache concatenated even sequence.
(6) The " n concatenated n times" sequence
S_{n} is defined as the sequence of the numbers obtained concatenating n times the number n . The first ten terms of the sequence (A000461 in OEIS) are 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888, 999999999, 10101010101010101010.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 149779419. Note that the same Smarandache-Coman constant characterizes the Smarandache concatenated odd sequence.
(7) The permutation sequence
S_{n} is defined as the sequence of numbers obtained through concatenation and permutation in the following way: $13 \ldots(2 * n-3)(2 * n-1)(2 * n)(2 * n-2)(2 * n-4) \ldots 42$. The first seven
terms of the sequence (A007943 in OEIS) are 12, 1342, 135642, 13578642, 13579108642 , $135791112108642,1357911131412108642,13579111315161412108642$.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 313916619.
(8) The Smarandache $n 2 * n$ sequence
S_{n} is defined as the sequence for which the n -th term $\mathrm{a}(\mathrm{n})$ is obtained concatenating the numbers n and $2 * \mathrm{n}$. The first twelve terms of the sequence (A019550 in OEIS) are 12, $24,36,48,510,612,714,816,918,1020,1122,1224$.

This sequence is characterized by a Smarandache-Coman constant with three digits, the number 369 .
(9) The Smarandache $n n^{\wedge} 2$ sequence
S_{n} is defined as the sequence for which the n-th term $a(n)$ is obtained concatenating the numbers n and $\mathrm{n}^{\wedge} 2$. The first fifteen terms of the sequence (A053061 in OEIS) are 11, 24, $39,416,525,636,749,864,981,10100,11121,12144,13169,14196,15225$.

This sequence is characterized by a Smarandache-Coman constant with nine digits, the number 26323629. Note that the same Smarandache-Coman constant characterizes the Smarandache concatenated even sequence and the Smarandache antysimmetric numbers sequence.
(10) The Smarandache power stack sequence for $\mathrm{k}=2$
$\mathrm{S}_{\mathrm{n}}(\mathrm{k})$ is the sequence for which the n -th term is defined as the positive integer obtained by concatenating all the powers of k from $\mathrm{k}^{\wedge} 0$ to $\mathrm{k}^{\wedge} \mathrm{n}$. The first ten terms of the sequence are $1,12,124,1248,12416,1241632,124163264,124163264128,124163264128256$, 124163264128256512.

This sequence is characterized by a Smarandache-Coman constant with six digits, the number 137649.

Comments:

(1) I conjecture that any sequence of the type $n k^{*} n$ is characterized by a SmarandacheComan constant:
: \quad for $\mathrm{k}=3$ the sequence $13,26,39,412,515,618,721,824,927,1030,1133,1236$ is characterized by the Smarandache-Coman constant 483726159 ;
: for $\mathrm{k}=4$ the sequence $14,28,312,416,520,624,728,832,936,1040,1144$, 1248 is characterized by the Smarandache-Coman constant 516273849 etc.
(2) I conjecture that any sequence of the type $n n^{\wedge} \mathrm{k}$ is characterized by a SmarandacheComan constant:
: for $\mathrm{k}=3$ the sequence $11,28,327,464,5125,6216,7343,8512,9729,101000$, 111331 is characterized by the Smarandache-Coman constant 213546879 etc.
(3) Not any power stack sequence is characterized by a Smarandache-Coman constant:
: for $\mathrm{k}=3$ the Smarandache sequence is $1,13,139,13927,1392781,1392781243$, 1392781243729, 13927812437292187 and the values of Mar function for the terms of the sequence are $1,4,4,4(\ldots)$, the digit 4 repeating infinitely so is not a sequence characterized by a Smarandache-Coman constant.
(4) I conjecture that not any sequence with the general term of the form $1\left(2^{\wedge} k\right)\left(3^{\wedge} k\right) \ldots\left(n^{\wedge} k\right)$ is characterized by a Smarandache-Coman constant:
: the values of digital root for the terms of the concatenated square sequence 1,14 , 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, $149162536496481,149162536496481100, \ldots$ (A019521 in OEIS) are $1,5,5,3,1$, $1,5,6,6,7,2,2(\ldots)$ and so far has not been shown any periodicity.

Conclusion:

We found so far 10 Smarandache-Coman constants, 7 with nine digits, i.e. the numbers 136163199, 149779419, 26323629, 313916619, 483726159, 516273849, 213546879, two with three digits, i.e. the numbers 199 and 369 , and one with six digits, the number 137649.

Part Four.
 The notion of Smarandache-Coman sequences

38. Fourteen Smarandache-Coman sequences of primes

Abstract

In this paper I define the "Smarandache-Coman sequences" as "all the sequences of primes obtained from the Smarandache concatenated sequences using basic arithmetical operations between the terms of such a sequence, like for instance the sum or the difference between two consecutive terms plus or minus a fixed positive integer, the partial sums, any other possible basic operations between terms like $a(n)+a(n+2)-$ $\mathrm{a}(\mathrm{n}+1)$, or on a term like $\mathrm{a}(\mathrm{n})+\mathrm{S}(\mathrm{a}(\mathrm{n})$), where $\mathrm{S}(\mathrm{a}(\mathrm{n}))$ is the sum of the digits of the term $\mathrm{a}(\mathrm{n})$ etc.", and I also present few such sequences.

Definition:

We name "Smarandache-Coman sequences" all the sequences of primes obtained from the Smarandache concatenated sequences using basic arithmetical operations between the terms of such a sequence, like for instance the sum or the difference between two consecutive terms plus or minus a fixed positive integer, the partial sums, any other possible basic operations between terms like $a(n)+a(n+2)-a(n+1)$, or on a term like $a(n)+S(a(n))$, where $S(a(n))$ is the sum of the digits of the term $a(n)$ etc.

Note: The Smarandache concatenated sequences are well known for the very few terms which are primes; on the contrary, many Smarandache-Coman sequences can be constructed that probably have an infinity of terms (primes, by definition).

Note: I shall use the notation $a(n)$ for a term of a Smarandache concatenated sequence and $b(n)$ for a term of a Smarandache-Coman sequence.

SEQUENCE I

Starting from the Smarandache consecutive numbers sequence (defined as the sequence obtained through the concatenation of the first n positive integers, see A007908 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n+1)-a(n)-2$ if the last digit of the term $a(n+1)$ is even and $b(n)=a(n+1)-a(n)+2$ if the last digit of the term $\mathrm{a}(\mathrm{n}+1)$ is odd.

We have:

$$
\begin{array}{ll}
: & 123-12+2=113, \text { prime; } \\
: & 1234-123-2=1109, \text { prime; } \\
: & 12345-1234+2=11113, \text { prime; } \\
: & 123456-12345-2=111109, \text { prime; } \\
: & 12345789-12345678+2=111111113, \text { prime; }
\end{array}
$$

```
: 12345678910-123456789-2 = 12222222119, prime;
: 123456789101112-1234567891011-2 = 122222221210099, prime (...)
```

The SEQUENCE I contains the following terms:
113, 1109, 11113, 111109, 111111113, 12222222119, 122222221210099 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE II

Starting from the Smarandache concatenated odd sequence (defined as the sequence obtained through the concatenation of the first n odd numbers, see A019519 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n+1)+a(n)-S(a(n+1))-$ $S(a(n))+2$, where $S(a(n))$ is the sum of the digits of the term $a(n)$.

We have:
$: \quad 1+13-1-4+2=11$, prime;
$: \quad 13+135-4-9+2=137$, prime;
$: \quad 1357+13579-16-25+2=14897$, prime;
$: \quad 13579+1357911-25-36+2=1371431$, prime;
$: \quad 135791113+13579111315-49-64+2=13714902317$, prime (...)
Note the interesting fact that $135+1357-9-16+2=1469=13 * 113$ (a semiprime with the property that $113-13+1=101$, prime) and $1357911+135791113-36-49+2=$ $137148941=431 * 318211$ (a semiprime with the property that $318211+431-1=$ 318641, prime).

The SEQUENCE II contains the following terms:
11, 137, 14897, 1371431, 13714902317 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE III

Starting from the Smarandache concatenated even sequence (defined as the sequence obtained through the concatenation of the first n even numbers, see A019520 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n+1)+a(n)-S(a(n+1))$ $-S(a(n))+1$, where $S(a(n))$ is the sum of the consecutive even numbers which form the term $\mathrm{a}(\mathrm{n})$; for instance, $\mathrm{S}(246810)=2+4+6+8+10=30$.

We have:
$: \quad 2+24-2-6+2=19$, prime;
: $\quad 246+2468-12-20+1=2683$, prime;
$: \quad 2468+246810-20-30+1=249229$, prime;
$: \quad 24681012+2468101214-42-56+1=2492782129$, prime (...)

The SEQUENCE III contains the following terms: 19, 2683, 249229, 2492782129 (...)

Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE IV

Starting from the concatenated odd square sequence (defined as the sequence obtained through the concatenation of the first n odd squares, see A016754 in OEIS), we define first the following Smarandache type sequence: $a(n)$ is obtained through the concatenation of two squares of consecutive odd integers (19, 925, 2549, 4981, 81121, $121169, \ldots)$ and then the following Smarandache-Coman sequence: $b(n)=a(n)-k$, where k is equal to the even number between the two consecutive odd integers which squares form through concatenation the term $a(n)$. Example: $b(1)=19-2=17$.

We have:
: $\quad 19-2=17$, prime;
: $\quad 2549-6=2543$, prime;
$: \quad 4981-8=4973$, prime;
$: \quad 121169-12=121157$, prime;
$: \quad 289361-18=289343$, prime;
$: \quad 361441-20=361421$, prime;
$: \quad 841961-30=841931$, prime (...)
The SEQUENCE IV contains the following terms:
17, 2543, 4973, 121157, 289343, 361421, 841931 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE V

Starting from the concatenated even square sequence (defined as the sequence obtained through the concatenation of the first n even squares, see A016742 in OEIS), we define first the following Smarandache type sequence: $a(n)$ is obtained through the concatenation of two squares of consecutive even integers (416, 1636, 3664, 64100, $100144,144196, \ldots$.$) and then the following Smarandache-Coman sequence: b(n)=a(n)+$ k , where k is equal to the odd number between the two consecutive even integers which squares form through concatenation the term $a(n)$. Example: $b(1)=416+3=419$.

We have:
$: \quad 416+3=419$, prime;
$: \quad 3664+7=3671$, prime;
$: \quad 64100+9=64109$, prime;
$: \quad 196256+15=196271$, prime;
$: \quad 324400+19=324419$, prime (\ldots)

The SEQUENCE V contains the following terms:
419, 3671, 64109, 196271, 324419 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE VI

Starting from the " n concatenated n times" sequence (defined as the sequence obtained concatenating n times the number n , see A000461 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n)+a(m)+333$, where $a(n)$ and $a(m)$ are two even (not necessarily distinct) terms of the " n concatenated n times" sequence.

We have:
$: \quad 22+4444+333=4799$, prime;
$: \quad 4444+4444+333=9221$, prime;
$: \quad 22+666666+333=667021$, prime;
$: \quad 4444+666666+333=671443$, prime;
$: \quad 666666+88888888+333=89555887$, prime (\ldots)
The SEQUENCE VI contains the following terms: 4799, 9221, 667021, 671443, 89555887 (...)

Note: \quad The sequence $b(n)=a(n)+a(m)-333$, in the same conditions, also can be considered (e.g. $22+4444-333=4133$, prime, or $4444+666666-333$ $=670777$, prime). Also $a(n)+a(m)-a(k)$, where $a(k)$ is an odd term of the " n concatenated n times" sequence.

Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE VII

Starting from the back concatenated odd sequence (A038395 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=2 * a(n)-1$.

We have:
$: \quad 2 * 31-1=61$, prime;
$: \quad 2 * 531-1=1061$, prime;
$: \quad 2 * 7531-1=15061$, prime;
$: \quad 2 * 131197531-1=262395061$, prime (\ldots)
The SEQUENCE VII contains the following terms:
61, 1061, 15061, 262395061 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE VIII

Starting from the back concatenated even sequence (A038396 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n)-1$.

We have:
: $\quad 42-1=41$, prime;
: $\quad 642-1=641$, prime;
$: \quad 8642-1=8641$, prime;
: $18161412108642-1=18161412108641$, prime (\ldots)
The SEQUENCE VIII contains the following terms:
41, 641, 8641, 18161412108641 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE IX

Starting from the back concatenated odd square sequence (defined as the sequence obtained through the back concatenation of the first n odd squares), we define first the following Smarandache type sequence: $a(n)$ is obtained through the back concatenation of two squares of consecutive odd integers ($91,259,4925,8149,12181,169121, \ldots$) and then the following Smarandache-Coman sequence: $b(n)=a(n)-2$.

We have:
$: \quad 91-2=89$, prime;
: $\quad 259-2=257$, prime;
$: \quad 8149-2=8147$, prime;
: $\quad 225169-2=225167$, prime;
$: \quad 441361-2=441359$, prime;
: $841729-2=841727$, prime (...)
The SEQUENCE IX contains the following terms:
89, 257, 8147, 225167, 441359, 841727 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE X

Starting from the back concatenated square sequence, we define first the following sequence: $a(n)$ is obtained through the concatenation to the left of the square of the number 8 (i.e. 64) with a square of an odd number ($164,964,2564,4964,8164,12164$, $16964 \ldots$...) and then the following Smarandache-Coman sequence: $b(n)=a(n) / 4$. We have:

$$
: \quad 164 / 4=41, \text { prime; }
$$

```
: 964/4 = 241, prime;
: 2564/4 = 641, prime;
: 12164/4 = 3041, prime;
: }\quad16964/4=4241, prime
: }22564/4=5641,\mathrm{ prime;
: 36164/4 = 9041, prime;
: 52964/4 = 13241, prime (...)
```

The SEQUENCE X contains the following terms:
41, 241, 641, 3041, 4241, 5641, 9041, 13241 (...)
Note: I conjecture that this sequence has an infinity of terms (primes, by definition).

SEQUENCE XI

Starting from the Smarandache $\mathrm{n} 2 * \mathrm{n}$ sequence (the n -th term of the sequence is obtained concatenating the numbers n and $2 * \mathrm{n}$, see A019550 in OEIS), we define first the following sequence: $\mathrm{a}(\mathrm{n})$ is obtained through the concatenation of two consecutive terms of the sequence mentioned (1224, 2436, 3648, 48510, $510612 \ldots$) and then the following Smarandache-Coman sequence: $b(n)=a(n)-1$.

We have:
$: \quad 1224-1=1223$, prime;
$: \quad 510612-1=510611$, prime;
$: \quad 612714-1=612713$, prime;
: $\quad 9181020-1=9181019$, prime;
: $14281530-1=14281529$, prime (...)
The SEQUENCE XI contains the following terms:
1223, 510611, 612713, 9181019, 14281529 (...)
Note: I conjecture that this sequence has an infinity of terms.

SEQUENCE XII

Starting again from the Smarandache $n 2 * n$ sequence, we define first the following sequence: $a(n)$ is obtained through the concatenation of three consecutive terms of the sequence mentioned ($122436,243648,3648510,48510612,510612714 \ldots$...) and then the following Smarandache-Coman sequence: $b(n)=a(n) / 6+1$.

We have:

```
: 122436/6 + 1 = 20407, prime;
: 243648/6 + 1 = 40609, prime;
: 612714816/6 + 1 = 102119137, prime (...)
```

The SEQUENCE XII contains the following terms:
20407, 40609, 102119137 (...)

Note: I conjecture that this sequence has an infinity of terms.
Comment: inspired by the sequence above I also conjecture that there exist an infinity of primes formed by concatenation in the following way: $n 0(n+2) 0(n+5)$, where n is an even number; the sequence of these numbers is: 20407, 40609, 608011, 12014017, 16018021, 24026029, 26028031, 28030033 (...)

SEQUENCE XIII

Starting from the Smarandache $n n^{\wedge} 2$ sequence (the n-th term of the sequence is obtained concatenating the numbers n and $\mathrm{n}^{\wedge} 2$, see A053061 in OEIS), we define the following Smarandache-Coman sequence: $b(n)=a(n)+n+1$.

We have:
$: \quad 11+1+1=13$, prime;
: $\quad 39+3+1=43$, prime;
$: \quad 416+4+1=421$, prime;
$: \quad 636+6+1=643$, prime;
$: \quad 749+7+1=757$, prime;
$: \quad 981+9+1=991$, prime;
$: \quad 10100+10+1=10111$, prime;
$: \quad 12144+12+1=12157$, prime;
$: \quad 15225+15+1=15241$, prime;
$: \quad 13169+13+1=13183$, prime (...)
The SEQUENCE XIII contains the following terms:
$13,43,421,643,757,991,10111,12157,15241,13183$ (...)
Note: I conjecture that this sequence has an infinity of terms.

SEQUENCE XIV

Starting again from the Smarandache $\mathrm{nn}^{\wedge} 2$ sequence, we define the following Smarandache-Coman sequence: $b(n)$ is obtained concatenating to the right the terms $a(n)$ with the number 11 .

We have:
: $\quad 2411,3911,41611,52511,63611,1419611,1522511,1728911$ (...) are primes.

The SEQUENCE XIV contains the following terms:
2411, 3911, 41611, 52511, 63611, 1419611, 1522511,1728911 (...)
Note: I conjecture that this sequence has an infinity of terms.

Part Five.
 The Smarandache-Coman function

39. The Smarandache-Coman function and nine conjectures on it

Abstract

The Smarandache-Coman function is the function defined on the set of nonnull positive integers with values in the set of non-null positive integers in the following way: $\mathrm{SC}(\mathrm{n})$ is the least number such that $\mathrm{SC}(\mathrm{n})$! is divisible by $\mathrm{n}+\mathrm{r}$, where r is the digital root of the number n. In other words, $S C(n)=S(n+r)$, where S is the Smarandache function. I also state, in this paper, nine conjectures on this function which seems to be particularly interesting: beside other characteristics, it seems to have as values all the prime numbers and, more than that, they seem to appear, leaving aside the non-prime values, in natural order.

Definition:

The Smarandache-Coman function is the function defined on the set of non-null positive integers with values in the set of non-null positive integers in the following way: $\operatorname{SC}(\mathrm{n})$ is the least number such that $\operatorname{SC}(\mathrm{n})$! is divisible by $\mathrm{n}+\mathrm{r}$, where r is the digital root of the number n. In other words, $S C(n)=S(n+r)$, where S is the Smarandache function.

Note: The digital root of a number is obtained through the iterative operation of summation of the digits of a number until is obtained a single digit; examples: the digital root of the number 28 is 1 because $2+8=10$ and $1+0=1$; the digital root of the number 1729 is 1 because $1+7+2+9=19$ and $1+9=10$ and $1+0=1$; the digital root of the number 561 is 3 because $5+6+1=12$ and $1+2=3$; so, the digital root of a number can only have one from the following nine values: $1,2,3,4,5,6,7,8$ or 9 . In other words, r is obtained computing the sum of the digits of n and again the sum of the digits of the resulted number and so on until one gets a result less than 10 ; for instance, for $\mathrm{n}=895$, we have $8+9+5=22>10$, then again $2+2=4<10$, so $\mathrm{r}=4$.

The values of SC function are:

: $\quad 2,4,3,4,5,4,7,8,6,11,13,5,17,19,7,23,10,9,5,11,6,13,7,5,8,17,6,29$, $31,11,7,37,13,41,43,6,19,5,7,11,23,6,10,13,9,47,7,17,53,11,19,59$, $61,7,7,29,5,31,8,11,17,7,6,13,67,23,71,73,10,11,79,9,37,19,13,6$, $41,7,43,11,6,83,17,29,89,13,31,19,97(\ldots)$

Observation 1:

Within the first 89 values of $\operatorname{SC}(\mathrm{n})$ are found all the first 25 primes from 2 to 97 . More than that, they all appear for the first time in order: there is not a prime $\mathrm{p} 3>\mathrm{p} 2$ between p 1 and p 2 , where $\mathrm{p} 1<\mathrm{p} 2$ and both p 1 and p 2 appear for the first time in SmarandacheComan sequence.

Observation 2:

Note that, from the first 89 values of $\operatorname{SC}(n)$:
: 69 are primes(25 of them distinct);
: 3 are odd non-primes (all of them equal to 9);
: $\quad 17$ are even non-primes (4 of them distinct: $4,6,8,10$).

Observation 3:

Up to $\mathrm{n}=89$, the longest chain of consecutive prime values of $\mathrm{SC}(\mathrm{n})$ is obtained for n from 46 to 58: 47, 7, 17, 53, 11, 19, 59, 61, 7, 7, 29, 5, 31 .

Conjecture 1:

All the prime numbers appear as values in the SC sequence (the sequence of the values of SC function).

Conjecture 2:

All the prime numbers appear for the first time in natural order in SC sequence: : there is not a prime $\mathrm{p} 3>\mathrm{p} 2$ between p 1 and p 2 , where $\mathrm{p} 1<\mathrm{p} 2$ and both p 1 and p 2 appear for the first time in SC sequence.

Conjecture 3:

All the even numbers appear as values in the SC sequence.

Conjecture 4:

There exist an infinity of primes p for which $\mathrm{SC}(\mathrm{p})=\mathrm{q}$, where q is prime.
The sequence of the primes (p, q) is:
$: \quad(1,2),(3,3),(5,5),(7,7),(11,13),(13,17),(23,7),(29,31),(31,7),(37,19)$, $(41,23),(47,7),(53,61),(61,17),(67,71),(71,79),(73,37),(79,43),(83,17)$, $(89,97)$...

Conjecture 5:

For all the pairs of twin primes (p, q), where $p \geq 11$, is true that, if p appears for the first time in SC sequence as $\mathrm{SC}(\mathrm{n})$, then $\mathrm{SC}(\mathrm{n}+1)=\mathrm{q}$.

Conjecture 6:

There exist an infinity of numbers n such that $\operatorname{SC}(\mathrm{n})=\mathrm{m}$ and $\mathrm{SC}(\mathrm{n}+1)=\mathrm{m}+1$, where m +1 is prime. Such pairs of $(\mathrm{m}, \mathrm{m}+1)$ are: $(10,11),(28,29),(46,47),(82,83) \ldots$

Conjecture 7:

There exist an infinity of numbers n such that $\operatorname{SC}(\mathrm{n})=\mathrm{m}$ and $\mathrm{SC}(\mathrm{n}+1)=\mathrm{m}-9$, where m -9 is prime. Such pairs of $(\mathrm{m}, \mathrm{m}-9)$ are: $(20,11),(22,13),(26,17) \ldots$

Conjecture 8:

There exist an infinity of values primes p of $\mathrm{SC}(\mathrm{n})$ for which the sum s of all the values of $\operatorname{SC}(\mathrm{n})$ up to and including $\operatorname{SC}(\mathrm{p})$ is prime. Such pairs of (p, s) are: $(7,29),(13,67)$, $(17,89),(11,173),(7,199),(17,229),(7,313),(13,547),(11,691),(59,769),(13,971)$, (23, 1061), (17, 1597), (97, 1877)...

Conjecture 9:

There exist an infinity of pairs $(p=S(n), r=S(n+2))$, both p and r primes which appear for the first time in SC sequence, with the property that $\mathrm{r}=\mathrm{p}+4$, such that $\mathrm{q}=\mathrm{S}(\mathrm{n}+1)$ is prime. Such triplets (p, q, r) are: $(13,5,17),(19,7,23),(37,13,41),(67,23,71) \ldots$

Part One of this book of collected papers brings together papers regarding conjectures on primes, twin primes, squares of primes, semiprimes, different types of pairs of primes, recurrent sequences, other sequences of integers related to primes created through concatenation and in other ways. Part Two brings together several articles presenting the notions of c-primes, m-primes, c-composites and m -composites (c/m integers), also the notions of g-primes, s-primes, g-composites and s-composites (g / s integers) and show some of the applications of these notions.
Part Three presents the notions of "Mar constants" and "Smarandache-Coman constants", useful to highlight the periodicity of some infinite sequences of positive integers (sequences of squares, cubes, triangualar numbers), respectively in the analysis of Smarandache concatenated sequences. Part Four presents the notion of Smarandache-Coman sequences, id est the sequences of primes formed through different arithmetical operations on the terms of Smarandache concatenated sequences. Part Five presents the notion of Smarandache-Coman function, a function based on the Smarandache function which seems to be particularly interesting: beside other notable characteristics, it seems to have as values all the prime numbers and, more than that, they seem to appear, leaving aside the non-prime values, in natural order.
This book of collected papers seeks to expand the knowledge on some well known classes of numbers and also to define new classes of primes or classes of integers directly related to primes.

