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Abstract  

In this paper, we define the regular and the totally regular interval valued 

neutrosophic hypergraphs, and discuss the order and size along with properties of 

the regular and the totally regular single valued neutrosophic hypergraphs. We 

extend work to completeness of interval valued neutrosophic hypergraphs. 

Keywords 
interval valued neutrosophic hypergraphs, regular interval valued neutrosophic 

hypergraphs, totally regular interval valued neutrosophic hypergraphs. 

1 Introduction 

Smarandache [8] introduced the notion of neutrosophic sets (NSs) as a 

generalization of the fuzzy sets [14], intuitionistic fuzzy sets [12], interval 

valued fuzzy set [11] and interval-valued intuitionistic fuzzy sets [13] theories.  

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity membership function 

(f) independently, which are within the real standard or non-standard unit 

interval ]-0 , 1+[.  

In order to conveniently use NS in real life applications, Smarandache [8] and 

Wang et al. [9] introduced the concept of the single-valued neutrosophic set 

(SVNS), a subclass of the neutrosophic sets.  

The same authors [10] introduced the concept of the interval valued 

neutrosophic set (IVNS), which is more precise and flexible than the single 

valued neutrosophic set.  

The IVNS is a generalization of the single valued neutrosophic set, in which the 

three membership functions are independent and their value belong to the 
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unit interval [0, 1]. More works on single valued neutrosophic sets, interval 

valued neutrosophic sets and their applications can be found on 

http://fs.gallup.unm.edu/NSS/.  

Hypergraph is a graph in which an edge can connect more than two vertices, 

and can be applied to analyse architecture structures and to represent system 

partitions. J. Mordesen and P. S. Nasir gave the definitions for fuzzy 

hypergraphs. R. Parvathy and M. G. Karunambigai’s paper introduced the 

concept of intuitionistic fuzzy hypergraphs and analysed its components. The 

regular intuitionistic fuzzy hypergraphs and the totally regular intuitionistic 

fuzzy hypergraphs were introduced by I. Pradeepa and S. Vimala [38].  

In this paper, we extend the regularity and the totally regularity on interval 

valued neutrosophic hypergraphs. 

2 Preliminaries 

Definition 2.1.  

Let X be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by truth member-

ship function  𝑇𝐴 (x), indeterminacy membership function 𝐼𝐴 (x) and a falsity 

membership function 𝐹𝐴(x). For each point x ∈X; 𝑇𝐴(x),  𝐼𝐴(x), 𝐹𝐴(x) ∈ [0 , 1]. 

Definition 2.2.  

Let X be a space of points (objects) with generic elements in X denoted by x. An 

interval valued neutrosophic set A (IVNS A) is characterized by truth member-

ship function  𝑇𝐴 (x), indeterminacy membership function 𝐼𝐴 (x) and a falsity 

membership function 𝐹𝐴(x). For each point x ∈X; 𝑇𝐴(x) = [ 𝑇𝐿𝐴(x), 𝑇𝑈𝐴(x)],  𝐼𝐴(x) 

= [ 𝐼𝐿𝐴(x), 𝐼𝑈𝐴(x)] and  𝐹𝐴(x) = [ 𝐹𝐿𝐴(x), 𝐹𝑈𝐴(x)]  are contained in [0 , 1]. 

Definition 2.3.  

A hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1 , 𝑥2, … . , 𝑥𝑛} a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …., 𝐸𝑚} a family of subsets of X. 

(3) 𝐸𝑗 for j= 1,2,3,...,m and ⋃ (𝐸𝑗)𝑗 =  X. 

The set X is called set of vertices and E is the set of edges (or hyperedges). 

Definition 2.4.  

An interval valued neutrosophic hypergraph is an ordered pair H = (X , E), 

where: 

(1) X = {𝑥1 , 𝑥2, … . , 𝑥𝑛} a finite set of vertices. 
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(2) E = { 𝐸1, 𝐸2 , …., 𝐸𝑚 } a family of IVNSs of X. 

(3) 𝐸𝑗 ≠ O = ([0,0], [0,0], [0,0]) for j= 1,2,3,...,m and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = X. 

The set X is called set of vertices and E is the set of IVN-edges (or IVN-

hyperedges). 

Example 2.5.   

Consider an interval valued neutrosophic hypergraphs H = (X , E), where X = 

{ a, b, c, d } and E = { P, Q, R }, defined by: 

P = {(a, [0.8, 0.9], [0.4, 0.7], [0.2, 0.7]), (b, [0.7, 0.9], [0.5, 0.8], [0.3, 

0.9])}, 

Q = {(b, [0.9, 1.0], [0.4, 0.5], [0.8, 1.0]), (c, [0.8, 0.9], [0.4, 0.5], [0.2, 

0.7])}, 

R = {(c, [0.1, 0.9], [0.5, 0.7], [0.4, 1.0]), (d, [0.1, 1.0], [0.9, 1.0], [0.5, 

0.9])}. 

Proposition 2.6.  

The Interval Valued Neutrosophic Hypergraph (IVNHG) is the generalization 

of fuzzy hypergraph, intuitionistic fuzzy hypergraphs, interval valued fuzzy 

hypergraph, interval valued intuitionistic fuzzy hypergraph and single valued 

neutrosophic hypergraph. 

3 Regular and Totally Regular IVNHGs 

Definition 3.1.  

The open neighbourhood of a vertex x in the interval valued neutrosophic 

hypergraphs (IVNHGs) is the set of adjacent vertices of x, excluding that vertex, 

and it is denoted by N(x). 

Definition 3.2.   

The closed neighbourhood of a vertex x in the interval valued neutrosophic 
hypergraphs (IVNHGs) is the set of adjacent vertices of x, including that vertex, 
and it is denoted by N[x]. 

Example 3.3.  

Consider the interval valued neutrosophic hypergraphs H = (X , E), where X = 
{ a, b, c, d, e } and E={ P, Q, R, S }, defined by: 

P = {(a, [0.1, 0.4], [0.2, 0.8], [0.3, 0.9]), (b, [0.4, 0.5], [0.5, 0.6], [0.6, 
0.8])}, 

Q = {(c, [0.1, 0.7], [0.2, 0.8], [0.3, 0.9]), (d, [0.4, 0.8], [0.5, 0.9], [0.6, 0.7]), 
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(e, [0.7, 0.9], [0.8, 0.9], [0.9, 1.0])}, 

R = {(b, [0.1, 0.4], [0.2, 0.8], [0.3, 0.9]), (c, [0.4, 0.8], [0.5, 0.9], [0.6, 
0.7])}, 

S = {(a, [0.4, 0.8], [0.5, 0.9], [0.6, 0.7]), (d, [0.1, 0.4], [0.2, 0.8], [0.3, 
0.9])}. 

Then, the open neighbourhood of a vertex a is b and d. 

The closed neigh-bourhood of a vertex b is b, a and c. 

Definition 3.4.  

Let H = (X, E) be an IVNHG; the open neighbourhood degree of a vertex x is 

denoted and defined by: 

deg(x) = ([𝑑𝑒𝑔𝑇𝐿(x), 𝑑𝑒𝑔𝑇𝑈(x)], [𝑑𝑒𝑔𝐼𝐿(x), 𝑑𝑒𝑔𝐼𝑈(x)], [𝑑𝑒𝑔𝐹𝐿(x), 

𝑑𝑒𝑔𝐹𝑈(x)]),     (1) 

where: 

𝑑𝑒𝑔𝑇𝐿(x) = ∑ 𝑇𝐿𝐸(𝑥)𝑥∈𝑁(𝑥) ,      (2) 

𝑑𝑒𝑔𝐼𝐿(x) = ∑ 𝐼𝐿𝐸(𝑥)𝑥∈𝑁(𝑥) ,      (3) 

𝑑𝑒𝑔𝐹𝐿(x) = ∑ 𝐹𝐿𝐸(𝑥)𝑥∈𝑁(𝑥) ,      (4) 

𝑑𝑒𝑔𝑇𝑈(x) = ∑ 𝑇𝑈𝐸(𝑥)𝑥∈𝑁(𝑥) ,      (5) 

𝑑𝑒𝑔𝐼𝑈(x) = ∑ 𝐼𝑈𝐸(𝑥)𝑥∈𝑁(𝑥) ,      (6) 

𝑑𝑒𝑔𝐹𝑈(x) = ∑ 𝐹𝑈𝐸(𝑥)𝑥∈𝑁(𝑥) .      (7) 

Example 3.5.  

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{a, b, c, d, e } and E = { P, Q, R, S }, defined by: 

P = {(a, [0.1, 0.2], [0.2, 0.3] [0.3, 0.4]), (b, [0.4, 0.5], [0.5, 0.6], [0.6, 

0.7])}, 

Q = {(c, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (d, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]), 

(e, [0.7, 0.8], [0.8, 0.9], [0.9, 1.0])}, 

R = {(b, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (c, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]}, 

S = {(a, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (d, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]}. 

Then, the open neighbourhood of a vertex a is b and d. 

Therefore, the open neighbourhood degree of a vertex a is ([0.8, 1.0], [1.0, 1.2], 

[1.2, 1.4]). 
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Definition 3.6.  

Let H = (X, E) be an IVNHG; the closed neighbourhood degree of a vertex x is 
denoted and defined by: 

deg[x] = ([𝑑𝑒𝑔𝑇𝐿[x], 𝑑𝑒𝑔𝑇𝑈[x]], [𝑑𝑒𝑔𝐼𝐿[x], 𝑑𝑒𝑔𝐼𝑈[x]], [𝑑𝑒𝑔𝐹𝐿[x], 
𝑑𝑒𝑔𝐹𝑈[x]]),      (8) 

where: 

𝑑𝑒𝑔𝑇𝐿[x] = 𝑑𝑒𝑔𝑇𝐿(x) + 𝑇𝐿𝐸(x),      (9) 

𝑑𝑒𝑔𝐼𝐿[x] = 𝑑𝑒𝑔𝐼𝐿(x) + 𝐼𝐿𝐸(x),      (10) 

𝑑𝑒𝑔𝐹𝐿[x] = 𝑑𝑒𝑔𝐹𝐿(x) + 𝐹𝐿𝐸(x),      (11) 

𝑑𝑒𝑔𝑇𝑈[x] = 𝑑𝑒𝑔𝑇𝑈(x) + 𝑇𝑈𝐸(x),      (12) 

𝑑𝑒𝑔𝐼𝑈[x] = 𝑑𝑒𝑔𝐼𝑈(x) + 𝐼𝑈𝐸(x),      (13) 

𝑑𝑒𝑔𝐹𝑈[x] = 𝑑𝑒𝑔𝐹𝑈(x) + 𝐹𝑈𝐸(x).      (14) 

Example 3.7.   

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{ a, b, c, d, e } and E = { P, Q, R, S }, defined by: 

P = {(a, [0.1, 0.2], [0.2, 0.3] [0.3, 0.4]), (b, [0.4, 0.5], [0.5, 0.6], [0.6, 

0.7])}, 

Q = {(c, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (d, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]), 

(e, [0.7, 0.8], [0.8, 0.9], [0.9, 1.0])}, 

R = {(b, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (c, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]}, 

S = {(a, [0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), (d, [0.4, 0.5], [0.5, 0.6], [0.6, 0.7]}. 

The closed neighbourhood of a vertex a is a, b and d.  

Hence the closed neighbourhood degree of a vertex a is ([0.9, 1.2], [1.2, 1.5], 

[1.5, 1.8]). 

Definition 3.8.  

Let H = (X , E) be an IVNHG; then H is said to be a n-regular IVNHG if all the 

vertices have the same open neighbourhood degree,  

n = ([n1 , n2], [n3 , n4], [ n5 , n6]).      (15) 

Definition 3.9.  

Let H = (X, E) be an IVNHG; then H is said to be a m-totally regular IVNHG if all 

the vertices have the same closed neighbourhood degree, 

m = ([m1 , m2], [m3 , m4], [ m5 , m6]).      (16) 
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Proposition 3.10.  

A regular IVNHG is the generalization of regular fuzzy hypergraphs, regular 

intuitionistic fuzzy hypergraphs, regular interval valued fuzzy hypergraphs 

and regular interval valued intuitionistic fuzzy hypergraphs. 

Proposition 3.11.   

A totally regular IVNHG is the generalization of the totally regular fuzzy 

hypergraphs, totally regular intuitionistic fuzzy hypergraphs, totally regular 

interval valued fuzzy hypergraphs and totally regular interval valued 

intuitionistic fuzzy hypergraphs. 

Example 3.12.    

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{ a, b, c, d } and  E = { P, Q, R, S }, defined by:  

P = {(a, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (b, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4])}, 

Q = {(b, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (c, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4])}, 

R = {(c, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (d, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4])}, 

S = {(d, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (a, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4])}. 

Here, the open neighbourhood degree of every vertex is ([1.6, 1.8], [0.4, 0.6], 

[0.6, 0.8]), hence H is regular IVNHG and the closed neighbourhood degree of 

every vertex is ([2.4, 2.7], [0.6, 0.9], [0.9, 1.2]). Hence H is both a regular and a 

totally regular IVNHG. 

Theorem 3.13.  

Let H = (X , E)  be an IVNHG which is both a regular and a totally regular IVNHG; 

then E is constant. 

Proof. 

Suppose H is a n-regular and a m-totally regular IVNHG. Then, 

deg(x) = n = ([n1 , n2], [n3 , n4], [ n5 , n6]),    (17) 

deg[x] = m =([m1 , m2], [m3 , m4], [ m5 , m6]),    (18) 

for all x ∈ 𝐸𝑖 .  

Consider  

deg[x] = m,      (19) 
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hence, by definition,  

deg(x) + 𝐸𝑖(x) = m;      (20) 

this implies that  

𝐸𝑖(x) = m – n,      (21) 

for all x ∈ 𝐸𝑖 .  

Hence E is constant. 

Remark 3.14.  

The converse of above theorem need not to be true in general. 

Example 3.15.  

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{a, b, c, d} and E = {P, Q, R, S}, defined by: 

P = { (a, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (b, [0.8, 0.9], [0.2, 0.3], [0.3, 

0.4]) }, 

Q = { (b, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (d, [0.8, 0.9], [0.2, 0.3], [0.3, 

0.4]) }, 

R = { (c, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (d, [0.8, 0.9], [0.2, 0.3], [0.3, 

0.4]) }, 

S = { (d, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (d, [0.8, 0.9], [0.2, 0.3], [0.3, 

0.4]) }. 

Here E is constant, but deg(a) = ( [1.6, 1.8], [0.4, 0.6], [0.6, 0.8]) and deg(d) = 

([2.4, 2.7], [0.6, 0.9], [0.9, 1.2]), i.e deg(a) and deg(d) are not equals, hence H is 

a not regular IVNHG. Next, deg[a] = ([2.4, 2.7], [0.6, 0.9], [0.9, 1.2]) and deg[d]= 

([3.2, 3.6], [0.8, 1.2], [1.2, 1.6]), hence deg[a] and deg[d] are not equals, hence H 

is not a totally regular IVNHG.  

We conclude that H is neither a regular and nor a totally regular IVNHG. 

Theorem 3.16.  

Let H = (X, E)  be an IVNHG; then E is constant on X if and only if the following 
are equivalent: 

(1)  H is a regular IVNHG; 

(2)  H is a totally regular IVNHG. 

Proof. 

Suppose H = (X, E) is an IVNHG and E is constant in H, i.e.:  

𝐸𝑖(x) = c = ([c1 , c2], [c3 , c4], [ c5 , c6]),     (22) 

for all x ∈ 𝐸𝑖.  
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Suppose H is a n-regular IVNHG; then 

deg(x) = n = ([n1 , n2], [n3 , n4], [ n5 , n6]),    (23) 

for all x ∈ 𝐸𝑖 .  

Consider 

deg[x] = deg(x) +𝐸𝑖(x) = n + c,      (24) 

for all x ∈ 𝐸𝑖. 

Hence, H is a totally regular IVNHG. 

Next, suppose that H is a m-totally regular IVNHG; then: 

deg[x] = m = ([m1 , m2], [m3 , m4], [ m5 , m6]),    (25) 

for all x ∈ 𝐸𝑖 . i.e.: 

deg(x) + 𝐸𝑖(x) = m,      (26) 

for all x ∈ 𝐸𝑖. 

This implies that  

deg(x) = m – c,      (27) 

for all x ∈ 𝐸𝑖 . 

Thus, H is a regular IVNHG, and consequently (1) and (2) are equivalent. 

Conversely. 

Assume that (1) and (2) are equivalent, i.e. H is a regular IVNHG if and only if 

H is a totally regular IVNHG.  

Suppose by contrary that E is not constant, that is 𝐸𝑖(x) and 𝐸𝑖(y) not equals 

for some x and y in X. Let H = (X , E) be a n-regular IVNHG; then 

deg(x) = n = ([n1 , n2], [n3 , n4], [ n5 , n6]),    (28) 

for all x ∈ 𝐸𝑖. 

Consider: 

deg[x] = deg(x) + 𝐸𝑖(x) = n + 𝐸𝑖(x),      (29) 

deg[y] = deg(y) + 𝐸𝑖( (y) = n + 𝐸𝑖(y),      (30) 

since 𝐸𝑖(x) and 𝐸𝑖(y) are not equals for some x and y in X, hence deg[x] and 

deg[y] are not equals, thus H is not a totally regular IVNHG, which is a 

contradiction to our assumption. 

Next, let H be a totally regular IVNHG, then 

deg[x]  = deg[y].      (31) 

That is 

deg(x) + 𝐸𝑖(x) = deg(y) + 𝐸𝑖(y),      (32) 

deg(x) – deg(y) = 𝐸𝑖(y) – 𝐸𝑖(x),      (33) 
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since RHS of above equation is nonzero, hence LHS of above equation is also 

nonzero, thus deg(x) and deg(y) are not equals, so H is not a regular IVNHG, 

which is again a contradiction to our assumption, thus our supposition was 

wrong, hence E must be constant, and this completes the proof. 

Definition 3.17.   

Let H = (X, E) be a regular IVNHG; then the order of an IVNHG H is denoted and 

defined by: 

O(H) = ( [p, q], [r, s ], [t, u] ),      (34) 

where  

𝑝 = ∑ 𝑇𝐿𝐸𝑖
(𝑥)𝑥 ∈𝑋 ,  𝑞 = ∑ 𝑇𝑈𝐸𝑖

(𝑥)𝑥 ∈𝑋 ,   𝑟 = ∑ 𝐼𝐿𝐸𝑖
(𝑥)𝑥 ∈𝑋 ,  (35) 

𝑠 = ∑ 𝐼𝑈𝐸𝑖
(𝑥)𝑥 ∈𝑋 ,  𝑡 = ∑ 𝐹𝐿𝐸𝑖

(𝑥)𝑥 ∈𝑋 ,  𝑢 = ∑ 𝐹𝑈𝐸𝑖
(𝑥)𝑥 ∈𝑋 ,  (36) 

for every x  ∈ X, and the size of a regular IVNHG is denoted and defined by:  

S(H) = ∑ (𝑆𝐸𝑖
)𝑛

𝑖=1 ,        (37) 

where  

S(Ei) = ( [a, b], [c, d], [e, f] )      (38) 

and 

a = ∑ 𝑇𝐿𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥),  b = ∑ 𝑇𝑈𝐸𝑖𝑥 ∈𝐸𝑖

(𝑥),  c = ∑ 𝐼𝐿𝐸𝑖
(𝑥)𝑥 ∈𝐸𝑖

 (39) 

d = ∑ 𝐼𝑈𝐸𝑖
(𝑥)𝑥 ∈𝐸𝑖

,  e = ∑ 𝐹𝐿𝐸𝑖𝑥 ∈𝐸𝑖
(𝑥),  f = ∑ 𝐹𝑈𝐸𝑖𝑥 ∈𝐸𝑖

(𝑥). (40) 

Example 3.18.   

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{a, b, c, d} and E = {P, Q, R, S}, defined by: 

P = { (a, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (b, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4]) }, 

Q = { (b, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (c, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4]) }, 

R = { (c, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (d, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4]) }, 

S = { (d, [0.8, 0.9], [0.2, 0.3], [0.3, 0.4]), (a, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4]) }. 

Here, the order and the size of H are given, ([3.2, 3.6], [.8, 1.2], [1.2, 1.6]), and 

([6.4, 7.2], [1.6,2.4], [2.4,3.2]) respectively. 

Proposition 3.19.   

The size of a n-regular IVNHG H = (H , E) is  
𝑛𝑘

2
  where |X|= k. 
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Proposition 3.20.  

If H = (X, E) is a m-totally regular IVNHG, then 2S(H) + O(H) = mk, where |X| = 
k. 

Corollary 3.21.  

Let H = (X, E) be a n-regular and a m-totally regular IVNHG; then O(H) = k(m - 

n), where |X|=k. 

Proposition 3.22.  

The dual of a n-regular and a m-totally regular IVNHG H = (X, E) is again a n-

regular and a m-totally regular IVNHG. 

Definition 3.23.  

The interval valued neutrosophic hypergraph (IVNHG) is said to be a complete 

IVNHG if for every x in X, N(x) = { x : x in X-{x} }; that is N(x) contains all 

remaining vertices of X except x. 

Example 3.24.  

Consider the interval valued neutrosophic hypergraphs H = (X, E), where X = 

{ a, b, c, d } and E = { P, Q, R }, defined by: 

P = {(a, [0.4, 0.5], [0.6, 0.7], [0.3, 0.4]), (c, [0.8, 0.9], [0.2, 0.3], [0.3, 
0.4])} 

Q = {(a, [0.8, 1.0], [0.7, 0.9], [0.3, 0.7]), (b, [0.8, 0.9], [0.2, 0.3], [0.1, 0.9]), 

(d, [0.8, 0.9], [0.2, 0.5], [0.1, 0.9])} 

R = {(c, [0.4, 0.6], [0.9, 1.0], [0.9, 1.0]), (d, [0.7, 0.9], [0.2, 0.7], [0.1, 0.7]), 

 (b, [0.4, 0.6], [0.2, 0.7], [0.1, 0.8])} 

Here, N(a) = {b, c, d}, N(b) = {a, c, d}, N(c) = {a, b, d}, N(d) = {a, b, c}. Hence H is a 

complete IVNHG. 

Remark 3.25. 

In a complete IVNHG H = (X, E), the cardinality of N(x) is the same for every 
vertex. 

Theorem 3.26.  

Every complete IVNHG H = ( X , E) is both a regular and a totally regular if E is 

constant in H. 

Proof.  

Let H = (X, E) be a complete IVNHG; suppose E is constant in H. 
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Consequently: 

𝐸𝑖(x) = c = ([c1 , c2], [c3 , c4], [ c5 , c6]),     (41) 

for all x ∈ 𝐸𝑖; since IVNHG is complete, then by definition for every vertex x in 

X, N(x) = { x : x in X-{x} }, and the open neighbourhood degree of every vertex is 

same, that is:   

deg(x) = n = ([n1 , n2], [n3 , n4], [ n5 , n6]),    (42) 

for all x ∈ 𝐸𝑖.  

Hence, a complete IVNHG is a regular IVNHG.  

Also, 

deg[x] = deg(x) + 𝐸𝑖(x) = n + c     (43) 

for all x ∈ 𝐸𝑖.  

Hence H is a totally regular IVNHG. 

Remark 3.27.   

Every complete IVNHG is totally regular even if E is not constant. 

Definition 3.28.   

An IVNHG is said to be k-uniform if all the hyper-edges have the same 

cardinality. 

Example 3.29.  

Consider an interval valued neutrosophic hypergraphs H = (X , E), where X = 

{ a, b, c, d } and E = { P, Q, R }, defined by: 

P = {(a, [0.8, 0.9], [0.4,0.7], [0.2, 0.7]), (b, [0.7, 0.9], [0.5, 0.8], [0.3, 
0.9])}, 

Q = {(b, [0.9, 1.0], [0.4, 0.5], [0.8, 1.0]), (c, [0.8, 0.9], [0.4, 0.5], [0.2, 
0.7])}, 

R = {(c, [0.1, 0.9], [0.5, 0.7], [0.4, 1.0]), (d, [0.1, 1.0], [0.9, 1.0], [0.5, 
0.9])}. 

4 Conclusion 

The theoretical concepts of graphs and hypergraphs are highly used in 

computer science applications. The interval valued neutrosophic hypergraphs 

are more flexible than the fuzzy hypergraphs and the intuitionistic fuzzy 

hypergraphs, the interval valued fuzzy hypergraphs and the interval valued 

intuitionistic fuzzy hypergraphs. The concept of interval valued neutrosophic 

hypergraphs can be applied in various areas of engineering and computer 

science.  
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In this paper, we defined the regular and the totally regular interval valued 

neutrosophic hypergraphs.  

We plan to extend our research work to the irregular interval valued 

neutrosophic hypergraphs. 
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Abstract  

In this paper, we introduce the homomorphism, weak isomorphism, co-weak 

isomorphism, and isomorphism of single valued neutrosophic hypergraphs. The 

properties of order, size and degree of vertices, along with isomorphism, are 

included. The isomorphism of single valued neutrosophic hypergraphs equivalence 

relation and of weak isomorphism of single valued neutrosophic hypergraphs 

partial order relation is also verified. 

Keywords 
homomorphism, weak-isomorphism, co-weak-isomorphism, isomorphism of single 

valued neutrosophic hypergraphs. 

1 Introduction 

The neutrosophic set (NS) was proposed by Smarandache [8] as a general-

ization of the fuzzy sets [14], intuitionistic fuzzy sets [12], interval valued 

fuzzy set [11] and interval-valued intuitionistic fuzzy sets [13] theories, and it 

is a powerful mathematical tool for dealing with incomplete, indeterminate 

and inconsistent information in the real world. The neutrosophic sets are 

characterized by a truth-membership function (t), an indeterminacy-mem-

bership function (i) and a falsity membership function (f) independently, 

which are within the real standard or non-standard unit interval ]-0, 1+[. To 

conveniently use NS in the real-life applications, Wang et al. [9] introduced 
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the single-valued neutrosophic set (SVNS), as a subclass of the neutrosophic 

sets. The same authors [10] introduced the interval valued neutrosophic set 

(IVNS), which is even more precise and flexible than the single valued 

neutrosophic set. The IVNS is a generalization of the single valued 

neutrosophic set, in which the three membership functions are independent, 

and their values belong to the unit interval [0, 1]. The hypergraph is a graph 

in which an edge can connect more than two vertices. Hypergraphs can be 

applied to analyse architecture structures and to represent system partitions. 

In this paper, we extend the concept into isomorphism of single valued 

neutrosophic hypergraphs, and some of their properties are introduced. 

2 Preliminaries 

Definition 2.1   

A hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} a finite set of vertices; 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} a family of subsets of X; 

(3) 𝐸𝑗 are not-empty for j= 1,2,3, ..., m and ⋃ (𝐸𝑗)𝑗 = X. 

The set X  is called set of vertices and E  is the set of edges (or hyper-edges). 

Definition 2.2  

A fuzzy hypergraph H = (X, E) is a pair, where X is a finite set and E is a finite 
family of non-trivial fuzzy subsets of X, such that 𝑋 =∪𝑗 𝑆𝑢𝑝𝑝(𝐸𝑗), 𝑗 =

1, 2, 3, … , 𝑚. 

Remark 2.3 

The collection 𝐸 = {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑚} is the collection of edge sets of H. 

Definition 2.4  

A fuzzy hypergraph with underlying set X  is of the form H = (X, E, R), where 

𝐸 = {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑚} is the collection of fuzzy subsets of X, that is 𝐸𝑗 ∶ 𝑋 →

[0 , 1], j= 1, 2, 3, ..., m and 𝑅 ∶ 𝐸 → [0 , 1] is a fuzzy relation on fuzzy subsets 

𝐸𝑗 , such that: 

𝑅(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ min (𝐸𝑗(𝑥1), ..., 𝐸𝑗(𝑥𝑟)),   (1) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Definition 2.5 

Let X  be a space of points (objects) with generic elements in X denoted by x. 

A single valued neutrosophic set A (SVNS A) is characterized by truth mem-
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bership function 𝑇𝐴(x), indeterminacy membership function 𝐼𝐴(x), and a 

falsity membership function 𝐹𝐴(x). For each point x ∈X; 𝑇𝐴(x),  𝐼𝐴(x), 𝐹𝐴(x) ∈ 

[0, 1]. 

Definition 2.6  

A single valued neutrosophic hypergraph (SVNHG) is an ordered pair H = (X, 

E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} a finite set of vertices. 

(2) E = { 𝐸1, 𝐸2, …, 𝐸𝑚 } a family of SVNSs of X. 

(3) 𝐸𝑗 ≠ O = (0, 0, 0) for j= 1, 2, 3, ..., m and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = X. 

The set X is called set of vertices and E is the set of SVN-edges (or SVN-hyper-

edges). 

Proposition 2.7  

The SVNHG is the generalization of the fuzzy hypergraphs and of the 

intuitionistic fuzzy hypergraphs. 

Let be given a SVNHGH = (X, E, R), with underlying set X, where E = { 𝐸1, 𝐸2, 

…, 𝐸𝑚 } is the collection of non-empty family of SVN subsets of X, and R being 

SVN's relation on SVN subsets 𝐸𝑗 such that: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑇𝐸𝑗
(𝑥1)], … , [𝑇𝐸𝑗

(𝑥𝑟)]),   (2) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐼𝐸𝑗
(𝑥1)], … , [𝐼𝐸𝑗

(𝑥𝑟)]),   (3) 

 𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐹𝐸𝑗
(𝑥1)], … , [𝐹𝐸𝑗

(𝑥𝑟)]),   (4) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Example 2.8  

Consider the SVNHG H = (X, E, R) with underlying set X = {a, b, c}, where E = 

{A, B} and R, which is defined in the Tables given below. 

 

 

H  A B 

a (0.2,0.3,0.9) (0.5,0.2,0.7) 

b (0.5,0.5,0.5) (0.1,0.6,0.4) 

c (0.8,0.8,0.3) (0.5,0.9,0.8) 
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R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.8 0.9 

B 0.1 0.9 0.8 

 

By routine calculations, H = (X, E, R) is a SVNHG. 

3 Isomorphism of SVNHGs 

Definition 3.1  

A homomorphism f : H → K  between two SVNHGs H = (X, E, R) and K = (Y, F, 

S) is a mapping f : X → Y, which satisfies: 

min[𝑇𝐸𝑗
(𝑥)]   ≤ min[𝑇𝐹𝑗

(𝑓(𝑥))],     (5) 

max[𝐼𝐸𝑗
(𝑥)]    ≥ max[𝐼𝐹𝑗

(𝑓(𝑥))],     (6) 

max[𝐹𝐸𝑗
(𝑥)]   ≥ max[𝐹𝐹𝑗

(𝑓(𝑥))],     (7) 

for all x∈ 𝑋, and 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤  𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (8) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥ 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (9) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (10) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Example 3.2  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, and f: X → Y defined by f(a)=x, f(b)=y and 

f(c)=z. 

 

H A B 

a (0.2,0.3,0.9) (0.5,0.2,0.7) 

b (0.5,0.5,0.5) (0.1,0.6,0.4) 

c (0.8,0.8,0.3) (0.5,0.9,0.8) 
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K C D 

x (0.3,0.2,0.2) (0.2,0.1,0.3) 

y (0.2,0.4,0.2) (0.3,0.2,0.1) 

z (0.5,0.8,0.2) (0.9, 0.7, 0.1) 

 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.8 0.9 

B 0.1 0.9 0.8 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.2 0.8 0.3 

D 0.1 0.7 0.3 

 

By routine calculations, f: H → K is a homomorphism between H and K. 

Definition 3.3  

A weak isomorphism f: H → K between two SVNHGs H = (X, E, R) and K = (Y, F, 

S) is a bijective mapping f : X → Y, which satisfies f is homomorphism, such 

that: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))],     (11) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (12) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (13) 

for all x∈ 𝑋.   

Note  

The weak isomorphism between two SVNHGs preserves the weights of 

vertices. 

Example 3.4  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c} and Y = {x, y, z}, where E = {A, B} , F = {C, D}, R and S, which are 



24 

 

 

M, Aslam Malik, Ali Hassan, Said Broumi, Assia Bakali, M. Talea, F. Smarandache                      

Isomorphism of Single Valued Neutrosophic Hypergraphs 

Critical Review. Volume XIII, 2016 

defined in the Tables given below, and f: X → Y defined by f(a)=x, f(b)=y and 

f(c)=z. 

 

H A B 

a (0.2,0.3,0.9) (0.5,0.2,0.7) 

b (0.5,0.5,0.5) (0.1,0.6,0.4) 

c (0.8,0.8,0.3) (0.5,0.9,0.8) 

 

K C D 

x (0.2,0.3,0.2) (0.2,0.1,0.8) 

y (0.2,0.4,0.2) (0.1,0.6,0.5) 

z (0.5,0.8,0.9) (0.9,0.9,0.1) 

 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.8 0.9 

B 0.1 0.9 0.9 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.2 0.8 0.9 

D 0.1 0.9 0.8 

 

By routine calculations, f: H → K is a weak isomorphism between H and K. 

Definition 3.5  

A co-weak isomorphism f: H → K between two SVNHGs H = (X, E, R) and K = (Y, 

F, S) is a bijective mapping f: X → Y which satisfies f is homomorphism, i.e.: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (14) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (15) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (16) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 
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Note  

The co-weak isomorphism between two SVNHGs preserves the weights of 

edges. 

Example 3.6  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c} and Y = {x, y, z}, where E = {A, B} ,F = {C, D}, R and S are defined in 

the Tables given below, and f: X → Y defined by f(a)=x , f(b)=y and f(c)=z. 

 

H A B 

a (0.2,0.3,0.9) (0.5,0.2,0.7) 

b (0.5,0.5,0.5) (0.1,0.6,0.4) 

c (0.8,0.8,0.3) (0.5,0.9,0.8) 

 

K C D 

x (0.3,0.2,0.2) (0.2,0.1,0.3) 

y (0.2,0.4,0.2) (0.3,0.2,0.1) 

z (0.5,0.8,0.2) (0.9, 0.7, 0.1) 

 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.8 0.9 

B 0.1 0.9 0.8 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.2 0.8 0.9 

D 0.1 0.9 0.8 

 

By routine calculations, f: H → K is a co-weak isomorphism between H and K. 
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Definition 3.7  

An isomorphism f: H → K between two SVNHGs H = (X, E, R) and K = (Y, F, S) is 

a bijective mapping f: X → Y, which satisfies: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))],     (17) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (18) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (19) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (20) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑆𝐼(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (21) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)    =  𝑆𝐹(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (22) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Note  

The isomorphism between two SVNHGs preserves both the weights of 

vertices and the weights of edges. 

Example 3.8  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, and f: X → Y defined by, f(a)=x , f(b)=y and 

f(c)=z. 

 

H A B 

a (0.2,0.3,0.7) (0.5,0.2,0.7) 

b (0.5,0.5,0.5) (0.1,0.6,0.4) 

c (0.8,0.8,0.3) (0.5,0.9,0.8) 

 

K C D 

x (0.2,0.3,0.2) (0.2,0.1,0.8) 

y (0.2,0.4,0.2) (0.1,0.6,0.5) 

z (0.5,0.8,0.7) (0.9, 0.9, 0.1) 
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R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.8 0.9 

B 0.0 0.9 0.8 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.2 0.8 0.9 

D 0.0 0.9 0.8 

 

By routine calculations, f: H → K is an isomorphism between H and K. 

Definition 3.9  

Let H = (X, E, R) be a SVNHG; then, the order of H is denoted and defined by: 

𝑂(𝐻) = (∑min𝑇𝐸𝑗
(𝑥) , ∑max 𝐼𝐸𝑗

(𝑥) ,    (23) 

and the size of H is denoted and defined by: 

𝑆(𝐻) = (∑ 𝑅𝑇(𝐸𝑗) , ∑ 𝑅𝐼(𝐸𝑗) , ∑ 𝑅𝐹(𝐸𝑗)).   (24) 

Theorem 3.10 

Let H = (X, E, R) and K = (Y, F, S) be two SVNHGs, such that H is isomorphic to 

K. 

Then: 

(1) O(H) = O(K); 

(2) S(H) = S(K). 

Proof. 

Let f: H → K be an isomorphism between H and K with underlying sets X and Y 

respectively. 

Then, by definition, we have: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))],     (25) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (26) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (27) 

for all x ∈ 𝑋, and: 
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𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (28) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)     = 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (29) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (30) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Consider: 

𝑂𝑇(𝐻) = ∑min𝑇𝐸𝑗
(𝑥) = ∑min𝑇𝐹𝑗

(𝑓(𝑥)) = 𝑂𝑇(𝐾)  (31) 

Similarly, 𝑂𝐼(𝐻) = 𝑂𝐼(𝐾) and 𝑂𝐹(𝐻) = 𝑂𝐹(𝐾), hence O(H) = O(K). 

Next, 

 𝑆𝑇(𝐻) = ∑ 𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) = ∑ 𝑆𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) =

𝑆𝑇(𝐾)        (32) 

Similarly, 𝑆𝐼(𝐻) = 𝑆𝐼(𝐾), 𝑆𝐹(𝐻) = 𝑆𝐹(𝐾), hence 𝑆(𝐻) = 𝑆(𝐾). 

Remark 3.11  

The converse of the above theorem need not to be true in general. 

Example 3.12  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, where f is defined by f(a)=w, f(b)=x, f(c)=y, 

f(d)=z. 

 

H A B 

a (0.2, 0.5, 0.33) (0.16,0.5,0.33) 

b (0.0,0.0,0.0) (0.2,0.5,0.33) 

c (0.33,0.5,0.33) (0.2,0.5,0.33) 

d (0.5,0.5,0.33) (0.0,0.0,0.0) 

 

K C D 

w (0.2,0.5,0.33) (0.2,0.5,0.33) 

x (0.16,0.5,0.33) (0.33,0.5,0.33) 

y (0.33,0.5,0.33) (0.2,0.5,0.33) 

z (0.5,0.5,0.33) (0.0,0.0,0.0) 
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R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.5 0.33 

B 0.16 0.5 0.33 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.16 0.5 0.33 

D 0.2 0.5 0.33 

 

Here, O(H) = (1.06, 2.0, 1.32) = O(K) and S(H) = (0.36, 1.0, 0.66) = S(K), but, by 

routine calculations, H is not isomorphism to K. 

Corollary 3.13  

The weak isomorphism between any two SVNHGs preserves the orders. 

Remark 3.14  

The converse of above corollary need not to be true in general. 

Example 3.15  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, where f is defined by f(a)=w, f(b)=x, f(c)=y, 

f(d)=z. 

 

H A B 

a (0.2,0.5,0.3) (0.14,0.5,0.3) 

b (0.0,0.0,0.0) (0.2,0.5,0.3) 

c (0.33,0.5,0.3) (0.16,0.5,0.3) 

d (0.5,0.5,0.3) (0.0,0.0,0.0) 
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K C D 

w (0.14,0.5,0.3) (0.16,0.5,0.3) 

x (0.0,0.0,0.0) (0.16,0.5,0.3) 

y (0.25,0.5,0.3) (0.2,0.5,0.3) 

z (0.5,0.5,0.3) (0.0,0.0,0.0) 

 

Here, O(H)= (1.0, 2.0, 1.2) = O(K), but, by routine calculations, H is not weak 

isomorphism to K. 

Corollary 3.16 

The co-weak isomorphism between any two SVNHGs preserves sizes. 

Remark 3.17  

The converse of above corollary need not to be true in general. 

Example 3.18  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D},R and S are defined 

in the Tables given below, where f is defined by f(a)=w, f(b)=x, f(c)=y, f(d)=z. 

 

 

H A B 

a (0.2,0.5,0.3) (0.14,0.5,0.3) 

b (0.0,0.0,0.0) (0.16,0.5,0.3) 

c (0.3,0.5,0.3) (0.2,0.5,0.3) 

d (0.5,0.5,0.3) (0.0,0.0,0.0) 

K C D 

w (0.0,0.0,0.0) (0.2,0.5,0.3) 

x (0.14,0.5,0.3) (0.25,0.5,0.3) 

y (0.5,0.5,0.3) (0.2,0.5,0.3) 

z (0.3,0.5,0.3) (0.0,0.0,0.0) 
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S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.14 0.5 0.3 

D 0.2 0.5 0.3 

 

Here, S(H) = (0.34,1.0,0.6) = S(K), but, by routine calculations, H is not co-

weak isomorphism to K. 

Definition 3.19  

Let H = (X, E, R) be a SVNHG; then the degree of vertex 𝑥𝑖 is denoted and 

defined by: 

deg(𝑥𝑖) = (𝑑𝑒𝑔𝑇(𝑥𝑖), 𝑑𝑒𝑔𝐼(𝑥𝑖), 𝑑𝑒𝑔𝐹(𝑥𝑖)),    (33) 

where   

𝑑𝑒𝑔𝑇(𝑥𝑖) = ∑ 𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ,    (34) 

𝑑𝑒𝑔𝐼(𝑥𝑖) = ∑ 𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟),       (35) 

𝑑𝑒𝑔𝐹(𝑥𝑖) = ∑ 𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟),     (36) 

for 𝑥𝑖  ≠  𝑥𝑟 . 

Theorem 3.20  

If H and K are two isomorphic SVNHGs, then the degree of their vertices is 

preserved. 

Proof.  

Let f: H → K be an isomorphism between H and K with underlying sets X and Y 

respectively; then, by definition, we have 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))],     (37) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (38) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (39) 

for all x∈ 𝑋, and: 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.2 0.5 0.3 

B 0.14 0.5 0.3 
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𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)     =  𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (40) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)      = 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (41) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)      =  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (42) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Consider: 

𝑑𝑒𝑔𝑇(𝑥𝑖) = ∑ 𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) = ∑ 𝑆𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) =

𝑑𝑒𝑔𝑇(𝑓(𝑥𝑖)).       (43) 

Similarly: 

𝑑𝑒𝑔𝐼(𝑥𝑖) = 𝑑𝑒𝑔𝐼(𝑓(𝑥𝑖)), 𝑑𝑒𝑔𝐹(𝑥𝑖) = 𝑑𝑒𝑔𝐹(𝑓(𝑥𝑖))  (44) 

Hence:   

𝑑𝑒𝑔(𝑥𝑖) = 𝑑𝑒𝑔(𝑓(𝑥𝑖)).       (45) 

Remark 3.21 

The converse of the above theorem may not be true in general. 

Example 3.22  

Consider the two SVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b} and Y = {x, y}, where E = {A, B}, F = {C, D}, R and S are defined in the 

Tables given below, where f is defined by, f(a)=x, f(b)=y, here deg(a) = ( 0.8, 

1.0, 0.6) = deg(x) and deg(b) = (0.45, 1.0, 0.6) = deg(y). 

 

H A B 

a (0.5,0.5,0.3) (0.3,0.5,0.3) 

b (0.25,0.5,0.3) (0.2,0.5,0.3) 

 

K C D 

x (0.3,0.5,0.3) (0.5,0.5,0.3) 

y (0.2,0.5,0.3) (0.25,0.5,0.3) 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C 0.2 0.5 0.3 

D 0.25 0.5 0.3 
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R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A 0.25 0.5 0.3 

B 0.2 0.5 0.3 

 

But H is not isomorphic to K, i.e. H is neither weak isomorphic nor co-weak 

isomorphic to K. 

Theorem 3.23  

The isomorphism between SVNHGs is an equivalence relation. 

Proof.  

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be SVNHGs with underlying sets 

X, Y and Z, respectively: 

- Reflexive.  

Consider the map (identity map) f: X → X defined as follows: f(x) = x for all x ∈

 X, since identity map is always bijective and satisfies the conditions: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐸𝑗

(𝑓(𝑥))],     (46) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐸𝑗

(𝑓(𝑥))],     (47) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐸𝑗

(𝑓(𝑥))],     (48) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (49) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑅𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (50) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (51) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Hence f is an isomorphism of SVNHG H to itself. 

- Symmetric.  

Let f: X → Y be an isomorphism of H and K, then f is bijective mapping, defined 

as f(x) = y for all x ∈ X. 

Then, by definition: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))],     (52) 
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max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (53) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (54) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (55) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (56) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (57) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since f is bijective, then we have 𝑓−1(𝑦) = 𝑥 for all 𝑦 ∈ 𝑌. 

Thus, we get: 

min[𝑇𝐸𝑗
(𝑓−1(𝑦))]  = min[𝑇𝐹𝑗

(𝑦)],     (58) 

max[𝐼𝐸𝑗
(𝑓−1(𝑦))]   = max[𝐼𝐹𝑗

(𝑦)],     (59) 

max[𝐹𝐸𝑗
(𝑓−1(𝑦))]  = max[𝐹𝐹𝑗

(𝑦)],     (60) 

for all x∈ 𝑋, and: 

𝑅𝑇 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝑇(𝑦1 , 𝑦2, … , 𝑦𝑟),  (61) 

𝑅𝐼 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝐼(𝑦1 , 𝑦2, … , 𝑦𝑟),  (62) 

𝑅𝐹 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝐹(𝑦1 , 𝑦2, … , 𝑦𝑟),  (63) 

for all { 𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 

Hence, we have a bijective map 𝑓−1 ∶ 𝑌 → 𝑋, which is an isomorphism from K 

to H. 

- Transitive.  

Let   𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be two isomorphism of SVNHGs of H onto K and K 

onto M, respectively. Then 𝑔𝑜𝑓 is a bijective mapping from X to Z, where 𝑔𝑜𝑓 

is defined as (𝑔𝑜𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. 

Since f is an isomorphism, then, by definition, 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋, which 

satisfies: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))] ,     (64) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (65) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (66) 

for all x∈ 𝑋, and: 
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𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (67) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (68) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (69) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since 𝑔 ∶ 𝑌 → 𝑍is an isomorphism, then, by definition, 𝑔(𝑦) = 𝑧 for all 𝑦 ∈ 𝑌, 

satisfying the conditions: 

min[𝑇𝐹𝑗
(𝑦)]  = min [𝑇𝐺𝑗

(𝑔(𝑦))],     (70) 

max[𝐼𝐹𝑗
(𝑦)]   = max[𝐼𝐺𝑗

(𝑔(𝑦))],     (71) 

max[𝐹𝐹𝑗
(𝑦)]  = max[𝐹𝐺(𝑔(𝑦))],     (72) 

for all x∈ 𝑋, and: 

𝑆𝑇(𝑦1, 𝑦2, … , 𝑦𝑟)  =  𝑊𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (73) 

𝑆𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   = 𝑊𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (74) 

𝑆𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  =  𝑊𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (75) 

for all { 𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 

Thus, from above equations, we conclude that: 

min[𝑇𝐸𝑗
(𝑥)]  =  min[𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))] ,     (76) 

max[𝐼𝐸𝑗
(𝑥)]   =  max[𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],     (77) 

max[𝐹𝐸𝑗
(𝑥)]  =   max[𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],     (78) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, … , 𝑥𝑟) = 𝑊𝑇(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),    (79) 

𝑅𝐼(𝑥1, … , 𝑥𝑟) = 𝑊𝐼(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),    (80) 

𝑅𝐹(𝑥1, … , 𝑥𝑟) = 𝑊𝐹(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),    (81) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Therefore, 𝑔𝑜𝑓 is an isomorphism between H and M. Hence, the isomorphism 

between SVNHGs is an equivalence relation. 

Theorem 3.24 

The weak isomorphism between SVNHGs satisfies the partial order relation. 

Proof.  

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be SVNHGs with underlying sets 

X, Y and Z, respectively. 
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- Reflexive.  

Consider the map (identity map) f : X → X, defined as follows f(x)=x for all x ∈

 X, since the identity map is always bijective and satisfies the conditions: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐸𝑗

(𝑓(𝑥))],     (82) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐸𝑗

(𝑓(𝑥))],     (83) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐸𝑗

(𝑓(𝑥))],     (84) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ 𝑅𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (85) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑅𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (86) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑅𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (87) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Hence f is a weak isomorphism of SVNHG H to itself. 

- Anti-symmetric.  

Let f be a weak isomorphism between H onto K, and g be a weak isomorphic 

between K and H, that is 𝑓: 𝑋 → 𝑌 is a bijective map defined by 𝑓(𝑥) =

𝑦 for all 𝑥 ∈ 𝑋, satisfying the conditions: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))] ,     (88) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))],     (89) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))],     (90) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   ≤  𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (91) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    ≥ 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (92) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (93) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since g is also a bijective map 𝑔(𝑦) = 𝑥 for all 𝑦 ∈ 𝑌 satisfying the conditions: 

min[𝑇𝐹𝑗
(𝑦)]  = min[𝑇𝐸𝑗

(𝑔(𝑦))],     (95) 

max[𝐼𝐹𝑗
(𝑦)]   = max[𝐼𝐸𝑗

(𝑔(𝑦))],     (96) 

max[𝐹𝐹𝑗
(𝑦)]  = max[𝐹𝐸𝑗

(𝑔(𝑦))],     (97) 

for all y ∈ 𝑌, and: 
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𝑅𝑇(𝑦, 𝑦2, … , 𝑦𝑟)   ≤  𝑆𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (98) 

𝑅𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥ 𝑆𝐼(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (99) 

𝑅𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥  𝑆𝐹(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (100) 

for all { 𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 

The above inequalities hold for finite sets X and Y only when H and K SVNHGs 

have same number of edges and the corresponding edge have same weight, 

hence H is identical to K. 

- Transitive.  

Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be two weak isomorphism of SVNHGs of H onto K 

and K onto M, respectively. Then 𝑔𝑜𝑓 is a bijective mapping from X to Z, 

where 𝑔𝑜𝑓 is defined as (𝑔𝑜𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. 

Since f is a weak isomorphism, then, by definition, 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋, 

which satisfies the conditions: 

min[𝑇𝐸𝑗
(𝑥)]  = min[𝑇𝐹𝑗

(𝑓(𝑥))] ,    (101) 

max[𝐼𝐸𝑗
(𝑥)]   = max[𝐼𝐹𝑗

(𝑓(𝑥))] ,    (102) 

max[𝐹𝐸𝑗
(𝑥)]  = max[𝐹𝐹𝑗

(𝑓(𝑥))] ,    (103) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤  𝑆𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (104) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (105) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑆𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (106) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since 𝑔: 𝑌 → 𝑍  is a weak isomorphism, then, by definition, 𝑔(𝑦) =

𝑧 for all 𝑦 ∈ 𝑌 satisfying the conditions: 

min[𝑇𝐹𝑗
(𝑦)]  = min[𝑇𝐺𝑗

(𝑔(𝑦))] ,     (107) 

max[𝐼𝐹𝑗
(𝑦)]   = max[𝐼𝐺𝑗

(𝑔(𝑦))],     (108) 

max[𝐹𝐹𝑗
(𝑦)]  = max[𝐹𝐺(𝑔(𝑦))],     (109) 

for all x∈ 𝑋, and: 

𝑆𝑇(𝑦1, 𝑦2, … , 𝑦𝑟) ≤ 𝑊𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (110) 

𝑆𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥ 𝑊𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (111) 

𝑆𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥  𝑊𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (112) 

for all { 𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 
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Thus, from above equations, we conclude that: 

min[𝑇𝐸𝑗
(𝑥)]  =  min[𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))] ,     (113) 

max[𝐼𝐸𝑗
(𝑥)]   =  max[𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],     (114) 

max[𝐹𝐸𝑗
(𝑥)]  =   max[𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],     (115) 

for all x∈ 𝑋, and: 

𝑅𝑇(𝑥1, … , 𝑥𝑟)   ≤ 𝑊𝑇(𝑔(𝑓(𝑥2)), … , 𝑔(𝑓(𝑥𝑟))),   (116) 

𝑅𝐼(𝑥1, … , 𝑥𝑟)   ≥ 𝑊𝐼(𝑔(𝑓(𝑥2)), … , 𝑔(𝑓(𝑥𝑟))),    (117) 

𝑅𝐹(𝑥1, … , 𝑥𝑟)   ≥   𝑊𝐹(𝑔(𝑓(𝑥2)), … , 𝑔(𝑓(𝑥𝑟)))   (118) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Therefore 𝑔𝑜𝑓is a weak isomorphism between H and M. 

Hence, a weak isomorphism between SVNHGs is a partial order relation. 

4 Conclusion 

Theoretical concepts of graphs and hypergraphs are highly used by computer 

science applications. Single valued neutrosophic hypergraphs are more 

flexible than fuzzy hypergraphs and intuitionistic fuzzy hypergraphs. The 

concepts of single valued neutrosophic hypergraphs can be applied in various 

areas of engineering and computer science.  

In this paper, the isomorphism between SVNHGs is proved to be an 

equivalence relation and the weak isomorphism to be a partial order relation. 

Similarly, it can be proved that a co-weak isomorphism in SVNHGs is a partial 

order relation. 
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Abstract  

In this paper, we introduce the homomorphism, weak isomorphism, co-weak 

isomorphism and isomorphism of interval valued neutrosophic hypergraphs. The 

properties of order, size and degree of vertices, along with isomorphism, are included. 

The isomorphism of interval valued neutrosophic hypergraphs equivalence relation 

and weak isomorphism of interval valued neutrosophic hypergraphs partial order 

relation are also verified. 

Keywords 
homomorphism, weak-isomorphism, co-weak-isomorphism, isomorphism of interval 

valued neutrosophic hypergraphs. 

1 Introduction 

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity membership function 

(f) independently, which are within the real standard or non-standard unit 

interval ]-0 , 1+[.  

Smarandache [8] proposed the notion of neutrosophic set (NS) as a 

generalization of the fuzzy set [14], intuitionistic fuzzy set [12], interval valued 

fuzzy set [11] and interval-valued intuitionistic fuzzy set [13] theories.  
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For convenient use of NS in real life applications, Wang et al. [9] introduced 

the concept of the single-valued neutrosophic set (SVNS), a subclass of the 

neutrosophic sets. The same authors [10] introduced the concept of the 

interval valued neutrosophic set (IVNS), which is more precise and flexible 

than the single valued neutrosophic set. The IVNS is a generalization of the 

single valued neutrosophic set, in which the three membership functions are 

independent and their value belong to the unit interval [0, 1].  

More works on single valued neutrosophic sets, interval valued neutrosophic 

sets and their applications can be found on http://fs.gallup.unm.edu/NSS/.  

Hypergraph is a graph in which an edge can connect more than two vertices. 

Hypergraphs can be applied to analyze architecture structures and to 

represent system partitions. Mordesen and Nasir gave the definitions for fuzzy 

hyper graphs. Parvathy R. and M. G. Karunambigai’s paper introduced the 

concepts of intuitionistic fuzzy hypergraphs and analyze its components. 

Radhamani and Radhika introduced the concept of Isomorphism on Fuzzy 

Hypergraphs.  

In this paper, we extend the concept to isomorphism of interval valued 

neutrosophic hypergraphs, and some of their important properties are 

introduced. 

2 Preliminaries 

Definition 2.1  

A hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} is a family of subsets of X. 

(3) 𝐸𝑗 are not-empty for j= 1, 2, 3, ..., m and ⋃ (𝐸𝑗)𝑗  =  X. 

The set X is called set of vertices and E is the set of edges (or hyper-edges). 

Definition 2.2  

A fuzzy hypergraph H = (X, E) is a pair, where X is a finite set and E is a finite 

family of non-trivial fuzzy subsets of X, such that 𝑋 =∪𝑗 𝑆𝑢𝑝𝑝(𝐸𝑗), 𝑗 =

1, 2, 3, … , 𝑚. 

Remark 2.3 

𝐸 = {𝐸1, 𝐸2, 𝐸3, … . , 𝐸𝑚} is the collection of edge set of H. 
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Definition 2.4  

A fuzzy hypergraph with underlying set X is of the form H = (X, E, R), where 

𝐸 = {𝐸1, 𝐸2, 𝐸3, … . , 𝐸𝑚}  is the collection of fuzzy subsets of X, i.e. 𝐸𝑗 ∶ 𝑋 →

[0 , 1], j= 1, 2, 3, ..., m and 𝑅 ∶ 𝐸 → [0 , 1] is a fuzzy relation on fuzzy subsets 𝐸𝑗 , 

such that: 

𝑅(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ min (𝐸𝑗(𝑥1), ..., 𝐸𝑗(𝑥𝑟)),    (1) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Definition 2.5  

Let X  be a space of points (objects) with generic elements in X, which is 

denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by 

truth membership function 𝑇𝐴(x), indeterminacy membership function 𝐼𝐴(x) 

and a falsity membership function 𝐹𝐴(x). For each point x ∈X; 𝑇𝐴(x), 𝐼𝐴(x),𝐹𝐴(x) 

∈ [0 , 1]. 

Definition 2.6  

A single valued neutrosophic hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} is a family of SVNSs of X. 

(3)𝐸𝑗 ≠ O = (0, 0, 0) for  j= 1, 2, 3, ..., m and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = X. 

The set X is called set of vertices and E is the set of SVN-edges (or SVN-hyper-

edges). 

Proposition 2.7  

The single valued neutrosophic hypergraph is the generalization of fuzzy 

hypergraphs and intuitionistic fuzzy hypergraphs. 

Note that a given a SVNHGH = (X, E, R) with underlying set X, where E = {𝐸1, 𝐸2, 

…, 𝐸𝑚} is the collection of non-empty family of SVN subsets of X, and R is SVN 

relation on SVN subsets 𝐸𝑗 , such that: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑇𝐸𝑗
(𝑥1)], … . , [𝑇𝐸𝑗

(𝑥𝑟)]),   (2) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐼𝐸𝑗
(𝑥1)], … . , [𝐼𝐸𝑗

(𝑥𝑟)]),   (3) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐹𝐸𝑗
(𝑥1)], … . , [𝐹𝐸𝑗

(𝑥𝑟)]),   (4) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
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Definition 2.8  

Let X be a space of points (objects) with generic elements in X denoted by x. An 

interval valued neutrosophic set A (IVNS A) is characterized by lower truth 

membership function 𝑇𝐿𝐴 (x), lower indeterminacy membership function 

𝐼𝐿𝐴 (x), lower falsity membership function 𝐹𝐿𝐴 (x), upper truth membership 

function 𝑇𝑈𝐴 (x), upper indeterminacy membership function 𝐼𝑈𝐴 (x), upper 

falsity membership function 𝐹𝑈𝐴 (x), for each point x ∈ X; 

[𝑇𝐿𝐴(x),𝑇𝑈𝐴], [𝐼𝐿𝐴(x),𝐼𝑈𝐴(𝑥)], [𝐹𝐿𝐴(x),𝐹𝑈𝐴(𝑥)] subsets of [0, 1]. 

Definition 2.9  

An interval valued neutrosophic hypergraph is an ordered pair H = (X, E), 

where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} be a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} be a family of IVNSs of X. 

(3)𝐸𝑗 ≠ O = ([0, 0], [0, 0], [0, 0]) for j = 1, 2, 3, ..., m and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = 

X. 

The set X is called set of vertices and E is the set of IVN-edges (or IVN-hyper-

edges). 

Note that a given IVNHGH = (X, E, R) with underlying set X, where E = {𝐸1, 𝐸2, 

…, 𝐸𝑚} is the collection of non-empty family of IVN subsets of X, and R is IVN 

relation on IVN subsets 𝐸𝑗 such that: 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑇𝐿𝐸𝑗
(𝑥1)], … , [𝑇𝐿𝐸𝑗

(𝑥𝑟)]),  (5) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐼𝐿𝐸𝑗
(𝑥1)], … , [𝐼𝐿𝐸𝑗

(𝑥𝑟)]),   (6) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐹𝐿𝐸𝑗
(𝑥1)], … , [𝐹𝐿𝐸𝑗

(𝑥𝑟)]),  (7) 

 𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑇𝑈𝐸𝑗
(𝑥1)], … , [𝑇𝑈𝐸𝑗

(𝑥𝑟)]),  (8) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐼𝑈𝐸𝑗
(𝑥1)], … , [𝐼𝑈𝐸𝑗

(𝑥𝑟)]),   (9) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐹𝑈𝐸𝑗
(𝑥1)], … , [𝐹𝑈𝐸𝑗

(𝑥𝑟)]),  (10) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Proposition 2.10  

The interval valued neutrosophic hypergraph is the generalization of fuzzy 

hypergraphs, intuitionistic fuzzy hypergraphs, interval valued fuzzy 

hypergraphs and interval valued intuitionistic fuzzy hypergraphs. 
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Example 2.11 

Consider the IVNHG H = (X, E, R) with underlying set X = {a, b, c}, where E = {A, 

B} and R, which are defined in the Tables given below: 

 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.1, 0.2] [0.6, 1.0] [0.5, 0.9] 

B [0.1, 0.3] [0.9, 0.9] [0.9, 1.0] 

By routine calculations, H = (X, E, R) is IVNHG. 

2 Isomorphism of SVNHGs 

Definition 3.1  

A homomorphism f: H → K between two IVNHGs H = (X, E, R) and K = (Y, F, S) 

is a mapping f: X → Y which satisfies the conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]   ≤ min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (11) 

max[𝐼𝐿𝐸𝑗
(𝑥)]    ≥ max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (12) 

max[𝐹𝐿𝐸𝑗
(𝑥)]   ≥ max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (13) 

min[𝑇𝑈𝐸𝑗
(𝑥)]   ≤ min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (14) 

max[𝐼𝑈𝐸𝑗
(𝑥)]    ≥ max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (15) 

max[𝐹𝑈𝐸𝑗
(𝑥)]   ≥ max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))], for all x ∈ 𝑋.    (16) 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≤  𝑆𝑇𝐿(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (17) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ 𝑆𝐼𝐿(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (18) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ≥  𝑆𝐹𝐿(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (19) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≤  𝑆𝑇𝑈(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (20) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ 𝑆𝐼𝑈(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (21) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ≥  𝑆𝐹𝑈(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (22) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

H A B 

a ([0.5,0.7], [0.2, 0.9], [0.5,0.8]) ([0.3,0.5],[0.5,0.6], [0.0,0.1]) 

b ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.1,0.4],[0.3,0.9],[0.9,1.0]) 

c ([0.2,0.3], [0.1,0.5], [0.4,0.7]) ([0.5,0.9],[0.2,0.3],[0.5,0.8]) 
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Example 3.2  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are defined 

in the Tables given below: 

H A B 

a ([0.2,0.3], [0.3,0.4], [0.9,1.0]) ([0.5,0.6], [0.2,0.3], [0.7,0.8]) 

b ([0.5,0.6], [0.5,0.6], [0.5,0.6]) ([0.1,0.2], [0.6,0.7], [0.4,0.5]) 

c ([0.8,0.9], [0.8,0.9], [0.3, 0.4]) ([0.5,0.6], [0.9,1.0], [0.8,0.9]) 

K C D 

x ([0.3,0.4], [0.2,0.3], [0.2,0.3]) ([0.2,0.3], [0.1,0.2], [0.3,0.4]) 

y ([0.2,0.4], [0.4,0.5], [0.2,0.3]) ([0.3,0.4], [0.2,0.3], [0.1,0.2]) 

z ([0.5,0.6], [0.8,0.9], [0.2, 0.3]) ([0.9,0.1], [0.7,0.8], [0.1,0.2]) 

 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.2,0.3] [0.8,0.9] [0.3,0.4] 

D [0.1,0.2] [0.7,0.8] [0.3,0.4] 

 

and f: X → Y defined by, f(a)=x , f(b)=y and f(c)=z. Then, by routine calculations, 

f: H → K is a homomorphism between H and K. 

Definition 3.3  

A weak isomorphism f: H → K between two IVNHGs H = (X, E, R) and K = (Y, F, 

S) is a bijective mapping f : X →  Y which satisfies the condition f is 

homomorphism, such that: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (23) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (24) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (25) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (26) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (27) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (28) 

for all x∈ 𝑋.   

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.8,0.9] [0.9,1.0] 

B [0.1,0.2] [0.9,1.0] [0.8,0.9] 
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Note 

The weak isomorphism between two IVNHGs preserves the weights of vertices. 

Example 3.4  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c} and Y={x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are defined in 

the Tables given below: 

 

H A B 

a ([0.2,0.3], [0.3,0.4], [0.9,1.0]) ([0.5,0.6], [0.2,0.3], [0.7,0.8]) 

b ([0.5,0.6], [0.5,0.6], [0.5,0.6]) ([0.1,0.2], [0.6,0.7], [0.4,0.5]) 

c ([0.8,0.9], [0.8,0.9], [0.3, 0.4]) ([0.5,0.6], [0.9,1.0], [0.8,0.9]) 

K C D 

x ([0.2,0.3], [0.3,0.4], [0.2,0.3]) ([0.2,0.3], [0.1,0.2], [0.8,0.9]) 

y ([0.2,0.3], [0.4,0.5], [0.2,0.3]) ([0.1,0.2], [0.6,0.7], [0.5,0.6]) 

z ([0.5,0.6], [0.8,0.9], [0.9, 1.0]) ([0.9,1.0], [0.9,1.0], [0.1,0.2]) 

 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.2,0.3] [0.8,0.9] [0.9,1.0] 

D [0.1,0.2] [0.9,1.0] [0.8,0.9] 

 

and f : X → Y defined by, f(a)=x, f(b)=y and f(c)=z. Then, by routine calculations, 

f: H → K is a weak isomorphism between H and K. 

Definition 3.5 

A co-weak isomorphism f: H → K between two IVNHGs H = (X, E, R) and K = (Y, 

F, S) is a bijective mapping f : X →  Y which satisfies the condition f is 

homomorphism, such that: 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (29) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (30) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (31) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (32) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (33) 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.8,0.9] [0.9,1.0] 

B [0.1,0.2] [0.9,1.0] [0.9,1.0] 
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𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (34) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Note  

The co-weak isomorphism between two IVNHGs preserves the weights of 

edges. 

Example 3.6  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are defined 

in the Tables given below: 

H A B 

a ([0.2,0.3], [0.3,0.4], [0.9,1.0]) ([0.5,0.6], [0.2,0.3], [0.7,0.8]) 

b ([0.5,0.6], [0.5,0.6], [0.5,0.6]) ([0.1,0.2], [0.6,0.7], [0.4,0.5]) 

c ([0.8,0.9], [0.8,0.9], [0.3, 0.4]) ([0.5,0.6], [0.9,1.0], [0.8,0.9]) 

K C D 

x ([0.3,0.4], [0.2,0.3], [0.2,0.3]) ([0.2,0.3], [0.1,0.2], [0.3,0.4]) 

y ([0.2,0.3], [0.4,0.5], [0.2,0.3]) ([0.3,0.4], [0.2,0.3], [0.1,0.2]) 

z ([0.5,0.6], [0.8,0.9], [0.2, 0.3]) ([0.9,1.0], [0.7,0.8], [0.1,0.2]) 

 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.2,0.3] [0.8,0.9] [0.9,1.0] 

D [0.1,0.2] [0.9,1.0] [0.8,0.9] 

 

and f : X → Y defined by, f(a)=x , f(b)=y and f(c)=z. Then, by routine calculations, 

f : H → K is a co-weak isomorphism between H and K. 

Definition 3.7  

An isomorphism f: H → K between two IVNHGs H = (X, E, R) and K = (Y, F, S) is 

a bijective mapping f : X → Y which satisfies the conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (35) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (36) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (37) 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.8,0.9] [0.9,1.0] 

B [0.1,0.2] [0.9,1.0] [0.8,0.9] 
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min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (38) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (39) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (40) 

   for all x ∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (41) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (42) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (43) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (44) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (45) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (46) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Note  

The isomorphism between two IVNHGs preserves the both weights of vertices 

and weights of edges. 

Example 3.8  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X 

= {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, 

H A B 

a ([0.2,0.3], [0.3,0.4], [0.7,0.8]) ([0.5,0.6], [0.2,0.3], [0.7,0.8]) 

b ([0.5,0.6], [0.5,0.6], [0.5,0.6]) ([0.1,0.2], [0.6,0.7], [0.4,0.5]) 

c ([0.8,0.9], [0.8,0.9], [0.3, 0.4]) ([0.5,0.6], [0.9,1.0], [0.8,0.9]) 

K C D 

x ([0.2,0.3], [0.3,0.4], [0.2,0.3]) ([0.2,0.3], [0.1,0.2], [0.8,0.9]) 

y ([0.2,0.3], [0.4,0.5], [0.2,0.3]) ([0.1,0.2], [0.6,0.7], [0.5,0.6]) 

z ([0.5,0.6], [0.8,0.9], [0.7, 0.8]) ([0.9,1.0], [0.9,1.0], [0.1,0.2]) 

 

 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.2,0.3] [0.8,0.9] [0.9,1.0] 

D [0.0,0.1] [0.9,1.0] [0.8,0.9] 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.8,0.9] [0.9,1.0] 

B [0.0,0.1] [0.9,1.0] [0.8,0.9] 
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and f: X → Y defined by, f(a)=x , f(b)=y and f(c)=z. Then, by routine calculations, 

f: H → K is a isomorphism between H and K. 

Definition 3.9  

Let H = (X, E, R) be a IVNHG; then, the order of H, which is denoted and defined 

by: 

O(H)=

([∑ min 𝑇𝐿𝐸𝑗
(𝑥) , ∑ min 𝑇𝑈𝐸𝑗

(𝑥)] ,  [∑ max 𝐼𝐿𝐸𝑗
(𝑥) , ∑ max 𝐼𝑈𝐸𝑗

(𝑥)], 

[∑ max 𝐹𝐿𝐸𝑗
(𝑥) , ∑ max 𝐹𝑈𝐸𝑗

(𝑥)] )      (47) 

and the size of H, which is denoted and defined by: 

𝑆(𝐻) = ([∑ 𝑅𝑇𝐿(𝐸𝑗), ∑ 𝑅𝑇𝑈(𝐸𝑗)] , [∑ 𝑅𝐼𝐿(𝐸𝑗), ∑ 𝑅𝐼𝐿(𝐸𝑗)], 

 [∑ 𝑅𝐹𝐿(𝐸𝑗), ∑ 𝑅𝐹𝑈(𝐸𝑗)]  )      (48) 

Theorem 3.10 

Let H = (X, E, R) and K = (Y, F, S) be two IVNHGs such that H is isomorphic to K; 

then: 

(1) O(H) = O(K), 

(2) S(H) = S(K). 

Proof. 

Let f : H → K be an isomorphism between two IVNHGs H and K with underlying 

sets X and Y respectively; then, by definition, we have that: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (49) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (50) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (51) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (52) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (53) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (54) 

for all x∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (55) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (56) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (57) 



51 

 

 
Critical Review. Volume XIII, 2016 

M. A. Malik, Ali Hassan, S. Broumi, Assia Bakali, Mohamed Talea, F. Smarandache                    

Isomorphism of interval Valued Neutrosophic Hypergraphs 

 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (58) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (59) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (60) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Consider: 

𝑂𝑇𝐿(𝐻) = ∑ min 𝑇𝐿𝐸𝑗
(𝑥) = ∑ min 𝑇𝐿𝐹𝑗

(𝑓(𝑥)) = 𝑂𝑇𝐿(𝐾) (61) 

𝑂𝑇𝑈(𝐻) = ∑ min 𝑇𝑈𝐸𝑗
(𝑥) = ∑ min 𝑇𝑈𝐹𝑗

(𝑓(𝑥)) = 𝑂𝑇𝑈(𝐾) (62) 

Similarly: 

𝑂𝐼𝐿(𝐻) = 𝑂𝐼𝐿(𝐾)𝑎𝑛𝑑𝑂𝐹𝐿(𝐻) = 𝑂𝐹𝐿(𝐾),    (63) 

𝑂𝐼𝑈(𝐻) = 𝑂𝐼𝑈(𝐾)𝑎𝑛𝑑𝑂𝐹𝑈(𝐻) = 𝑂𝐹𝑈(𝐾).    (64) 

Hence, O(H) = O(K). 

Next, 

𝑆𝑇𝐿(𝐻) = ∑ 𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) 

= ∑ 𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) = 𝑆𝑇𝐿(𝐾),    (65) 

and similarly: 

𝑆𝑇𝑈(𝐻) = ∑ 𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) 

= ∑ 𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) = 𝑆𝑇𝑈(𝐾)   (66) 

Similarly, 

𝑆𝐼𝐿(𝐻) = 𝑆𝐼𝐿(𝐾), 𝑆𝐹𝐿(𝐻) = 𝑆𝐹𝐿(𝐾),     (67) 

𝑆𝐼𝑈(𝐻) = 𝑆𝐼𝑈(𝐾), 𝑆𝐹𝑈(𝐻) = 𝑆𝐹𝑈(𝐾),     (68) 

hence 𝑆(𝐻) = 𝑆(𝐾). 

Remark 3.11  

The converse of the above theorem needs not to be true in general. 

Example 3.12  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below: 
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S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.16,0.26] [0.5,0.6] [0.33,0.43] 

D [0.2,0.3] [0.5,0.6] [0.33,0.43] 

 

where f is defined by f(a)=w, f(b)=x, f(c)=y, f(d)=z. 

Here, O(H) = ([1.06, 1.46], [2.0, 2.4], [1.32, 1.72]) = O(K) and S(H) = ([0.36, 0.56], 

[1.0, 1.2], [0.66, 0.86]) = S(K). 

By routine calculations, H is not isomorphism to K. 

Corollary 3.13  

The weak isomorphism between any two IVNHGs H and K preserves the orders. 

Remark 3.14  

The converse of the above corollary need not to be true in general. 

Example 3.15  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, where f is defined by f(a)=w, f(b)=x, f(c)=y, 

f(d)=z. 

Here O(H)= ([1.0,1.4], [2.0,2.4], [1.2,1.6]) = O(K). 

By routine calculations, H is not weak isomorphism to K. 

 

H A B 

a ([0.2, 0.3],[0.5,0.6],[0.33,0.43]) ([0.16,0.26],[0.5,0.6],[0.33,0.43]) 

b ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.2,0.3],[0.5,0.6],[0.33,0.43]) 

c ([0.33,0.43],[0.5,0.6],[0.33,0.43]) ([0.2,0.3], [0.5,0.6],[0.33,0.43]) 

d ([0.5,0.6],[0.5,0.6],[0.33,0.43]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 

K C D 

w ([0.2,0.3],[0.5,0.6],[0.33,0.43]) ([0.16,0.26],[0.5,0.6],[0.33,0.43]) 

x ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.2,0.3],[0.5,0.6],[0.33,0.43]) 

y ([0.33,0.43],[0.5,0.6],[0.33,0.43]) ([0.2,0.3], [0.5,0.6],[0.33,0.43]) 

z ([0.5,0.6],[0.5,0.6],[0.33,0.43]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.5,0.6] [0.33,0.43] 

B [0.16,0.26] [0.5,0.6] [0.33,0.43] 
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Corollary 3.16  

The co-weak isomorphism between any two IVNHGs H and K preserves the 

sizes. 

Remark 3.17  

The converse of the above corollary need not to be true in general. 

Example 3.18  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 

defined in the Tables given below, where f is defined by, f(a)=w, f(b)=x, f(c)=y, 

f(d)=z. Here S(H)= ([0.34,0.54], [1.0,1.2], [0.6,0.8]) = S(K), but, by routine 

calculations, H is not co-weak isomorphism to K. 

 

 

H A B 

a ([0.2,0.3],[0.5,0.6],[0.3,0.4]) ([0.14,0.24],[0.5,0.6],[0.3,0.4]) 

b ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.2,0.3],[0.5,0.6],[0.3,0.4]) 

c ([0.33,0.43],[0.5,0.6],[0.3,0.4]) ([0.16,0.26], [0.5,0.6], [0.3,0.4]) 

d ([0.5,0.6], [0.5,0.6], [0.3,0.4]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 

K C D 

w ([0.14,0.24],[0.5,0.6],[0.3,0.4]) ([0.16,0.26],[0.5,0.6],[0.3,0.4]) 

x ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.16,0.26],[0.5,0.6],[0.3,0.4]) 

y ([0.33,0.43],[0.5,0.6],[0.33,0.43]) ([0.2,0.3], [0.5,0.6],[0.3,0.4]) 

z ([0.5,0.6],[0.5,0.6],[0.3,0.4]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 

H A B 

a ([0.2,0.3],[0.5,0.6],[0.3,0.4]) ([0.14,0.24],[0.5,0.6],[0.3,0.4]) 

b ([0.0,0.0], [0.0,0.0], [0.0,0.0]) ([0.16,0.26],[0.5,0.6],[0.3,0.4]) 

c ([0.3,0.4],[0.5,0.6],[0.3,0.4]) ([0.2,0.3], [0.5,0.6], [0.3,0.4]) 

d ([0.5,0.6], [0.5,0.6], [0.3,0.4]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 

K C D 

w ([0.0,0.0],[0.0,0.0],[0.0,0.0]) ([0.2,0.3],[0.5,0.6],[0.3,0.4]) 

x ([0.14,0.24], [0.5,0.6], [0.3,0.4]) ([0.25,0.35],[0.5,0.6],[0.3,0.4]) 

y ([0.5,0.6], [0.5,0.6], [0.3,0.4]) ([0.2,0.3], [0.5,0.6],[0.3,0.4]) 

z ([0.3,0.4], [0.5,0.6], [0.3,0.4]) ([0.0,0.0], [0.0,0.0], [0.0,0.0]) 
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S 𝑆𝑇 𝑆𝐼 𝑆𝐹 

C [0.14,0.24] [0.5,0.6] [0.3,0.4] 

D [0.2,0.3] [0.5,0.6] [0.3,0.4] 

 

Definition 3.19  

Let H = (X, E, R) be a IVNHG; then, the degree of vertex 𝑥𝑖 is denoted and defined 

by: 

deg(𝑥𝑖) = ([𝑑𝑒𝑔𝑇𝐿(𝑥𝑖), 𝑑𝑒𝑔𝑇𝑈(𝑥𝑖)], [𝑑𝑒𝑔𝐼𝐿(𝑥𝑖), 𝑑𝑒𝑔𝐼𝑈(𝑥𝑖)],  

[𝑑𝑒𝑔𝐹𝐿(𝑥𝑖), 𝑑𝑒𝑔𝐹𝑈(𝑥𝑖)]),      (69) 

where                   

𝑑𝑒𝑔𝑇𝐿(𝑥𝑖) = ∑ 𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) ,    (70) 

𝑑𝑒𝑔𝐼𝐿(𝑥𝑖) = ∑ 𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟),       (71) 

𝑑𝑒𝑔𝐹𝐿(𝑥𝑖) = ∑ 𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟),     (72) 

𝑑𝑒𝑔𝑇𝑈(𝑥𝑖) = ∑ 𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) ,    (73) 

𝑑𝑒𝑔𝐼𝑈(𝑥𝑖) = ∑ 𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟),       (74) 

𝑑𝑒𝑔𝐹𝑈(𝑥𝑖) = ∑ 𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟),     (75) 

for 𝑥𝑖  ≠  𝑥𝑟 . 

Theorem 3.20  

If H and K are two isomorphic IVNHGs, then the degree of their vertices are 

preserved. 

Proof.  

Let f: H → K be an isomorphism between two IVNHGs H and K with underlying 

sets X and Y, respectively. Then, by definition, we have: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (75) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (77) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (78) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (79) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (80) 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 

A [0.2,0.3] [0.5,0.6] [0.3,0.4] 

B [0.14,0.24] [0.5,0.6] [0.3,0.4] 
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max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (81) 

   for all x ∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥1), … , 𝑓(𝑥𝑟)),   (82) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (83) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (84) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (85) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (86) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (87) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Consider, 

𝑑𝑒𝑔𝑇𝐿(𝑥𝑖) = ∑ 𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟) =

∑ 𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) = 𝑑𝑒𝑔𝑇𝐿(𝑓(𝑥𝑖))  (88) 

and similarly: 

𝑑𝑒𝑔𝑇𝑈(𝑥𝑖) = 𝑑𝑒𝑔𝑇𝑈(𝑓(𝑥𝑖)),      (89) 

𝑑𝑒𝑔𝐼𝐿(𝑥𝑖) = 𝑑𝑒𝑔𝐼𝐿(𝑓(𝑥𝑖)), 𝑑𝑒𝑔𝐹𝐿(𝑥𝑖) = 𝑑𝑒𝑔𝐹𝐿(𝑓(𝑥𝑖)),  (90) 

𝑑𝑒𝑔𝐼𝑈(𝑥𝑖) = 𝑑𝑒𝑔𝐼𝑈(𝑓(𝑥𝑖)), 𝑑𝑒𝑔𝐹𝑈(𝑥𝑖) = 𝑑𝑒𝑔𝐹𝑈(𝑓(𝑥𝑖)).  (91) 

Hence,  

𝑑𝑒𝑔(𝑥𝑖) = 𝑑𝑒𝑔(𝑓(𝑥𝑖)).       (92) 

Remark 3.21 

The converse of the above theorem may not be true in general. 

Example 3.22  

Consider the two IVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets X = 

{a, b} and Y = {x, y}, where E = {A, B}, F = {C, D}, R and S, which are defined in 

the Tables given below, where f is defined by f(a)=x, f(b)=y, where deg(a) = 
( [0.8,1.0], [1.0,1.2], [0.6,0.8]) = deg(x) and deg(b) = ([0.45,0.65], [1.0,1.2], 
[0.6,0.8]) = deg(y). But H is not isomorphic to K, i.e. H is neither weak 

isomorphic nor co-weak isomorphic K. 

 

 

H A B 
a ([0.5,0.6], [0.5,0.6], [0.3,0.4]) ([0.3,0.4],[0.5,0.6],[0.3,0.4]) 
b ([0.25,0.35], [0.5,0.6], [0.3,0.4]) ([0.2,0.3], [0.5,0.6], [0.3, 0.4]) 
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K C D 
x ([0.3,0.4], [0.5,0.6], [0.3,0.4]) ([0.5,0.6],[0.5,0.6],[0.3,0.4]) 
y ([0.2,0.3], [0.5,0.6], [0.3,0.4]) ([0.25,0.34], [0.5,0.6], [0.3,0.4]) 

 

 

 

 

 

 

Theorem 3.23  

The isomorphism between IVNHGs is an equivalence relation. 

Proof. 

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be IVNHGs with underlying sets 

X, Y and Z, respectively: 

Reflexive.  

Consider the map (identity map) f: X → X, defined as follows: f(x) = x for all x ∈

 X, since the identity map is always bijective and satisfies the conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐸𝑗

(𝑓(𝑥))],     (93) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐸𝑗

(𝑓(𝑥))],     (94) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐸𝑗

(𝑓(𝑥))],     (95) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐸𝑗

(𝑓(𝑥))],     (96) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐸𝑗

(𝑓(𝑥))],     (97) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐸𝑗

(𝑓(𝑥))],     (98) 

for all x∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (99) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑅𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (100) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (101) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (102) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑅𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (103) 

R 𝑅𝑇 𝑅𝐼 𝑅𝐹 
A [0.25,0.35] [0.5,0.6] [0.3,0.4] 
B [0.2,0.3] [0.5,0.6] [0.3,0.4] 

S 𝑆𝑇 𝑆𝐼 𝑆𝐹 
C [0.2,0.3] [0.5,0.6] [0.3,0.4] 
D [0.25,0.35] [0.5,0.6] [0.3,0.4] 
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𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (104) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Hence f  is an isomorphism of IVNHG H to itself. 

Symmetric.  

Let f: X → Y be an isomorphism of H and K, then f is bijective mapping defined 

as: f(x) = y for all x ∈ X. Then, by definition: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (105) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (106) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (107) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (108) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (109) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (110) 

   for all x∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (111) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (112) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (113) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (114) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (115) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (116) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. Since f is bijective, then we have  𝑓−1(𝑦) =

𝑥 for all 𝑦 ∈ 𝑌. Thus, we get: 

min[𝑇𝐿𝐸𝑗
(𝑓−1(𝑦))]  = min[𝑇𝐿𝐹𝑗

(𝑦)],     (117) 

max[𝐼𝐿𝐸𝑗
(𝑓−1(𝑦))]   = max[𝐼𝐿𝐹𝑗

(𝑦)],     (118) 

max[𝐹𝐿𝐸𝑗
(𝑓−1(𝑦))]  = max[𝐹𝐿𝐹𝑗

(𝑦)],    (119) 

min[𝑇𝑈𝐸𝑗
(𝑓−1(𝑦))]  = min[𝑇𝑈𝐹𝑗

(𝑦)],     (120) 

max[𝐼𝑈𝐸𝑗
(𝑓−1(𝑦))]   = max[𝐼𝑈𝐹𝑗

(𝑦)],    (121) 

max[𝐹𝑈𝐸𝑗
(𝑓−1(𝑦))]  = max[𝐹𝑈𝐹𝑗

(𝑦)],    (122) 

for all x∈ 𝑋.  



58 

 

 

M. A. Malik, Ali Hassan, S. Broumi, Assia Bakali, Mohamed Talea, F. Smarandache                    

Isomorphism of Interval Valued Neutrosophic Hypergraphs 

 

Critical Review. Volume XIII, 2016 

𝑅𝑇𝐿 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝑇𝐿(𝑦1 , 𝑦2, … , 𝑦𝑟),  (123) 

𝑅𝐼𝐿 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝐼𝐿(𝑦1 , 𝑦2, … , 𝑦𝑟),  (124) 

𝑅𝐹𝐿 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝐹𝐿(𝑦1 , 𝑦2, … , 𝑦𝑟),  (125) 

𝑅𝑇𝑈 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝑇𝑈(𝑦1 , 𝑦2, … , 𝑦𝑟),  (126) 

𝑅𝐼𝑈 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝐼𝑈(𝑦1 , 𝑦2, … , 𝑦𝑟),  (127) 

𝑅𝐹𝑈 (𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝐹𝑈(𝑦1 , 𝑦2, … , 𝑦𝑟),  (128) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y.  

Hence we have a bijective map 𝑓−1 ∶ 𝑌 → 𝑋, which is an isomorphism from K 

to H. 

Transitive.  

Let   𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be two isomorphism of IVNHGs of H onto K and 

K onto M respectively. Then 𝑔𝑜𝑓 is bijective mapping from X to Z, where 𝑔𝑜𝑓 

is defined as (𝑔𝑜𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. 

Since f is isomorphism, then, by definition, 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋 , which 

satisfies the  conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (129) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (130) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (131) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (132) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (133) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (134) 

   for all x∈ 𝑋. 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (135) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (136) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (137) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (138) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   = 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (139) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (140) 
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for all {𝑥1, 𝑥2, … , 𝑥𝑟 } subsets of X. Since 𝑔 ∶ 𝑌 → 𝑍  is isomorphism, then by 

definition 𝑔(𝑦) = 𝑧 for all 𝑦 ∈ 𝑌 satisfy the conditions: 

min[𝑇𝐿𝐹𝑗
(𝑦)]  = min [𝑇𝐿𝐺𝑗

(𝑔(𝑦))],     (141) 

max[𝐼𝐿𝐹𝑗
(𝑦)]   = max[𝐼𝐿𝐺𝑗

(𝑔(𝑦))],     (142) 

max[𝐹𝐿𝐹𝑗
(𝑦)]  = max[𝐹𝐿𝐺𝑗

(𝑔(𝑦))],     (143) 

min[𝑇𝑈𝐹𝑗
(𝑦)]  = min[𝑇𝑈𝐺𝑗

(𝑔(𝑦))],     (144) 

max[𝐼𝑈𝐹𝑗
(𝑦)]   = max[𝐼𝑈𝐺𝑗

(𝑔(𝑦))],     (145) 

max[𝐹𝑈𝐹𝑗
(𝑦)]  = max[𝐹𝑈𝐺𝑗

(𝑔(𝑦))],     (146) 

 for all x∈ 𝑋. 

𝑆𝑇𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)    =  𝑊𝑇𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (147) 

𝑆𝐼𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)   = 𝑊𝐼𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (148) 

𝑆𝐹𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)  =  𝑊𝐹𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (149) 

𝑆𝑇𝑈(𝑦1, 𝑦2, … , 𝑦𝑟) = 𝑊𝑇𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (150) 

𝑆𝐼𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)   = 𝑊𝐼𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (151) 

𝑆𝐹𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)  = 𝑊𝐹𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (152) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟} subsets of Y. Thus, from the above equations, we conclude 

that: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  =  min [𝑇𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (153) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   =  max[𝐼𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (154) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  =   max[𝐹𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (155) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  =  min [𝑇𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (156) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   =  max[𝐼𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (157) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  =   max[𝐹𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (158) 

for all x∈ 𝑋. 

𝑅𝑇𝐿(𝑥1, … , 𝑥𝑟) = 𝑊𝑇𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (159) 

𝑅𝐼𝐿(𝑥1, … , 𝑥𝑟) = 𝑊𝐼𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),    (160) 

𝑅𝐹𝐿(𝑥1, … , 𝑥𝑟) = 𝑊𝐹𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (161) 

𝑅𝑇𝑈(𝑥1, … , 𝑥𝑟) = 𝑊𝑇𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (162) 
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𝑅𝐼𝑈(𝑥1, … , 𝑥𝑟) = 𝑊𝐼𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (163) 

𝑅𝐹𝑈(𝑥1, … , 𝑥𝑟) = 𝑊𝐹𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (164) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X.  

Therefore,  𝑔𝑜𝑓 is an isomorphism between H and M. Hence, the isomorphism 

between IVNHGs is an equivalence relation. 

Theorem 3.24  

The weak isomorphism between IVNHGs satisfies the partial order relation. 

Proof.  

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be IVNHGs with underlying sets 

X, Y and Z respectively, 

Reflexive.  

Consider the map (identity map) f: X → X, defined as follows: f(x)=x for all x ∈ X, 

since identity map is always bijective and satisfies the conditions: 

 min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐸𝑗

(𝑓(𝑥))],     (165) 

 max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐸𝑗

(𝑓(𝑥))],     (166) 

 max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐸𝑗

(𝑓(𝑥))],     (167) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐸𝑗

(𝑓(𝑥))],     (168) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐸𝑗

(𝑓(𝑥))],     (169) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐸𝑗

(𝑓(𝑥))],     (170) 

 for all x∈ 𝑋. 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ 𝑅𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (171) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑅𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (172) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑅𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (173) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ 𝑅𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (174) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑅𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (175) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑅𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (176) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Hence f is a weak isomorphism of IVNHG H to itself. 
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Anti-symmetric.  

Let f be a weak isomorphism between H onto K, and g be weak isomorphic 

between K and H, i.e. 𝑓: 𝑋 → 𝑌  is a bijective map defined by: 𝑓(𝑥) =

𝑦 for all 𝑥 ∈ 𝑋 satisfying the conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))],     (177) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (178) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (179) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (180) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (181) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (182) 

for all x∈ 𝑋. 

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   ≤  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (183) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)    ≥ 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (184) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (185) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   ≤  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (186) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)    ≥ 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (187) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (188) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since g is also bijective map 𝑔(𝑦) = 𝑥 for all 𝑦 ∈ 𝑌 satisfying the conditions: 

min[𝑇𝐿𝐹𝑗
(𝑦)]  = min[𝑇𝐿𝐸𝑗

(𝑔(𝑦))],     (189) 

max[𝐼𝐿𝐹𝑗
(𝑦)]   = max[𝐼𝐿𝐸𝑗

(𝑔(𝑦))],     (190) 

max[𝐹𝐿𝐹𝑗
(𝑦)]  = max[𝐹𝐿𝐸𝑗

(𝑔(𝑦))],     (191) 

min[𝑇𝑈𝐹𝑗
(𝑦)]  = min[𝑇𝑈𝐸𝑗

(𝑔(𝑦))],     (192) 

max[𝐼𝑈𝐹𝑗
(𝑦)]   = max[𝐼𝑈𝐸𝑗

(𝑔(𝑦))],     (193) 

max[𝐹𝑈𝐹𝑗
(𝑦)]  = max[𝐹𝑈𝐸𝑗

(𝑔(𝑦))],     (194) 

for all y∈ 𝑌. 

𝑅𝑇𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤  𝑆𝑇𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (195) 

𝑅𝐼𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥ 𝑆𝐼𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (196) 

𝑅𝐹𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥  𝑆𝐹𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (197) 
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𝑅𝑇𝑈(𝑦, 𝑦2, … , 𝑦𝑟)   ≤  𝑆𝑇𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (198) 

𝑅𝐼𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥ 𝑆𝐼𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (199) 

𝑅𝐹𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥  𝑆𝐹𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (200) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 

The above inequalities hold for finite sets X and Y only whenever H and K have 

the same number of edges, and the corresponding edge have same weights, 

hence H is identical to K. 

Transitive.  

Let   𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be two weak isomorphism of IVNHGs of H onto K 

and K onto M, respectively. Then 𝑔𝑜𝑓 is bijective mapping from X to Z, where 

𝑔𝑜𝑓 is defined as (𝑔𝑜𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋.  

Since f is a weak isomorphism, then by definition 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋 which 

satisfies the conditions: 

min[𝑇𝐿𝐸𝑗
(𝑥)]  = min[𝑇𝐿𝐹𝑗

(𝑓(𝑥))] ,     (201) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   = max[𝐼𝐿𝐹𝑗

(𝑓(𝑥))],     (202) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  = max[𝐹𝐿𝐹𝑗

(𝑓(𝑥))],     (203) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  = min[𝑇𝑈𝐹𝑗

(𝑓(𝑥))],     (204) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   = max[𝐼𝑈𝐹𝑗

(𝑓(𝑥))],     (205) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  = max[𝐹𝑈𝐹𝑗

(𝑓(𝑥))],     (206) 

   for all x ∈ 𝑋.  

𝑅𝑇𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤  𝑆𝑇𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (207) 

𝑅𝐼𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐼𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (208) 

𝑅𝐹𝐿(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑆𝐹𝐿(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (209) 

𝑅𝑇𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤  𝑆𝑇𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (210) 

𝑅𝐼𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥ 𝑆𝐼𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (211) 

𝑅𝐹𝑈(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑆𝐹𝑈(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (212) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Since 𝑔: 𝑌 → 𝑍 is a weak isomorphism, then by definition 𝑔(𝑦) = 𝑧 for all 𝑦 ∈

𝑌 which satisfies the conditions: 

min[𝑇𝐿𝐹𝑗
(𝑦)]  = min[𝑇𝐿𝐺𝑗

(𝑔(𝑦))],     (213) 

max[𝐼𝐿𝐹𝑗
(𝑦)]   = max[𝐼𝐿𝐺𝑗

(𝑔(𝑦))],     (214) 
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max[𝐹𝐿𝐹𝑗
(𝑦)]  = max[𝐹𝐿𝐺(𝑔(𝑦))],     (215) 

min[𝑇𝑈𝐹𝑗
(𝑦)]  = min[𝑇𝑈𝐺𝑗

(𝑔(𝑦))],     (216) 

max[𝐼𝑈𝐹𝑗
(𝑦)]   = max[𝐼𝑈𝐺𝑗

(𝑔(𝑦))],     (217) 

max[𝐹𝑈𝐹𝑗
(𝑦)]  = max[𝐹𝑈𝐺(𝑔(𝑦))],     (218) 

   for all x∈ 𝑋. 

𝑆𝑇𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤ 𝑊𝑇𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (219) 

𝑆𝐼𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥ 𝑊𝐼𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (210) 

𝑆𝐹𝐿(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥  𝑊𝐹𝐿(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (211) 

𝑆𝑇𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤ 𝑊𝑇𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (212) 

𝑆𝐼𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥ 𝑊𝐼𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (213) 

𝑆𝐹𝑈(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥  𝑊𝐹𝑈(𝑔(𝑦1), 𝑔(𝑦2), … , 𝑔(𝑦𝑟)),   (214) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟} subsets of Y. 

Thus, from the above equations, we conclude that, 

min[𝑇𝐿𝐸𝑗
(𝑥)]  =  min[𝑇𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (215) 

max[𝐼𝐿𝐸𝑗
(𝑥)]   =  max[𝐼𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (216) 

max[𝐹𝐿𝐸𝑗
(𝑥)]  =   max[𝐹𝐿𝐺𝑗

(𝑔(𝑓(𝑥)))],    (217) 

min[𝑇𝑈𝐸𝑗
(𝑥)]  =  min[𝑇𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (219) 

max[𝐼𝑈𝐸𝑗
(𝑥)]   =  max[𝐼𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (220) 

max[𝐹𝑈𝐸𝑗
(𝑥)]  =   max[𝐹𝑈𝐺𝑗

(𝑔(𝑓(𝑥)))],    (221) 

   for all x∈ 𝑋. 

𝑅𝑇𝐿(𝑥1, … , 𝑥𝑟)   ≤ 𝑊𝑇𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (222) 

𝑅𝐼𝐿(𝑥1, … , 𝑥𝑟)     ≥ 𝑊𝐼𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (223) 

𝑅𝐹𝐿(𝑥1, … , 𝑥𝑟)   ≥   𝑊𝐹𝐿(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (224) 

𝑅𝑇𝑈(𝑥1, … , 𝑥𝑟)   ≤ 𝑊𝑇𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (225) 

𝑅𝐼𝑈(𝑥1, … , 𝑥𝑟)     ≥ 𝑊𝐼𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (226) 

𝑅𝐹𝑈(𝑥1, … , 𝑥𝑟)   ≥   𝑊𝐹𝑈(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (227) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X.  

Therefore, 𝑔𝑜𝑓  is a weak isomorphism between H and M. Hence, the weak 

isomorphism between IVNHGs is a partial order relation. 
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4 Conclusion 

The concepts of interval valued neutrosophic hypergraphs can be applied in 

various areas of engineering and computer science. In this paper, the 

isomorphism between IVNHGs is proved to be an equivalence relation and the 

weak isomorphism is proved to be a partial order relation. Similarly, it can be 

proved that the co-weak isomorphism in IVNHGs is a partial order relation. 
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Abstract  

The interval valued neutrosophic graphs are generalizations of the fuzzy graphs, 

interval fuzzy graphs, interval valued intuitionstic fuzzy graphs, and single valued 

neutrosophic graphs. Previously, several results have been proved on the isolated 

graphs and the complete graphs. In this paper, a necessary and sufficient condition 

for an interval valued neutrosophic graph to be an isolated interval valued 

neutrosophic graph is proved. 

Keyword  
interval valued neutrosophic graphs, complete interval valued neutrosophic graphs, 

isolated interval valued neutrosophic graphs. 

1 Introduction  

To express indeterminate and inconsistent information which exists in real 

world, Smarandache [9] originally proposed the concept of the neutrosophic 

set from a philosophical point of view. The concept of the neutrosophic set 

(NS) is a generalization of the theories of fuzzy sets [14], intuitionistic fuzzy 

sets [15], interval valued fuzzy set [12] and interval-valued intuitionistic fuzzy 

sets [14].  

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity-membership function 

(f) independently, which are within the real standard or nonstandard unit 

interval ]−0, 1+[.  
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Further on, Wang et al. [10] introduced the concept of a single-valued 

neutrosophic sets (SVNS), a subclass of the neutrosophic sets. The same 

authors [11] introduced the interval valued neutrosophic sets (IVNS), as a 

generalization of the single valued neutrosophic sets, in which three 

membership functions are independent and their value belong to the unit 

interval [0, 1]. Some more work on single valued neutrosophic sets, interval 

valued neutrosophic sets, and their applications, may be found in [1, 5, 7,8, 29, 

30, 31, 37, 38]. 

Graph theory has become a major branch of applied mathematics, and it is 

generally regarded as a branch of combinatorics. Graph is a widely-used tool 

for solving combinatorial problems in different areas, such as geometry, 

algebra, number theory, topology, optimization and computer science. Most 

important thing which is to be noted is that, when we have uncertainty 

regarding either the set of vertices, or edges, or both, the model becomes a 

fuzzy graph.  

In the literature, many extensions of fuzzy graphs have been deeply studied by 

several researchers, such as intuitionistic fuzzy graphs, interval valued fuzzy 

graphs, interval valued intuitionistic fuzzy graphs [2, 3, 16, 17, 18, 19, 20, 21, 

22, 34].  

But, when the relations between nodes (or vertices) in problems are 

indeterminate and inconsistent, the fuzzy graphs and their extensions fail. To 

overcome this issue Smarandache [5, 6, 7, 37] have defined four main 

categories of neutrosophic graphs: two are based on literal indeterminacy (I), 

(the I-edge neutrosophic graph and the I-vertex neutrosophic graph, [6, 36]), 

and the two others graphs are based on (t, i, f) components (the (t, i, f)-edge 

neutrosophic graph and the (t, i, f)-vertex neutrosophic graph, not developed 

yet).  

Later, Broumi et al. [23] presented the concept of single valued neutrosophic 

graphs by combining the single valued neutrosophic set theory and the graph 

theory, and defined different types of single valued neutrosophic graphs 

(SVNG) including the strong single valued neutrosophic graph, the constant 

single valued neutrosophic graph, the complete single valued neutrosophic 

graph, and investigated some of their properties with proofs and suitable 

illustrations.  

Concepts like size, order, degree, total degree, neighborhood degree and 

closed neighborhood degree of vertex in a single valued neutrosophic graph 

are introduced, along with theoretical analysis and examples, by Broumi al. in 

[24]. In addition, Broumi et al. [25] introduced the concept of isolated single 

valued neutrosophic graphs. Using the concepts of bipolar neutrosophic sets, 

Broumi et al. [32] also introduced the concept of bipolar single neutrosophic 

graph, as the generalization of the bipolar fuzzy graphs, N-graphs, 
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 intuitionistic fuzzy graph, single valued neutrosophic graphs and bipolar 

intuitionistic fuzzy graphs. Same authors [33] proposed different types of 

bipolar single valued neutrosophic graphs, such as bipolar single valued 

neutrosophic graphs, complete bipolar single valued neutrosophic graphs, 

regular bipolar single valued neutrosophic graphs, studying some of their 

related properties. Moreover, in [26, 27, 28], the authors introduced the 

concept of interval valued neutrosophic graph as a generalization of fuzzy 

graph, intuitionistic fuzzy graph and single valued neutrosophic graph, and 

discussed some of their properties with examples. 

The aim of this paper is to prove a necessary and sufficient condition for an 

interval valued neutrosophic graph to be an isolated interval valued 

neutrosophic graph.  

2 Preliminaries 

In this section, we mainly recall some notions related to neutrosophic sets, 

single valued neutrosophic sets, fuzzy graph, intuitionistic fuzzy graph, single 

valued neutrosophic graphs and interval valued neutrosophic graph, relevant 

to the present work. See especially [2, 9, 10, 22, 23, 26] for further details and 

background. 

Definition 2.1 [9] 

Let X  be a space of points (objects) with generic elements in X denoted by x;  

then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), 

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[  define respectively 

the a truth-membership function, an indeterminacy-membership function, 

and a falsity-membership function of the element x ∈ X to the set A with the 

condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.                  (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets 

of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang et al. [10] 

introduced the concept of a SVNS, which is an instance of a NS, and can be used 

in real scientific and engineering applications. 

Definition 2.2 [10] 

Let X  be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by the truth-

membership function TA(x) , an indeterminacy-membership function IA(x) , 
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and a falsity-membership function FA(x). For each point x in X,  TA(x), IA(x), 

FA(x) ∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}                  (2) 

Definition 2.3 [2] 

A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a non-

empty set V and  μ  is a symmetric fuzzy relation on σ, i.e.  σ : V → [ 0,1] and μ: 

V x V → [0,1] such that  μ(uv) ≤ σ(u) ⋀ σ(v), for all u, v ∈ V, where uv denotes 

the edge between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and 

σ(v). σ is called the fuzzy vertex set of V and μ is called the fuzzy edge set of E. 

 

 

 

 

 

 

 

 

 
 

Figure 1. Fuzzy Graph. 

Definition 2.4 [2] 

The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ) if τ(u) ≤ σ(u) 
for all u ∈ V and ρ(u, v) ≤  μ(u, v)  for all u, v ∈ V. 

Definition 2.5 [22] 

An intuitionistic fuzzy graph is of the form G = (V, E), where: 

i. V={v1, v2,…., vn} such that 𝜇1: V→ [0,1] and 𝛾1: V → [0,1] denote the 
degree of membership and nonmembership of the element vi  ∈  V, 
respectively, and 0 ≤ 𝜇1(vi) + 𝛾1(vi)) ≤ 1 for every vi ∈ V, (i = 1, 2, ..., 
n); 
 

ii. E   ⊆  V x V where  𝜇2: VxV→[0,1] and  𝛾2: VxV→ [0,1] are such that 
𝜇2(vi, vj) ≤ min [𝜇1(vi), 𝜇1(vj)] and 𝛾2(vi, vj) ≥ max [𝛾1(vi), 𝛾1(vj)] and 
0 ≤ 𝜇2(vi, vj) + 𝛾2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, ( i, j = 1, 2, ..., n). 
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Figure 2. Intuitionistic Fuzzy Graph. 

Definition 2.5 [23] 

Let A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵) be two single valued neutrosophic sets on 
a set X. If A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set X, then 
A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵) 
if 

TB(x, y) ≤ min(TA(x), TA(y)),      (3) 

IB(x, y) ≥ max(IA(x), IA(y)),      (4) 

FB(x, y) ≥ max(FAx), FA(y)),      (5) 

for all x, y ∈ X.  
A single valued neutrosophic relation A on X  is called symmetric if 𝑇𝐴(x, y) = 𝑇𝐴(y, 
x), 𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) and 𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x) 
and 𝐹𝐵(x, y) = 𝐹𝐵(y, x), for all x, y ∈ X. 

Definition 2.6 [23] 

A single valued neutrosophic graph (SVN-graph) with underlying set V is defined 
to be a pair G = (A, B), where: 
1. The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of 
truth-membership, degree of indeterminacy-membership and falsity-membership 
of the element 𝑣𝑖 ∈ V, respectively, and: 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3      (6) 

for all  𝑣𝑖 ∈ V (i = 1, 2, …,n). 
2. The functions   𝑇𝐵: E ⊆ V x V →[0, 1],  𝐼𝐵:E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x 
V →[0, 1] are defined by: 

𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)],     (7) 
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𝐼𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)],     (8) 

𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],     (9) 

denoting  the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖, 𝑣𝑗) ∈ E respectively, where: 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3  for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, 
j = 1, 2,…, n)        (10) 

We have A - the single valued neutrosophic vertex set of V, and B - the single 
valued neutrosophic edge set of E, respectively. Note that B is a symmetric single 
valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an element of E. 
Thus, G = (A, B) is a single valued neutrosophic graph of G∗= (V, E) if: 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)],     (11) 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)],     (12) 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],     (13) 

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

 

 

 

 

 

 

                                     

 

Figure 3. Single valued neutrosophic graph. 

Definition 2.7 [23] 

A single valued neutrosophic graph G= (A, B) is called complete if: 

TB(vi, vj) = min [TA(vi),  TA(vj)]     (14) 

 IB(vi, vj) = max [IA(vi),  IA(vj)]     (15) 

 FB(vi, vj) = max [FA(vi), FA(vj)]     (16) 

 for all vi, vj ∈ V. 
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Definition 2.8 [23] 

The complement of a single valued neutrosophic graph G (A, B) on  G∗  is a 

single valued neutrosophic graph G̅ on G∗, where: 

1. A̅ =A.         (17) 

2. TA
̅̅ ̅(vi)= TA(vi),  IA̅(vi)= IA(vi),  FA

̅̅ ̅(vi) = FA(vi),   (18) 

for all vj ∈ V. 

3. TB
̅̅ ̅(vi, vj)= min [TA(vi), TA(vj)] −  TB(vi, vj),   (19) 

IB̅(vi, vj)= max [IA(vi), IA(vj)]   − IB(vi, vj),    (20) 

FB
̅̅ ̅(vi, vj)= max [FA(vi), FA(vj)]   − FB(vi, vj),     (21) 

for all (vi, vj) ∈ E. 

Definition 2.9 [26] 

By an interval-valued neutrosophic graph of a graph G∗ = (V, E) we mean a pair 

G = (A,  B), where A = < [TAL, TAU], [IAL, IAU], [FAL, FAU]> is an interval-valued 

neutrosophic set on V and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval 

valued neutrosophic relation on E, satisfying the following condition: 

1. V = { v1 ,  v2  ,…,  vn } such that TAL :V → [0, 1],  TAU :V → [0, 1], IAL :V → [0, 

1], IAU:V→[0, 1] and FAL:V→[0, 1],  FAU:V→[0, 1], denoting the degree of truth-

membership, the degree of  indeterminacy-membership and falsity-member-

ship of the element y ∈ V, respectively,  and: 

0≤ TA(vi) + IA(vi) +FA(vi) ≤3,      (22) 

for all  vi ∈ V (i=1, 2, …,n) 

2. The functions  TBL:V x V →[0, 1],  TBU:V x V →[0, 1],  IBL:V x V →[0, 1], IBU:V x 

V →[0, 1]  and FBL:V x V →[0,1],  FBU:V x V →[0, 1] are such that: 

TBL({vi, vj}) ≤ min [TAL(vi), TAL(vj)],     (23) 

TBU({vi, vj}) ≤ min [TAU(vi), TAU(vj)],       (24) 

IBL({vi, vj}) ≥ max[IBL(vi), IBL(vj)],     (25) 

IBU({vi, vj}) ≥ max[IBU(vi), IBU(vj)],     (26) 

FBL({vi, vj}) ≥ max[FBL(vi), FBL(vj)],     (27) 

FBU({vi, vj}) ≥ max[FBU(vi), FBU(vj)],     (28) 

denoting the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (vi, vj) ∈ E respectively, where: 
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 0≤ TB({vi, vj}) + IB({vi, vj})+ FB({vi, vj}) ≤3,     (29) 

for all  {vi, vj} ∈ E (i, j = 1, 2, …, n).  

We have A - the interval valued neutrosophic vertex set of V, and B - the 

interval valued neutrosophic edge set of E, respectively. Note that B is a 

symmetric interval valued neutrosophic relation on A. We use the notation 

(vi, vj) for an element of E. Thus, G = (A, B) is an interval valued neutrosophic 

graph of G∗= (V, E), if:  

TBL(vi, vj) ≤ min [TAL(vi), TAL(vj)],     (30) 

TBU(vi, vj) ≤ min [TAU(vi), TAU(vj)],       (31) 

IBL(vi, vj) ≥ max [IBL(vi), IBL(vj)],     (32) 

IBU(vi, vj) ≥ max [IBU(vi), IBU(vj)],     (33) 

FBL(vi, vj) ≥ max [FBL(vi), FBL(vj)],     (34) 

FBU(vi, vj) ≥ max [FBU(vi), FBU(vj)],       (35) 

for all  (vi, vj) ∈ E. 

 

 

 

 

 

 

 

Figure 4. Interval valued neutrosophic graph. 

Definition 2.10 [26] 

The complement of a complete interval valued neutrosophic graph G = (A, B) 

of   G∗= (V, E) is a complete interval valued neutrosophic graph G̅= (A̅, B̅) = 

(A, B̅) on G∗= (V, E̅), where: 

1. V̅ =V        (36) 

2. TAL
̅̅ ̅̅̅(vi)= TAL(vi),       (37) 

TAU
̅̅ ̅̅ ̅(vi)= TAU(vi),       (38) 

IAL
̅̅ ̅̅ (vi)= IAL(vi),        (39) 

IAU
̅̅ ̅̅ (vi)= IAU(vi),        (40) 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 



75 

 

 
Critical Review. Volume XIII, 2016 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache  

An Isolated Interval valued neutrosophic graphs 

 

 FAL
̅̅ ̅̅ ̅(vi) = FAL(vi),       (41) 

FAU
̅̅ ̅̅ ̅(vi) = FAU(vi),       (42) 

for all vj ∈ V. 

3. TBL
̅̅ ̅̅̅(vi, vj)= min [TAL(vi), TAL(vj)]  − TBL(vi, vj),   (43) 

 TBU
̅̅ ̅̅ ̅(vi, vj)= min [TAU(vi), TAU(vj)] − TBU(vi, vj),   (44) 

IBL
̅̅ ̅̅ (vi, vj)= max [IAL(vi), IAL(vj)]   − IBL(vi, vj),   (45) 

 IBU
̅̅ ̅̅ (vi, vj)= max [IAU(vi), IAU(vj)]   − IBU(vi, vj),   (46) 

FBL
̅̅ ̅̅̅(vi, vj)= max [FAL(vi), FAL(vj)]   − FBL(vi, vj),   (47) 

 FBU
̅̅ ̅̅ ̅(vi, vj)= max [FAU(vi), FAU(vj)]   − FBU(vi, vj),   (48) 

for all (vi, vj) ∈ E. 

Definition 2.11 [26] 

An interval valued neutrosophic graph G= (A, B) is called complete, if:   

TBL(vi, vj) = min(TAL(vi), TAL(vj)),     (49) 

TBU(vi, vj) = min(TAU(vi), TAU(vj)),     (50) 

 IBL(vi, vj) = max (IA(vi), IA(vj)),      (51) 

IBU(vi, vj) = max (IAU(vi), IAU(vj)),     (52) 

FBL(vi, vj) = max (FA(vi), FA(vj)),     (53) 

FBU(vi, vj) = max (FAU(vi), FAU(vj)),     (54) 

for all vi, vj ∈ V. 

3 Main Result 

Theorem 3.1: 

An interval valued neutrosophic graph G = (A, B) is an isolated interval valued 
neutrosophic graph if and only if its complement is a complete interval valued 
neutrosophic graph. 

Proof 

Let G= (A, B) be a complete interval valued neutrosophic graph. 

Therefore: 
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TBL(vi, vj) = min(TAL(vi),  TAL(vj)),    (55) 

TBU(vi, vj) = min(TAU(vi), TAU(vj)),      (56) 

IBL(vi, vj) = max (IAL(vi), IAL(vj)),     (57) 

IBU(vi, vj) = max (IAU(vi), IAU(vj)),     (58) 

FBL(vi, vj) = max (FAL(vi), FAL(vj)),     (59) 

FBU(vi, vj) = max (FAU(vi), FAU(vj)),     (60) 

for all vi, vj ∈ V. 

Hence in G̅, 

 T̅BL(vi, vj)= min(TAL(vi), TAL(vj)) − TBL(vi, vj)    (61) 

for all i, j, ..., n. 

= min(TAL(vi), TAL(vj)) − min(TAL(vi), TAL(vj))   (62) 

for all i, j, ..., n. 

= 0              (63) 

for all i, j, ..., n. 

T̅BU(vi, vj)= min(TAU(vi), TAU(vj)) − TBU(vi, vj)    (64) 

for all i, j, ..., n. 

= min(TAU(vi), TAU(vj)) − min(TAU(vi), TAU(vj))   (65) 

for all i, j, ..., n. 

= 0              (66) 

for all i, j, ..., n. 

And: 

 IB̅L(vi, vj)= max (IAL(vi), IAL(vj)) − IBL(vi, vj)    (67) 

for all i, j, ..., n. 

= max(IAL(vi), IAL(vj)) − max(IAL(vi), IAL(vj))   (68) 

for all i, j, ..., n. 

= 0             (69) 

 for all i, j, ..., n. 

IB̅U(vi, vj)= max(IAU(vi), IAU(vj)) − IBU(vi, vj)    (70) 

for all i, j, ..., n. 

= max(IAU(vi), IAU(vj)) − max(IAU(vi), IAU(vj))   (71) 
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 for all i, j, ..., n. 

= 0             (72) 

for all i, j, ..., n. 

Also: 

 F̅BL(vi, vj)= max(FAL(vi), FAL(vj)) − FBL(vi, vj)    (73) 

for all i, j, ..., n. 

= max(FAL(vi), FAL(vj)) − max(FAL(vi), FAL(vj))   (74) 

for all i, j, ..., n. 

= 0              (75) 

for all i, j, ..., n. 

F̅BU(vi, vj)= max(FAU(vi), FAU(vj)) − FBU(vi, vj)    (76) 

for all i, j, ..., n. 

= max(FAU(vi), FAU(vj)) − max(FAU(vi), FAU(vj))   (77) 

for all i, j, ..., n. 

= 0              (78) 

for all i, j, ..., n. 

Thus,  

([ T̅BL(vi, vj), T̅BU(vi, vj)],  [ IB̅L(vi, vj), IB̅U(vi, vj)],  [ F̅BL(vi, vj), F̅BU(vi, vj)]) = 

       = ([0, 0], [0, 0], [0, 0]).        (79) 

Hence, G = (𝐴, 𝐵) is an isolated interval valued neutrosophic graph. 

4 Conclusions 

In this paper, we extended the concept of isolated single valued neutrosophic 

graph to an isolated interval valued neutrosophic graph. In future works, we plan 

to study the concept of isolated bipolar single valued neutrosophic graph.  
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Abstract  

In this paper, we introduce the homomorphism, the weak isomorphism, the co-weak 

isomorphism, and the isomorphism of the bipolar single valued neutrosophic hyper-

graphs. The properties of order, size and degree of vertices are discussed. The 

equivalence relation of the isomorphism of the bipolar single valued neutrosophic 

hypergraphs and the weak isomorphism of bipolar single valued neutrosophic 

hypergraphs, together with their partial order relation, is also verified. 

Keywords 
homomorphism, weak-isomorphism, co-weak-isomorphism, isomorphism, bipolar 

single valued neutrosophic hypergraphs. 

1 Introduction 

The neutrosophic set - proposed by Smarandache [8] as a generalization of 

the fuzzy set [14], intuitionistic fuzzy set [12], interval valued fuzzy set [11] 

and interval-valued intuitionistic fuzzy set [13] theories - is a mathematical 

tool created to deal with incomplete, indeterminate and inconsistent 

information in the real world. The characteristics of the neutrosophic set are 

the truth-membership function (t), the indeterminacy-membership function 

(i), and the falsity membership function (f), which take values within the real 

standard or non-standard unit interval ]-0 , 1+[.  
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A subclass of the neutrosophic set, the single-valued neutrosophic set (SVNS), 

was intoduced by Wang et al. [9]. The same authors [10] also introduced a 

generalization of the single valued neutrosophic set, namely the interval 

valued neutrosophic set (IVNS), in which the three membership functions are 

independent, and their values belong to the unit interval [0, 1]. The IVNS is 

more precise and flexible than the single valued neutrosophic set. 

More works on single valued neutrosophic sets, interval valued neutrosophic 

sets and their applications can be found on http://fs.gallup.unm.edu/NSS/.  

In this paper, we extend the isomorphism of the bipolar single valued 

neutrosophic hypergraphs, and introduce some of their relevant properties. 

1 Preliminaries 

Definition 2.1  

A hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} is a family of subsets of X. 

(3) 𝐸𝑗 are non-void for j = 1, 2, 3, ..., m, and ⋃ (𝐸𝑗)𝑗 = 𝑋.  

The set X is called 'set of vertices', and E is denominated as the 'set of edges' (or 
'hyper-edges'). 

Definition 2.2  

A fuzzy hypergraph H = (X, E) is a pair, where X is a finite set and E is a finite 
family of non-trivial fuzzy subsets of X, such that 𝑋 = ∪𝑗 𝑆𝑢𝑝𝑝(𝐸𝑗), 𝑗 =

1, 2, 3, … , 𝑚. 

Remark 2.3  

The collection 𝐸 = {𝐸1, 𝐸2, 𝐸3, … . , 𝐸𝑚} is a collection of edge set of H. 

Definition 2.4  

A fuzzy hypergraph with underlying set X is of the form H = (X, E, R), where 
𝐸 = {𝐸1, 𝐸2, 𝐸3, … , 𝐸𝑚} is the collection of fuzzy subsets of X, that is 𝐸𝑗 ∶ 𝑋 →

[0, 1], j = 1, 2, 3, ..., m, and 𝑅 ∶ 𝐸 → [0 , 1] is the fuzzy relation of the fuzzy 
subsets 𝐸𝑗, such that: 

𝑅(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ min (𝐸𝑗(𝑥1), ..., 𝐸𝑗(𝑥𝑟)),    (1) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
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Definition 2.5  

Let X be a space of points (objects) with generic elements in X denoted by x. A 
single valued neutrosophic set A (SVNS A) is characterized by its truth member-
ship function 𝑇𝐴(x), its indeterminacy membership function 𝐼𝐴(x), and its falsity 
membership function 𝐹𝐴(x). For each point, x ∈ X; 𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x) ∈ [0, 1]. 

Definition 2.6  

A single valued neutrosophic hypergraph is an ordered pair H = (X, E), where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} is a family of SVNSs of X. 

(3)𝐸𝑗 ≠ O = (0, 0, 0) for j= 1, 2, 3, ..., m, and ⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 =  𝑋. 

The set X is called set of vertices and E is the set of SVN-edges (or SVN-hyper-

edges). 

Proposition 2.7 

The single valued neutrosophic hypergraph is the generalization of fuzzy 

hypergraphs and intuitionistic fuzzy hypergraphs. 

Note that a given SVNHGH = (X, E, R), with underlying set X, where E = {𝐸1, 𝐸2 , 

…, 𝐸𝑚}, is the collection of the non-empty family of SVN subsets of X, and R is 

the SVN relation of the SVN subsets 𝐸𝑗 , such that: 

𝑅𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑇𝐸𝑗
(𝑥1)], … , [𝑇𝐸𝑗

(𝑥𝑟)]),   (2) 

𝑅𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐼𝐸𝑗
(𝑥1)], … , [𝐼𝐸𝑗

(𝑥𝑟)]),   (3) 

𝑅𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝐹𝐸𝑗
(𝑥1)], … , [𝐹𝐸𝑗

(𝑥𝑟)]),   (4) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Definition 2.8  

Let X be a space of points (objects) with generic elements in X denoted by x.  

A bipolar single valued neutrosophic set A (BSVNS A) is characterized by the 

positive truth membership function 𝑃𝑇𝐴 (x), the positive indeterminacy 

membership function 𝑃𝐼𝐴(x), the positive falsity membership function 𝑃𝐹𝐴(x), 

the negative truth membership function 𝑁𝑇𝐴(x), the negative indeterminacy 

membership function 𝑁𝐼𝐴(x), and the negative falsity membership function 

𝑁𝐹𝐴(x).  

For each point x ∈X; 𝑃𝑇𝐴(x), 𝑃𝐼𝐴(x),𝑃𝐹𝐴(x) ∈ [0, 1], and 𝑁𝑇𝐴(x), 𝑁𝐼𝐴(x), 𝑁𝐹𝐴(x) 

∈ [-1, 0]. 
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Definition 2.9  

A bipolar single valued neutrosophic hypergraph is an ordered pair H = (X, E), 

where: 

(1) X = {𝑥1, 𝑥2, … , 𝑥𝑛} is a finite set of vertices. 

(2) E = {𝐸1, 𝐸2 , …, 𝐸𝑚} is a family of BSVNSs of X. 

(3) 𝐸𝑗 ≠ O = ([0, 0], [0, 0], [0, 0]) for j = 1, 2, 3, ..., m, and 

⋃ 𝑆𝑢𝑝𝑝(𝐸𝑗)𝑗 = X. 

The set X is called the 'set of vertices' and E is called the 'set of BSVN-edges' 

(or 'IVN-hyper-edges'). Note that a given BSVNHGH = (X, E, R), with 

underlying set X, where E = { 𝐸1, 𝐸2 , …, 𝐸𝑚} is the collection of non-empty 

family of BSVN subsets of X, and R is the BSVN relation of BSVN subsets 𝐸𝑗 

such that: 

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑃𝑇𝐸𝑗
(𝑥1)], … . , [𝑃𝑇𝐸𝑗

(𝑥𝑟)]),  (5) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝑃𝐼𝐸𝑗
(𝑥1)], … . , [𝑃𝐼𝐸𝑗

(𝑥𝑟)]),  (6) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝑃𝐹𝐸𝑗
(𝑥1)], … . , [𝑃𝐹𝐸𝑗

(𝑥𝑟)]),  (7) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ max ([𝑁𝑇𝐸𝑗
(𝑥1)], … . , [𝑁𝑇𝐸𝑗

(𝑥𝑟)]),  (8) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑁𝐼𝐸𝑗
(𝑥1)], … . , [𝑁𝐼𝐸𝑗

(𝑥𝑟)]),  (9) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ min ([𝑁𝐹𝐸𝑗
(𝑥1)], … . , [𝑁𝐹𝐸𝑗

(𝑥𝑟)]),  (10) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Proposition 2.10 

The bipolar single valued neutrosophic hypergraph is the generalization of 

the fuzzy hypergraph, intuitionistic fuzzy hypergraph, bipolar fuzzy hyper-

graph and intuitionistic fuzzy hypergraph. 

Example 2.11 

Consider the BSVNHG H = (X, E, R), with underlying set X = {a, b, c}, where E = 

{A, B}, and R defined in Tables below: 

 
R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.8 0.9 -0.1 -0.4 -0.5 
B 0.1 0.9 0.8 -0.1 -0.5 -0.6 

H A B 
a (0.2, 0.3, 0.9, -0.2, -0.2, -0.3) (0.5, 0.2, 0.7, -0.4, -0.2, -0.3) 
b (0.5, 0.5, 0.5, -0.4, -0.3, -0.3) (0.1, 0.6, 0.4, -0.9, -0.3,-0.4) 
c (0.8, 0.8, 0.3, -0.9, -0.2, -0.3) (0.5, 0.9, 0.8, -0.1, -0.2, -0.3) 
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By routine calculations, H = (X, E, R) is BSVNHG. 

3 Isomorphism of BSVNHGs 

Definition 3.1  

A homomorphism f: H →K between two BSVNHGs H = (X, E, R) and K = (Y, F, S) 
is a mapping f: X → Y which satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]   ≤ min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (11) 

max[𝑃𝐼𝐸𝑗
(𝑥)]    ≥ max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (12) 

max[𝑃𝐹𝐸𝑗
(𝑥)]   ≥ max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (13) 

max[𝑁𝑇𝐸𝑗
(𝑥)]   ≥ max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (14) 

min[𝑁𝐼𝐸𝑗
(𝑥)]    ≤ min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (15) 

min[𝑁𝐹𝐸𝑗
(𝑥)]   ≤ min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (16) 

for all x∈ 𝑋.   

   𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (17) 

   𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≥ 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (18) 

   𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≥  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (19) 

   𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≥  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (20) 

   𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (21) 

    𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≤  𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (22) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Example 3.2  

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, RandS, which are 
defined in Tables given below: 

 

H A B 
a (0.2, 0.3, 0.9,-0.2,-0.2,-0.3) (0.5, 0.2, 0.7,-0.4,-0.2,-0.3) 
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.9,-0.3,-0.4) 
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.3) (0.5, 0.9, 0.8,-0.1,-0.2,-0.3) 

K C D 
x (0.3, 0.2, 0.2,-0.9,-0.2,-0.3) (0.2, 0.1, 0.3,-0.6,-0.1,-0.2) 
y (0.2, 0.4, 0.2,-0.4,-0.2,-0.3) (0.3, 0.2, 0.1,-0.7,-0.2,-0.1) 
z (0.5, 0.8, 0.2,-0.2,-0.1,-0.3) (0.9, 0.7, 0.1,-0.2,-0.1,-0.3) 
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R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.8 0.9 -0.1 -0.4 -0.5 
B 0.1 0.9 0.8 -0.1 -0.5 -0.6 

 
S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.2 0.8 0.3 -0.1 -0.2 -0.3 
D 0.1 0.7 0.3 -0.1 -0.2 -0.3 

 

and f : X → Y defined by: f(a)=x , f(b)=y and f(c)=z. Then, by routine calculations, 
f: H → K is a homomorphism between H and K. 

Definition 3.3   

A weak isomorphism f : H → K  between two BSVNHGs H = (X, E, R) and K = 
(Y, F, S) is a bijective mapping f : X → Y which satisfies f is homomorphism, such 
that: 

min[𝑃𝑇𝐸𝑗
(𝑥)]   ≤ min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (23) 

 max[𝑃𝐼𝐸𝑗
(𝑥)]    ≥ max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (24) 

 max[𝑃𝐹𝐸𝑗
(𝑥)]   ≥ max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (25) 

  max[𝑁𝑇𝐸𝑗
(𝑥)]   ≥ max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (26) 

min[𝑁𝐼𝐸𝑗
(𝑥)]    ≤ min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (27) 

min[𝑁𝐹𝐸𝑗
(𝑥)]   ≤ min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (28) 

for all x∈ 𝑋. 

Note  

The weak isomorphism between two BSVNHGs preserves the weights of vertices. 

Example 3.4 

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 
defined by Tables given below, and f: X → Y defined by: f(a)=x, f(b)=y and f(c)=z. 
Then, by routine calculations, f: H → K is a weak isomorphism between H and K. 

 
H A B 
a (0.2, 0.3, 0.9,-0.2,-0.2,-0.3) (0.5, 0.2, 0.7,-0.4,-0.2,-0.3) 
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.9,-0.3,-0.4) 
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.3) (0.5, 0.9, 0.8,-0.1,-0.2,-0.3) 
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 K C D 
x (0.2, 0.3, 0.2,-0.9,-0.2,-0.3) (0.2, 0.1, 0.8,-0.6,-0.1,-0.4) 
y (0.2, 0.4, 0.2,-0.4,-0.3,-0.3) (0.1, 0.6, 0.5,-0.6,-0.2,-0.3) 
z (0.5, 0.8, 0.9,-0.2,-0.2,-0.3) (0.9, 0.9, 0.1,-0.1,-0.3,-0.3) 

 
R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.8 0.9 -0.1 -0.4 -0.3 
B 0.1 0.9 0.9 -0.1 -0.3 -0.5 

 
S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.2 0.8 0.9 -0.1 -0.3 -0.2 
D 0.1 0.9 0.8 -0.1 -0.3 -0.4 

 

Definition 3.5  

A co-weak isomorphism f: H → K between two BSVNHGs H = (X, E, R) and K = 
(Y, F, S) is a bijective mapping f: X → Y which satisfies f is homomorphism, such 
that: 

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (29) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (30) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (31) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (32) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (33) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (34) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Note  

The co-weak isomorphism between two BSVNHGs preserves the weights of 
edges. 

Example 3.6  

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 
defined in Tables given below, and f : X → Y defined by: f(a)=x , f(b)=y and 
f(c)=z. Then, by routine calculations, f: H → K is a co-weak isomorphism between 
H and K. 

 
H A B 
a (0.2, 0.3, 0.9,-0.4,-0.2,-0.3) (0.5, 0.2, 0.7,-0.1,-0.2,-0.3) 
b (0.5, 0.5, 0.5,-0.4,-0.2,-0.3) (0.1, 0.6, 0.4,-0.4,-0.2,-0.3) 
c (0.8, 0.8, 0.3,-0.1,-0.2,-0.3) (0.5, 0.9, 0.8,-0.4,-0.2,-0.3) 
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K C D 
x (0.3, 0.2, 0.2,-0.9,-0.2,-0.3) (0.2, 0.1, 0.3,-0.4,-0.2,-0.3) 
y (0.2, 0.4, 0.2,-0.4,-0.2,-0.3) (0.3, 0.2,0.1,-0.9,-0.2,-0.3) 
z (0.5, 0.8, 0.2,-0.1,-0.2,-0.3) (0.9, 0.7, 0.1,-0.1,-0.2,-0.3) 

 

R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.8 0.9 -0.1 -0.2 -0.3 
B 0.1 0.9 0.8 -0.1 -0.2 -0.3 

 

S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.2 0.8 0.9 -0.1 -0.2 -0.3 
D 0.1 0.9 0.8 -0.1 -0.2 -0.3 

 

Definition 3.7   

An isomorphism  f : H → K between two BSVNHGs H = (X, E, R) and K = (Y, F, 
S) is a bijective mapping f : X → Y which satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (35) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (36) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (37) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (38) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (39) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (40) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (41) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (42) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (43) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (44) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (45) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (46) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Note  

The isomorphism between two BSVNHGs preserves the both weights of vertices 
and weights of edges. 
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Example 3.8  

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c} and Y = {x, y, z}, where E = {A, B}, F = {C, D}, R and S, which are 
defined by Tables given below: 

H A B 
a (0.2, 0.3, 0.7,-0.2,-0.2,-0.3) (0.5, 0.2, 0.7,-0.6,-0.6,-0.6) 
b (0.5, 0.5, 0.5,-0.4,-0.3,-0.3) (0.1, 0.6, 0.4,-0.1,-0.2,-0.7) 
c (0.8, 0.8, 0.3,-0.9,-0.2,-0.4) (0.5, 0.9, 0.8,-0.7,-0.2,-0.3) 

 

K C D 
x (0.2, 0.3, 0.2,-0.2,-0.2,-0.4) (0.2, 0.1, 0.8,-0.3,-0.2,-0.3) 
y (0.2, 0.4, 0.2,-0.6,-0.2,-0.3) (0.1, 0.6, 0.5,-0.1,-0.2,-0.7) 
z (0.5, 0.8, 0.7,-0.4,-0.3,-0.3) (0.9, 0.9, 0.1,-0.9,-0.6,-0.3) 

 

R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.8 0.9 -0.1 -0.3 -0.4 
B 0.0 0.9 0.8 -0.1 -0.7 -0.8 

 

S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.2 0.8 0.9 -0.1 -0.3 -0.4 
D 0.0 0.9 0.8 -0.1 -0.7 -0.8 

 
and f : X → Y defined by: f(a)=x , f(b)=y and f(c)=z. Then, by routine calculations, 
f: H → K is an isomorphism between H and K. 

Definition 3.9 

Let H = (X, E, R) be a BSVNHG, then the order of H is denoted and defined by as 
follows: 

𝑂(𝐻)

= (∑ 𝑚𝑖𝑛 (𝑃𝑇𝐸𝑗
(𝑥)) , ∑ 𝑚𝑎𝑥 (𝑃𝐼𝐸𝑗

(𝑥)) , ∑ 𝑚𝑎𝑥 (𝑃𝐹𝐸𝑗
(𝑥)),  

∑ 𝑚𝑎𝑥 (𝑁𝑇𝐸𝑗
(𝑥)) , ∑ 𝑚𝑖𝑛 (𝑁𝐼𝐸𝑗

(𝑥)) , ∑ 𝑚𝑖𝑛 (𝑁𝐹𝐸𝑗
(𝑥)))  (47) 

The size of H is denoted and defined by: 

𝑆(𝐻) = (∑ 𝑅𝑃𝑇(𝐸𝑗), ∑ 𝑅𝑃𝐼(𝐸𝑗), ∑ 𝑅𝑃𝐹(𝐸𝑗), ∑ 𝑅𝑁𝑇(𝐸𝑗), 

∑ 𝑅𝑁𝐼(𝐸𝑗), ∑ 𝑅𝑁𝐹(𝐸𝑗) )       (48) 

Theorem 3.10  

Let H = (X, E, R) and K = (Y, F, S) be two BSVNHGs such that H is isomorphic 
to K, then: 
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(1) O(H) = O(K), 
(2) S(H) = S(K). 

Proof 

Let f: H →  K be an isomorphism between two BSVNHGs H and K with 
underlying sets X and Y respectively; then, by definition: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (49) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (50) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (51) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (52) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (53) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (54) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (55) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (56) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (57) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (58) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (59) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (60) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
Consider: 

𝑂𝑃𝑇(𝐻) = ∑ min 𝑃𝑇𝐸𝑗
(𝑥) = ∑ min 𝑃𝑇𝐹𝑗

(𝑓(𝑥)) = 𝑂𝑃𝑇(𝐾) (61) 

𝑂𝑁𝑇(𝐻) = ∑ max 𝑁𝑇𝐸𝑗
(𝑥) = ∑ max 𝑁𝑇𝐹𝑗

(𝑓(𝑥)) = 𝑂𝑁𝑇(𝐾) (62) 

Similarly, 𝑂𝑃𝐼(𝐻) = 𝑂𝑃𝐼(𝐾) and 𝑂𝑃𝐹(𝐻) = 𝑂𝑃𝐹(𝐾) ,  𝑂𝑁𝐼(𝐻) = 𝑂𝑁𝐼(𝐾)  and 
𝑂𝑁𝐹(𝐻) = 𝑂𝑁𝐹(𝐾), hence O(H) = O(K). 
Next: 

𝑆𝑃𝑇(𝐻) = ∑ 𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) 

= ∑ 𝑆𝑃𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) = 𝑆𝑃𝑇(𝐾).    (63) 
Similarly, 

𝑆𝑁𝑇(𝐻) = ∑ 𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) 

= ∑ 𝑆𝑁𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟)) = 𝑆𝑁𝑇(𝐾).    (64) 

and 𝑆𝑃𝐼(𝐻) = 𝑆𝑃𝐼(𝐾), 𝑆𝑃𝐹(𝐻) = 𝑆𝑃𝐹(𝐾), 𝑆𝑁𝐼(𝐻) = 𝑆𝑁𝐼(𝐾), 𝑆𝑁𝐹(𝐻) = 𝑆𝑁𝐹(𝐾), 
hence 𝑆(𝐻) = 𝑆(𝐾). 
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Remark 3.11  

The converse of the above theorem need not to be true in general. 

Example 3.12  

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S are 
defined in Tables given below: 

H A B 
a (0.2, 0.5, 0.3, -0.1, -0.2, -0.3) (0.14, 0.5, 0.3, -0.1, -0.2, -0.3) 
b (0.0,0.0,0.0, 0.0, 0.0, 0.0) (0.2, 0.5, 0.3, -0.4, -0.2, -0.3) 
c (0.33, 0.5, 0.3, -0.4, -0.2, -0.3) (0.16, 0.5, 0.3, -0.1, -0.2, -0.3) 
d (0.5, 0.5, 0.3, -0.1, -0.2, -0.3) (0.0,0.0,0.0, 0.0, 0.0, 0.0) 

 
K C D 
w (0.14, 0.5, 0.3, -0.1, -0.2, -0.3) (0.2, 0.5, 0.33, -0.4, -0.2, -0.3) 
x (0.16, 0.5, 0.3, -0.1, -0.2, -0.3) (0.33,0.5, 0.33, -0.1, -0.2, -0.3) 
y (0.25, 0.5, 0.3, -0.1,-0.2, -0.3) (0.2, 0.5, 0.33, -0.1, -0.2, -0.3) 
z (0.5, 0.5, 0.3, -0.4, -0.2, -0.3) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 

 
R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.5 0.3 -0.1 -0.2 -0.3 
B 0.14 0.5 0.3 -0.1 -0.2 -0.3 

 
S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.14 0.5 0.3 -0.1 -0.2 -0.3 
D 0.2 0.5 0.3 -0.1 -0.2 -0.3 

 
where f is defined by: f(a)=w, f(b)=x, f(c)=y, f(d)=z. 
Here, O(H) = (1.0,2.0, 1.2,-0.7,-0.8,-1.2) = O(K) and S(H)=(0.34, 1.0, 0.9, -0.2, -
0.4, -0.9)=S(K), but, by routine calculations, H is not an isomorphism to K. 

Corollary 3.13 

The weak isomorphism between any two BSVNHGs H and K preserves the orders. 

Remark 3.14  

The converse of the above corollary need not to be true in general. 

Example 3.15 

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D}, R and S are 
defined in Tables given below, where f is defined by:  f(a)=w, f(b)=x, f(c)=y, 
f(d)=z: 
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H A B 
a (0.2, 0.5, 0.3,-0.1,-0.2,-0.3) (0.14, 0.5, 0.3,-0.4,-0.2,-0.3) 
b (0.0,0.0,0.0,0.0,0.0,0.0) (0.2, 0.5, 0.3,-0.1,-0.2,-0.3) 
c (0.33, 0.5, 0.3,-0.4,-0.2,-0.3) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3) 
d (0.5, 0.5, 0.3,-0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0) 

 

K C D 
w (0.14, 0.5, 0.3,-0.1,-0.2,-0.3) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3) 
x (0.0, 0.0, 0.0,0.0,0.0,0.0) (0.16, 0.5, 0.3,-0.1,-0.2,-0.3) 
y (0.25, 0.5, 0.3,-0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3) 
z (0.5, 0.5, 0.3,-0.1,-0.2,-0.3) (0.0, 0.0, 0.0,0.0,0.0,0.0) 

 

Here, O(H)= (1.0, 2.0, 1.2, -0.4, -0.8, -1.2) = O(K), but, by routine calculations, H 
is not a weak isomorphism to K. 

Corollary 3.16  

The co-weak isomorphism between any two BSVNHGs H and K preserves sizes. 

Remark 3.17  

The converse of the above corollary need not to be true in general. 

Example 3.18 

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b, c, d} and Y = {w, x, y, z}, where E = {A, B}, F = {C, D},R and S are 
defined in Tables given below, 

H A B 
a (0.2, 0.5, 0.3,-0.1,-0.2,-0.3) (0.14, 0.5, 0.3, -0.1,-0.2,-0.3) 
b (0.0,0.0,0.0,0.0,0.0,0.0) (0.16, 0.5, 0.3, -0.1,-0.2,-0.3) 
c (0.3, 0.5, 0.3, -0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3) 
d (0.5, 0.5, 0.3, -0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0) 

 

K C D 
w (0.0, 0.0, 0.0, 0.0, 0.0, 0.0) (0.2, 0.5, 0.3, -0.1,-0.2,-0.3) 
x (0.14,0.5,0.3, -0.1,-0.2,-0.3) (0.25, 0.5, 0.3, -0.1,-0.2,-0.3) 
y (0.5, 0.5, 0.3, -0.1,-0.2,-0.3) (0.2, 0.5, 0.3,-0.4,-0.2,-0.3) 
z (0.3, 0.5, 0.3, -0.1,-0.2,-0.3) (0.0,0.0,0.0,0.0,0.0,0.0) 

 

R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.2 0.5 0.3 -0.1 -0.2 -0.3 
B 0.14 0.5 0.3 -0.1 -0.2 -0.3 
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 S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.14 0.5 0.3 -0.1 -0.2 -0.3 
D 0.2 0.5 0.3 -0.1 -0.2 -0.3 

 

where f is defined by: f(a)=w, f(b)=x, f(c)=y, f(d)=z. 
Here S(H)= (0.34, 1.0, 0.6, -0.2, -0.4, -0.6) = S(K), but, by routine calculations, H 
is not a co-weak isomorphism to K. 

Definition 3.19  

Let H = (X, E, R) be a BSVNHG, then the degree of vertex 𝑥𝑖, which is denoted 
and defined by: 

deg(𝑥𝑖) = 

(𝑑𝑒𝑔𝑃𝑇(𝑥𝑖), 𝑑𝑒𝑔𝑃𝐼(𝑥𝑖), 𝑑𝑒𝑔𝑃𝐹(𝑥𝑖),  

𝑑𝑒𝑔𝑁𝑇(𝑥𝑖), 𝑑𝑒𝑔𝑁𝐼(𝑥𝑖),  𝑑𝑒𝑔𝑁𝐹(𝑥𝑖)    (65) 
where: 

𝑑𝑒𝑔𝑃𝑇(𝑥𝑖) = ∑ 𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟),    (66) 

𝑑𝑒𝑔𝑃𝐼(𝑥𝑖) = ∑ 𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟),       (67) 

𝑑𝑒𝑔𝑃𝐹(𝑥𝑖) = ∑ 𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟),     (68) 

𝑑𝑒𝑔𝑁𝑇(𝑥𝑖) = ∑ 𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟),    (69) 

𝑑𝑒𝑔𝑁𝐼(𝑥𝑖) = ∑ 𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟),       (70) 

𝑑𝑒𝑔𝑁𝐹(𝑥𝑖) = ∑ 𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟),     (71) 

for 𝑥𝑖  ≠  𝑥𝑟. 

Theorem 3.20  

If H and K be two isomorphic BSVNHGs, then the degree of their vertices are 
preserved. 

Proof 

Let f: H →  K be an isomorphism between two BSVNHGs H and K with 
underlying sets X and Y respectively, then, by definition, we have: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (72) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (73) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (74) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (75) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (76) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (77) 
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for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (78) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (79) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (80) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (81) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (82) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (83) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
Consider: 

𝑑𝑒𝑔𝑃𝑇(𝑥𝑖) = ∑ 𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)

= ∑ 𝑆𝑃𝑇(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑟))  

= 𝑑𝑒𝑔𝑃𝑇(𝑓(𝑥𝑖)),        (84) 
and similarly:  

𝑑𝑒𝑔𝑁𝑇(𝑥𝑖) = 𝑑𝑒𝑔𝑁𝑇(𝑓(𝑥𝑖)),      (85) 

𝑑𝑒𝑔𝑃𝐼(𝑥𝑖) = 𝑑𝑒𝑔𝑃𝐼(𝑓(𝑥𝑖)), 𝑑𝑒𝑔𝑃𝐹(𝑥𝑖) = 𝑑𝑒𝑔𝑃𝐹(𝑓(𝑥𝑖)) (86) 

𝑑𝑒𝑔𝑁𝐼(𝑥𝑖) = 𝑑𝑒𝑔𝑁𝐼(𝑓(𝑥𝑖)), 𝑑𝑒𝑔𝑁𝐹(𝑥𝑖) = 𝑑𝑒𝑔𝑁𝐹(𝑓(𝑥𝑖)) (87) 
Hence: 

𝑑𝑒𝑔(𝑥𝑖) = 𝑑𝑒𝑔(𝑓(𝑥𝑖)).       (88) 

Remark 3.21  

The converse of the above theorem may not be true in general. 

Example 3.22 

Consider the two BSVNHGs H = (X, E, R) and K = (Y, F, S) with underlying sets 
X = {a, b} and Y = {x, y}, where E = {A, B}, F = {C, D}, R and S are defined by 
Tables given below: 

H A B 
a (0.5, 0.5, 0.3, -0.1, -0.2, -0.3) (0.3, 0.5, 0.3, -0.1, -0.2, -0.3) 
b (0.25, 0.5, 0.3, -0.1, -0.2, -0.3) (0.2, 0.5, 0.3, -0.1, -0.2, -0.3) 

 
K C D 
x (0.3, 0.5, 0.3, -0.1, -0.2, -0.3) (0.5,0.5,0.3, -0.1, -0.2, -0.3) 
y (0.2, 0.5, 0.3, -0.1, -0.2, -0.3) (0.25, 0.5, 0.3, -0.1, -0.2, -0.3) 

 
S 𝑆𝑃𝑇 𝑆𝑃𝐼 𝑆𝑃𝐹 𝑆𝑁𝑇 𝑆𝑁𝐼 𝑆𝑁𝐹 
C 0.2 0.5 0.3 -0.1 -0.2 -0.3 
D 0.25 0.5 0.3 -0.1 -0.2 -0.3 
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 R 𝑅𝑃𝑇 𝑅𝑃𝐼 𝑅𝑃𝐹 𝑅𝑁𝑇 𝑅𝑁𝐼 𝑅𝑁𝐹 
A 0.25 0.5 0.3 -0.1 -0.2 -0.3 
B 0.2 0.5 0.3 -0.1 -0.2 -0.3 

 

where f is defined by: f(a)=x, f(b)=y, here deg(a) = ( 0.8, 1.0, 0.6, -0.2, -0.4, -0.6) 
= deg(x) and deg(b) = (0.45, 1.0, 0.6, -0.2, -0.4, -0.6) = deg(y). 

But H is not isomorphic to K, i.e. H is neither weak isomorphic, nor co-weak 
isomorphic to K. 

Theorem 3.23 

The isomorphism between BSVNHGs is an equivalence relation. 

Proof 

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be BSVNHGs with underlying 
sets X, Y and Z, respectively: 

Reflexive  

Consider the map (identity map) f : X → X defined as follows: f(x) = x for all x ∈
 X, since the identity map is always bijective and satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐸𝑗

(𝑓(𝑥))],     (89) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐸𝑗

(𝑓(𝑥))],     (90) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐸𝑗

(𝑓(𝑥))],     (91) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max [𝑁𝑇𝐸𝑗

(𝑓(𝑥))],     (92) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐸𝑗

(𝑓(𝑥))],     (93) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐸𝑗

(𝑓(𝑥))],     (94) 

for all x∈ 𝑋.  

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (95) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑅𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (96) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (97) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (98) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    = 𝑅𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (99) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   =  𝑅𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (100) 

for all { 𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
Hence f is an isomorphism of BSVNHG H to itself. 
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Symmetric 

Let f: X → Y be an isomorphism of H and K, then f is a bijective mapping defined 
as f(x) = y for all x ∈ X. 
Then, by definition: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (101) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (102) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (103) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (104) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (105) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (106) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (107) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (108) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (109) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (101) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (111) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (112) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
Since f is bijective, then we have: 

𝑓−1(𝑦) = 𝑥  for all 𝑦 ∈ 𝑌. 
Thus, we get: 

min[𝑃𝑇𝐸𝑗
(𝑓−1(𝑦))]  = min[𝑃𝑇𝐹𝑗

(𝑦)],     (113) 

max[𝑃𝐼𝐸𝑗
(𝑓−1(𝑦))]   = max[𝑃𝐼𝐹𝑗

(𝑦)],     (114) 

max[𝑃𝐹𝐸𝑗
(𝑓−1(𝑦))]  = max[𝑃𝐹𝐹𝑗

(𝑦)],     (115) 

max[𝑁𝑇𝐸𝑗
(𝑓−1(𝑦))]  = max[𝑁𝑇𝐹𝑗

(𝑦)],    (116) 

min[𝑁𝐼𝐸𝑗
(𝑓−1(𝑦))]   = min[𝑁𝐼𝐹𝑗

(𝑦)],     (117) 

min[𝑁𝐹𝐸𝑗
(𝑓−1(𝑦))]  = min[𝑁𝐹𝐹𝑗

(𝑦)],     (118) 

for all x∈ 𝑋.  

𝑅𝑃𝑇(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝑃𝑇(𝑦1 , 𝑦2, … , 𝑦𝑟), (119) 

𝑅𝑃𝐼(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝑃𝐼(𝑦1 , 𝑦2, … , 𝑦𝑟), (120) 

𝑅𝑃𝐹(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟))  = 𝑆𝑃𝐹(𝑦1 , 𝑦2, … , 𝑦𝑟), (121) 
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𝑅𝑁𝑇(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝑁𝑇(𝑦1 , 𝑦2, … , 𝑦𝑟), (122) 

𝑅𝑁𝐼(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝑁𝐼(𝑦1 , 𝑦2, … , 𝑦𝑟), (123) 

𝑅𝑁𝐹(𝑓−1(𝑦1), 𝑓−1(𝑦2), … , 𝑓−1(𝑦𝑟)) = 𝑆𝑁𝐹(𝑦1 , 𝑦2, … , 𝑦𝑟), (124) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟} subsets of Y. 

Hence, we have a bijective map 𝑓−1 ∶ 𝑌 → 𝑋 which is an isomorphism from K to 
H. 

Transitive 

Let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be two isomorphism of BSVNHGs of H onto K and 
K onto M, respectively. Then 𝑔 𝑜 𝑓 is bijective mapping from X to Z, where 𝑔 𝑜 𝑓 
is defined as (𝑔 𝑜 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. 

Since f is an isomorphism, then by definition 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋,  which 
satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],    (125) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],    (126) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],    (127) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],    (128) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min [𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (129) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],    (130) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (131) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (132) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (133) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (134) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (135) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟)),   (136) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Since 𝑔 ∶ 𝑌 → 𝑍 is an isomorphism, then by definition 𝑔(𝑦) = 𝑧 for all 𝑦 ∈

𝑌 satisfying the conditions: 

min[𝑃𝑇𝐹𝑗
(𝑦)]  = min[𝑃𝑇𝐺𝑗

(𝑔(𝑦))] ,     (137) 

max[𝑃𝐼𝐹𝑗
(𝑦)]   = max[𝑃𝐼𝐺𝑗

(𝑔(𝑦))],     (138) 
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max[𝑃𝐹𝐹𝑗
(𝑦)]  = max[𝑃𝐹𝐺𝑗

(𝑔(𝑦))],     (139) 

max[𝑁𝑇𝐹𝑗
(𝑦)]  = max [𝑁𝑇𝐺𝑗

(𝑔(𝑦))],     (140) 

min[𝑁𝐼𝐹𝑗
(𝑦)]   = min[𝑁𝐼𝐺𝑗

(𝑔(𝑦))],     (141) 

min[𝑁𝐹𝐹𝑗
(𝑦)]  = min [𝑁𝐹𝐺𝑗

(𝑔(𝑦))],     (142) 

for all x∈ 𝑋. 

𝑆𝑃𝑇(𝑦1, 𝑦2, … , 𝑦𝑟)    =  𝑊𝑃𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (143) 

𝑆𝑃𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   = 𝑊𝑃𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (144) 

𝑆𝑃𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  =  𝑊𝑃𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (145) 

𝑆𝑁𝑇(𝑦1, 𝑦2, … , 𝑦𝑟) = 𝑊𝑁𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (146) 

𝑆𝑁𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   = 𝑊𝑁𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (147) 

𝑆𝑁𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  = 𝑊𝑁𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (148) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 

Thus, from above equations we conclude that: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  =  min[𝑃𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))],    (149) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   =  max[𝑃𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],    (150) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  =   max[𝑃𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],    (151) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  =  max [𝑁𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))],   (152) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   =  min[𝑁𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],    (153) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  =   min[𝑁𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],    (154) 

for all x∈ 𝑋. 

𝑅𝑃𝑇(𝑥1, … , 𝑥𝑟) = 𝑊𝑃𝑇(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (155) 

𝑅𝑃𝐼(𝑥1, … , 𝑥𝑟) = 𝑊𝑃𝐼(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (156) 

𝑅𝑃𝐹(𝑥1, … , 𝑥𝑟) = 𝑊𝑃𝐹(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (157) 

𝑅𝑁𝑇(𝑥1, … , 𝑥𝑟) = 𝑊𝑁𝑇(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (158) 

𝑅𝑁𝐼(𝑥1, … , 𝑥𝑟) = 𝑊𝑁𝐼(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (159) 

𝑅𝑁𝐹(𝑥1, … , 𝑥𝑟) = 𝑊𝑁𝐹(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (160) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Therefore 𝑔 𝑜 𝑓 is an isomorphism between H and M. 
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 Hence, the isomorphism between BSVNHGs is an equivalence relation. 

Theorem 3.24 

The weak isomorphism between BSVNHGs satisfies the partial order relation. 

Proof 

Let H = (X, E, R), K = (Y, F, S) and M = (Z, G, W) be BSVNHGs with underlying 
sets X, Y and Z, respectively: 

Reflexive 

Consider the map (identity map) f : X → X defined as follows: f(x)=x for all x ∈ X, 
since the identity map is always bijective and satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐸𝑗

(𝑓(𝑥))],     (161) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐸𝑗

(𝑓(𝑥))],     (162) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐸𝑗

(𝑓(𝑥))],     (163) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐸𝑗

(𝑓(𝑥))],     (164) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐸𝑗

(𝑓(𝑥))],     (165) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐸𝑗

(𝑓(𝑥))],     (166) 

for all x∈ 𝑋. 

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   ≤  𝑅𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (167) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    ≥ 𝑅𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (168) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥  𝑅𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (169) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)   ≥  𝑅𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (170) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)    ≤ 𝑅𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (171) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ 𝑅𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (172) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 
Hence,  f is a weak isomorphism of BSVNHG H to itself. 

Anti-symmetric 

Let f be a weak isomorphism between H onto K, and g be a weak isomorphic 
between K and H, that is 𝑓: 𝑋 → 𝑌  is a bijective map defined by: 𝑓(𝑥) =
𝑦 for all 𝑥 ∈ 𝑋 satisfying the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (173) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (174) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (175) 
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max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (176) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (177) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (178) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) =  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (179) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (180) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (181) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  =  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (182) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  = 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (183) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) = 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (184) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Since g is also bijective map 𝑔(𝑦) = 𝑥  for all 𝑦 ∈ 𝑌 satisfying the conditions: 

min[𝑃𝑇𝐹𝑗
(𝑦)]  = min[𝑃𝑇𝐸𝑗

(𝑔(𝑦))],     (185) 

max[𝑃𝐼𝐹𝑗
(𝑦)]   = max[𝑃𝐼𝐸𝑗

(𝑔(𝑦))],     (186) 

max[𝑃𝐹𝐹𝑗
(𝑦)]  = max[𝑃𝐹𝐸𝑗

(𝑔(𝑦))],     (187) 

max[𝑁𝑇𝐹𝑗
(𝑦)]  = max[𝑁𝑇𝐸𝑗

(𝑔(𝑦))] ,     (188) 

min[𝑁𝐼𝐹𝑗
(𝑦)]   = min[𝑁𝐼𝐸𝑗

(𝑔(𝑦))],     (189) 

min[𝑁𝐹𝐹𝑗
(𝑦)]  = min[𝑁𝐹𝐸𝑗

(𝑔(𝑦))],     (190) 

for all y∈ 𝑌. 

𝑅𝑃𝑇(𝑦, 𝑦2, … , 𝑦𝑟)   ≤  𝑆𝑃𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (191) 

𝑅𝑃𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥ 𝑆𝑃𝐼(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (192) 

𝑅𝑃𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥  𝑆𝑃𝐹(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (193) 

𝑅𝑁𝑇(𝑦, 𝑦2, … , 𝑦𝑟)   ≥  𝑆𝑁𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (194) 

𝑅𝑁𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤ 𝑆𝑁𝐼(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (195) 

𝑅𝑁𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤  𝑆𝑁𝐹(𝑓(𝑦1) , 𝑓(𝑦2), … , 𝑓(𝑦𝑟) ),   (196) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 
The above inequalities hold for finite sets X and Y only whenever H and K have 
same number of edges and corresponding edge have same weights, hence H is 
identical to K. 

Transitive 

Let 𝑓: 𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑍 be two weak isomorphism of BSVNHGs of H onto K 
and K onto M, respectively. Then 𝑔 𝑜 𝑓 is bijective mapping from X to Z, where 
𝑔 𝑜 𝑓 is defined as (𝑔 𝑜 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. 
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 Since f is a weak isomorphism, then by definition 𝑓(𝑥) = 𝑦 for all 𝑥 ∈ 𝑋 which 
satisfies the conditions: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  = min[𝑃𝑇𝐹𝑗

(𝑓(𝑥))],     (197) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   = max[𝑃𝐼𝐹𝑗

(𝑓(𝑥))],     (198) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  = max[𝑃𝐹𝐹𝑗

(𝑓(𝑥))],     (199) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  = max[𝑁𝑇𝐹𝑗

(𝑓(𝑥))],     (200) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   = min[𝑁𝐼𝐹𝑗

(𝑓(𝑥))],     (201) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  = min[𝑁𝐹𝐹𝑗

(𝑓(𝑥))],     (202) 

for all x∈ 𝑋.   

𝑅𝑃𝑇(𝑥1, 𝑥2, … , 𝑥𝑟) ≤  𝑆𝑃𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (203) 

𝑅𝑃𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥ 𝑆𝑃𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (204) 

𝑅𝑃𝐹(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥ 𝑆𝑃𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (205) 

𝑅𝑁𝑇(𝑥1, 𝑥2, … , 𝑥𝑟)  ≥  𝑆𝑁𝑇(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (206) 

𝑅𝑁𝐼(𝑥1, 𝑥2, … , 𝑥𝑟)  ≤ 𝑆𝑁𝐼(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (207) 

𝑅𝑁𝐹(𝑥1, 𝑥2, … , 𝑥𝑟) ≤ 𝑆𝑁𝐹(𝑓(𝑥1) , 𝑓(𝑥2), … , 𝑓(𝑥𝑟) ),   (208) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟} subsets of X. 

Since 𝑔 ∶ 𝑌 → 𝑍 is a weak isomorphism, then by definition 𝑔(𝑦) = 𝑧 for all 𝑦 ∈
𝑌, satisfying the conditions: 

min[𝑃𝑇𝐹𝑗
(𝑦)]  = min[𝑃𝑇𝐺𝑗

(𝑔(𝑦))] ,     (209) 

max[𝑃𝐼𝐹𝑗
(𝑦)]   = max[𝑃𝐼𝐺𝑗

(𝑔(𝑦))],     (210) 

max[𝑃𝐹𝐹𝑗
(𝑦)]  = max[𝑃𝐹𝐺𝑗

(𝑔(𝑦))],     (211) 

max[𝑁𝑇𝐹𝑗
(𝑦)]  = max[𝑁𝑇𝐺𝑗

(𝑔(𝑦))],     (212) 

min[𝑁𝐼𝐹𝑗
(𝑦)]   = min[𝑁𝐼𝐺𝑗

(𝑔(𝑦))],     (213) 

min[𝑁𝐹𝐹𝑗
(𝑦)]  = min[𝑁𝐹𝐺𝑗

(𝑔(𝑦))],     (214) 

for all x∈ 𝑋. 

𝑆𝑃𝑇(𝑦1, 𝑦2, … , 𝑦𝑟)    ≤  𝑊𝑃𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (215) 

𝑆𝑃𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   ≥ 𝑊𝑃𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (216) 

𝑆𝑃𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  ≥  𝑊𝑃𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (217) 

𝑆𝑁𝑇(𝑦1, 𝑦2, … , 𝑦𝑟) ≥ 𝑊𝑁𝑇(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (218) 

𝑆𝑁𝐼(𝑦1, 𝑦2, … , 𝑦𝑟)   ≤ 𝑊𝑁𝐼(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (219) 

𝑆𝑁𝐹(𝑦1, 𝑦2, … , 𝑦𝑟)  ≤ 𝑊𝑁𝐹(𝑔(𝑦1) , 𝑔(𝑦2), … , 𝑔(𝑦𝑟) ),   (220) 

for all {𝑦1, 𝑦2, … , 𝑦𝑟}  subsets of Y. 
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Thus, from above equations, we conclude that: 

min[𝑃𝑇𝐸𝑗
(𝑥)]  =  min[𝑃𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))],    (221) 

max[𝑃𝐼𝐸𝑗
(𝑥)]   =  max[𝑃𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],    (222) 

max[𝑃𝐹𝐸𝑗
(𝑥)]  =   max[𝑃𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],    (223) 

max[𝑁𝑇𝐸𝑗
(𝑥)]  =  max[𝑁𝑇𝐺𝑗

(𝑔(𝑓(𝑥)))],    (224) 

min[𝑁𝐼𝐸𝑗
(𝑥)]   =  min[𝑁𝐼𝐺𝑗

(𝑔(𝑓(𝑥)))],    (225) 

min[𝑁𝐹𝐸𝑗
(𝑥)]  =   min[𝑁𝐹𝐺𝑗

(𝑔(𝑓(𝑥)))],    (226) 

for all x∈ 𝑋. 

𝑅𝑃𝑇(𝑥1, … , 𝑥𝑟) ≤ 𝑊𝑃𝑇(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (227) 

𝑅𝑃𝐼(𝑥1, … , 𝑥𝑟) ≥ 𝑊𝑃𝐼(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (228) 

𝑅𝑃𝐹(𝑥1, … , 𝑥𝑟) ≥ 𝑊𝑃𝐹(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (229) 

𝑅𝑁𝑇(𝑥1, … , 𝑥𝑟) ≥ 𝑊𝑁𝑇(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (230) 

𝑅𝑁𝐼(𝑥1, … , 𝑥𝑟) ≤ 𝑊𝑁𝐼(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (231) 

𝑅𝑁𝐹(𝑥1, … , 𝑥𝑟) ≤ 𝑊𝑁𝐹(𝑔(𝑓(𝑥1)), … , 𝑔(𝑓(𝑥𝑟))),   (232) 

for all {𝑥1, 𝑥2, … , 𝑥𝑟}  subsets of X. 

Therefore 𝑔 𝑜 𝑓 is a weak isomorphism between H and M. 
Hence, the weak isomorphism between BSVNHGs is a partial order relation. 

4 Conclusion 

The bipolar single valued neutrosophic hypergraph can be applied in various 

areas of engineering and computer science. In this paper, the isomorphism 

between BSVNHGs is proved to be an equivalence relation and the weak 

isomorphism is proved to be a partial order relation. Similarly, it can be 

proved that co-weak isomorphism in BSVNHGs is a partial order relation. 
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Abstract  

In this paper, we define the subtraction and the division of neutrosophic single-valued 

numbers. The restrictions for these operations are presented for neutrosophic single-

valued numbers and neutrosophic single-valued overnumbers / undernumbers / 

offnumbers. Afterwards, several numeral examples are presented. 

Keywords  
neutrosophic calculus, neutrosophic numbers, neutrosophic summation, 

neutrosophic multiplication, neutrosophic scalar multiplication, neutrosophic power, 

neutrosophic subtraction, neutrosophic division. 

1 Introduction 

Let 𝐴 = (𝑡1, 𝑖1, 𝑓1)  and 𝐵 = (𝑡2, 𝑖2, 𝑓2)  be two single-valued neutrosophic 

numbers, where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 ∈ [0, 1] , and 0 ≤ 𝑡1, 𝑖1, 𝑓1 ≤ 3  and 0 ≤

𝑡2, 𝑖2, 𝑓2 ≤ 3. 

The following operational relations have been defined and mostly used in the 

neutrosophic scientific literature: 

1.1 Neutrosophic Summation 

𝐴⊕ 𝐵 = (𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑖1𝑖2, 𝑓1𝑓2)    (1) 

1.2 Neutrosophic Multiplication 

A⊗ 𝐵 = (𝑡1𝑡2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑓1 + 𝑓2 − 𝑓1𝑓2)   (2) 

1.3 Neutrosophic Scalar Multiplication 

⋋ 𝐴 = (1 − (1 − 𝑡1)
⋋, 𝑖1

⋋, 𝑓1
⋋ ),     (3) 

where ⋋∈ ℝ, and ⋋> 0. 
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1.4 Neutrosophic Power 

𝐴⋋ = (𝑡1
⋋, 1 − (1 − 𝑖1)

⋋, 1 − (1 − 𝑓1)
⋋),   (4) 

where ⋋∈ ℝ, and ⋋> 0. 

2 Remarks 

Actually, the neutrosophic scalar multiplication is an extension of 

neutrosophic summation; in the last, one has ⋋= 2. 

Similarly, the neutrosophic power is an extension of neutrosophic 

multiplication; in the last, one has ⋋= 2. 

Neutrosophic summation of numbers is equivalent to neutrosophic union of 

sets, and neutrosophic multiplication of numbers is equivalent to neutrosophic 

intersection of sets. 

That's why, both the neutrosophic summation and neutrosophic 

multiplication (and implicitly their extensions neutrosophic scalar 

multiplication and neutrosophic power) can be defined in many ways, i.e. 

equivalently to their neutrosophic union operators and respectively 

neutrosophic intersection operators. 

In general: 

𝐴⊕ 𝐵 = (𝑡1 ∨ 𝑡2, 𝑖1 ∧ 𝑖2, 𝑓1 ∧ 𝑓2),    (5) 

or 

𝐴⊕ 𝐵 = (𝑡1 ∨ 𝑡2, 𝑖1 ∨ 𝑖2, 𝑓1 ∨ 𝑓2),    (6) 

and analogously: 

𝐴⊗ 𝐵 = (𝑡1 ∧ 𝑡2, 𝑖1 ∨ 𝑖2, 𝑓1 ∨ 𝑓2)    (7) 

or 

𝐴⊗ 𝐵 = (𝑡1 ∧ 𝑡2, 𝑖1 ∧ 𝑖2, 𝑓1 ∨ 𝑓2),    (8) 

where "∨" is the fuzzy OR (fuzzy union) operator, defined, for 𝛼, 𝛽 ∈ [0, 1], in 

three different ways, as: 

𝛼 1
∨
𝛽 = 𝛼 + 𝛽 − 𝛼𝛽,      (9) 

or 

𝛼 2
∨
𝛽 = 𝑚𝑎𝑥{𝛼, 𝛽},      (10) 

or 

𝛼 3
∨
𝛽 = 𝑚𝑖𝑛{𝑥 + 𝑦, 1},      (11) 

etc. 
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While "∧" is the fuzzy AND (fuzzy intersection) operator, defined, for 𝛼, 𝛽 ∈

[0, 1], in three different ways, as: 

𝛼 ∧
1
𝛽 = 𝛼𝛽,       (12) 

or 

𝛼 ∧
2
𝛽 = 𝑚𝑖𝑛{𝛼, 𝛽},      (13) 

or 

𝛼 ∧
3
𝛽 = 𝑚𝑎𝑥{𝑥 + 𝑦 − 1, 0},     (14) 

etc. 

Into the definitions of 𝐴⊕𝐵 and 𝐴⊗𝐵 it's better if one associates 1
∨
 with ∧

1
, 

since 1
∨
 is opposed to ∧

1
, and 2

∨
 with ∧

2
, and 3

∨
 with ∧

3
, for the same reason. But other 

associations can also be considered. 

For examples: 

𝐴⊕ 𝐵 = (𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑓1𝑓2),   (15) 

or 

𝐴⊕ 𝐵 = (𝑚𝑎𝑥{𝑡1, 𝑡2},𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}),  (16) 

or 

𝐴⊕ 𝐵 = (𝑚𝑎𝑥{𝑡1, 𝑡2},𝑚𝑎𝑥{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}),  (17) 

or 

𝐴⊕ 𝐵 = (𝑚𝑖𝑛{𝑡1 + 𝑡2, 1}, 𝑚𝑎𝑥{𝑖1 + 𝑖2 − 1, 0},𝑚𝑎𝑥{𝑓1 + 𝑓2 −

1, 0}).        (18) 

where we have associated 1
∨
 with ∧

1
, and 2

∨
 with ∧

2
, and 3

∨
 with ∧

3
 . 

Let's associate them in different ways: 

𝐴⊕ 𝐵 = (𝑡1 + 𝑡2 − 𝑡1𝑡2, 𝑚𝑖𝑛{𝑖1, 𝑖2},𝑚𝑖𝑛{𝑓1, 𝑓2}),  (19) 

where 1
∨
 was associated with ∧

2
 and ∧

3
; or: 

𝐴⊕ 𝐵 = (𝑚𝑎𝑥{𝑡1, 𝑡2}, 𝑖1, 𝑖2, 𝑚𝑎𝑥{𝑓1 + 𝑓2 − 1, 0}),  (20) 

where 2
∨
 was associated with ∧

1
 and ∧

3
; and so on. 

Similar examples can be constructed for 𝐴⊗ 𝐵. 

3 Neutrosophic Subtraction 

We define now, for the first time, the subtraction of neutrosophic number: 

𝐴⊖ 𝐵 = (𝑡1, 𝑖1, 𝑓1) ⊖ (𝑡2, 𝑖2, 𝑓2) = (
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
) = 𝐶,  (21) 
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for all 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 ∈ [0, 1], with the restrictions that: 𝑡2 ≠ 1, 𝑖2 ≠ 0, and 

𝑓2 ≠ 0. 

So, the neutrosophic subtraction only partially works, i.e. when 𝑡2 ≠ 1, 𝑖2 ≠ 0, 

and 𝑓2 ≠ 0. 

The restriction that 

(
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
) ∈ ([0, 1], [0, 1], [0, 1])                                                              (22) 

is set when the classical case when the neutrosophic number components  

𝑡, 𝑖, 𝑓 are in the interval [0, 1]. 

But, for the general case, when dealing with neutrosophic overset / underset 

/offset [1], or the neutrosophic number components are in the interval [Ψ, Ω], 

where Ψ is called underlimit and Ω is called overlimit, with Ψ ≤ 0 < 1 ≤ Ω, i.e. 

one has neutrosophic overnumbers / undernumbers / offnumbers, then the 

restriction (22) becomes: 

(
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
) ∈ ([Ψ, Ω], [Ψ, Ω], [Ψ, Ω]).                                                          (23) 

3.1 Proof 

The formula for the subtraction was obtained from the attempt to be 

consistent with the neutrosophic addition. 

One considers the most used neutrosophic addition: 

(𝑎1, 𝑏1, 𝑐1) ⊕ (𝑎2, 𝑏2, 𝑐2) = (𝑎1 + 𝑎2 − 𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2), (24) 

We consider the ⊖  neutrosophic operation the opposite of the ⊕  neutro-

sophic operation, as in the set of real numbers the classical subtraction − is 

the opposite of the classical addition +. 

Therefore, let's consider: 

(𝑡1, 𝑖1, 𝑓1) ⊖ (𝑡2, 𝑖2, 𝑓2) = (𝑥, 𝑦, 𝑧),     (25) 

⊕ (𝑡2, 𝑖2, 𝑓2)                       ⊕ (𝑡2, 𝑖2, 𝑓2) 

where 𝑥, 𝑦, 𝑧 ∈ ℝ. 

We neutrosophically add ⊕ (𝑡2, 𝑖2, 𝑓2) on both sides of the equation. We get: 

(𝑡1, 𝑖1, 𝑓1) = (𝑥, 𝑦, 𝑧) ⊕ (𝑡2, 𝑖2, 𝑓2) = (𝑥 + 𝑡2 − 𝑥𝑡2, 𝑦𝑖2, 𝑧𝑓2).  (26) 

Or, 

{
 
 

 
 𝑡1 = 𝑥 + 𝑡2 − 𝑥𝑡2, whence 𝑥 =

𝑡1−𝑡1

1−𝑡2
 ;

𝑖1 = 𝑦𝑖2, whence 𝑦 =
𝑖1

𝑖2
 ;

𝑓1 = 𝑧𝑓2, whence 𝑧 =
𝑓1

𝑓2
 .

    (27) 
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3.2 Checking the Subtraction 

With 𝐴 = (𝑡1, 𝑖1, 𝑓1), 𝐵 = (𝑡2, 𝑖2, 𝑓2), and 𝐶 = (
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
),  

where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 ∈ [0, 1], and 𝑡2 ≠ 1, 𝑖2 ≠ 0, and 𝑓2 ≠ 0, we have: 

𝐴⊖ 𝐵 = 𝐶.       (28) 

Then: 

𝐵 ⊕ 𝐶 = (𝑡2, 𝑖2, 𝑓2) ⊕ (
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
) = (𝑡2 +

𝑡1−𝑡2

1−𝑡2
− 𝑡2 ⋅

𝑡1−𝑡2

1−𝑡2
, 𝑖2,

𝑖1

𝑖2
, 𝑓2,

𝑓1

𝑓2
) = (

𝑡2−𝑡2
2+𝑡1−𝑡2−𝑡1𝑡2+𝑡2

1−𝑡2
, 𝑖1, 𝑓1) =

(
𝑡1(1−𝑡2)

1−𝑡2
, 𝑖1, 𝑓1) = (𝑡1, 𝑖1, 𝑓1).    (29) 

𝐴⊖ 𝐶 = (𝑡1, 𝑖1, 𝑓1) ⊖ (
𝑡1−𝑡2

1−𝑡2
,
𝑖1

𝑖2
,
𝑓1

𝑓2
) = (

𝑡1−
𝑡1−𝑡2
1−𝑡2

1−
𝑡1−𝑡2
1−𝑡2

,
𝑖1
𝑖1
𝑖2

,
𝑓1
𝑓1
𝑓2

) =

(

𝑡1−𝑡1𝑡2−𝑡1+𝑡2
1−𝑡2

1−𝑡2−𝑡1+𝑡2
1−𝑡2

, 𝑖2, 𝑓2) = (
−𝑡1𝑡2+𝑡2

1−𝑡2
, 𝑖2, 𝑓2) =

(
𝑡2(−𝑡1+1)

1−𝑡2
, 𝑖2, 𝑓2) = (𝑡2, 𝑖2, 𝑓2).    (30) 

4 Division of Neutrosophic Numbers 

We define for the first time the division of neutrosophic numbers: 

𝐴⊘ 𝐵 = (𝑡1, 𝑖1, 𝑓1) ⊘ (𝑡2, 𝑖2, 𝑓2) = (
𝑡1

𝑡2
,
𝑖1−𝑖2

1−𝑖2
,
𝑓1−𝑓2

1−𝑓2
) = 𝐷, (31) 

where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 ∈ [0, 1] , with the restriction that 𝑡2 ≠ 0,  𝑖2 ≠ 1 , and 

𝑓2 ≠ 1. 

Similarly, the division of neutrosophic numbers only partially works, i.e. when 

𝑡2 ≠ 0, 𝑖2 ≠ 1, and 𝑓2 ≠ 1. 

In the same way, the restriction that 

(
𝑡1

𝑡2
,
𝑖1−𝑖2

1−𝑖2
,
𝑓1−𝑓2

1−𝑓2
) ∈ ([0, 1], [0, 1], [0, 1])                                                              (32) 

is set when the traditional case occurs, when the neutrosophic number 

components  t, i, f are in the interval [0, 1]. 

But, for the case when dealing with neutrosophic overset / underset /offset 

[1], when the neutrosophic number components are in the interval [Ψ, Ω], 

where Ψ is called underlimit and Ω is called overlimit, with Ψ ≤ 0 < 1 ≤ Ω, i.e. 

one has neutrosophic overnumbers / undernumbers / offnumbers, then the 

restriction (31) becomes: 
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(
𝑡1

𝑡2
,
𝑖1−𝑖2

1−𝑖2
,
𝑓1−𝑓2

1−𝑓2
) ∈ ([Ψ, Ω], [Ψ, Ω], [Ψ, Ω]).  (33) 

4.1 Proof 

In the same way, the formula for division ⊘ of neutrosophic numbers was 

obtained from the attempt to be consistent with the neutrosophic 

multiplication. 

We consider the ⊘  neutrosophic operation the opposite of the ⊗ 

neutrosophic operation, as in the set of real numbers the classical division ÷ 

is the opposite of the classical multiplication ×. 

One considers the most used neutrosophic multiplication: 

(𝑎1, 𝑏1, 𝑐1) ⊗ (𝑎2, 𝑏2, 𝑐2) 

= (𝑎1𝑎2, 𝑏1 + 𝑏2 − 𝑏1𝑏2, 𝑐1 + 𝑐2 − 𝑐1𝑐2), (34) 

Thus, let's consider: 

(𝑡1, 𝑖1, 𝑓1) ⊘ (𝑡2, 𝑖2, 𝑓2) = (𝑥, 𝑦, 𝑧), (35) 

⨂(𝑡2, 𝑖2, 𝑓2)  ⨂(𝑡2, 𝑖2, 𝑓2) 

where 𝑥, 𝑦, 𝑧 ∈ ℝ. 

We neutrosophically multiply ⨂ both sides by (𝑡2, 𝑖2, 𝑓2). We get 

(𝑡1, 𝑖1, 𝑓1) = (𝑥, 𝑦, 𝑧)⨂(𝑡2, 𝑖2, 𝑓2) 

= (𝑥𝑡2, 𝑦 + 𝑖2 − 𝑦𝑖2, 𝑧 + 𝑓2 − 𝑧𝑓2). (36) 

Or, 

{
 
 

 
 𝑡1 = 𝑥𝑡2, whence 𝑥 =

𝑡1

𝑡2
; :

𝑖1 = 𝑦 + 𝑖2 − 𝑦𝑖2, whence 𝑦 =  
𝑖1−𝑖2

1−𝑖2
 ;

𝑓1 = 𝑧 + 𝑓2 − 𝑧𝑓2, whence 𝑧 =
𝑓1−𝑓2

1−𝑓2
 .

  (37) 

4.2 Checking the Division 

With 𝐴 = (𝑡1, 𝑖1, 𝑓1), 𝐵 = (𝑡2, 𝑖2, 𝑓2), and 𝐷 = (
𝑡1

𝑡2
,
𝑖1−𝑖2

1−𝑖2
,
𝑓1−𝑓2

1−𝑓2
),

where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2 ∈ [0, 1], and 𝑡2 ≠ 0, 𝑖2 ≠ 1, and 𝑓2 ≠ 1, one has: 

𝐴 *𝐵 = 𝐷. (38) 

Then: 

𝐵

𝐷
= (𝑡2, 𝑖2, 𝑓2)× (

𝑡1

𝑡2
,
𝑖1−𝑖2

1−𝑖2
,
𝑓1−𝑓2

1−𝑓2
) = (𝑡2 ⋅

𝑡1

𝑡2
, 𝑖2 +

𝑖1−𝑖2

1−𝑖2
− 𝑖2 ⋅

𝑖1−𝑖2

1−𝑖2
, 𝑓2 +

𝑓1−𝑓2

1−𝑓2
− 𝑓2 ⋅

𝑓1−𝑓2

1−𝑓2
) =
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(𝑡1,
𝑖2−𝑖2

2+𝑖1−𝑖2−𝑖1𝑖2+𝑖2
2

1−𝑖2
,
𝑓2−𝑓2

2+𝑓1−𝑓2−𝑓1𝑓2+𝑓2
2

1−𝑓2
) =

(𝑡1,
𝑖1(1−𝑖2)

1−𝑖2
,
𝑓1(1−𝑓2)

1−𝑓2
) = (𝑡1, 𝑖1, 𝑓1) = 𝐴.   (39) 

Also: 

𝐴

𝐷
=

(𝑡1,𝑖1,𝑓1)

(
𝑡1
𝑡2
,
𝑖1−𝑖2
1−𝑖2

,
𝑓1−𝑓2
1−𝑓2

)
= (

𝑡1
𝑡1
𝑡2

,
𝑖1−

𝑖1−𝑖2
1−𝑖2

1−
𝑖1−𝑖2
1−𝑖2

,
𝑓1−

𝑓1−𝑓2
1−𝑓2

1−
𝑓1−𝑓2
1−𝑓2

) =

(𝑡2,

𝑖1−𝑖1𝑖2−𝑖1+𝑖2
1−𝑖2

1−𝑖2−𝑖1+𝑖2
1−𝑖2

,

𝑓1−𝑓1𝑓2−𝑓1+𝑓2
1−𝑓2

1−𝑓2−𝑓1+𝑓2
1−𝑓2

) = (𝑡2,

𝑖2(−𝑖1+1)

1−𝑖2
1−𝑖1
1−𝑖2

,

𝑓2(−𝑓1+1)

1−𝑓2
1−𝑓1
1−𝑓2

) =

(𝑡2,
𝑖2(1−𝑖1)

1−𝑖1
,
𝑓2(1−𝑓1)

1−𝑓1
) = (𝑡2, 𝑖2, 𝑓2) = 𝐵.   (40) 

5 Conclusion  

We have obtained the formula for the subtraction of neutrosophic numbers ⊖ 

going backwords from the formula of addition of neutrosophic numbers  ⊕. 

Similarly, we have defined the formula for division of neutrosophic numbers 

⊘ and we obtained it backwords from the neutrosophic multiplication ⨂.  

We also have taken into account the case when one deals with classical 

neutrosophic numbers (i.e. the neutrosophic components t, i, f belong to [0, 1]) 

as well as the general case when 𝑡, 𝑖, 𝑓 belong to [𝛹, 𝛺], where the underlimit 

𝛹 ≤  0 and the overlimit 𝛺 ≥  1. 
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Abstract 

This paper presents multi-attribute decision making based on rough neutrosophic 

hyper-complex sets with rough neutrosophic hyper-complex attribute values. The 

concept of neutrosophic hyper-complex set is a powerful mathematical tool to deal 

with incomplete, indeterminate and inconsistent information. We extend the 

concept of neutrosophic hyper-complex set to rough neutrosophic hyper-complex 

environ-ment. The ratings of all alternatives are expressed in terms of the upper / 

lower approximations and pairs of neutrosophic hyper-complex sets, which are 

characterized by two hyper-complex functions and an indeterminacy component. 

We also define cosine function based on rough neutrosophic hyper-complex set to 

determine the degree of similarity between rough neutrosophic hyper-complex sets. 

We establish a new decision making approach based on rough neutrosphic hyper-

complex set. Finally, a numerical example is provided to prove the applicability of 

the proposed approach. 

Keywords 

neutrosophic set, rough neutrosophic set, rough neutrosophic hyper-complex set, 

cosine function, decision making. 

1 Introduction 

The concept of rough neutrosophic set has been introduced by Broumi et al. 

[1, 2]. It has been derived as a combination of the concepts of rough set 

proposed by Z. Pawlak [3] and of neutrosophic set introduced by F. 

Smarandache [4, 5]. The rough sets and the neutrosophic sets and are both 

capable of dealing with partial information and uncertainty.  
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To deal with real world problems, Wang et al. [6] introduced the single 

valued netrosophic sets (SVNSs).   

Recently, Mondal and Pramanik proposed a few decision making models in 

rough neutrosophic environment.   

Mondal and Pramanik [7] applied the concept of grey relational analysis 

based rough neutrosophic set in multi-attribute decision making.  

Mondal and Pramanik [8] also studied the cosine similarity measure of rough 

neutrosophic sets and its application in medical diagnosis.  

The same authors [9] proposed the multi-attribute decision making using 

rough accuracy and score function.  

The same authors [10] also proposed the cotangent similarity measure under 

rough neutrosophic sets.  

The same authors [11] further studied some similarity measures, namely 

Dice similarity measure [12] and Jaccard similarity measure [12] in rough 

neutrosophic sets. 

The rough neutrosophic hyper-complex set is the generalization of rough 

neutrosophic set and of neutrosophic hyper-complex set [13].   

S. Olariu [14] introduced the concept of hyper-complex number, and studied 

some of its properties.   

Mandal and Basu [15] studied hyper-complex similarity measure for SVNS 

and its application in decision making.  

Mondal and Pramanik [16] studied tri-complex rough neutrosophic similarity 

measure and presented an application in multi-attribute decision making. 

In this paper, we have defined the rough neutrosophic hyper-complex set and 

the rough neutrosophic hyper-complex cosine function (RNHCF).  

We have also proposed a multi-attribute decision making process in rough 

neutrosophic hyper-complex environment.  

The paper is organized in the following way: Section 2 presents preliminaries 

of neutrosophic sets and of single valued neutrosophic sets, and some basic 

ideas of hyper-complex sets. Section 3 gives the definition of the rough 

neutro-sophic hyper-complex sets. Section 4 gives the definition of the rough 

neutrosophic hyper-complex cosine function. Section 5 introduces the multi-

attribute decision-making method based on rough neutrosophic hyper-

complex cosine function. Section 6 offers a numerical example of the 

proposed approach. Finally, Section 7 produces the concluding remarks and 

some aims of future research. 
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2 Neutrosophic Preliminaries 

Neutrosophic set is derived from neutrosophy [4]. 

2.1 Neutrosophic Set 

Definition 2.1 [4, 5]  

Let U be a universe of discourse. Then a neutrosophic set A can be presented 

in the form: 

A = {< x:TA(x ), IA(x ), FA(x)>, x U},                                               (1)            

where the functions T, I, F: U→ ]−0,1+[ represent respectively the degree of  

membership, the degree of indeterminacy, and the degree of non-

membership of the element xU to the set Asatisfying the following the 

condition.  

−0≤ supTA(x)+ supIA( x)+ supFA(x) ≤ 3+                                     (2)                                               

Wang et al. [6] mentioned that the neutrosophic set assumes the values from 

the real standard or non-standard subsets of ]−0, 1+[ based on philosophical 

point of view. So instead of ]−0, 1+[  Wang et al. [6] consider the interval  [0, 1] 

for technical applications, because ]−0, 1+[ is difficult to apply in the real 

applications such as scientific and engineering problems. For two 

netrosophic sets (NSs),  

ANS = {<x: TA(x ), IA(x ), FA(x)> | x X}        (3) 

and                           

BNS ={< x, TB(x), IB(x ), FB(x)> | x X },             (4) 

the two relations are defined as follows:  

(1) ANS  BNS if and only if TA(x )  TB(x ), IA(x )  IB(x ), FA(x )  FB(x) 

(2)  ANS = BNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x ) = FB(x).   

2.2 Single valued neutrosophic sets (SVNS) 

Definition 2.2 [6]  

Assume that X is a space of points (objects) with generic elements in X 

denoted by x. A SVNS A in X is characterized by a truth-membership function 

TA(x), an indeterminacy-membership function IA(x), and a falsity 

membership function FA(x), and for each point x in X, TA(x),  IA(x), FA(x) [0, 

1]. When X is continuous, a SVNS A can be written as: 
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X∈x:
x

)x(F),x(I),x(TA
x

AAA



 .    (5) 

When X is discrete, a SVNS A can be written as: 

X∈x:∑
x

>)x(F),x(I),x(T<
=A i

n
1=i

i

iAiAiA
.    (6) 

For two SVNSs,  

ASVNS = {<x: TA(x ), IA(x), FA(x )> | x X}    (7) 

and  

BSVNS = {<x, TB(x), IB(x), FB(x)> | xX },    (8) 

the two relations are defined as follows: 

(i) ASVNS  BSVNS if and only if TA(x)  TB(x), IA(x)  IB(x), FA(x ) 

FB( x); 

(ii) ASVNS = BSVNS if and only if TA(x) = TQ(x), IA(x) = IB(x), FA(x) = 

FB(x),  

for any xX. 

2.3 Basic concept of Hyper-complex number of dimension n [12] 

The hyper-complex number of dimension n (or n-complex number) was 

defined by S. Olariu [13] as a number of the form: 

u = xo +h1x1 + h2x2 + … + hn-1xn-1,    (9) 

where n ≥ 2, and the variables x0, x1, x2, …,xn-1 are real numbers, while h1, h2, 

…, hn-1 are the complex units, ho = 1, and they are multiplied as follows: 

hjhk = hj+k if 0 ≤ j+k ≤ n-1, and hjhk = hj+k-n if n ≤ j+k ≤ 2n-2.  (10) 

The above complex unit multiplication formulas can be written in a simpler 

form as: 

hjhk = hj+k (mod n)       (11) 

where mod n means modulo n. For example, if n = 5, then: 

h3h4= h3+4(mod 5) = h7 (mod 5) = h2.     (12) 

The formula above allows us to multiply many complex units at once, as 

follows:  

hj1hj2…hjp = hj1+ j2+…+jp (mod n),      (13) 

for p ≥ 1. 
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The Neutrosophic hyper-complex number of dimension n [12] which is a 

number and it can be written of the form: 

𝑢 + 𝑣𝐼,         (14) 

where 𝑢 and 𝑣 are n-complex numbers, and 𝐼 is the indeterminacy. 

3 Rough Neutrosophic Hyper-complex Set in Dimension n 

Definition 3.1 

Let Z be a non-null set and R be an equivalence relation on Z. Let A be a 

neutrosophic hyper-complex set of dimension n (or neutrosophic n-complex 

number), and its elements of the form u+vI, where u and v are n-complex 

numbers and I is the indeterminacy.  

The lower and the upper approximations of A in the approximation space (Z, 

R) denoted by  AN and  AN are respectively defined as follows: 

 

        Z∈x,x∈z/)x(vIu,xAN RAN 

 
    (15)

 
   

 
  Z∈x,x∈z/)x(vIu,xAN RAN  ,

    
(16)

 
where 

        )z(vIux∈∧)x(vIu ARzAN  ,    (17) 

 
 

    )z(vIux∈∨)x(vIu ARzAN  .    (18)
 

So,
 
    )x(vIu AN and  

 
)x(vIu AN are neutrosophic hyper-complex number of 

dimension n.  

Here  and   denote ‘max’ and ‘min’ operators respectively.   )z(vIu A and

  )z(vIu A are the neutrosophic hyper-complex sets of dimension n of z with 

respect to A. ( )AN and ( )AN are two neutrosophic hyper-complex sets of 

dimension n in Z. 

Thus, NS mappings ,N N : N(Z)N(Z) are respectively referred to as the 

lower  and  upper  rough neutrosophic hyper-complex approximation 

operators, and the pair ))A(N),A(N( is called the rough neutrosophic hyper-

complex set in (Z, R). 

Based on the above mentioned definition, it is observed that )A(N and )A(N  

have constant membership on the equivalence clases of R, if );A(N=)A(N  i.e.

    )x(vIu AN =  
 

)x(vIu AN .
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Definition 3.2 

Let N(A) = ( )A(N),A(N ) is a rough neutrosophic hyper-complex set in (Z, R). 

The rough complement of N(A) is denoted by ),)A(N,)A(N(=)A(N~ cc where 
c)A(N and c)A(N are the complements of neutrosophic hyper-complex set of 

)A(N and )A(N respectively.   

       ,Z∈x,/)x(I1vu,xAN AN
c      (19) 

and  

    
 

Z∈x,/)x(I1vu,xAN AN
c 

         
(20)

 
Definition 3.3 

Let )B(Nand)A(N  be two rough neutrosophic hyper-complex sets,  

respectively in Z, then the following definitions holds: 

)B(N)A(N∧)B(N)A(N⇔)B(N)A(N      (21) 

)B(N⊆)A(N∧)B(N⊆)A(N⇔)B(N⊆)A(N     (22) 

>)B(N)A(N,)B(N)A(N<=)B(N)A(N     (23) 

>)B(N)A(N,)B(N)A(N<=)B(N)A(N  .   (24) 

If A, B, C are the rough neutrosophic hyper-complex set in (Z, R), then  the 

following propositions are stated from definitions: 

Proposition 1 

I. ~A(~A) = A       (25) 

II. )B(N)A(N         (26) 

III.      )B(N~)A(N~)B(N)A(N~       (27) 

IV.       )B(N~)A(N~)B(N)A(N~       (28) 

V.       )B(N~)A(N~)B(N)A(N~       (29) 

VI.      )B(N~)A(N~)B(N)A(N~       (30) 

Proof I 

If N(A) = )]A(N),A(N[  is a rough neutrosophic hyper-complex set in (Z, R), the 

complement of N(A) is the rough neutrosophic hyper-complex set defined as 

follows: 
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       ,Z∈x,/)x(I1vu,xAN AN
c      (31) 

and  

    
 

Z∈x,/)x(I1vu,xAN AN
c 

          
       (32)  

From this definition, we can write: 

~A(~A) = A.        (33) 

Proof II  

The lower and the upper approximations of A in the approximation (Z, R) 

denoted by  AN  and  AN  are respectively defined as follows: 

       ,Z∈x,/)x(I1vu,xAN AN
c      (34) 

and  

    
 

Z∈x,/)x(I1vu,xAN AN
c  ,    (35)

 

where 

        )z(vIux∈∧)x(vIu ARzAN  ,      (36) 

 
 

    )z(vIux∈∨)x(vIu ARzAN  .     (37)
 

So,  

 AN   AN .         (38) 

Proof III 

Consider: 

x   )B(N)A(N~    

 x  )A(N~ and x  )B(N~  

  x     )B(N~)A(N~   

  x     )B(N~)A(N~   

      )B(N~)A(N~)B(N)A(N~   .    (39) 

Again, consider: 

y      )B(N~)A(N~   

 y  )A(N~ or y  )B(N~  

  y   )B(N)A(N~   

       )B(N~)A(N~)B(N)A(N~   .    (40) 
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Hence,  

      )B(N~)A(N~)B(N)A(N~   .    (41) 

Proof IV 

Consider: 

x   )B(N)A(N~   

 x  )A(N~ or x  )B(N~  

  x     )B(N~)A(N~   

  x     )B(N~)A(N~   

      )B(N~)A(N~)B(N)A(N~       (42) 

Again, consider: 

y      )B(N~)A(N~   

 y  )A(N~ and y  )B(N~  

  y   )B(N)A(N~   

       )B(N~)A(N~)B(N)A(N~   .    (43) 

Hence,  

      )B(N~)A(N~)B(N)A(N~   .    (44) 

Proof V  

Consider: 

x   )B(N)A(N~   

 x  )A(N~ and x  )B(N~  

  x     )B(N~)A(N~   

  x     )B(N~)A(N~   

      )B(N~)A(N~)B(N)A(N~   .    (45) 

Again, consider: 

y      )B(N~)A(N~   

 y  )A(N~ or y  )B(N~  

  y   )B(N)A(N~   

      )B(N~)A(N~)B(N)A(N~   .    (46) 



119 

 

 
Critical Review. Volume XIII, 2016 

Kalyan Mondal, Surapati Pramanik, Florentin Smarandache  

Rough Neutrosophic Hyper-complex Set and its Application to Multi-attribute 

Decision Making     

 

Hence,  

      )B(N~)A(N~)B(N)A(N~   .     (47) 

Proof VI 

Consider: 

x   )B(N)A(N~   

 x  )A(N~ or x  )B(N~  

  x     )B(N~)A(N~   

  x     )B(N~)A(N~   

      )B(N~)A(N~)B(N)A(N~   .    (48) 

Again, consider:  

y      )B(N~)A(N~   

 y  )A(N~ and y  )B(N~  

  y     )B(N~)A(N~   

       )B(N~)A(N~)B(N)A(N~   .    (49) 

Hence,  

      )B(N~)A(N~)B(N)A(N~   .     (50) 

Proposition 2 

I. ~ [N(A)   N(B)] = (~ N(A)) (~N(B));   (51) 

II. ~ [N(A)   N(B)] = (~ N(A))  (~N(B)).    (52) 

Proof I 

~[N(A)   N(B)]  

=  )B(N)A(N),B(N)A(N~   

=     )Q(N)P(N~,)Q(N)P(N~   

= (~ N(A)) (~N(B))       (53) 

Proof II 

~[N(A)   N(B)]  

=  )B(N)A(N),B(N)A(N~   
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=     )B(N)A(N~,)B(N)A(N~   

= (~ N(A)) (~N(B))       (54) 

4 Rough neutrosophic hyper-complex  

cosine function (RNHCF) 

The cosine similarity measure is calculated as the inner product of two 

vectors divided by the product of their lengths. It is the cosine of the angle 

between the vector representations of two rough neutrosophic sets. The 

cosine similarity measure is a fundamental measure used in information 

technology. Now, a new cosine function between rough neutrosophic hyper-

complex sets has been proposed as follows. 

Definition 4.1 

 Assume that there are two rough neutrosophic hyper-complex sets 

     
 

)x(vIu),x(vIuA ANAN  ,     (55) 

and 

     
 

)x(vIu),x(vIuB BNBN       (56) 

in X = {x1, x2, …, xn).  

Then rough neutrosophic hyper-complex cosine function between two sets A 

and B is proposed as follows: 

)B,A(CRNHCF = 

           







n
1i

2
iB

2
iB

2
iB

2
iA

2
iA

2
iA

iBiAiBiAiBiA

)x(I)x(v)x(u)x(I)x(v)x(u

)x(I).x(I)x(v).x(v)x(u).x(u
n
1

 

  (57) 

where 

 )x(u iA    
,uu.5.0 )ix(AN)ix(AN       (58) 

 )x(u iB    
,uu.5.0 )ix(BN)ix(BN       (59)

 

 )x(v iA    
,vv.5.0 )ix(AN)ix(AN       (60) 

 )x(v iB    
,vv.5.0 )ix(BN)ix(BN       (61) 

 )x(I iA  
   

,II.5.0 )ix(AN)ix(AN       (62) 

 )x(I iB  
   

.II.5.0 )ix(BN)ix(BN       (63)
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Proposition 3 

Let A and B be rough neutrosophic sets; then: 

1)B,A(C0.I RNHCF        (64)
 

)A,B(C)B,A(C.II RNHCFRNHCF 
   

     (65)
                             

III.    CRNHCF(A, B) = 1, if and only if A = B   (66) 

IV.  If C is a RNHCF in Y and CBA  then, CRNHCF(A, C)   CRNHCF(A, 

B) , and CRNHCF(A, C)   CRNHCF(B,C).     (67) 

Proofs  

I.  It is obvious because all positive values of cosine function are within 0 and 

1 

II.  It is obvious that the proposition is true.  

III.  When A = B, then obviously CRNHCF(A, B) = 1. On the other hand if CRNHCF(A, 

B) =1 then,  )x(T iA )x(T iB ,  )x(I iA )x(I iB ,  )x(F iA ( ).B iF x  
This implies that A = B. 

IV.  If CBA  then we can write: 

      )x(u)x(u)x(u iCNiBNiAN  ,     (68) 

     
)x(u)x(u)x(u iCNiBNiAN  ,      (69) 

      )x(v)x(v)x(v iCNiBNiAN  ,     (70) 

     
)x(v)x(v)x(v iCNiBNiAN  ,     (71) 

      )x(I)x(I)x(I iCNiBNiAN  ,      (72) 

     
)x(I)x(I)x(I iCNiBNiAN        (73) 

The cosine function is decreasing function within the interval 






 

2
,0 . Hence we 

can write CRNHCF(A, C)   CRNHCF(A, B) , and CRNHCF(A, C)   CRNHCF(B, C). 

If we consider the weights of each element xi, a weighted rough neutrosophic 

hyper-complex cosine function (WRNHCF) between two sets A and B can be 

defined as follows: 

)B,A(CWRNHCF = 

           







n
1i

2
iB

2
iB

2
iB

2
iA

2
iA

2
iA

iBiAiBiAiBiA
i

)x(I)x(v)x(u)x(I)x(v)x(u

)x(I).x(I)x(v).x(v)x(u).x(u
W

 

  (74) 

where 

 )x(u iA    
,uu.5.0 )ix(AN)ix(AN       (75) 
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 )x(u iB    
,uu.5.0 )ix(BN)ix(BN       (76)

 
 )x(v iA    

,vv.5.0 )ix(AN)ix(AN       (77) 

 )x(v iB    
,vv.5.0 )ix(BN)ix(BN       (78) 

 )x(I iA  
   

,II.5.0 )ix(AN)ix(AN       (79) 

 )x(I iB  
   

.II.5.0 )ix(BN)ix(BN       (80)
 

]1,0[Wi , i = 1, 2,…, n and 1Wn
1i i   . If we take

n
1W i , i = 1, 2,…, n, then:  

CWRNHCF(A, B) = CRNHCF(A, B)      (81) 

The weighted rough neutrosophic hyper-complex cosine function (WRNHCF) 

between two rough sets A and B also satisfies the following properties: 

1)B,A(C0.I WRNHCF        (82)
 

)A,B(C)B,A(C.II WRNHCFWRNHCF 
     

     (83)
                             

III.    CWRNHCF(A, B) = 1, if and only if A = B    (84) 

IV.    If C is a WRNHCF in Y and CBA  then, CWRNHCF(A, C)   
CWRNHCF(A, B) , and CWRNHCF(A, C)   CWRNHCF(B, C)   (85) 

5 Decision making procedure based on rough hyper-complex 

neutrosophic function 

In this section, we apply rough neutrosophic hyper-complex cosine function 

between RNHSs to the multi-attribute decision making problem. Let A1, A2, …, 

Am be a set of alternatives and C1, C2, …, Cn be a set of attributes. The 

proposed decision making method is described using the following steps. 

Step1: Construction of the decision matrix with rough neutrosophic hyper-

complex number  

The decision maker considers a decision matrix with respect to m 

alternatives and n attributes in terms of rough neutrosophic hyper-complex 

numbers, as follows: 

 nmijij dm,dmDM
 

mnmn2m2m1m1mm

n2n2222221212

n1n1121211111

n21

dm,dm...dm,dmdm,dmA
.............
.............

dm,dm...dm,dmdm,dmA

dm,dm...dm,dmdm,dmA
CCC 

                           (86)
 

Table 1. Rough neutrosophic hyper-complex decision matrix. 
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Here ijij dm,dm is the rough neutrosophic hyper-complex number according 

to the i-th alternative and the j-th attribute.  

Step2: Determination of the weights of attribute  

Assume that the weight of the attributes C (j = 1, 2, … , 𝑛) considered by the 

decision-maker be wj (j = 1, 2, … , 𝑛) such that  ∀wj ∈ [0, 1] (j = 1, 2, …, n) and 

1wn
1j j   .  

Step 3: Determination of the benefit type attribute and cost type attribute  

Generally, the evaluation attribute can be categorized into two types: benefit 

attribute and cost attribute. Let K be a set of benefit attribute and M be a set 

of cost attribute. In the proposed decision-making method, an ideal 

alternative can be identified by using a maximum operator for the benefit 

attribute and a minimum operator for the cost attribute to determine the best 

value of each criterion among all alternatives. Therefore, we define an ideal 

alternative as follows: 

𝐴* = {C1*, C2*, … , Cm*},      (87) 

Benefit attribute:  









)Ai(
Cji

)Ai(
Cji

)Ai(
Cji

*
j Imin,vmax,umaxC .     (88) 

Cost attribute: 









)Ai(
Cji

)Ai(
Cji

)Ai(
Cji

*
j Fmax,Imin,TminC

      
(89)

 

where 

)Ai(
C j

u =        iANjCiANjC uu.5.0  ,     (90) 

 )Ai(
Cjv =        iANjCiANjC vv.5.0  ,     (91) 

and  

)Ai(
C jI =        iANjCiANjC II.5.0  .      (92) 

Step4: Determination of the over all weighted rough hyper-complex 

neutrosophic cosine function (WRNHCF)of the alternatives 

Weighted rough neutrosophic hyper-complex cosine function is given as 

follows: 

CWRNHCF(A, B) =  B) (A,CWRNHCF
n

1j jW       (93) 
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Step5: Ranking the alternatives 

Using the weighted rough hyper-complex neutrosophic cosine function 

between each alternative and the ideal alternative, the ranking order of all 

alternatives can be determined and the best alternative can be easily selected 

with the highest similarity value. 

Step 6: End 

6 Numerical Example 

Assume that a decision maker (an adult man/woman who is eligible to 

marry) intends to select the most suitable life partner for marriage from the 

three initially chosen candidates (S1, S2, S3) by considering five attributes, 

namely: physical and mental health C1, education and job C2, management 

power C3, family background C4, risk factor C5.  

Based on the proposed approach discussed in section 5, the considered 

problem has been solved using the following steps: 

Step1: Construction of the decision matrix with rough neutrosophic hyper-

complex numbers  

The decision maker considers a decision matrix with respect to three 

alternatives and five attributes in terms of rough neutrosophic hyper-

complex numbers shown in  the Table 2. 

 53ijij dm,dmDM  

   ))i32(7.0)i21((
)),i(9.0)i1((

))i35(42.0)i21((
)),i43(48.0)i1((

))i23(4.0i2(
)),i1(6.0i(

))i6(51.0)i2((
)),i5(69.0)i2((

))i31(4.0i3(
)),i1(5.0i2(

A

))i34(78.0i2(
)),i2(82.0)i1((

))i34(48.0i2(
)),i32(52.0i(

))i31(2.0)i2((
)),i2(3.0i2(

))i3(45.0)i21((
)),i(55.0)i1((

))i31(5.0i3(
)),i21(6.0i(

A

))i33(72.0)i31((
)),i32(78.0i3(

))i2(45.0)i4((
)),i1(55.0i4(

))i32(2.0)i21((
)),i2(4.0)i1((

))i3(55.0)i21((
)),i2(65.0)i1((

))i2(4.0i2(
)),i1(6.0i(

A

CCCCC

3

2

1

54321





























































(94) 

where, i -1.   

Table 2. Decision matrix with rough neutrosophic hyper-complex number. 

                                                 

Step 2: Determination of the weights of the attributes  

The weight vectors considered by the decision maker are 0.25, 0.20, 0.25, 

0.10,  and 0.20 respectively.  
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Step 3: Determination of the benefit attribute and cost attribute  

Here four benefit types attributes C1, C2, C3, C4 and one cost type attribute C5. 

Using equations (12) and (13) we calculate A* as follows: 

A* = [(5.00, 2.69, 0.45), (4.47, 5.50, 0.50), (3.60, 2.83, 0.25),  

(6.40, 5.30, 0.45), (3.16, 2.24, 0.80)] 

Step 4: Determination of the over all weighted rough hyper-complex 

neutrosophic similarity function (WRHNSF)of the alternatives 

We calculate weighted rough neutrosophic hyper-complex similarity values 

as follows: 

SWRHCF(A1, A*) = 0.9622; 

SWRHCF(A2, A*) = 0.9404; 

SWRHCF(A3, A*) = 0.9942. 

Step 5: Ranking the alternatives 

Ranking the alternatives is prepared based on the descending order of 

similarity measures. Highest value reflects the best alternative. 

Here,  

SWRHCF(A3, A*)   SWRHCF(A1, A*)   SWRHCF(A2, A*).  (95) 

Hence, the decision maker must choose the candidate A3 as the best 

alternative for marriage. 

Step 6: End 

7 Conclusion  

In this paper, we have proposed the rough neutrosophic hyper-complex set 

and the rough neutrosophic hyper-complex cosine function, and proved some 

of their basic properties.  

We have also proposed the rough neutrosophic hyper-complex similarity 

measure based multi-attribute decision making.  

We have presented an application, namely selection of best candidate for 

marriage for Indian context.  

The concept presented in this paper can be applied for other multiple 

attribute decision making problems in rough neutrosophic hyper-complex 

environments. 
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