


 

 
 
 

Dual Numbers 
 
 
 
 

 

 

W. B. Vasantha Kandasamy 
Florentin Smarandache 

 
 
 
   
 
 
 
 
 
 

ZIP PUBLISHING  
Ohio  
2012 



 2

This book can be ordered from: 
 
   Zip Publishing  

1313 Chesapeake Ave.  
Columbus, Ohio 43212, USA 
Toll Free: (614) 485-0721 
E-mail: info@zippublishing.com 
Website: www.zippublishing.com 

 
 
Copyright 2012 by Zip Publishing and the Authors 
 
 
 
Peer reviewers:  
Prof. Cai Wen, Institute of Extenics and Innovative Methods, Guangzhou, 
Guangdong University of Technology, P.R. China. 
Prof. Yang Chunyan, Institute of Extenics and Innovative Methods, Guangzhou,
P.R. China. 
Prof. Weihua Li, Institute of Extenics and Innovative Methods, Guangzhou,
P.R. China.
Prof. Xingsen Li, Zhejiang University, Zhejiang, P.R. China 
 
 
 
 
 
 
 
 
Many books can be downloaded from the following 
Digital Library of Science: 
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm 
 
 
 
 
 
 
ISBN-13: 978-1-59973-184-1 
EAN:  9781599731841 
 
 
 
 
Printed in the United States of America 



 3 

 

 
 

 

 

CONTENTS 

 
 
 
 
 
Dedication    5 
 
Preface   7 
 
 
Chapter One 
INTRODUCTION   9 
 
  
Chapter Two 
DUAL NUMBERS  11 
 
 
Chapter Three 
HIGHER DIMENSIONAL DUAL NUMBERS  55 
 
 
Chapter Four 
DUAL INTERVAL NUMBERS  
AND INTERVAL DUAL NUMBERS  89 
 
 



 4

Chapter Five 
APPLICATION OF THESE  
NEW TYPES OF DUAL NUMBERS  129 
 
 
Chapter Six 
SUGGESTED PROBLEMS  131 
 
 
FURTHER READING    153 
  
INDEX  156 
 
ABOUT THE AUTHORS  159 
 



 5 

 
 
 
 
 

DEDICATION  
 
 
 

 
 

 
 

WILLIAM KINGDON CLIFFORD  
(1845 –1879) 



 6

 
 
 
 
 


 

We dedicate this book to  
William Kingdon Clifford (1845-1879),  
English mathematician and philosopher  

who invented dual numbers.  
Though he died really young,  

he left a profound and lasting impact  
on this world.  

Remembered today for his work  
on Clifford Algebras and  

his theory of graphs,  
he has been acknowledged  

for anticipating and foreshadowing  
several modern concepts.  

His pioneering ideas on the Space-Theory of Matter  
played a significant role in  

Albert Einstein's development of the Theory of Relativity.  
The authors take pride in remembering WK Clifford, a 

mathematician whose work was highly influential. 
 


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PREFACE 
 
 
 
 

Dual numbers was first introduced by W.K. Clifford in 1873. This 

nice concept has lots of applications; to screw systems, modeling plane 

joint, iterative methods for displacement analysis of spatial mechanisms, 

inertial force analysis of spatial mechanisms etc.  

 

In this book the authors study dual numbers in a special way. The 

main aim of this book is to find rich sources of new elements g such that 

g2 = 0. The main sources of such new elements are from Zn, n a 

composite number. We give algebraic structures on them.  

 

This book is organized into six chapters. The final chapter suggests 

several research level problems. Fifth chapter indicates the applications 

of dual numbers. The forth chapter introduces the concept of interval 

dual numbers, we also extend it to the concept of neutrosophic and 
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fuzzy dual numbers. Higher dimensional dual numbers are defined, 

described  and developed in chapter three. Chapter two gives means and 

methods to construct the new element g such that g2 = 0. The authors 

feel Zn (n a composite positive integer) is a rich source for getting new 

element, the main component of the dual number x = a + bg.   

 

We thank Dr. K.Kandasamy for proof reading and being extremely 

supportive. 

  

  
W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

  



 
 
 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
In this book the authors study more properties about dual 
numbers. This concept was first defined / described by W.K. 
Clifford in 1873. Applications of this were studied by A.P. 
Kotelnikov in 1895. 
 Here we develop algebraic structures on dual numbers and 
give means to generate dual numbers. Further higher 
dimensional dual numbers are defined. We further define 
interval dual numbers, fuzzy dual numbers, neutrosophic dual 
numbers and finite complex modulo integer neutrosophic dual 
numbers. 
 We give here the references which would be essential to 
read this book. 
 In the first place we make use of semigroups, semirings and 
semivector spaces [17-19]. Also the notion of null semigroup 
and null rings are used [20]. We also make use of the modulo 
integers and finite complex modulo integers [15]. 
 Finally the concept of neutrosophic numbers are used [10, 
17]. The notion of natural class of intervals and neutrosophic 
class of intervals and their fuzzy analogue are used for which 
the reader is requested to refer [17].  
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 However we in this book use the dual number x = a + bg 
where g is a new element such that g2 = 0 and so all powers are 
zero, that is g3 = g4 = g5 = … = gn = … = 0 and 0g = g0 = 0, 
where a and b are reals for the given x; a and b are uniquely 
determined pair [2, 8]. 
 We define x = x1 + x2g1 + x3g2 where x1, x2 and x3 are reals; 
g1 and g2 are new elements such that 2

1g  = 0 and 2
2g  = 0 with 

g1× g2 = g2 ×g1 = 0 to be a three dimensional dual number. 
 Suppose x = x1 + x2g1 + x3g2 + … + xngn–1 where xi’s are 
reals 1  i  n, gj’s are new elements; 1  j  n – 1 such that  

2
jg  = 0 with gjgi = gigj = 0 if i  j; 1  i, j  n – 1 we define x to 

be a n-dimensional dual number. We generate dual numbers of 
any desired dimension using m  n matrices, m and n are finite 
integers such that m > 1 and n > 1. 
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Chapter Two 
 
 

 
 
DUAL NUMBERS 
 
 
 
In this chapter we introduce a new notion called general dual 
number ring and derive a few properties about them.  These 
dual number general ring can be ring of matrices or 
polynomials. 
 
DEFINITION 2.1:   A commutative ring R is said to be a general 
dual number commutative ring if every element in R is of the 
form a + be where a, b  R and e is a new element such that  
e2 = (0) and this e is unique and e  0.  
 
 We will first illustrate this situation by some examples. 
 
Example 2.1:  Let Z be the ring of integers.  G = {{0, 1, 2}  Z4 
where g2 = 2 so that 2

2g   22  0 (mod 4) and g1 = 1} be the 
semigroup under product, where g2 is the new element.  ZG be 
the semigroup ring of the semigroup G over the ring Z  with a.0 
= 0 and a.1 = a for all a  Z.  ZG = {a + bg2 | a, b  Z and g2  
G} is a ring such that (a + bg2)2 = a2 + b2 2

2g  + 2abg2 = a2 + 
2abg2.  RS is a general dual number ring. 
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Example 2.2:   Let R be the ring of reals.   
S = {{0, 1, 3}  Z9 | 32  0 (mod 9) denote 1 by h1 = 1, 3 by h3}, 
h3 is the new element. S is a semigroup under product.  RS be 
the semigroup ring.  RS = {a + bh3 | a, b  R, h3  S, 2

3h  = 0} is 
a general dual number ring. 
 
Example 2.3:  Let Q be the field of rationals.   

T = {{0, 1, 4}  Z16 with the notion t1 = 1, 4 = t4}; t4 is the 
new element of the semigroup under multiplication modulo 16.  
QT the semigroup ring is a general dual number ring.  
 
 These three dual general number rings are of infinite order. 
 
THEOREM 2.1:  Let R be a commutative ring of characteristic 
zero with unit (that is R = Q or Z or R only).   

S = {1, g, 0 | g2 = 0} be a semigroup under product, with g 
the new element. RS be the semigroup ring.  RS is a dual 
number general ring. 
 
Proof:  RS = {a + bg | a, b  R}, we see every x  RS is such 
that x = a + bg with g2 = 0.  Further if x = a + bg and y = c + dg  
then; 
  x + y   = (a + bg) + (c + dg) 
    = (a + c) + (b + d)g  R. 

xy  = (a + bg) (c + dg) 
= ac + bcg + dag + dbg2  
= ac + (bc + da) g  R. 

Also    x2  =  (a + bg)2  
       = a2 + b2 g2 + 2abg 
       = a2 + 2bag. 
 
 Thus RS is a ring in which every element is of the form a + 
bg with g2 = 0 and a, b  RS as R  RS and S  RS.  Hence RS 
is a general dual number ring.  
  
 We now proceed onto define modulo dual numbers. 
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DEFINITION 2.2:  Let x = a + bg be such that a, b  Zn \ {0}  
(1 < n < ) be the modulo integers and g be such that g2 = 0,  
g a new element. We define x = a + bg to be the dual modulo 
numbers if both a and b are modulo numbers. 
 
Example 2.4:  Let x = a + bg where g = 10 (mod 100)  Z100 
and a, b  Z7 \ {0}.  Every x = a + bg is such that g2 = 100 (mod 
100)  0 is a dual modulo number as a and b are modulo 
integers.   

We now define dual general modulo number ring. 
 
DEFINITION 2.3:  Let F = Zp (p an odd prime) be a finite field.  
S = {0, 1, g | 1.g = g.1 = g and g2 = 0} be a semigroup under 
product.  FS be the semigroup ring of the semigroup S over the 
field F.  Every element a + bg in FS with a  0 and b  0 in F is 
such that (a+bg)2 = a2 + 2abg = c+dg, c, g  F is a dual 
modulo element and the ring FS is defined as the general dual 
modulo integer ring.  
 
 We illustrate this situation by some example. 
 
Example 2.5:  Let F = Z5 be the field of characteristic five.  
S = {0, 1, g = 9 | 9  Z81} be a semigroup under product.  The 
semigroup ring FS is a general dual modulo number ring. 
 
Example 2.6:  Let F = Z23 be the field of characteristic twenty 
three. S = {0, 1, 4 = g | g = 4  Z16} be a semigroup under 
product.  FS the semigroup ring is a general dual modulo integer 
number ring. For every element a + bg (a, b  Z23 \ {0}) is a 
dual element of FS. 
 
 The following results are interesting and important while 
working with dual numbers. 
 
THEOREM 2.2:  Let S be a general dual number ring.  Suppose 
a + bg and d + eg are elements in S with a, b, d, e  S \ {0} and 
g2 = 0 then the sum of (a + bg) + (d + eg) in general need not 
be of the form x + yg (x, y  S \ {0}). 
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Proof:   We have two cases to deal with  
 

(1) S is an infinite general dual number ring. 
(2) S is a finite modulo integer general dual number 

ring. 
 
Case 1:   Suppose S is an infinite general dual ring.  We know 
(S, +) is an abelian group.  Thus if a + bg  S (a, b  S \ {0}) 
then –a + b1g  S (–a, b1  S \ {0}).  
 

a1 + (–bg)  S (a1, –b  S \ {0}) and –a –bg  S. 
 
 Now (a + bg) + (–a + b1g) = (b+b1)g  S but (b + b1)g is not 
of the form x + yg. 
 
 Likewise we see a + bg and a1 + –bg   S and  

(a + bg) + (a1 – bg) = (a + a1)  S but (a + a1) is not in the 
form x + yg.  
 
 Finally (a + bg) and –a –bg is in S and their sum is 0.  Thus 
the sum of two dual numbers in general is not be a dual number. 
 
Case (ii):   Suppose S be a finite modulo integer general dual 
number ring. 
 
 Let a + bg be in S such that a, b  S \ {0}.   

Consider (n–1)a + b1g  S, with b1  (n–1)b  S \ {0}. 
 
 We see a + bg + (n–1)a + b1 g  
   = (a + (n–1)a + (b+b1)g) (mod n) 
   = 0 + (b1 + b)g (mod n). 
 
 Thus (b1 + b)g is not a dual number. 
 
 Likewise for a + bg (a, b  S \ {0}) take a1 + (n–1) bg  S, 
we see a + bg + a1 + (n–1)bg = (a + a1) (mod n) where  
a1  (n–1) a and is in S \ {0}.   
 

Hence the claim. 
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 Finally for a + bg we have (n–1)a + (n–1)bg in S is such 
that a + bg + (n–1)a + (n–1)bg (mod n) = 0.  Thus we see sum 
of two general dual numbers in general is not a dual number. 
 
 We will however in the later part of the book develop an 
algebraic structure different from a ring where the sum of two 
dual numbers is also a dual number. 
 
Example 2.7:  Let F = Q the field of rationals.   

S = {0, 1, 8 = g | g = 8  Z16} be a semigroup under 
product.  FS be the semigroup ring of the semigroup S over the 
ring F.   

 
Consider 5 + 8g in S, we see –5 + 9g  S is such that  

5 + 8g + (–5 + 9g) = 17g  S and 17g is not a general dual 
number. 
 
 Likewise 12 + 15g and –3 + (–15g)  S but their sum  
12+(–3) + (15g) + (–15g) = 9  S is not a general dual number. 
 
Example 2.8:  Let F = Z17 be the field of characteristic 17.   
S = {0, 1, g = 6 | g = 6  Z12} be a semigroup under product.  
FS be the semigroup ring.  Consider 8 + g and 9 + 3g  FS; we 
see their sum (8 + g) + (9 + 3g) (mod 17) = 4g  FS but 4g is 
not a general dual number. 
 
THEOREM 2.3:  Let FS be a general dual number semigroup 
ring where F is a field.  Suppose a + bg and x + dg  FS then 
(a + bg) (x + dg) is a general dual number if and only if  
bx + ad  0 (or bx  –ad) a, b, x, d  F \ {0}. 
 
Proof:  Suppose a + bg and x + dg  FS with (a, b, x, d  F \ 
{0}),  then (a + bg) (x + dg) = ax + (bx + ad)g. 
 
 ax + (bx + ad)g is a general dual number if and only if  
bx + ad  0 since ax  0 as a, x  F \ {0} and F is a field. 
 
Corollary 2.1:  If F is not a field but a ring with zero divisors 
the above result is not valid. 
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 Throughout this chapter we have assumed F to be Z or Q or 
R or Zp (p a prime) and never a ring with zero divisors. 
 
Can we define a dual number ring P = {a + bg | a, b  F \ {0}}? 
 
 The answer is no for if we assume P to have a ring structure 
it becomes essential that (P, +) is an abelian group which in turn 
forces for every a + bg we need c + dg  P such that  
(a + bg) + (c + dg) = (a + c) + (b + d)g and  
 

(a + bg) (c+dg) = ac + (bc + da)g are in P, but it is natural a 
+ c = 0 and or b + d = 0 can occur likewise bc + da = 0 or ac = 0 
can also occur so even if b + d = 0 or bc + da = 0 we have in P 
the number associated with g viz b is 0 hence P cannot be a dual 
ring it can only be a general dual ring that is in P we allow a  P 
and bg  P (a, b  F \ {0}).   

 
However we have algebraic structures P in which every 

element is of the form a + bg where a and b are different from 0 
and g is a new element such that g2 = 0 and that P will not be a 
ring. This concept will be discussed in this book. 
 
 Note we call a + bg to be a dual number and we demand 
both a and b to be numbers and g such that g2 = 0 where g is a 
new element.  Infact we have infinite collection of general dual 
number rings which are constructured using semigroups and 
rings Z or Q or R or Zp (p a prime). 
 
 We now proceed onto define dual number matrix and dual 
number polynomials. 
 
DEFINITION 2.4:  Let x = a + bg be such that a = (a1, …, an) 
and b = (b1, …, bn) where ai, bj   R or Z or Q or Zp (p a prime), 
with g a new element such that g2 = 0.  We define x = a + bg to 
be a general dual row vector (matrix) number if x2 = c + dg,  
c and d are non zero row matrices. 
 
 First we will illustrate this situation by some simple 
examples. 
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Example 2.9:  Let x = (3, 7, 8, 1, 5) + (9, 1, 0, 2, –1)g where  
g = 7  Z49.  The row matrix takes its values from Z.  We see  
x2 = (9, 49, 64, 1, 25) + 2 (27, 7, 0, 2, –5)g = (9, 49, 64, 1, 25) + 
(54, 14, 0, 4, –10)g (since g is such that g2  0 (mod 49)), x is a 
general row matrix dual number. 
 
Example 2.10:  Let x = (3, 5, 1, 2) + (–4, 3, –7, 9)g where g = 3 
 Z9 be a general row matrix dual number.  
 
 A natural question would be, can g be a matrix which we 
have considered.  The answer is yet but it will only be a general 
dual number provided the numbers are from Z or Q or R. 
 
 We will only illustrate this situation by some examples. 
 
Example 2.11:  Let x = 9 + 8 (3, 6, 0) where (3, 6, 0  Z9), 9, 8 
 Z.  x is a dual number for the new element is such that  
(3, 6, 0) (3, 6, 0) = (0,0, 0) (mod 9). 
 
Example 2.12:  Let x = 3 + 4 (8, 4, 12, 8, 0, 4) where 3, 4  Z17 
and 8, 4, 12  Z16.  We see x is only a dual number and  
x2 = 9 + 16 (0 0 0 0 0 0) (as 82  0 (mod 16), 42  0 (mod 16), 
122  0 (mod 16) and 82  0 (mod 16)) + 24 (8, 4, 12, 8, 0, 4) 
(mod 17); x = 9 + 7 (8, 4, 12, 8, 0, 4) is a general dual modulo 
number.   
 

A natural question would be can be have for the dual 
number g to be a column matrix; yes provided we assume that 
the product is the natural product n on the column matrices.   
  

We will illustrate this by some examples. 
 

Example 2.13:  Let x = 2 + 7 

3
6
0
6
6

 
 
 
 
 
 
  

; 3, 6  Z9 where 

3
6
0
6
6

 
 
 
 
 
 
  
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is a nilpotent new element of order two.    
 

We see x2 = 

3
6

2 7 0
6
6

  
  
  
  
  
  
    

3
6

2 7 0
6
6

  
  
  
  
  
  
    

 

 

= 4 + 49 

0
0
0
0
0

 
 
 
 
 
 
  

 + 28 

3
6
0
6
6

 
 
 
 
 
 
  

 

 

                 = 4 + 28

3
6
0
6
6

 
 
 
 
 
 
  

; here g = 

3
6
0
6
6

 
 
 
 
 
 
  

 

 
is a column matrix with entries from Z9 and under the natural 
product n. 

 
 

Thus 

3
6
0
6
6

 
 
 
 
 
 
  

  

3
6
0
6
6

 
 
 
 
 
 
  

 = 

9(mod9)
36(mod9)
0(mod9)

36(mod9)
36(mod9)

 
 
 
 
 
 
  

 =

0
0
0
0
0

 
 
 
 
 
 
  

. 

 
Thus g can be a choosen column matrix which is a new 

element that gives dual numbers. 
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Example 2.14:  Let  
 

x = 10 + (–3) 

8
4

12
8
4

 
 
 
 
 
 
  

with 10, –3  Q and 4, 12, 8  Z16, 

 

where g = 

8
4

12
8
4

 
 
 
 
 
 
  

 is a new element such that g2 = (0). 

 

We see x2 = 100 – 60 

8
4

12
8
4

 
 
 
 
 
 
  

  using natural product on 

column matrices.   
 

Next we can also have g to be a m   n (m  n) rectangular 
matrix and still we get only a dual number provided g2 = (0). 

 
We will illustrate this situation by some examples. 

 
Example 2.15:  Let  
 

x = –3 + 

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 be such that –3  Q and 8, 4, 8  Z16. 
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4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 

 
 is the nilpotent element of order two. 

   

We see x2 = –9 +

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 n 

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 –6 

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 

 

= –9 + 

16 0 64
16 0 16
0 64 64
0 16 16

 
 
 
 
 
 

 – 6 

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

 

 

= –9 – 6 

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

, 

 
we have used natural product to find the value of x2. 
 
 
 

 Thus x is a dual number with g =

4 0 8
4 0 4
0 8 8
0 4 4

 
 
 
 
 
 

. 

 
 



Dual Numbers 21 
 
 
Example 2.16: Let  
 

x = 12 + 5 
3 6 0 6
6 6 6 6
3 3 3 0

 
 
 
  

 where 12, 5  Z and 3, 6  Z9 

we see x is a dual number and g = 
3 6 0 6
6 6 6 6
3 3 3 0

 
 
 
  

 is the new 

element such that g2 = g n g under the natural product of 
matrices.   
 

Finally we can replace the rectangular matrices by square 
matrices.  We can arrive g such that g2 = (0) is a nilpotent 
matrix under usual product or a nilpotent matrix under the 
natural product.  We describe both by some examples.  
However still those numbers will be known as the dual numbers 
only g is a square matrix with g2 = (0). 
   
Example 2.17:  Let  
 

x  = 3 + 7 
1 1
1 1

 
  

 g = 
1 1
1 1

 
  

  

 

g2 = 
1 1
1 1

 
  

 
1 1
1 1

 
  

 = 
0 0
0 0
 
 
 

 

 
under usual product.  However g2  (0) under natural product, 
n. 
 
 However x is a dual number. 
 
 We have nice theorem for square matrices with entries from 
Q or Z or R. 
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THEOREM 2.4:  x = a + b (mij)nn = a + bA where A = (mij) is a 
dual number if and only if A  A = (mij)  (mij) = (0) that is if 
and only if A is a nilpotent matrix under usual product. 
 
 Proof is direct and hence left as an exercise to the reader.   
 

Note however a matrix nilpotent under usual product will 
not be nilpotent under natural product n. 
 
Example 2.18:  Let  
 

x = 9 + 3 
4 8 12

12 4 0
8 4 12

 
 
 
 
 

  

 
where 4, 8, 12  Z16 we find  
 

4 8 12
12 4 0
8 4 12

 
 
 
 
 

 n 
4 8 12

12 4 0
8 4 12

 
 
 
 
 

 

 

(under natural product) = 
0 0 0
0 0 0
0 0 0

 
 
 
 
 

 so that  

 

x2 = 81 + 54
4 8 12

12 4 0
8 4 12

 
 
 
 
 

. 

 
 Also under the usual matrix product  
 

x2 = 

2
4 8 12

9 3 12 4 0
8 4 12

  
    

    
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= 81 + 54
4 8 12

12 4 0
8 4 12

 
 
 
 
 

. 

 
 We have to make the study. If a square matrix A is such that 
A2 = (0) under usual product A n A = (0) 
 

However A = 
1 1
1 1

 
  

 is such that 

 

A2 = 
0 0
0 0
 
 
 

 under usual product; 

 

however A n A 
1 1
1 1
 
 
 

  (0). 

 
 The converse that is if A is such that A n A = (0) will  
A  A = (0).  This is to be studied ? 
 
 Now we can have the dual number to be a matrix e such that 
e2 = (0) and a + eb is such that (a+eb)2 = c + de for a, b, c and d 
reals. 
 
 Now e can also be polynomials p(x) with coefficients from 
Zn and e = p(x) with e2 = (0). 
 
 For take p(x) = 3x3 + 6x2 + 6 with p(x)  Z9[x] we see 
(p(x))2 = 0.  Thus a+bp(x), a, b  Z (or Q or R) is such that 
(a+bp(x))2 = c+dp(x) and (p(x))2 = 0. 
 
 Thus we wish to state in a dual number the new element e 
can be modulo integers or matrices or polynomials or even 
intervals or interval matrices. 
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 For take e = [3, 6]  Nc(Z9) we see e2 = [9, 36] (mod 9) = 
[0, 0] (mod 9). 
 Thus a + be is a dual number.  It is easily seen we can 
replace the interval by matrices A with interval entries such that 
A2 = (0) the product can be natural product in case of column 
matrices and rectangular matrices. 
 Interested reader can give examples of them as it is 
considered to be a matter of routine. 
 Now we continue the notion of dual matrix number A + Be 
where A and B are matrices of same order with e2 = 0, such that 
(A + Be)2 = C + De, D and C matrices of same order.  
 
 We illustrate this situation by some examples.  
 
Let  

x = 

3 2
7 0
1 4
5 3

 
 
 
 
 
 

 + 

2 1
1 2
5 0
8 1

 
 
 
 
 
 

g 

where g = 5  Z25.   
 

We see x2 = 2

3 2
7 0
1 4
5 3

 
 
 
 
 
 

 n  

2 1
1 2
5 0
8 1

 
 
 
 
 
 

g  

 

+ 

3 2
7 0
1 4
5 3

 
 
 
 
 
 

 n 

3 2
7 0
1 4
5 3

 
 
 
 
 
 

 +

2 1
1 2
5 0
8 1

 
 
 
 
 
 

 n 

2 1
1 2
5 0
8 1

 
 
 
 
 
 

 g  g   
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= 2

6 2
7 0
5 0
40 3

 
 
 
 
 
 

 g + 

9 4
49 0
1 16
25 9

 
 
 
 
 
 

 + 

4 1
1 4
25 0
64 1

 
 
 
 
 
 

  0 

 
 

= 

12 4
14 0
10 0
80 6

 
 
 
 
 
 

 g + 

9 4
49 0
1 16
25 9

 
 
 
 
 
 

. 

 
This is an example of a dual rectangular matrix number. 
 
 Consider  

y = 
3 1 4 2
0 5 3 7
 
 
 

  + 
7 0 1 2
1 1 1 3
 
 
 

g 

 
where  g = 6  Z12 and the matrices take their entries from Z (or 
Q or R).  We see y is a dual rectangular matrix number.   

 
Further  

y2 = 
9 1 16 4
0 25 9 49
 
 
 

 + 
42 0 8 8
0 10 6 42

 
 
 

g 

 
as g2 = 0 (mod 12). 
 
 
Example 2.19:  Let  
 

x = 
3 4 5
0 1 2
4 5 7

 
 
 
  

 + 
0 1 2
3 4 5
0 6 0

 
 
 
  

 g where g = 2  Z4. 
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 x2 = 

23 4 5
0 1 2
4 5 7

 
 
 
  

 + 
3 4 5
0 1 2
4 5 7

 
 
 
  

  
0 1 2
3 4 5
0 6 0

 
 
 
  

g +  

 
0 1 2
3 4 5
0 6 0

 
 
 
  

  
3 4 5
0 1 2
4 5 7

 
 
 
  

g + 

2
0 1 2
3 4 5
0 6 0

  
  
  
    

 g2  (g2 = 0) 

 

 = 
29 41 58
8 11 16
40 56 79

 
 
 
  

 + 
0 49 26
3 16 5

15 66 33

 
 
 
  

g + 
8 11 16
29 41 58
0 6 12

 
 
 
  

g 

 

 =  
29 41 58
8 11 16
40 56 79

 
 
 
  

 + 
8 60 42

32 57 63
15 72 45

 
 
 
  

g. 

 
 x is a dual square matrix number.  We can also using the 
same x find the square of x using natural product n on 
matrices;  
 

in that case x2 = 
9 16 25
0 1 4

16 25 49

 
 
 
  

 + 
0 8 20
0 8 20
0 60 0

 
 
 
  

g. 

 
 We see x2 under usual product is not equal to x2 under 
natural product n of square matrices. 
 
 Now we can find the dual polynomial number. 
 
 We take x = p(x) + q(x) g where g2 = 0 with  
p(x), q(x)  Z[x] (or R[x] or Q[x]).  We see x2 = r(x) + s(x)g 
where r(x), s(x)  Z[x] (or R[x] or Q[x]). 
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We will first illustrate this situation by some examples. 
 
Example 2.20:  Let M = (x3 + 2x + 1) + (x2 + 5x + 7)g where  
g = 10  Z20.  
 
Consider M2 = [(x3 + 2x + 1) + (x2 + 5x + 7)g)2  
=  (x3 + 2x + 1)2 + (x3 + 2x + 1) (x2 + 5x + 7)g. 
  
=   (x9 + 4x2 + 1 + 4x4 + 4x + 2x3) + (x5 + 2x3 + x2 + 5x4 +  

10x2 + 5x + 7x3 + 14x + 7)g 
 
=  (x9 + 4x4 + 2x3 + 4x2 + 1) + (x5 + 5x4 + 9x3 + 11x2 +  

19x + 7)g; 
  
 where the polynomials take their entries from Z[x] (or Q[x] 
or R[x]). 
 
Example 2.21:  Let n = (3x3 – 4x + 2) + (2x – 7)g where g = 8 
 Z16.   
We see n is a dual polynomial number.   
 
 n2  = (3x3 – 4x + 2)2 + 2(2x–7) (3x3 – 4x + 2)g 
  = (9x6 + 16x2 + 4 + 12x3 – 24x4 – 16x) +  

2 (6x4 – 21x3 – 8x2 + 28x + 4x – 14)g. 
 
 = (9x6 + 12x3 – 24x4 + 16x2 – 16x + 4) +  

(12x4 – 42x3 – 16x2 + 64x – 28)g   
 
is again in the form a = p(x) + q(x)g. 
 
 We can replace e by a matrix A such that A2 = (0) or a 
polynomial p(x) such that (p(x))2 = 0, still those will be dual 
matrix number or a dual polynomial number and so on.   
 

Now we proceed onto give algebraic structures on them. 
 
Let us proceed onto define structures on them. 
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Suppose M = {A + Bg | A, B  {set of all 1  n row 
matrices with entries from R or Q or Z} and g2 = 0}.  M is a 
general dual number row matrix ring. 
 If A, B is replaced by m  1 column matrix in M then M is a 
general dual number column matrix ring under natural product. 

 
 If A and B in M is replaced by m  n (m  n) matrices then 
M is a general dual number rectangular matrix ring.   
 

On similar lines we can define general dual number square 
matrix ring commutative under natural product n and a non 
commutative ring under usual product . 
 
 We will give examples of these rings in the following. 
 
Example 2.22:  Let  

P = {A + Bg | A, B  {set of all n  1 column matrices with 
entries from R or Q or Z} and g2 = 0} be a general dual number 
column matrix ring under natural product n. 
 
Example 2.23:  Let  
 

S = {A + Bg | A, B  {set of all m  n (m  n) 
 
matrices with entries from R or Q or Z} with g2 = 0} be the 
general dual number rectangular matrices dual number ring 
under natural product n. 
 
Example 2.24:  Let  
 

S = {A + Bg | A = 

1

2

7

a
a

a

 
 
 
 
 
 


 and B =

1

2

7

b
b

b

 
 
 
 
 
 


; ai, bj  Z (or Q or R)  

 
g = 3  Z9, 1  i, j  7} 
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be the dual column matrix ring under the usual product n.   
 
 

A = 

8
3
0
1
2
1

0

 
 
 
 
 
 
 
 
 
  

 and B = 

3
8

2
5
3
0
1

 
  
 
 
 
 
 
 
  

 then A + Bg = 

8
3
0
1
2
1

0

 
 
 
 
 
 
 
 
 
  

 + 

3
8

2
5
3
0
1

 
  
 
 
 
 
 
 
  

 g  S. 

 
 (A + Bg)2 = A2 + B2g2 + 2ABg (g2  0 (mod 9)) 
 
 = A2 + 2 ABg. 
 
 This way addition and natural multiplication is performed.  
S is a ring which is commutative. 
 
Example 2.25:  Let S = {A + Bg | A, B  3  3 square matrix 
with entries from Z or Q or R with g = 4  Z16, g2 = 0 (mod 
16)} be a ring which is commutative.  S is a non commutative 
dual square matrix number ring.  If the usual product is replaced 
by the natural product n then S is a commutative dual square 
matrix number ring. 
 
Example 2.26:  Let P = {A + Bg | A and B are 4  2 matrices 
with entries from Z or Q or R; with g = 5  Z25 such that g2  0 
(mod 25)} be the dual number commutative 4  2 matrix ring. 
  

Take x = 
2 0 1 5
7 3 0 2
 
 
 

 + 
1 2 0 3
0 1 5 0
 
 
 

g in P. 

 

 We find x2 = 
2 0 1 5 1 2 0 3

g
7 3 0 2 0 1 5 0

         
     
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= 
2 0 1 5
7 3 0 2
 
 
 

 
2 0 1 5
7 3 0 2
 
 
 

 + 

 

2
2 0 1 5
7 3 0 2
 
 
 

1 2 0 3
0 1 5 0
 
 
 

g + 

 

      
1 2 0 3
0 1 5 0
 
 
 

 
1 2 0 3
0 1 5 0
 
 
 

g2 

 

= 
4 0 1 25

49 9 0 4
 
 
 

 + 
4 0 0 30
0 6 0 0
 
 
 

g 

 
 (g2 = 0 so the last term is 0).  We see P is a dual 4  2 
matrix number ring. 
 
Example 2.27:  Let T = {A + Bg | A and B are 2  5 rectangular 
matrices with entries from Z (or Q or R) where g = 3  Z9 and  
g2  0 (mod 9)} be a dual number rectangular 2  5 matrix ring 
under natural product n. 
 

Let x = 
3 6 1 5 1
2 1 4 3 2

 
  

 + 
1 2 1 1 0
0 1 2 1 2
 
 
 

g  P, 

 
then  

 

x2 = 
9 36 1 25 1
4 1 16 9 4
 
 
 

 + 
6 24 2 10 0
0 2 16 6 8
 
  

 g  P. 

 
This is the way dual number rectangular 2  5 matrix ring is 

obtained. 
 
 We have seen in a dual number a + bg with a, b  Z (or Q 
or R) can be replaced by m  n matrices where m = 1 or n = 1 or 
m  n then we call the dual number to be dual matrix number. 
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 In a similar way we can define dual polynomial number 
p(x) + q(x)g where g is a new element such that g2  0. 
 We now see how they look. 
 
Example 2.28:  Let  

M = {p(x) + q(x) g | p(x), q(x)  Z[x] (or R[x] or Q[x]) 
where g = 4  Z16} be a dual polynomial number ring which is 
commutative.  
 

Take p = (3x3 + 5x – 3) + (7x2 – 8x + 1)g in M then  
p2 = {(3x3 + 5x – 3) + (7x2 – 8x + 1)g}2  
    = (3x3 + 5x – 3)2 + 2(3x3 + 5x – 3) (7x2 – 8x + 1)g +  

 (7x2 – 8x + 1)2g2 (g2 = 0) 
 

  = (9x6 + 25x2 + 9 + 30x4 – 30x – 18x3) +  
     (42x5 + 70x3 – 42x2 – 48x4 – 80x2 + 48x + 6x3 +  

10x – 6)g  
 
   =  (9x6 + 30x4 – 18x3 + 25x2 – 30x + 9) +  

      (42x5 – 48x4 + 76x3 – 122x2 + 58x – 6)g is in M. 
 
 It is easily verified that M under addition is commutative 
and associative. Thus M is a dual number polynomial 
commutative general ring. 
 
 Now having seen dual polynomial numbers and dual matrix 
number we now proceed on to define the new notion of dual 
numbers which are exclusive of elements a and bg that is only  
a + bg (a  0 and b  0). 
 
 To this end we first recall the notion of semifields. 
 
 A non empty set S with two binary operations + and  is a 
semifield if the following conditions are true  
 
 (i) (S, +) is a commutative monoid under +, 
 (ii) (S, ) is a commutative monoid under , 
 (iii) (S, +, ) is a strict semiring and 
 (iv) S has no zero divisors, then S is a semifield.  
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Z+  {0} is a semifield Q+  {0} is a semifield and R+  
{0} is a semifiled.  Let S be a semifield.  Take a g such that  
g2 = 0.   
 

Consider P = {a + bg | a, b  S \ {0} with g2 = 0}  {0} 
where S = Z+  {0} or S = Q+  {0} or S = R+  {0}.  P is a 
dual number semifield.   
 

For a + bg and c + dg we have a + bg + c + dg = a + c + (b + 
d)g;  since Z+  {0} or R+  {0} or Q+  {0} is a strict 
semifield.  We see P is also strict and a + c  0 and d + b  0 so 
(a + c) + (b + d) g  P. 
 
 Consider (a + bg) (c + dg)  
    = ac + bcg + dag + bdg2 
    = ac + (bc + da)g  (g2 = 0) 
 
 We see ac  0 and bc + da  0 as Z+  {0} or R+  {0} or 
Q+  {0} is a strict semifield. 
 Thus P is a semifield of dual numbers. 
  

We give examples of this situations. 
 
Example 2.29:  Let  
 

H = {a + b 
2 2 2 0
2 0 0 2
 
 
 

 | a, b  Z+, 2  Z4}  {0} 

 
is again the dual number semifield. 
 
Example 2.30:  Let  
 

M = {a + b 

4
0
8

12

 
 
 
 
 
 

 | a, b  Z+; 4, 8, 12  Z16}  {0} 
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is the dual number semifield / semiring. 
 
Example 2.31:  Let  

T = {a + b 
5 0 5
0 5 0
5 5 5

 
 
 
  

 | a, b  Z+; 5  Z25} 

 
be the dual number semifield | semiring 
 

Consider x = 3 + 2 
5 0 5
0 5 0
5 5 5

 
 
 
  

 and y = 7 + 4
5 0 5
0 5 0
5 5 5

 
 
 
  

  T; 

 

xy = 3  7 + (12 + 14) 
5 0 5
0 5 0
5 5 5

 
 
 
  

+ 8 

25 0 5
0 5 0
5 5 5

 
 
 
  

 

 

= 21 + 26 
5 0 5
0 5 0
5 5 5

 
 
 
  

 + 8 
0 0 0
0 0 0
0 0 0

 
 
 
  

 

 

= 21 + 26 
5 0 5
0 5 0
5 5 5

 
 
 
  

  T. 

 
 Thus T is a dual number semiring / semifield. 
 
Example 2.32:  Let  
 

S = {a + bg | a, b  R+, g = 10 with g2 = 0 (mod 29)} 
 
be the semiring of dual numbers.  
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THEOREM 2.5:  Let S = Z+  {0}  (or R+  {0} or Q+  {0}) be 
a semifield.  Consider M = {a + bg | a, b  S with g2 = 0}, M is 
a general dual number semiring.  
 

The proof is direct and hence left as an exercise to the 
reader.   
 

Next we proceed onto define / describe dual number matrix 
semiring and dual number polynomial semiring. 

 
 We will just describe the dual number row matrix semiring. 
  

Consider M = {A + Bg | A = (x1, …, xn) and B = (y1, …, yn) 
where xi, yi  Z+ (or Q+ or R+), 1  i  n and g such that g2 = 0} 
 {(0, 0, …, 0)}.  M is the dual number row matrix semiring.   
 
 We will give an example or two. 
 
Example 2.33:  Let  
 

P = {(x1, x2, x3, x4) + (y1, y2, y3, y4)g | xi, yj  Z+,  
 

1  i, j  4, g = 3  Z9}  {(0, 0, 0, 0)} 
 
be the dual number row matrix semiring / semifield.  
 
Example 2.34:  Let  
 

P = {(x1, x2, x3) + (y1, y2, y3) 
2 0 2
0 2 0
2 2 2

 
 
 
  

| xi, yi  Q+, 2  Z4; 

 

1  i  3}  
0 0 0
0 0 0
0 0 0

  
  
  
    

 

 
be the dual number row matrix semifield. 



Dual Numbers 35 
 
 
 
Example 2.35:  Let  
 

M = 

1 1

2 2

3 3

4 4

a b
a b

g
a b
a b

   
   
            

 bj, ai  R+, g = 10  Z20  

with 1  i, j  4}  

0
0
0
0

  
  
         

  

 
be the dual number column matrix semifield. 
 
Example 2.36:  Let  
 

T = 

1 1

2 2

10 10

a b
a b

(12,4,8,0,8,4)

a b

   
   
            

 
 ai, bj  Q+, 1  i, j  10; 

12, 8, 4  Z16}  

0
0

0

  
  
         


 

 
is the dual number column matrix semifield under natural 
product of column matrices.  
 
Example 2.37:  Let  
 

V = 1 2 3 1 2 3

4 5 6 4 5 6

a a a b b b
g

a a a b b b
       
   

 ai, bj  R+, 
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1  i, j  6; g = 6  Z12}  
0 0 0 0
0 0 0 0

   
  
   

 

 
be a dual number 2  3 matrix semifield. 
 
Example 2.38:  Let  
 

W = 

1 2 3 1 2 3

4 5 6 4 5 6
1 2 3

13 14 15 13 14 15

a a a b b b
a a a b b b

(g ,g ,g )

a a a b b b

   
   
            

     
ai, bj  R+, 

 
1  i, j  15, g1 = 4, g2 = 8 and g3 = 12, g1, g2, g3  Z16}  {(0)} 
 
be the dual number 5  3 matrix semifield under natural 
product. 
 
Example 2.39: Let  
 

M = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

a a a b b b
a a a b b b g
a a a b b b

   
      
      

 ai, bj  Z+, 1  i, j  9 

 

with g2 = (0); g = 10  Z20}  
0 0 0
0 0 0
0 0 0

  
  
  
    

 

 
 

be only a dual square matrix number semiring under usual 
product and a dual number semifield under the natural product 
n. M is a non commutative dual square matrix number 
semiring. 
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Example 2.40:  Let  
 

T = 
1 2 3 8 1 2 3 8

9 10 11 16 9 10 11 16

17 18 19 24 17 18 19 24

a a a ... a b b b ... b
a a a ... a b b b ... b g
a a a ... a b b b ... b

   
      
      

  

 
ai, bj  R+, 1  i, j  24, g = 4  Z16, with g2 = 0}   

 
0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

  
  
  
    

 

 
be a dual number 3  8 matrix semifield under usual product n. 
 
 Now having seen examples of dual number matrix 
semifields / semirings now we proceed onto define dual number 
polynomial semifields. 
 

Let S = {p (x) = i
i

i 0

a x



  ai  Z+ or R+ or Q+}  {0} 

be a polynomial semifield in the variable x. 
  

Consider  
 
P = {p(x) + q(x) g | p(x), q(x)  S and g is such that g2 = 0}; 

P is a semifield defined as the dual number polynomial 
semifield. 

 
 We will first illustrate this situation by some examples. 
 
 
Example 2.41:  Let  
 
M = {p(x) + q(x)g | p(x), q(x)  Z+[x]{0} where g = 5  Z25} 

 
be  the dual polynomial number semifield.  
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Example 2.42:  Let  
 

P = {p(x) + q(x)g | p(x), q(x)  Q+[x]  {0}  
 

where g =
4 8 12
8 4 12

12 8 4

 
 
 
  

; 4, 8, 12  Z16} 

 
be only a dual polynomial number semiring under usual matrix 
product, but a dual polynomial number semifield under natural 
product of matrices. 
 
Example 2.43: Let  
 

S = {p(x) + q(x) 

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 

 
where p(x), q(x)  Z+ [x]  {0} and ai  {4, 8, 0, 12}  Z16, 1  
i  4} 

 
be a dual number polynomial semifield.   
 

We see 

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 n 

1

2

3

4

b
b
b
b

 
 
 
 
 
 

 = 

0
0
0
0

 
 
 
 
 
 

 where ai, bj  {4, 8, 12, 0} 

 
 Z16, 1  i, j  4. 

 
Example 2.44:  Let S = {p(x) + q(x) (a1, a2, a3, a4, a5, a6) | p(x), 
q(x)  Z+ [x]  {0}, ai  {0, 11}  Z121, 1  i  6} be a dual 
polynomial number semifield. 
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 Now having seen examples of dual number general ring and 
dual number semifield / semiring we now proceed onto define / 
describe and develop the concept of dual number vector space 
and dual number semivector space and their Smarandache 
analogue. 
 
DEFINITION 2.5:  Let  
V = {a + be | a, b  Q; e a new element is such that e2 = 0}.  
 V is an abelian group under addition.  Clearly V is a vector 
space over the field F = Q.  We define V to be a general dual 
number vector space over F.   

 
One can study the basis, dimension and transformation of 

these spaces.  This can be treated as a matter of routine and we 
proceed onto give examples of these structures. 
 
Example 2.45: Let V = {(a1, a2, a3) | ai = xi + yig where  
xi, yi  R, 1  i  3 and g is a new element such that g2 = (0)}.  
V is a dual number vector space over R (also V is a general dual 
number vector space over Q). 
 
 Clearly dimension of V over R is nine. 
 
 Take W = {(a, a, a) | a = x + yg where x, y R, g2 = 0}  V.  
W is a subspace of V called the dual number vector subspace of 
V over R.  However the dimension is different if R in example 
2.45 is replaced by Q.  We will denote by  

 
R(g) = {a + bg | a, b  R and g2 = 0} and  
 
Q(g) = {a + bg | a, b  Q; g2 = 0}.  Clearly for the same g 

we have Q(g)  R(g). 
 
 With this notation for sake of easy representation we give 
more examples of general dual number vector spaces. 
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Example 2.46:  Let  
 

V = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai  Q (g); 1  i  5, g2 = 0} 

 
be a general dual number vector space over Q, the field. 
 
Example 2.47:  Let  
 

V = 
1 2 7

8 9 14

15 16 21

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai  R (e); e2 = 0 where 1  i  21} 

be a general dual number vector space over the field R or Q. 
 
Example 2.48:  Let  
 

V = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  R(g), g = 4  Z16; 1  i  9} 

be a general dual number vector space over the field R (or Q). 
 
 Take  

W = 
1

2

3

a 0 0
a 0 0
a 0 0

 
 
 
  

 ai  R (g) 1  i  3, g = 4  Z16,  

 
with g2 = (0)}  V; 

 
W is a general dual number vector subspace of V over R. 
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Example 2.49: Let  
 

T = 1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai  R (g); 1  i  8;  g = 3  Z9,  

g2 = (0)} 
 
be a general dual number vector space over the field R.   

 
Take  
 

W = 1 2 3 4a a a a
0 0 0 0

 
 
 

 ai  R (g); 1  i  4;   

 
g = 3  Z9, g2 = (0)}  T; 

 
W is a general dual number vector subspace of T over R. 

 
Example 2.50:  Let  
 

V = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  Q (g) with 1  i  6;   

 
g = 6  Z36, g2 = (0)} 

 
be a dual number vector space over Q. 
 
 Consider  

P1 = 1a 0 0
0 0 0

 
 
 

 a1  Q (g)}  V, 

 

P2 = 2 30 a a
0 0 0

 
 
 

 a2, a3  Q (g)}  V, 
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P3 = 
4 5

0 0 0
a a 0

 
 
 

 a4, a5  Q (g)}  V and 

 

P4 = 
6

0 0 0
0 0 a

 
 
 

 a6  Q (g)}  V 

 
be dual number vector subspaces of V over Q. 
 

 Clearly Pi  Pj = 
0 0 0
0 0 0
 
 
 

 if i  j and V = P1 + P2 + P3 + 

P4; thus V is the direct sum of dual number vector subspaces of 
V over Q. 
 
 On similar lines we can define pseudo direct sum of dual 
number vector subspaces if Pi  Pj  (0) if i  j and so on. 
 
 This task is simple and hence left as an exercise to the 
reader. 
 
Example 2.51:  Let M = {a + bg | a, b  R with g = 3  Z9} be 
a dual number vector space over the field Q.  Clearly W  M is 
not a direct sum with any other subspace where  
W = {a + bg | a, b  Q with g = 3  Z9}  M is dual number 
subspace of M over Q.  We see W  T = M is not possible for 
any T  M. 
 
Example 2.52:  Let  

S = {(a1, a2, a3, a4) + (b1, b2, b3, b4) 

2
0
2
0

 
 
 
 
 
 

ai, bj  Q and  

2  Z4; 1  i, j  4} 
 

be a dual number vector space over Q.  
 



Dual Numbers 43 
 
 
 Take  
 

P1 = {(a1, 0, 0, 0) + (b1, 0, 0, 0) 

2
0
2
0

 
 
 
 
 
 

 a1, b1  Q}  S, 

 

P2 = {(0, a, 0, 0) + (0, b, 0, 0) 

2
0
2
0

 
 
 
 
 
 

a, b  Q}  S, 

 

P3 = {(0, 0, a, 0) + (0, 0, b, 0) 

2
0
2
0

 
 
 
 
 
 

a, b  Q}  S and 

 

P4 = {(0, 0, 0, a) + (0, 0, 0, b) 

2
0
2
0

 
 
 
 
 
 

a, b  Q}  S 

 
be the dual number vector subspaces of S.   
 

Clearly Pi  Pj = (0) if i  j.  Further P1 + P2 + P3 + P4 = V.   
Take  

B1 = {(a1, a2, 0, 0) + (0, 0, b1, b2) 

2
0
2
0

 
 
 
 
 
 

 where ai, bj  Q; 

 
1  i, j  2}  S, 
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B2 = {(a1, 0, a2, 0) + (b1, 0, b2, 0) 

2
0
2
0

 
 
 
 
 
 

where ai, bj  Q; 

 
1  i, j  2}  S, 

 

B3 = {(0, a1, a2, 0) + (0, b1, b2, 0) 

2
0
2
0

 
 
 
 
 
 

where ai, bj  Q; 

 
1  i, j  2}  S and 

 

B4 = {(0, a1, a2, a3) + (0, b1, b2, b3) 

2
0
2
0

 
 
 
 
 
 

where ai, bj  Q; 

1  i, j  3}  S 
 

be dual number vector subspaces of S.  Clearly Bi  Bj  (0) 
even i  j, 1  i, j  4.  We see S  B1 + B2 + B3 + B4 so S is not 
a direct sum only a pseudo direct sum. 
 
Example 2.53:  Let  
 

P = 

1 1

2 2
1 1

3 3

4 4

a b
a b

(x , y )
a b
a b

   
   
            

 ai, bj  R; x1 = 3 and y1 = 6;   

3, 6  Z9; 1  i, j  4} 
 

be the dual number vector space over R. 
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M1 = 

1

2

1

2

0 b
0 b

(x, y)
a 0
a 0

   
   
            

 ai, bj  R; x = 3 and  

 
y = 6 in Z9; 1  i, j  2} 

and  
 

M2 = 

1

2

1

2

0a
0a

(x, y)
b0
b0

   
   
             

 ai, bj  R; x = 3 and 

 
y = 6 are in Z9; 1  i, j  2}   P 

 
are dual number vector subspaces of P such that M1 . M2 = (0) 
and M1 + M2 = P and is only a direct sum of dual number vector 
subspaces of P. 
 

(M1) = M2 and (M2) = M1. 
 
Now we proceed onto define dual number linear algebras.  

If V is a dual number vector space on which we can define a 
product then we define V to be a dual number linear algebra.  
 

We will illustrate this by some examples. 
 
Example 2.54:  Let V = {a + bg | a, b  Q with g = 10  Z20} 
be the dual number linear algebra over Q. 
 
Example 2.55:  Let M = {(a1, a2, …, a12) | ai = xi + yig; xi, yi  
Q with g = 4  Z16; 1  i  12} be a dual number linear algebra 
over Q.  Consider  
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P1 = {(a1, a2, 0, 0, …, 0) | ai = xi + yi g; xi, yi  Q;  
 1  i  2}  M,  

 
P2 = {(0, 0, a1, a2, 0, 0, …, 0) | ai = xi + yi g; xi, yi  Q;  

 1  i  2}  M,   
 
P3 = {(0, 0, 0, 0, a1, a2, a3, 0, …, 0) | ai = xi + yi g; xi, yi  Q; 

 1  i  3}  M,  
 

P4 = {(0, 0, 0, 0, 0, 0, 0, a1, a2, a3, 0, 0) | ai = xi + yi g;  
       xi, yi  Q; 1  i  4}  M and  
 
P5 = {(0, 0, …, 0, a1, a2) | ai = xi + yi g; xi, yi  Q;  

 1  i  2}  M  
 
be dual number linear subalgebras of M over Q.   
 

Clearly Pi  Pj = (0) if i  j and P1 + P2 + P3 + P4 + P5 = M 
is a direct sum of dual number linear subalgebras. 

 
 Consider  
 

B1 = {(a1, a2, a3, a4, 0, 0, …, 0) | ai = xi + yig;  
1  i  4} M, 

 
B2 = {(0, 0, 0, 0,  a2, a3, a4, 0, …, 0) | ai = xi + yig;  

1  i  4}  M, 
 

B3 = {(a1, 0, 0, 0, a2, 0, 0, 0, a3, a4, 0, 0) | ai = xi + yig; 
1  i  4}  M 

and  
 

B4 = {(a1, 0, 0, 0, a2, 0, 0, 0, 0, 0, a3, a4) | ai = xi + yig;  
1  i  4}  M 

 
be dual number linear subalgebra of M over the field Q. 
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 We see Bi  Bj  (0) even if i  j. Further  

B1 + B2 + B3 + B4  M so M is only a pseudo direct sum of 
dual number linear subalgebras.  

 
We can as in case of usual vector spaces / linear algebras 

define basis, dimension, linear dependence and linear 
transformation of dual number linear algebras with simple but 
appropriate modifications.  We leave all this work as exercise to 
the reader.  

 
 We can also define dual number Smarandache vector spaces 
and dual number Smarandache linear algebras as in case of 
usual vector spaces / linear algebras.  
 
 We define a dual number vector space V to be a 
Smarandache dual number vector space if V is defined only  
over a S-ring S.  Similarly a Smarandache dual number linear 
algebra V only if V is defined over a S-ring.   
 

We will illustrate this situation by some examples. 
 
Example 2.56:  Let V = {(x1, x2)  where xi = ai + big with  
ai, bi  Q; g = 4  Z16, 1  i  2} be a Smarandache dual 
number vector space over the S-ring,  

 S = {a + bg | a, b  Q; g = 4  Z16}. 
 
 Infact V is a Smarandache dual number linear algebra over 
S-ring S. 
 
Example 2.57:  Let  
 

M =
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi + yi g; xi, yi  Q;  

 
g = 6  Z12; 1  i  9} 

 



48 Dual Numbers 
 
 
be a Smarandache dual number non commutative linear algebra 
over the S-ring, Q(g) = {a + bg | a, b  Q, g = 6  Z12}.   
 

If the usual product in M is replaced by the natural product 
n then M is a S-dual number linear algebra which is 
commutative.  
 
 The properties of inner product, linear transformation, linear 
functionals and all other properties follow as a matter of routine.  
They are left to the reader as a simple exercise. 
 
 Now we give examples of vector spaces and linear algebras 
of dual numbers using the finite field Zp. 
 
Example 2.58:  Let P = {a + bg | a, b  Z23, g = 4  Z16} be a 
dual modulo number vector space over the field Z23. 
 
Example 2.59:  Let M = {(a1, a2, a3, …, a10) | ai = xi + yi g  
Z19(g) with g = 2  Z4; 1  i  10} be a dual modulo number 
vector space over the field Z19.  We see M is also a dual modulo 
number linear algebra over the field Z19.  Clearly M has only 
finite number of elements and is finite dimensional.  
 
Consider A1 = {(a1, a2, 0, …, 0) | a1, a2  Z19(g)}  M,  
 

A2 = {(0, 0, a1, a2, 0, …, 0) | a1, a2  Z19(g)}  M,  
 
A3 = {(0, 0, 0, 0, a1, a2, 0, 0, 0, 0) | a1, a2  Z19(g)}  M,  
 
A4 = {(0, …, 0, a1, a2, 0, 0) | a1, a2  Z19(g)}  M and  
 
A5 = {(0, 0, …, 0, a1, a2) | a1, a2  Z19(g)}  M,  

 
dual modulo number vector subspaces of M over Z19. 
 
Clearly Ai  Aj = (0) if i  j and M = A1 + A2 + A3 + A4 + A5 
that is M is a direct sum of dual modulo number vector 
subspaces of M. 
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Example 2.60:  Let  
 

T = 

1

2

12

a
a

a

 
 
    


ai  Z13(g); g = 8  Z16; 1  i  12} 

 
be a dual modulo number vector space over the field Z13.  T is 
not a dual modulo number linear algebra.  However T is a dual 
modulo number linear algebra under natural product n over Z13.  
If we replace Z13 the field by Z13(g) the S-ring; T becomes a 
Smarandache dual modulo number vector space / linear algebra 
over the S-ring Z13(g). 
 
Example 2.61:  Let  
 

W = 1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai  Z5(g); 1  i  8 with g = 4  Z8} 

 
be the dual modulo number vector space (linear algebra under 
natural product n on matrices) over the field Z5.   
Take  
 

P1 = 1 2

3

a a 0 0
0 a 0 0

 
 
 

 ai  Z5(g); 1  i  3}  W, 

 

P2 = 1

2 3

a 0 0 0
a a 0 0

 
 
 

 ai  Z5(g); 1  i  3}  W, 

 

P3 = 1 2

3

a 0 a 0
0 a 0 0

 
 
 

 ai  Z5(g); 1  i  3}  W, 
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P4 = 1 2

3

a 0 0 a
0 a 0 0

 
 
 

 ai  Z5(g); 1  i  3}  W, 

 

P5 = 1

2 3

a 0 0 0
a 0 a 0

 
 
 

 ai  Z5(g); 1  i  3}  W 

 
and  

 

P6 = 1

2 3

a 0 0 0
0 a 0 a

 
 
 

 ai  Z5(g); 1  i  3}  W  

 
be dual modulo number vector subspaces (linear subalgebras) of 
W over the field Z5. 
 
 We see Pi  Pj  (0) if i  j 1  i, j  6.   

Further W  P1 + P2 + P3 + P4 + P5 + P6, thus W is only a 
pseudo direct sum of dual modulo number vector subspaces of 
W. 
 
Example 2.62:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai  Z11(g); 1  i  16  

 
with g = 5  Z258} 

 
be a dual modulo number vector space (non commutative linear 
algebra under usual product of matrices or commutative linear 
algebra under natural product n of matrices) over the field Z11.   
 

S has subspaces and S can be written as direct seem and S 
has subspaces so that S can be written as a pseudo direct sum. 
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 Now having seen dual modulo number vector spaces / linear 
algebras and S-dual number vector spaces / linear algebras over 
the S-ring Zp(g); p a prime, we now proceed onto study the 
concept of dual number semivector spaces semilinear algebras 
over semifields. 
 
 We just introduce some simple notations:   

Z+(g) = {a + bg | a, b  Z+ and g2 = 0},  
Q+(g) = {a + bg with a, b  Q+ and g2 = 90} and  
R+(g) = {a + bg with a, b  R+ and g2 = 0}.   

 
Clearly we can just adjoin 0 with these sets.  These set with 

adjoined ‘0’  becomes dual number semifield.   
 
Using these semifields we just describe how semivector 

spaces of dual number over the semifields is constructed. 
  

Let V = {a + bg | a, b  R+, g2 = 0}  {0} be defined as a 
dual number semivector space over the semifield R+{0} (or 
Q+{0} or Z+{0}).   

 
We will give examples of them. 

 
Example 2.63:  Let M = {(a1, a2, a3, a4) where ai = xi + yig with 
xi, yi  r+ g = 4  Z16, 1  i  4}  {(0, 0, 0, 0)} be a dual 
number semivector space over the semifield Q+{0} or R+{0} 
or Z+{0}.  
 
Example 2.64:  Let  

 

M = 

1

2

10

a
a

a

 
 
    


ai = xi + yig; xi, yi  Q+, g = 3  Z9; 1  i  10} 

 
be a dual modulo number semivector space over the semifield 
Z+{0}. 
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Example 2.65:  Let  
 

P = 1 2 3 1 2 3

4 5 6 4 5 6

a a a b b b
g

a a a b b b
       
   

ai , bj  Q+;  

 

1  i, j  6, g2 = 0}  
0 0 0
0 0 0

   
  
   

 

 
be a dual modulo integer semivector space over the semifield  
Q+{0}. 
 
Example 2.66:  Let  
 

W = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

ai   Q+(g); 1  i  30; g = 9  Z81} 

 
be the dual modulo integer semivector space over the semifield 
S = Q+  {0}. 
 
Example 2.67:  Let  

 

T = 

1 2 3 4

5 6 7 8

61 62 63 64

a a a a
a a a a

a a a a

 
 
    

   
ai   Z+ (g); 1  i  64;  

 

g = 4  Z16}  

0 0 0 0
0 0 0 0

0 0 0 0

  
  
         

   
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be the dual modulo integer semivector space over the semifield 
S = Z+  {0}. 
 
Example 2.68:  Let  
 

M = 1 2 1 2

3 4 3 4

a a b b
g

a a b b
       
   

ai, bj  Q+;  

 

1  i, j  4, g = 2  Z4}  
0 0
0 0

   
  
   

 

 
be a dual modulo number semivector space over the semifield  
S = Q+  {0}. 
 
 We see M is a dual modulo number semilinear algebra over 
the semifield Q+  {0} which is non commutative.   
 

However if we use the natural product n on matrices M 
will turn out to be a commutative dual number semilinear 
algebra over the semifield S = Q+  {0}. 
 
Example 2.69:  Let  
 

T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  Q+(g); 1  i  9,  

g = 12  Z24}  
0 0 0
0 0 0
0 0 0

  
  
  
    

 

 
be a dual number semilinear algebra over the semifield  
S = Q+{0}. T is non commutative under usual product and 
commutative under natural product n. 
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Example 2.70:  Let  
 

M = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai  R+(g); 1  i  8 and  

 

g = 3  Z9}  

0 0
0 0
0 0
0 0

  
  
         

 

 
be a dual number semilinear algebra under natural product n 
over the semifield R+{0} (or Q+{0} or Z+{0}).  M is a 
strong dual number semilinear algebra if M is defined over  
R+(g)  {0}.   
 

Interested reader can derive all properties associated with 
semivector spaces / linear algebras even in case of dual number 
semivector spaces / linear algebras.   
 
 Let  
 

V = {p(x) + q(x) g | p(x), q(x)  R+ [x]  {0}, g = 4  Z16} 
 
be a dual number polynomial semivector space over the 
semifield Z+{0}.   
 

We can define in this way both dual number polynomial 
semivector spaces as well as semilinear algebras over R+{0} 
or Q+{0} or Z+{0}. 
 
 Study of these also is a matter of routine and hence is left as 
an exercise to the reader. 



 
 
 
 
 
Chapter Three 
 
 

 
 
HIGHER DIMENSIONAL DUAL NUMBERS 
 
 
 

In this chapter we for the first time define the notion of 
components of dual numbers and their algebraic structures.  
Also we define higher dimensional concept of dual numbers we 
give several interesting properties and discuss /  describe some 
features about their algebraic structures. 
 
 Suppose a + bg is a dual number we call g the dual 
component of the dual number. In case of a + bg we have only 
one dual component viz g.  We have studied in chapter two for a 
given dual component the properties enjoyed by the collection 
of dual numbers a+bg for a, b  Q (or R or Zn or Z or R+  {0} 
or Q+  {0} or Z+  {0}) and for varying structures of a and b 
as matrices or polynomials.   
 

Now we define a three dimensional dual number as follows.  
 
DEFINITION 3.1:  Let a + bg1 + cg2 where g1  g2 with a, b, c, 
g1 and g2 are non zeros such that  2

1g  = 0, 2
2g = 0 and g1g2 = 

g2g1 = (0) then we define a + bg1 + cg2 to be a three 
dimensional dual number if (a + bg1 + cg2)2  is of the form  
x + yg1 + zg2 (x, y, z all reals). 
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 We first give some examples before we proceed to work 
with them. 
 
Example 3.1:  Let s = a + bg1 + cg2 where g1 = 4 and g2 = 8,  
g1, g2  Z16 a, b, c  R \ {0}.  Consider  
 

s2 = (a + bg1 + cg2)2  
    = a2 + b2.0 + c2.0 + 2abg1 + 2acg2 + 2bcg1 g2  
    = a2 + 2abg1 + 2acg2 . 

 
We see s2 is again in the same form that is as that of s and s 

is a three dimensional dual number. 
 
 Suppose x = a + bg1 + cg2 and y = t + ug1 + vg2 with a, b, c, 
t, u, v  R \ {0}.  Consider xy = at + (bt + ua) g1 + (ct + av)g2 
using the fact g1 g2 = g2 g1 = 0 and 2

1g  = 2
2g  = 0.   Further xy 

will be a three dimensional dual number only if bt + ua  0 and 
ct + av  0. 
 
Example 3.2:  Let x = a + bg1 + cg2 where a, b, c  R \ {0} and 
g1 = (3, 6, 6, 0) and g2 = (6, 6, 0, 6) with 3, 0, 6  Z9. 
 
 We see x is also a three dimensional dual number row 
matrix. 
 
Example 3.3:  Let  
 
x = a+ bg1 + cg2 where a, b, c  R \ {0} with  
 

g1 = 

2
0
2
2
2

 
 
 
 
 
 
  

 and g2 = 

2
2
0
0
2

 
 
 
 
 
 
  

 where 2  Z4. 
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g1 n g2 = 

0
0
0
0
0

 
 
 
 
 
 
  

  g1 n g1 = 

0
0
0
0
0

 
 
 
 
 
 
  

 and g2 n g2 = 

0
0
0
0
0

 
 
 
 
 
 
  

. 

 
 Thus x is a three dimensional dual column matrix number.  
We can also have m  n matrix three dimensional number.   
 

We give only illustration of them. 
 
 
Example 3.4:  Let  
 

x = a + bg1 + cg2 where a, b, c  R and g1 = 
8 0 4 0
4 4 4 4
0 8 0 8

 
 
 
  

 

and  
 

g2 = 
4 8 4 8
0 8 0 8
4 0 4 0

 
 
 
  

 where {0, 8, 4}  Z16.   

Clearly 2
1g  = 2

2g  = g1 g2 = g2 g1 = 
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
  

. 

 
x is a three dimensional dual number of matrices. 
 
Example 3.5:  Let  

y = a + bg1 + cg2 where a, b, c  R and g1 = 
3 6 3
6 3 6
0 3 6

 
 
 
  

 and  
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g2 = 
6 6 6
3 3 3
0 0 0

 
 
 
  

 with {0, 3, 6}  Z9. 

 
y is a three dimensional dual number of matrices.   
 

We see these three dimensional dual numbers enjoy some 
algebraic structure.  
 
 We give algebraic structures to the elements which 
contribute to the dual numbers and some more additional 
properties. 
 
 Consider if x = a + bg1 + cg2 is a three dimensional dual 
number then we see 2

1g  =0,  2
2g  = 0 and g1 g2 = g2 g1 = 0. 

 
 Thus S = {0,  g1, g2} is a semigroup we define S is a zero 
square semigroup. 
 
 We will first provide some examples of them. 
 
Example 3.6:  Let S = {0, 3, 6}  Z9, S is a zero square 
semigroup under multiplication modulo 9.  
 
Example 3.7:  Let S = {0, 4, 8}  Z16, S is a zero square 
semigroup, for 42  0 (mod 16), 82  0 (mod 16) and  
4.8 = 8.4  0 (mod 16). 
 
Example 3.8:  Let S = {0, 5, 10}  Z25 be a zero square 
semigroup under product , modulo 25. 
 
Example 3.9:  Let S = {0, 6, 12}  Z36 be a zero square 
semigroup under product modulo 36.   

 
Now we see most of these zero square semigroups are not 

closed under addition modulo n. 
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 Now can we extend three dimensional dual number to four 
dimensional dual number? 
 

Consider x = a + bg1 + cg2 + dg3 where a, b, c, d  R and g1, 
g2 and g3 are three distinct elements such that 2

1g  = 0, 2
2g  = 0, 

2
3g  = 0 and gi gj = gj gi = 0, 1  i, j  3. 

 
 We call x a four dimensional dual number. 
 
 We will illustrate this situation by some simple examples. 
 
Example 3.10:  Let x = a + bg1 + cg2 + dg3 where a, b, c, d  R 
and g1 = 4, g2 = 8 and g3 = 12; {0, 4, 8, 12}  Z16.  x is a four 
dimensional dual number. 
 
Example 3.11:  Let x = a + bg1 + cg2 + dg3 where a, b, c, d  R 
and g1 = 8, g2 = 16 and g3 = 24 with {0, 8, 16, 24}  Z32.  x is a 
four dimensional dual number. 
 
Example 3.12:  Let x = a + bg1 + cg2 + dg3 where a, b, c, d  Q 
and g1 = 9, g2 = 18 and g3 = 27 with {0, g1, g2, g3}  Z81.  x is a 
four dimensional dual number. 
 
 We see we can give algebraic structures to the four 
dimensional dual numbers. 
 
THEOREM 3.1:   Let x = a + bg1 + dg2 + cg3 with a, b, c, d  R, 

2
1g  = 2

2g  = 2
3g  = 0 and gigj = gj gi = 0, 1  i, j  3 be a four 

dimensional dual number.  S = {0, g1, g2, g3} is a zero square 
semigroup of order 4 under multiplication.  
 
THEOREM 3.2:  Let A = {a + bg1 + dg2 + cg3 | a, b, c, d  R; 

2
ig  = gigj = 0, j and i = 1, 2, 3}.  A is a semigroup under 

product.   
 

Proofs of the above two theorems are simple and direct and 
hence left as an exercise to the reader. 
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 We can extend the notion to n-dimensional dual numbers,  
x = a1 + a2g1 + a3g2 + … + angn–1 is a n-dimensional dual number 
if gigj = 0, j, i = 1, 2, …, n–1, i is also equal to j and ai  R;  
1  i  n. We call the {0, g1, …, gn–1} as the n-dual tuple.  
 
 We will illustrate this situation by some examples. 
 
Example 3.13:  Let x = a1 + a2g1 + … + a3g2 + … + a16 g15 with 
ai  R, 1  i  16 and gj  {16, 32, 48, 64, 80, 96, 112, 128, 
144, 160, 176, 192, 208, 224, 240}  Z28, x is a 16 dimensional 
dual number and S = {0, 16, 32, 48, 64, 80, …, 208, 224, 240} 
is a zero square semigroup.  
 
 In view of this we have the following theorem. 
 
THEOREM 3.3:  Let x = a1 + a2g1 + … + apgp-1, with p = 2n/2, aj 
 R; 1  j  p and gi  {m, 2m, 3m, 2n–2n/2}  

2nZ , where m = 
2n/2 and n an even number be a 2n/2 dimensional dual number  
1  i  p–1;  Then the set  
{2n/2 = m, 2m, …, m(2n/2–1) = 2n/2 (2n/2 – 1)} is a zero square 
semigroup under product.  
  
Proof:  Given x = a1 + a2g1 + … + apgp–1 is a 2n/2 dimensional 
dual number.  Clearly gigj = 0 (mod 2n), i  j and 2

ig  = 0 (mod 
2n); 1  i, j  2n/2 – 1.  Hence S = {0, g1, g2, …, gp–1} is a 
semigroup of order 2n/2 under multiplication modulo 2n and S is 
a zero square semigroup which is a null semigroup. 
 
THEOREM 3.4:  Let x = a1 + a2g1 + … + apgp-1 be a p = 2n/2 
dimensional dual number, n even and {g1, g2, …, gp-1}  

2nZ , 
then S = {0, g1, …, gp–1} is a commutative zero square ring 
which is a null ring. 
 
 Proof is direct for more about zero square rings please refer 
[20].  
  

We will illustrate this situation by some examples. 



Higher Dimensional Dual Numbers  61 
 
 
 
Example 3.14:  Let x = a1 + a2g1 + … + apgp–1 with ai  R, 1  i 
 p, n = 25 and g1 = 25 g2 = 2.25 = 26, …, gp–1 = 25 (25–1).  Then 
x is a 32 dimensional dual number and S = {g1, …, gp–1, 0} is a 
commutative null semigroup and a null ring. 
 
Example 3.15:  Let  

x = a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + a8g7 with  
ai  R, g1 = 8, g2 = 16 and g3 = 24, g4 = 32, g5 = 40, g6 =  48 and 
g7 = 56  in 62

Z .  x is a eight dimensional dual number and  S = 
{0, 8, 16, 24, 32, 40, 48, 56}  62

Z is a null semigroup and a 
null ring. 
 
 We see what are the elements in Z2n when n is odd. 
 
 Consider the modulo integer 52

Z  = {0, 1, 2, …, 31}.  The 
zero square elements of 52

Z  are 8, 16 and 24 in 52
Z such that 

they are zero square elements as well as elements of a null ring. 
 

So in view of this we have the following theorem. 
 
THEOREM 3.5:  Let x = a1 + a2g1 + … + apgp–1 with ai  R;  
1  i  p and {g1, g2, …, gp–1}  

2nZ  where n is odd then  
p = 2(n–1)/2 – 1; be a p dimensional dual number.  
S = {0, g1, …, gp-1}  

2nZ  is a null semigroup as well as null 
ring but the number of elements in S is 2(n-1)/2. 
 
 Now we work for any Zn, n = pt or n a composite number.  
 
Example 3.16:  Let Z27 = {0, 1, 2, …, 26} be a semigroup.  
Consider {9, 18}  Z27; x = a1 + a29 + a318 is a 3 dimensional 
dual number and a1, a2, a3  R. 
 
Example 3.17:   Let Z9 = {0, 1, 2, …, 8} be a semigroup.  
Consider {3, 6}  Z9, x = a1 + a23 + a36  is a 3-dimensional dual 
number, ai  R or Q; 1  i  3. 
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Example 3.18:  Let Z81 = {0, 1, 2, …, 80} be a semigroup under 
product modulo 81.  Take  

S = {0, 9, 18, 27. 36, 45, 54, 63, 72}  Z81; S is a null 
semigroup as well as a null ring.   
 

Take S = {0, 9, 18, 27, 36, 45, 54, 63, 72}  Z81; S is a null 
semigroup as well as null ring.   

 
Take x = a1 + a29 + a318 + … + a972; ai  R or Q, 1  i  9 

is a 9-dimensional dual number. 
 
 Inview of this we can say the following. 
 
THEOREM 3.6:  Suppose 2p

Z = {0, 1, 2, …,  p2 – 1} be a ring, 

then S = {p, 2p, …, (p–1) p}  2p
Z  is such that  

x = a1 + a2p + a32p + … + ap(p–1)p is a p dimensional 
dual number and S  {0} is a null ring. 
 
Corollary 3.1:   If 3p

Z  = {0, 1, 2, …, p3 – 1} is taken, then also 

the null subring of 3p
Z  has only p elements and it can contribute 

only to a p-dimensional dual number. 
 
Corollary 3.2:  If 4p

Z  = {0, 1, 2, …, p4 – 1} is considered then 

the null subring S = {0, p2, 2p2, …, (p2–1) p2}  4p
Z  and S can 

contribute to a p2 dimensional dual number. 
 
Corollary 3.3:  If np

Z  is taken n even or odd the null subring 

has pn/2 elements and this can contribute to pn/2 dimensional dual 
number.  
 
 We will illustrate this above situations by some examples. 
 
Example 3.19: Let S = {0, 5, 10, 15, 20}  25

Z  be a null 
subsemigroup of 25

Z .   = a1 + a25 + a310 + a415 + a520 is a 5-
dimensional dual number. 
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Example 3.20: Let S = {0, 25, 50, 75, 100}  35

Z  be a null 
subsemigroup of 35

Z .   = a1 + a225 + a350 + a475 + a5100 is a 
5-dimensional dual number. 
 
Example 3.21: Let S = {0, 25, 50, 75, 100, 125, 150, 175, 200, 
225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 
550, 575, 600}  45

Z  be a null subsemigroup of 45
Z .   

 
 = a1 + a225 + a350 +… +  a25600 is a 25-dimensional dual 

number, ai  R (or Q) 1  i  50. 
 
 Now we see some more examples. 
 
Example 3.22:  Let S = {0, 7, 14, 21, 28, 35, 42}  27

Z  be a 
null subsemigroup of 27

Z  and  
 = a1 + a27 + a314 + a421 + a528 + a635 + a742 is a  

7 dimensional dual number ai  Q or R; 1  i  7.  
 
Example 3.23:  Let Z6 = {0, 1, 2, 3, 4, 5} be a semigroup under 
product modulo 6. 
 
 Z6 has no nilpotent element hence Z6 has no nontrivial null 
subsemigroup. 
 
Example 3.24:  Let Z10 = {0, 1, 2, 3, 4, 5,. 6, 7, 8, 9} be a 
semigroup. Z10 has no nilpotent element, hence has no nontrivial 
null subsemigroup.  
 
Example 3.25:  Let Z14 =  {0, 1, 2, …, 13} be a semigroup, Z14 
has no nilpotent element and non trivial null subsemigroup. 
 
 In view of this we have the following theorem. 
 
THEOREM 3.7:  Let Z2p = {0, 1, 2, 3, …, 2p–1} be a semigroup 
under multiplication modulo 2p, p an odd prime.   

(i) Z2p has no nilpotent elements.  
(ii) Z2p has no non trivial null subsemigroup. 
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Proof follows using simple numbers theoretic techniques and 
the fact 2p = n2 for any n where p is an odd prime. 
 
THEOREM 3.8:  Let Zpq = {0, 1, 2, 3, …, pq–1} be a semigroup 
under product, p and q two distinct primes. 

(i) Zpq has no nilpotent elements. 
(ii) Zpq has no nontrivial null subsemigroup. 

 
Proof follows from the simple fact pq = n2 is impossible for 

any n.  
 
Example 3.26:  Let Z21 = {0, 1, 2, …, 20} be a semigroup under 
product modulo 21.   Clearly Z21 has no nilpotent element of 
order two that is we have no x  Z21 such that x2 = 21. 
 
THEOREM 3.9:  Let Zn = {0, 1, 2, …, n–1} where n = p1, p2, …, 
pt where pi’s distinct primes 1  i  t be a semigroup under 
multiplication modulo n. 

(i) Zn has no nilpotent element of order two. 
(ii) Zn has no nontrivial null subsemigroup. 
 

Proof follows from the simple fact x2 = n = p1 p2 … pn is 
impossible for any x  Zn. 
 
Example 3.27:  Let S = Z12 = {0, 1, 2, 3, …, 11} be a semigroup 
6  Z12 is such that 62 = 0 (mod 12). T = {0, 6}  Z12 is a null 
subsemigroup.  x = a1 + a26 is a dual number for all a1, a2  R 
(or Q). 
 
Example 3.28:  Let S = Z20 = {0, 1, 2, …, 19} be a semigroup.  
10  Z20 is such that 102 = 0 (mod 20) is a nilpotent element of 
S.  T = {0, 10}  Z20 is a null subsemigroup of S.   x = a1 = a210 
is a dual number for all a1, a2  R (or Q). 
 
Example 3.29:  Let S = Z63 = {0, 1, 2, …, 62} be a semigroup 
under product modulo 63.  Consider 21, 42  S, clearly 212 = 0 
(mod 63) and (42)2 = 0 (mod 63) both are nilpotent elements.  
Further 21  42  0 (mod 63).  
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 Thus T = {0, 21, 42}  Z63 is a nontrivial null 
subsemigroup of S.  x = a1 + a221 + a342  is a 3 dimensional 
dual number.   
 

Inview of this we have the following theorem. 
 
THEOREM 3.10:  Let Zn = {0, 1, 2, 3, …, n–1} be the ring of 
integers modulo n, where n = p2q (p  q) then  
 

(i) Zn has nilpotent elements. 
 (ii) Zn has non trivial null subsemigroup of order p–1  
 (iii) x = a1 + a2g1 + … + ap gp–1 is a p dimensional dual 
number where S = {0, g1, …, gp–1}. 
 
 The proof is direct by using simple number theoretic 
methods.  Thus we see Zn for varying n we get the t-dimensional 
dual numbers. 
 
 Now we can also get a t-dimensional dual number from a 
single dual number a + bg where a, b  R and g2 = 0 in the 
following way.  Take  
 

S = {(g, 0, g, 0, …, g) (g, g, g, …, g), (0, g, 0, …, 0) …  
(0, 0, …, g)}, S is a dual number set. S  {(0, 0, 0, …, 0)} is a 
semigroup which is a null semigroup.   

 
Thus we can get any desired dimensional dual number using 

a + bg with g2 = 0 and a, b  R.   
 

We can also take  
 

S = 

0 0
g 0

0 0
g g

, , ,...,g
0

g g
g g

    
       
                                            


 


  

0
0

0

  
  
         


, 

S is a null semigroup under natural product n. 
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 Likewise if  
 

S =

g g ... g 0 g ... g 0 0 g ... g
g g ... g g g ... g g g g ... g

, , ,...,

g g ... g g g ... g g g g ... g

     
     
                    

         

 
 

0 0 ... 0
0 0 ... 0

0 0 ... g

 
 
    

  
 

0 0 ... 0
0 0 ... 0

0 0 ... 0

  
  
         

  
 

 
be a m  p matrices (m  p) with the entries from the set  
T = {0, g | g2 = 0}.  Then S is a null semigroup under the natural 
product n of matrices. 
 
 Infact using any n distinct elements from S (n a desired 
number n  o(S)}  we can get a n dimensional dual number. 
 
 We can use m = p, that is square matrices that will also be a 
null semigroup both under natural product n as well as under 
the usual product . 
 
 Thus we have the concept of null semigroups of any desired 
dimension dual numbers. 
 
 We will give examples of them. 
 
Example 3.30:  Let S = {(0, 3, 3, 3, 3, 3), (0, 0, 3, 3, 3, 3),  
(0, 0, 0, 3, 3, 3), (0, 3, 0, 0, 0, 0), (3, 0, 0, 0, 0, 0), (0,0,3,0,0,0), 
(0, 0, 0, 3, 0, 0), (0, 0, 0, 0, 0, 3), (3,3,0, …,0), …, (0,0,0,0,3,3), 
…, (3, 3, 3, 3, 3, 3)}  {(0, 0, 0, 0, 0, 0)} be a null semigroup. 
 
 Order of S is 63.  Thus using any n distinct elements from S 
we can get n-dimensional dual numbers (n  63). 
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 (Here 3  Z9 we see 32  0 (mod 9))  

x = a1 + a2x1 + … + anxn–1 where xi  S xi  xj if i  j; 1  i,  
j  n–1 = 63 ai  R or Q; 1  i  n is a n-dimensional dual 
number.  
 
Example 3.31:  Let  
 

S = 

4 4 4 0
4 4 0 0

, , ,...,4 4 4 0
4 4 4 0
4 0 4 4

        
        
                 
        
        
                

  

0
0
0
0
0

  
  
     
  
  
    

 

 
be a null semigroup under the natural product n where 4  Z16;  
42  0 (mod 16).  
 
 Clearly o(S) = 31.  Thus using elements of S we can get a 
maximum of 31-dimensional dual number.  Also we can get any 
desired t-dimensional dual number 1 < t  31. 
 
Example 3.32:  Let  
 

S = 

5 5 5 5 5 5 5 5 0 0 0 0
5 5 5 5 5 5 5 5 0 0 0 0

, ,...,
5 5 5 5 5 5 5 5 0 0 0 0
5 5 5 5 5 5 5 0 0 0 0 5

      
      
                         

   

 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  
  
         

 

(where 5  Z25, 52  0 (mod 25)) be a null semigroup of order 1 
+ 16C2 + … + 16C15+ 1 = 216.   
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Clearly taking any t-elements from S (t of them distinct) we 
have a t-dimensional dual number (t  216 – 1) as o(S) = 216 – 1. 
 
Example 3.33:  Let  
 

S = 

2 2 2 2 2 2 0 0 0
2 2 2 2 2 2 0 0 0
2 2 2 2 2 2 0 0 0

, ,...,
2 2 2 2 2 2 0 0 0
2 2 2 2 2 2 0 0 0
2 2 2 2 2 0 0 0 2

      
      
      
       
      
      
      
      
            

  

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

  
  
  
   
  
  
  
  
    

 

 
be a null semigroup under natural product n. o(S) = 218 – 1 
where 2  Z4 and 22  0 (mod 4). 
 
 We can using S get any m-dimensional dual number  
m  218 – 1. 
 
 Now we can also get more than 2n–1  elements in S by the 
following way which is illustrated by examples. 
 
Example 3.34:  Let  
 

S = 

1

2

3

4

x
x
x
x

 
 
    

 xi  {0, 3, 6}  Z9; 1  i  4; 32  0 (mod 9),  

 
62  0 (mod 9) and 3.6 = 0 (mod 9)}  

 
be a null semigroup.   
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S \ 

0
0
0
0

  
  
         

 is such that any n-distinct elements from S will 

contribute to a n-dimensional dual number. 
 
 
Example 3.35:  Let S = {[x1, x2, x3] | xi  {0, 4, 8}  Z16;  
1  i  3; 42  0 (mod 16), 82  0 (mod 16) and 4.8 = 0 (mod 
16)} be a null semigroup of order 33 = 27. S \ {(0 0 0)} gives 26 
elements.   
 

Taking any t distinct elements from S \ {(0 0 0)} say y1, y2, 
…, yt; yi  S \ {(0 0 0)}, 1  i  t  26 we have  

a1 + a2y1 + … + a27 y26 or a1 + a2y1 + … + at+1 yt gives a  
t-dimensional dual number. 
 
 Likewise we can use columns also. 
 
Example 3.36:  Let  
 

S = 

1

2

3

4

y
y
y
y

 
 
    

 yi  {0, 4, 8}  Z16; 1  i  4; 42  0 (mod 16),  

 
82  0 (mod 16) and 4.8 = 0 (mod 16)} 

 
be a null semigroup under the natural product n of column 
matrices.  We get 34 elements.  Hence we can have a  
t- dimensional dual number  2  t  34 – 1. 
 
 Thus we see a major role is played by the modulo integers 
and matrix theory in constructing n-dimensional dual numbers.  
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 We define now the notion of finite complex modulo integer 
dual number. 
 
DEFINITION 3.2: Let x = a + bs where s = (m + niF); m, n  Zt 
and 2

Fi  = t–1; 2  t < ; a, b  R or Q or Z.  If s2 = 0 then  we 
call x to be a dual finite complex modulo integer of dimension 
two.  
 
 We first give some simple examples. 
 
Example 3.37:  Let x = a + bs where s = 1 + iF  C(Z2); 2

Fi  = 1, 
a, b  Q or Z or R.  We see s2 = (1 + iF)2 = 0 (mod 2).  Thus x is 
a dual finite complex modulo integer of dimension two. 
 
Example 3.38:  Let x = a + bs where s = (2 + 2iF)  C(Z4); a, b 
 R, x is a dual complex modulo integer of dimension two. 
 
Example 3.39:  Let x = a + bs where s = (6 + 6iF)  C(Z12); a, b 
 Q, be a dual complex modulo integer of dimension two. 
 
Example 3.40:  Let x = a + bs a, b  R and s = (12 + 12iF)  
C(Z16) be a dual finite complex modulo integer of dimension 
two.   
 

We can have any number of examples. 
 We have the following results. 
 
THEOREM 3.11:  Let S = {a + bs | s  C(Zn) with s2 = 0 (mod 
n) s = (t + uiF); t, u  Zn \{0}; a, b  Q}; S is a general dual 
complex finite modulo integer ring.  
 
 Proof is straight forward and hence left as an exercise to the 
reader. 
 
Example 3.41:  Let  

S = {a + bs | a, b  Q; s = (4 + 4iF)  C (Z16)} be the 
general dual finite complex number ring.  We see S under 
addition as an abelian group with 0 + 0s as its additive identity 
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and (S, ) is a commutative semigroup.  Thus (S, +, ) is a 
general ring of dual complex modulo integers.   
 

We use the term general to make sure Q  S; and we have 
in a + bs (a can be 0 or b can be zero); that is elements of S need 
not be always of the form with a + bs it can be Q or Qs both 
proper subsets of S. 
 
 We have infinitely many general dual finite complex 
modulo integer rings.  
 
 We can also find infinitely many such structures using 
semigroup rings. 
 
 We will briefly describe this notion. 
 
 Let S = {C (Zn), } where n is a composite and C(Zn) has 
atleast one non trivial nilpotent element of order two of the form 
a + biF with a, b  Zn \ {0}.  Clearly S is a commutative 
semigroup with unit.  
 
 Let F = R (or Q or Z) be the ring.  FS be the semigroup ring 
of the semigroup S over the ring F. 
 
 We will illustrate this situation by some examples. 
 
Example 3.42:  Let S = C(Z4) be the complex semigroup.  F = 
Q be the field of rationals. FS the semigroup ring of the 
semigroup S over the field F. 
 
 Consider P = {a + bs | s = (2 + 2iF)  S, a, b  Q = F}  FS.   
 
 P is a subsemigroup of FS and infact P is a general dual 
finite complex modulo integer subring of FS.  Further it is 
interesting to note that P is an ideal of FS. 
 
Example 3.43:  Let S = C (Z12) be the complex modulo integer 
semigroup.  Z be the ring of integers.  ZS the semigroup ring.  
Take P = {a + bs | s = 6 + 6iF  S = C(Z12)}  ZS; P is again  a 
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general dual complex modulo integer subring as well as an 
ideal. 
 
 Inview of this we have the following theorem. 
 
THEOREM 3.12:  Let S = (C(Zn), ) where n is even be a 
complex modulo integer semigroup.  Q be the field of rationals.  
QS be the semigroup ring of the semigroup S over the ring Q.   
 

Consider  

P = {a + bs | s =     
 

( n 1) n 1
2 2

iF; a, b  Q}  QS; 

 
P is a general dual finite complex number subring of QS. 

 
 The proof is direct and hence is left as an exercise to the 
reader. 
 
Example 3.44:  Let C(Z9) = S be the complex modulo integer 
semigroup.  Z be the ring of integers.  ZS be the semigroup ring.  
Take P = {a + bs | s = 3 + 3iF  C(Z9), a, b  Z}  ZS.  Clearly 
P is a subring which is a general finite dual complex modulo 
integer ring. 
 
Example 3.45:  Let C(Z9) = S be the complex semigroup of 
finite integers. 
 
 Take x = a + bs1 + cs2 where a, b, c  Z and s1 = 3 + 3iF and 
s2 = 6 + 6iF are in C(Z9).  Clearly x2 = A + Bs1 + Cs2  A, B, C  
Z and 2

1s  = 0 (mod 9) and 2
2s  = 0 (mod 9) and s1  s2 = (0) (mod 

9). 
 
 We call x a three dimensional dual finite complex modulo 
integer.  Thus we can build higher dimensional finite complex 
dual modulo integers also.   
 

We will illustrate this situation only by examples as the 
definition is a matter of routine. 
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Example 3.46:  Let C (Z16) = S be a semigroup of complex 
modulo integers.  Take  
 
P = {a1 + a2s1 + a3s2 + a4s3 | ai  Q; 1  i  4 s1 = 4 + 4iF, s2 = 8 
+ 8iF and s3 = 12 + 12iF are in C(Z16) with 2

Fi  = 15}; P is a ring 
called the four dimensional dual complex modulo integer ring. 
 
 The reader is left with the task of verifying this claim in the 
above example. 
 
Example 3.47:  Let C(Z8) = S be a semigroup of complex 
modulo integers.  Consider s = 4 + 4iF  S; we see s2  0 (mod 
8). 
 

Now let  
 
P = {(s, s, s, s), (0, s, s, s), (s, 0, s, s), (s, s, s, 0),  

(s,s,0,s), (s,s,0,0), (s,0,s,0), (s,0,0,s), (0,0,s,s), (0,s, s,0), (0,s,0,s), 
(s,0,0,0), (0,s,0,0), (0,0,s,0) (0,0,0,s), (0,0,0,0)}; P is a 
semigroup under product.  Infact P is a null semigroup.  Further 
P is a ring under +  and  modulo 8.  P is also a null ring.   
 

Let G = {a1 + a2g1 + … + a16 g15 | ai  Q; 1  i  16, gj   
P \ {0} and gj’s are distinct 1  j  15}.   

 
G is again a ring which is a general ring of finite dual 

complex modulo integers of all dimensions less than or equal to 
15.   
 

Thus this method of constructing nilpotent elements helps 
one to make any desired dimensional dual complex numbers.   
 
 We will illustrate this situation by more examples. 
 
Example 3.48:  Let S = C (Z4) be a semigroup under product.   
Consider g = 2+2iF  S; clearly g2 = 0 (mod 4).   
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Now let P = 

g 0 g 0
g g 0 0
g g 0 0

, ,..., ,
g g 0 0
g g 0 0
g g 0 0

        
        
        
         
        
        
        
        
                

; 

 
P is a semigroup under natural product n.  Infact (P, n) is a 

null semigroup of complex modulo integers.   
 
Also (P, n, +) is a null ring of complex modulo integers we 

see the number of elements in P is 26 =  64. 
 
We can get  
 

M = {a1 + a2 g1 + … + a64 g63} | ai  Q; 1  i  64;  
 

 gj  P \ 

0
0
0
0
0
0

 
 
 
 
 
 
 
 
  

; 1  j  63 and gj’s are all distinct}. 

 
M is a collection of all t-dimensional dual complex modulo 

integers with 1  t  63 and infact (P, +, ) is a general dual 
complex modulo integer ring.  
 
Example 3.49:  Let S = C (Z26) be a complex finite modulo 
integer semigroup.  Let g = 13 + 13iF  S; 2

Fi  = 25.  a + bg with 
a, b  Q is a finite complex dual number.   
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Construct W =  
 

g g g g 0 g g g g g g g
g g g g g g g g g g g g

, ,..., ,g g g g g g g g g g g g
g g g g g g g g g g g g
g g g g g g g g g g g 0

     
     
          
     
     
            

 
 

0 0 g g
g g g g
g g g g
g g g g
g g g g

 
 
 
 
 
 
  

g g g g
g g g g

,..., ,g g g g
g g g g
g g 0 0

 
 
 
 
 
 
  

 

 
 

0 0 0 g
g g g g
g g g g
g g g g
g g g g

 
 
 
 
 
 
  

, …, 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 g 0 g

 
 
 
 
 
 
  

, 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 g g

 
 
 
 
 
 
  

,  

 
g 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 
  

, …, 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 g

 
 
 
 
 
 
  

, 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 
  

 

 
g = 13 + 13iF  C(Z26); 2

Fi  = 25};  
 
W is a null semigroup under the natural product n of matrices.  
Further (W, +, n) is a null ring of order of W is 220. 
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 Using W we can construct finite integer ring of dual number 
of t-dimension,  2  t  220 – 1. 
 

V = {a1 + a2p1 + … + 20 202 (2 1)
a p


 | ai  Q; 

 

pj’s are distinct and pj  W \ 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

  
  
     
  
  
    

  

 
1  i  220 and 1  j  220 – 1} 

 
is a general t-dimensional dual finite complex modulo integer 
ring 1  t  220 – 1. 
 
Example 3.50:  Let S = C (Z25) be a finite complex modulo 
integer ring / semigroup.   
 

Consider g = 5 + 5iF  S where 2
Fi  = 24.  

 
 Clearly g2 = 0 (mod 25).   
 

Take P =  
 

g g g 0 g g g 0 g g g g
g g g , g g g , g g g ,..., g g g ,
g g g g g g g g g g 0 g

       
       
       
              

 

 

 
g g g g 0 0 0 g 0 0 0 g
g g g ,..., 0 0 0 , 0 0 0 , 0 0 0 ,
g g 0 0 0 0 0 0 0 0 0 0

       
       
       
                
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0 0 0 0 0 0 0 0 0
g 0 0 , 0 g 0 , 0 0 g ,
0 0 0 0 0 0 0 0 0

     
     
     
          

 

 
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 0 , 0 0 0
g 0 0 0 g 0 0 0 g 0 0 0

       
       
       
              

 

 
g = 5+5iF} be a ring of finite complex modulo integers. 
 

Suppose V = {a1 + a2x1 + … + 9 92 (2 1)
a x


 | ai  Q; xj’s are 

distinct and xj  P \ 
0 0 0
0 0 0
0 0 0

  
  
  
    

 1  i  29; 1  j  29 – 1};  

 
V is a general dual complex modulo integer ring with varying  
t-dimensional dual complex modulo integers 1  t  29 – 1. 
 

Thus using a single finite complex modulo integer we can 
construct any desired dimensional dual complex modulo 
integers. 

 
Now we wish to show we can also use more than one 

complex modulo integer which contributes to dual numbers in a 
complex null complex modulo integer semigroup and construct 
dual complex modulo number of any desired dimension. 

 
We will only illustrate this situation by some simple 

examples. 
 
Example 3.51:  Let S = C(Z16) be a semigroup of complex 
modulo integers.  Consider g1 = 4+4iF, g2 = 8+8iF and g3 = 12 + 
12iF in C(Z16) = S.  We see x = a1 + a2g1 + a3g2 + a4 g3 for ai  Q 
or Z or R; 1  i  4 is a 4-dimensional dual complex finite 
modulo number.   
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 We can use this and construct any desired dimensional dual 
complex modulo finite integer as follows: 
 
 Let  
 

V = {(t1, t2, …, t10) | ti  {0, g1, g2, g3}  C(Z16) 1  i  10},  
V is a null semigroup under product.  Infact a null ring.  
Construct P = {a1 + a2s1 + … + ao(v)so(v)–1 | ai  Q or Z or R 1  i 
 o(V) and sj  V \ {(0)}, sj’s are distinct and 1  j  o(v) – 1}, 
P gives various dimensional dual finite complex modulo 
numbers and P is a ring.   

 
Likewise we can in P replace the row matrices by column 

matrices and adopt the natural product of matrices n or by  
m  n (m  n) matrices with once again the natural product n 
on matrices or square matrices with entries from the set {0, g1, 
g2, g3} and with usual matrix product and get using the same 
ring different dimensional finite complex modulo dual numbers. 
 
 For instance if 
 
 x = 5 + 9 (g1, g2, g1, g2, g1, 0, 0, 0, 0, 0); g1 = 4 + 4iF and  
g2 = 8 + 8iF is a 2-dimensional dual finite complex modulo 
number. 
 
 Take  

y = –12 + 7 

2 3

2

3

2

1 1

g g
g 0

30 g
g 0
g g

   
   
   
   
   
   
      

; g2 = 8 + 8iF, g1 = 4 + 4iF and  

 
g3 = 12 + 12iF in C (Z16), 

 
y is a three dimensional finite complex modulo dual numbers. 
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 Consider  
 

z = 7–2 
1 2 3 2

1 1

3 2

g g g g
0 g 0 g
g 0 g 0

 
 
 
  

 + 3 
1 1 2

2 2 3

3 3 3

0 g g g
g 0 g g
g g g 0

 
 
 
  

 +  

 

19
1 1 1 1

2 2 2 2

g g g g
0 0 0 0
g g g g

 
 
 
  

; 

 
z is a four dimensional finite complex modulo dual number. 
 
 Let  

p = –90 + 24 
1 2 3

1 1

2

g g g
0 g g
0 0 g

 
 
 
  

 + 5 
1

1

2

g 0 0
0 g 0
0 0 g

 
 
 
  

  

 

– 7  
2 2 2

1 1 1

g g g
0 0 0
g g g

 
 
 
  

 + 13 
2

2

2

0 0 g
0 g 0
g 0 0

 
 
 
  

 + 17 
1

1 2

3 1

g 0 0
0 g g
g 0 g

 
 
 
  

  

 

– 40  
1 3

1 3

1 3

g 0 g
g 0 g
g 0 g

 
 
 
  

 

 
where g1 = 4+ 4iF, g2 = 8 + 8iF and g3 = 12 + 12iF in C(Z16).  
  
P is a 7-dimensional dual finite complex modulo integer.  
 
 Interested readers can construct on similar lines any finite 
dimensional dual complex modulo finite numbers. 
 
Example 3.52:  Let S = C(Z64) be the finite complex modulo 
integer. 
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 Take g1 = 8 + 8iF, g2 = 16 + 16iF, g3 = 8 + 16iF,  g4 = 16 + 
8iF, g5 = 24 + 24iF, g6 = 24 + 8iF, g7 = 24 + 16iF, g8 = 16 + 24iF, 
g9 = 8 + 24iF, g10 = 32 + 32iF, g11 = 8 + 32iF,  g12 = 32 + 8iF,  
g13 = 32 + 24iF, g14 = 24 + 32iF, g15 = 32 + 16iF, g16 = 16 + 32iF, 
g17 = 40 + 40iF, g18 = 40 + 8iF, g19 = 8 + 40iF, g20 = 16 + 40iF,  
g21 = 40 + 16iF and so on.   
 

We can build several dual complex finite modulo integers.   
 

We can use these gi’s in square matrices or column matrices 
or row matrices or rectangular matrices and the net result will 
lead to a desired dimensional dual finite complex numbers. 

 
 Inview of this we propose the simple computational 
problem. 
 
Problem:  Let C(Zn) = S suppose n = t2, then t + tiF, 2t + 2tiF, 
…., (t–1)t + (t–1)tiF are complex numbers which are nilpotent of 
order two.  Also rt + stiF, 1  r, s  (t–1) are also nilpotent finite 
complex number of order two.   
 

Find the total number of such nilpotent finite complex 
numbers of order two in S and prove such a collection with zero 
added to it is a null subsemigroup of S.   
 
 We will illustrate this situation by some simple examples. 
 
Example 3.53:  Let S = C(Z9) be the finite complex modulo 
integer.  The set of all nilpotent complex numbers of S are  
V = {3 + 3iF, 6 + 6iF, 6 + 3iF, 3+6iF}  {0}.  V is a null 
semigroup infact a null ring.  The number of non zero nilpotent 
elements of order two in S is four.  
 
Example 3.54:  Let S = C (Z81) be the semigroup.  The non zero 
nilpotent elements of S are as follows: 
 
 V = {9 + 9iF, 18 + 18iF, 27 + 27iF, 36 + 36iF, …, 72 + 72iF, 
…, 72 + 63iF}  {0}.  The number of elements in V is 64.  
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Using these 64 elements in matrices we can get several dual 
finite complex modulo integers of any desired dimension.  
 
 Next we study the concept of dual semirings which are 
finite complex modulo numbers. 
 
 Let Z+  {0} or R+  {0} or Q+  {0} be semirings. 
 
 Let x = a + bg where a, b  Z+  {0} (or R+  {0} or Q+  
{0}) and g  C(Zn), g = x + yiF with 2

Fi  = n–1, x, y  Zn \ {0} 
and g2 = 0 (mod n). 
 
 We see x2 = A + Bg (A, B  Z+  {0} (or R+  {0} or  
Q+  {0})); x is defined as the dual complex modulo integer.   
 
 We will just give one or two examples. 
 
Example 3.55:  Let S = C(Z25) be a semigroup of complex 
modulo integers.  Consider x = 5 + 5iF (or y = 5 + 10iF or  
10 + 5iF (or y = 5 + 10iF or 10 + 5iF or 10 + 10iF). 
 

Let p = 3 + 4x; p is a two dimensional dual finite complex 
modulo integer.   
 

p2 = (3 + 4x)2 = 9 + 16x2 + 24x  
  = 9 + 24x.  

 
is again a two dimensional dual finite complex modulo integer.  

Suppose  
s = 3 + 4 (5 + 5iF) + 7 (10 + 5iF) + 8 (5+10iF) + 12 (10+10iF)  
we see s is a 5 dimensional dual finite complex modulo integer. 
 
Example 3.56:  Let S = C (Z8) we see g = 4 + 4iF is such that  
x = 9 + 8g is a two dimensional dual finite complex number  
9, 8  Z+  {0}.  
 
Example 3.57:  Let  

M = {a + bg | a, b  Z+  {0}, g = 8 + 8iF  C(Z16)} 
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be the collection of all two dimensional dual complex finite 
modulo number and Z+  {0} be the semifield; 

(i) M is a semigroup under addition with identity 0. 
(ii) (M, ) is a semigroup under product with 1 as the 

multiplicative identity. 
(iii) (M, +, ) is a strict semiring which is not a 

semifield as ag  bg = 0 even if a  0 and b  0. 
 

However M will be defined as the general dual two 
dimensional finite complex modulo integer semiring. 
 
Example 3.58:  Let  

P = {a + bg | a, b  Z+, g = 6 + 6iF  C(Z9)  {0}.  (P, , +) 
be a semifield of two dimensional finite complex modulo dual 
numbers.  The same is true if Z+ is replaced by R+ or Q+. 
 
Example 3.59:  Let  

S = {a + bg | a, b  Q+, g = 2 + 2iF  C(Z4)}  {0}, (S, , +) 
be a semifield of two dimensional dual finite complex modulo 
integers. 
 
Example 3.60:  Let S = {a1 + a2g1 + a3g2 | a1, a2, a3  R+,  
g1 = 3+3iF and g2 = 6 + 3iF  C(Z9)}{0}. {S,+,} be semifield 
of three dimensional finite complex modulo dual integers. 
 
Example 3.61:  Let M = {a1 + a2g1 + a3g2 + a4 g3 + a5g4 + a6g5 | 
a1, a2, a3, a4, a5, a6  Z+, g1 = 8 + 8iF, g2 = 8 + 12iF, g3 = 12 + 8iF, 
g4 = 12 + 12iF and g5 = 4 + 4iF; gi  C(Z16); 1  i  5}  {0}.  M 
is a 6 dimensional dual complex finite modulo integer semifield. 
 
Example 3.62:  Let P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + 
a7g6 + a8g7 | ai Q+; 1  i  8; g1 = 6 + 6iF, g2 = 12 + 12iF, g3 = 6 
+ 12iF, g4 = 12 + 6iF, g5 = 18 + 18iF, g6 = 18 + 12iF and g7 = 12 + 
18iF; gi  C(Z36); 1  i  7}  {0}. P be the dual finite complex 
modulo integer semifield. 
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Example 3.63:  Let P = {a1 + a2g1 | a1, a2  R+, g1 = 13 + 13iF  
C(Z26), 2

1g   0 (mod 26)}  {0} be a dual semifield of complex 
modulo integer or semifield of dual complex modulo integers. 
 
Example 3.64:  Let  
 

P = 
1 2

3 4

5 6

g g
g g
g g

 
 
 
  

 gi  {0, 3+3iF, 6+6iF}  C(Z9), 1  i  6}. 

 
Take  
V = {a1 + a2x1 + a3x2 + a4x3 + a5x4 + a6x5 + a7x6 + a8x7 + a9x8 

where ai  Q+  {0}, 1  i  9, xj  P \ 
0 0
0 0
0 0

  
  
  
    

; 1  j  o(P) 

– 1 and xj are distinct}. V is a dual semiring of finite complex 
modulo integers. 
 

Example 3.65:  Let W = 1 2 3 4 5

6 7 8 9 10

g g g g g
g g g g g

 
 
 

 gi  S = 

{0, 12 + 12iF, 8 + 8iF, 4 + 4iF, 4 + 12iF, 8 + 4iF, 4 + 8iF, 12 + 4iF, 
8 + 12iF, 12 + 8iF}  C(Z16); 1  i  10}.   
 

Take P = {a1 + a2g1 + a2g2 + … + a27 g26 | ai  R+, 1  i  27;  
 

gj’s are distinct and gj  S \ 
0 0 0 0 0
0 0 0 0 0

   
  
   

;1  j  26}; 

P is a semifield of 27 dimensional dual complex modulo 
integer.  If we permit ai  R+{0} we see P is only a general 
semiring and it can contain dual finite complex numbers of 
dimension less than or equal to 27.   Further R+  {0}  P and 
R+ gi  {0}  P; gi  S. 
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Example 3.66:  Let P = 
1 2 3

4 5 6

7 8 9

g g g
g g g
g g g

 
 
 
  

 where gi  {5 + 5iF, 

10+10iF, 20+2iF, 15+15iF, 5 + 10iF, 5 + 20iF, 5 + 15iF, 10+5iF, 
10+20iF, 10+15iF, 15+5iF, 15+10iF, 15+20iF, 20+5iF, 20+10iF, 
20+15iF, 0}  C(Z25); 1  i  9}.   
 

Consider S = {a1 + a2x1 + a3x2 + … + a15x14 where ai  R+  
{0}, 1  i  15, xj  P xj’s distinct; 1  j  14}, S is a 15 
dimensional or less; dual semiring complex modulo integers.  
 
 Now we just see how these get the vector space structure of 
dual finite complex modulo integers and semivector space of 
dual finite complex modulo integers. 
 
 Let V = {a1 + a2g1 + … + angn-1 | ai  R, 1  i  n, gj  S  
C(Zm) with 2

jg  = 0 (mod m) and each gj is distinct and different 
from zero.  Also gpgj = 0 if p  j, 1  p, j  n–1}.   
 

It is easily verified V is a vector space over R (or Q).  
Further we can define product on V so that V is a linear algebra.  
We call V as a dual finite complex modulo vector integer space 
/ linear algebra over R (or Q). 
 
 We now provide some examples of them. 
 
Example 3.67:  Let  
 

P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | ai  Q,  
 

1  i  6 and gj  
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

x x x x x
x x x x x
x x x x x

 
 
 
  

 xt  S  

 
{0, 3+3iF, 6 + 6iF, 3 + 6iF, 6 + 3iF}  C(Z9);  

1  j  5, 1  t  15}; 
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P is a vector space over Q.   
 

Infact P is a dual complex finite modulo integer vector 
space over Q.  If we define the natural product n of matrices on 
gi’s then P is a dual complex finite modulo integer linear 
algebra over Q. 

 
 Interested reader can study the notion of subspaces, 
dimension, basis, linear transformation, linear operator and 
linear functionals on these vector spaces / linear algebra which 
is considered as a matter of routine.  So we do not proceed to 
explain them.  Further the concept of direct sum and pseudo 
direct sum of subspaces is direct and interested reader can study 
them. 
 
Example 3.68:  Let V = {a1 + a2g1 + a3g2 + … + a8g7 | ai  Q;  
1  i  8 and gp  {(t1, t2, t3, t4) | tj  {6 + 6iF, 12+12iF, 24+24iF, 
18+18iF, 30+30iF, 6+12iF, 6+24iF, 6+30iF, 12+6iF, 12+24iF, 
12+18iF, 18+6iF, 18+12iF, 18+24iF, 24+6iF, 24+12iF, 24+18iF, 0} 
 C(Z36); 1  j  4 and gp’s are distinct 1  p  7} be a dual 
finite complex modulo integer vector space over the field Q.  
Clearly under product, V is also a dual complex modulo integer 
linear algebra over Q. 
 
Example 3.69:  Let V = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  R;  
 

1  i  5;   gj  

1

2

3

4

5

x
x
x
x
x

 
 
  
 
 
  

  where   xt  {7 + 7iF, 7+14iF, 14+14iF,  

 
14+7iF, 21+21iF, 7+21iF, 21+7iF, 14+21iF, 21+14iF, 28+28iF, 
28+7iF, 28+14iF, 28+21iF, 7+28iF, 14+28iF, 21+28iF, 35+35iF, 
35+7iF, 35+14iF, 35+21iF, 35+28iF, 7+35iF, 14+35iF, 21+35iF, 
28+35iF, 42+42iF, 42+7iF, 42+14iF, 42+21iF, 42+28iF, 7+42iF, 
42+35iF, 14+42iF, 21+42iF, 28+42iF, 35+42iF, 0}  C(Z49); gj’s 
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are distinct, 1  j  4; 1  t  5} be a dual finite complex 
modulo integer vector space over Q.  Infact V is a dual finite 
complex modulo integer linear algebra if we can define on gi’s 
the natural product n of matrices. 
 
 Next we just proceed onto indicate by examples dual finite 
complex modulo integer semivector space / semilinear algebra. 
 
Example 3.70:  Let  

V = {a + bg | a, b  R+, g = 3+3iF  C(Z9)} 
be a semivector space over the semifield Q+  {0} (or R+  {0} 
or Z+  {0}).  V is a dual two dimensional complex modulo 
integer semivector over the semifield. 
 
Example 3.71:  Let  
 

V = {a + bg | a, b  R+  {0}, g = (x1, x2, x3, x4)  
 
   = {(3iF + 3, 6 + 6iF, 3+6iF, 6+3iF) xi  C(Z9); 1  i  4}  

be a two dimension complex modulo integer dual semivector 
space over Q+  {0}.  
 
Example 3.72:  Let M = {a + bg1 + cg2 | a, b, c  R+, g1 = 3+3iF 
and g2 = 6 + 3iF; g1, g2  C(Z9)} be a dual three dimensional 
finite complex modulo number semivector space over the 
semifield Q+{0}.  Infact M is also a three dimensional dual 
finite complex modulo integer semilinear algebra over Q+{0}. 
 
Example 3.73:  Let  
 

S = {a + bg1 + cg2 + dg3 + eg4 | a, b, c, d, e  Q+; 
 

gi = 

1

2

3

4

x
x
x
x

 
 
 
 
 
 

 where xi  T 
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= {4 + 4iF, 8+8iF, 12+12iF, 4+8iF, 4+12iF, 8+4iF, 8+12iF,  
 

   12+4iF, 12+8iF, 0}  C(Z16); 1  i  4}  
 
be a five dimensional dual semivector space of finite complex 
modulo numbers over the semifield F = Q+  {0}.  If on S we 
define product and natural product of the column matrices we 
cannot get a dual t-dimensional semilinear algebra over the 
semifield F = Q+  {0}, for if  
 

x = 3+2 

F

F

4 4i
0
0

4 12i

 
 
 
 
 

 

 + 

F

F

8 8i
0

4 8i
0

 
 
 
 
 
 

  

 

+

F

FF

FF

F

04 12i
8 8i4 8i3 7

12 4i4 4i4 12
8 12i0

   
       
   
      

 

 
and  
 

y = 

F

0
0
0

4 8i

 
 
 
 
 

 

+ 

FF F

F

F

F

8 12i4 4i 12 12i
00 12 8i3 8 5
08 4i 02

8 4i0 0

      
          
    
          

+ 1 

 
be in S. 

 

To find x n y, x n y = 3 + 2 

F

F

4 4i
0
0

4 12i

 
 
 
 
 

 

 + 
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F F

FF

FF F

F F

0 08 8i 4 12i
8 8i 00 4 8i3 7 3

12 4i 04 8i 4 4i4 12
8 12i 4 8i0 0

        
                
        
               

 + 

 
FF F

F

F

F

8 12i4 4i 12 12i
00 12 8i9 24 15
08 4i 02

8 4i0 0

      
          
    
          

 is not in S. 

 
 In order to make this into a semilinear algebra we make the 
following changes; 
 
 We make  
 

S = 
n

1 i i 1
i 2

a a g 






  for all gj; 1  j  o(T)} 

 
a dual semilinear algebra of finite complex modulo integer of 
dimension less than o(T).  Thus we can define any desired 
dimension dual semilinear algebra / semivector space of 
complex modulo finite integers. 
 
 Interested reader can study subspaces of semivector spaces, 
semilinear transformation, semilinear operator and semilinear 
functions.  Study of all things related with semivector spaces is 
a matter of routine and hence left as an exercise to the reader. 
 



 
 
 
 
 
Chapter Four 
 
 

 
 
DUAL INTERVAL NUMBERS AND INTERVAL 
DUAL NUMBERS 
 
 
 
 
 In this chapter we for the first time introduce the concept of 
dual interval numbers and interval dual numbers and study their 
properties. 
 
 Let S = {a + bg | a, b  r and g is such that g2 = 0}.  S is a 
general two dimensional dual number ring. 
 
 Consider Ic(S) = {[x, y] | x, y  S}; we define Ic(S) as the 
general dual number intervals or dual interval numbers.  Here 
these types of intervals are present in Ic(S). 
 
[a, b + cg] (a, b, c  R \ {0}; g2 = 0) or [b + cg, a] a, b and c in  
R \ {0} or [ag + b, cg] where a, b, c  R \ {0} or [cg, b + ag] or 
[cg, a]; a, c  R \ {0} or [a, cg] or [x + yg, t + sg];  

t, s, x, y  R \ {0} or [ag, bg] or [a, b].  
 

We just show how addition and product are defined on these 
intervals of dual numbers. 
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 Suppose x = [3g, 8g] and y = [5 – g, 3+2g]  I (S).   

x + y = [3g, 8g] + [5–g, 3+2g] = [5 + 2g, 3+10g]. 
 
 Now x  y = [3g, 8g]  [5 – g, 3 + 2g]  
        = [3g  5–g, 8g (3+2g)] 
        = [15g, 24g]  ( g2 = 0). 
 
 Take x = [–3g, 7g] and y = [8g, 4g] now x + y = [5g, 11g]  

and x–y = [–11g, 3g] and x  y = [0, 0] = 0. 
 
 Take x = [3g – 1, 2+4g] and y = [7, 8g];  

now x + y = [3g + 6, 2 + 12g] and xy = [21g – 7, 16g]  
 
 Let x = [3, –4] and y = [7g, 4g]  Ic(S).  
 x  y  = [21g, –16g] and x + y = [3 + 7g, –4 + 4g]  Ic(S). 
 
 It is easily verified Ic(S) is closed both under ‘+’ and .  
Infact (Ic(S), +) is an additive abelian group and (Ic(S), ) is 
only a semigroup under . 
 
 Thus (Ic(S), +, ) can easily be verified to form a 
commutative ring with divisors of zero.  
 

We can replace in S, R by Q or Z and still the results will be 
true.  Ic(S) is easily seen to be the natural class of intervals of 
dual numbers of dimension two. 
 
 We will first illustrate this situation by some examples. 
 
Example 4.1:  Let S = {a + bg | g = 5  Z25, a, b  Q} be the 
general two dimensional dual number ring.  
 

Ic(S) = {[a + bg, c + dg] | a + bg and c + dg  S} be the 
natural class of closed intervals of dual numbers. 
 
 Ic(S) is a ring with zero divisors.   
 



Dual Interval Numbers and Interval Dual Numbers 91 
 
 

K = {[ag, bg] | a, b  R,  g = 5  Z25}  Ic(S) is a subring 
which is also an ideal of Ic(S).   Infact K is a null subring of 
Ic(S).   

 
Further T = {[a, b] | a, b  R}  Ic(S) is a subring of Ic(S), 

but is not a null subring, but T has zero divisors and T does not 
contain any nontrivial nilpotent element.  
 
 Take P = {[a + bg, cg] | a + bg, cg  Ic(S)}  Ic(S); P is a 
subring as well as an ideal of Ic(S), for in P the second term cg 
will continue to be dg for some d  R. 
 
 Consider M = {[a, b+cg] | a, b, c  R}  Ic(S), M is only a 
subring and not an ideal of Ic(S).  
 
 Likewise N = {[a + bg, c] a, b, c  R}  Ic(S) is only a 
subring and not an ideal of Ic(S).  Thus Ic(S) has ideals as well 
subrings which are not ideals.  However Ic(S) has units and zero 
divisors. 
 
Example 4.2:  Let M = {a + bg | g = 4  Z16 and a, b  Z} be 
the two dimensional general dual ring.   
 

Ic(M) = {[a + bg, c + dg] | a, b, c, d  Z} be the closed 
intervals of dual numbers.  Ic(M) is the ring of natural class of 
closed intervals of dual numbers.  
 
 Ic(M) has ideals, subrings which are not ideals, null subring, 
zero divisors and no nontrivial units only [1, 1], [–1, 1], [1, –1] 
and [–1, –1] are units in Ic(M).  It is but a matter of routine to 
see that we can replace the closed intervals by open intervals;  
Io(S) (or Io(M)) will denote the natural class of open intervals of 
dual numbers, all results true for Ic(S) (or Ic(M)) will hold good. 
 
 Similarly  

Ioc(S) (or Ico(M)) = {(a + bg, c + dg] | a, b, c, d  R}  
is the natural class of open-closed intervals of dual numbers. 
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 Io(M) = {(a + bg, c + dg) | a, b, c, d  Z} is the natural class 
of open intervals of dual numbers.   
 

Finally Ico(M) = {[a + bg, c + dg) | a, b, c, d  Z} is the 
natural class of closed-open intervals of dual numbers. 
 
 All these structures Io(S), Ioc(S) and Ico(S) are commutative 
rings with zero divisors and units.  They contain ideals, subrings 
which are not ideals and null subsemirings. 
 
 Interested reader can study more properties and those results 
are a matter of routine.  Now we can define three dimensional / 
n-dimensional natural class of open (closed, open-closed, 
closed-open) intervals of dual numbers which is treated as a 
matter of routine.   
 

We will only illustrate this situation by some simple 
examples. 
 
Example 4.3:  Let  
S = {a + bg1 + cg2 | a, b, c  R (or Q or Z) g1 = 4,  
g2 = 8  Z16} be the collection of three dimensional dual 
numbers where a, b, c  R \ {0} even if one of b or c is zero we 
get two dimensional dual number.  If a = 0 we get a nilpotent 
element of order two.   
 

So if we give any operation S we see S will contain R, 
nilpotent elements of the form ag1 + bg2 and nilpotent elements 
of the form ag1 (bg2) or a + bg1 (or a + bg2).  Thus we define (S, 
+, ) as a general dual number ring of dimension three. 
 
Now using this S we define  
Ic(S) = {[a + bg1 + cg2, x + yg1 + zg2] where a, b, c, x, y, z  R 
(or Q or Z) and 2

1g  = 0, 2
2g  = 0, g1 g2 = g2g1 = 0} as the natural 

class of three dimensional closed intervals of dual numbers. 
 
 Clearly (Ic(S), +, ) is a ring known as the general ring of 
three dimensional intervals of dual numbers.  We see Ic(S) 
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contains subrings which are null rings as well as Ic(S) has ideals 
and subrings which are not ideals. 
 
 Take P = {[ag1, bg2] | a, b  R}  Ic(S), P is an ideal as well 
as null subring of Ic(S). 
 
 Consider  
T = {[a1g1 + a2g2, a3g1 + a4g2] | ai  R, 1  i  4}  Ic(S) is again 
an ideal which is a null subring of Ic(S).   
 

Let P = {[a, 0] | a  R}  Ic(S); P is only a subring and is 
not an ideal. 
 
 Consider S = {[0, ag1] | a  R}  Ic(S), S is an ideal as well 
as a null subring of Ic(S) we see P.S = {0}, for every x  S;  
every y  P is such that x.y = 0.  
 
 Now L = {[ag2, 0] | a  R}  Ic(S) is an ideal of Ic(S).   L is 
also a null subring.  Thus Ic(S) has several null subrings. 
 
 Now we can replace the closed interval Ic(S) by Io(S) or 
Ico(S) or Ioc(S); still all results continue to be true.   
 

Now we can define any desired dimensional closed intervals 
of dual numbers or (open intervals or closed-open intervals or 
open-closed intervals) which is direct and hence left as an 
exercise to the reader. 
 
 We will illustrate this situation by some examples. 
 
Example 4.4:  Let Ic(S) = {[a1 + a2g1 + a3g2 + a4g5 + a5g4 + a6g5 
+ a7g6 +  a8g7 + a9g8 + a10g9, b1 + b2g1 + b3g2 + b4g3 + b5g4 + b6g5 
+ b7g6 + b8g7 + b9g8 + b10g9] | ai, bi  R and  
{g1 = 4 + 4iF, g2 = 8 + 8iF, g3 = 12 + 12iF, g4 = 4 + 8iF,  
g5 =  4 + 12iF, g6 = 8 + 4iF, g7 = 8 + 12iF, g8 = 12 + 4iF and  
g9 = 12 + 8iF}  C(Z16); 1  i  10} be collection of ten 
dimensional closed intervals of dual numbers. 
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 We see Ic(S) is a general ring of ten dimensional closed 
intervals of dual numbers.  Clearly Ic(S) contains closed 
intervals of dual numbers of all dimension less than or equal to 
ten.  This Ic(S) has several null subrings which are ideals and 
also subrings which are not ideals.  Further Ic(S) has zero 
divisors.  
 
Example 4.5:  Let Io(S) = {(a1 + a2g1 + a3g2 + a4g3 + a5g4, b1 + 
b2g1 + b3g2 + b4g3 + b5g4) | ai bj  R; 1  i, j  5  and g1 = 3 + 
3iF, g2 = 6 + 6iF, g3 = 3 + 6iF and g4 = 6 + 3iF  C (Z9)} be the 
general ring of five dimensional open intervals of dual numbers.  
This has null subrings, ideals and subrings which are not ideals. 
Io(S) contains No(R) also as a subring. 
 
 We will also call all t-dimensional dual numbers (t > 2) as 
extended dual numbers. 
 
 Now we can also give coordinate representation of them.  If 
x = a + bg where a, b  R and g is such that g2 = 0 then we 
know x is represented as (a, bg) likewise if x = a1 + a2g1 + a3g2 
then this will be represented as (a1, a2g1, a3g2), thus  
t-dimensional dual number y = a1 + a2g1 + a3g2 + … + atgt–1 by 
(a1, a2g1, …, atgt–1),  a t-tuple. 
 
 This way of representation will certainly find its 
applications. We see if y = a1 + a2g1 + a3g2 + … + atgt–1 then  
y2 = A1 + A2g1 + A3g2 + … + Atgt–1 where Ai  R; 1  i  t.  
Thus S = {g1, g2, …, gt–1, 0} forms a null semigroup under 
product.  
 
 Thus we can for instance imagine an interval. 
 
   A  = [a1 + a2g1, b1 + b2g1] 
    = [(a1, a2g1), (b1, b2g1)] 
    = [(a1, b1), (a2g1, b2g1)] 
    = [a1, b1] + [a2, b2] g1. 
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 Thus we see we get A = [a1, b1] + [a2, b2]g2, which we 
define as dual interval coefficient numbers or interval dual 
numbers. 
 
 Thus Sc(I) =  {[a1, b1] + [a2, b2] g1 | [ai, bi]  Nc(R), 2

1g  = 0}  
is defined as the dual interval coefficient numbers. 
 
 If [a1, b1] + [a2, b2]g1 = x and y = [c1, d1] + [c2, d2] g1, then  
x + y = [a1 + c1, b1 + d1] + [a2 + c2, b2 + d2]g1 and  
 
 xy  = [a1, b1] [c1, d1] + [a2, b2] [c1, d1] g1 +  

   [a1, b1] [c2, d2]g1 + 0      ( 2
1g  = 0) 

 
  = [a1c1, b1d1] + [a2c1 + a1c2, b2d1 + b1d2]g  S(I)  
 
is again a dual interval coefficient number.  
 
 We see (Sc(I), +, ) is a commutative ring of dual closed 
interval coefficient numbers.  We can define So(I), Soc(I) and 
Sco(I) in a similar way which is left for the reader as an exercise 
as it is a matter of routine. 
 
 We can also define any t-dimensional dual closed (open or 
open-closed or closed - open) interval coefficient numbers.   
 

We will just illustrate all these situations by some examples. 
 
Example 4.6:  Let  
 

Io(S) = {(a1, b1), (a2, b2)g1, (a3, b3)g2, (a4, b4)g3} 
 
 = {(a1 + a2g1 + a3g2 + a4g3, b1 + b2g1 + b3g2 + b4g3)} be of 
dimension four interval coefficient dual number. 
 
 Io(S) = {(a1, b1) + (a2, b2)g1 + (a3, b3)g2 + (a4, b4)g3}. 
 
 Thus (Io(S), +, ) is again a ring called the dimension four 
interval coefficient dual number general ring.  
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Example 4.7:  Let Ioc(S) = {(a1 + a2g1 + a3g2 + a4g3 + a5g4,  
b1 + b2g1 + b3g2 + b4g3 + b5g4] | ai, bj  R; 1  i, j  5 and g1 = 8 
+ 8iF, g2 = 4 + 4iF, g3 = 12 + 12iF, g4 = 12 + 8iF  C(Z16)}  
 
 = {(a1, b1] + (a2, b2] g1 + (a3, b3]g2 + (a4, b4]g3 + (a5, b5] g4 | 
(ai, bi]  Noc(R); 1  i  5; g1 = 8 + 8iF, g2 = 4 + 4iF, g3 = 12 + 
12iF, g4 = 12 + 8iF  C(Z10)}. 
 
 {(a1, b1], (a2, b2]g1, (a3, b3]g2, (a4, b4]g3, (a5, b5]g4) | (ai, bi]  
Noc(R); 1  i  5 and g1 = 8 + 8iF, g2 = 4 + 4iF, g3 = 12 + 12iF 
and g4 = 12 + 8iF  C(Z16)} be the five dimension open-closed 
interval coefficient dual numbers.   
 

Clearly (Ioc(S), +, ) is a commutative ring with unit and 
also Ioc(S) has zero divisors and no units different from units of 
the form (a, b]  Noc(R)  Ioc(S) where S = {(a1 + a2g1 + a3g2 + 
a4g3 + a5g5, b1 + b2g1 + b3g2 + b4g3 + b5g5] | ai, bj  R; 1  i, j  
5; g1 = 8 + 8iF, g2 = (4 + 4iF), g3 = 12 + 12iF and g4 = 12 + 8iF  
C(Z16)} is only a general ring of open-closed interval coefficient 
dual numbers.   

 
Clearly Noc(R)  Ioc(S) and Noc(R) is just a subring and not 

an ideal.  Also (R, 0]  Ioc(S) is again a subring.  Several 
properties of Ioc(S) can be studied and it is a matter of routine so 
it is left as an exercise to the reader.  
 
Example 4.8:  Let Ico(S) = {[a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 
+ a7g6, b1 + b2g1 + b3g2 + b4g3 + b5g4 + b6g5 + b7g6) | a1 + a2g1 + 
a3g2 + a4g3 + a5g4 + a6g5 + a7g6, b1 + b2g1 + b3g2 + b4g3 + b5g4 + 
b6g5 + b7g6  S = {all 7-dimensional dual numbers with ai, bj  
Q, 1  i, j  6 and g1 = 7, g2 = 14, g3 = 21, g4 = 28, g5 = 35, g6 = 
42  Z49}}. (Ico(S), +, ) is a ring.   
 

This ring has ideals, for take J = {[a1 + a2g1 + a3g2 + a4g3 + 
a5g4 + a6g5 + a7g6, 0) | ai  Q; 1  i  7 and gj {7, 14, 21, 28, 
35, 42}  Z49, gj’s distinct and 1  j  6}  Ico(S) and  
I = {[0, b1 + b2g1 + b3g2 + b4g3 + b5g4 + b6g5 + b7g6) | bj  Q,  
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1  j  7 and gi’s  {7, 14, 21, 28, 35, 42}  Z49 and gi’s are 
distinct}  Ico(S), clearly J and I are subrings which are ideals 
and I + J = Ico(S) with I.J = I J = (0). 
 
 Consider  

P = {[a1 + a2g1, b1 + b2g1) | ai  Q; 1  i  2 g1 = 7  Z49}  
 Ico(S); P is only a subring of Ico(S) and is not an ideal of Ico(S).   
 

Likewise M = {[a1 + a2g1 + a3g2 + a4g3, b1 + b2g4 + b3g5) | ai, 
bj  Q, 1  i  4 and 1  j  3; g1 = 7, g2, 14, g3 = 21, g4 = 28 
and g5 = 35  Z49}  Ico(S) is only a subring and not an ideal of 
Ico(S).  We see Ico(S) has subrings which are not ideals and also 
zero divisors.  Several other interesting properties about Ico(S) 
can be derived by the reader. 
 
 Further we can define the notion of positive intervals and 
the dual interval coefficients semirings and semifields.  
 
 Recall Ico(R+{0}) = {[a, b) | a, b  R+{0}} is the 
collection of all positive intervals and Ico(R+{0}) is a 
semigroup under ‘+’ and (Ico(R+{0}), ) is a semigroup under 
.  Infact (Ico(R+{0}), ) has zero divisors and units.  Thus 
{Ico(R+{0}), +, } is only a semiring which is a strict semiring 
but is not a semifield as it contains zero divisors.  
 These properties continue to hold good if Ico(R+{0}) is 
replaced by open closed intervals.   

Ioc(R+{0}) = {(a, b] | a, b  R+{0}} or closed intervals 
Ic(R+{0}) = {[a, b] | a, b  R+{0}}. Also the above results 
hold good if R+{0} is replaced by Q+{0} or Z+{0}.  All 
these structures are only strict semirings and not semifields. 
These semirings have semiideals also subsemirings which are 
not semiideals.   

First we will illustrate this situation by some examples. 
 
Example 4.9:  Let Ic(Q+  {0}) = {[a, b] | a, b  Q+  {0}} = 
natural class of positive rational intervals.  Clearly  
J = {[a, 0] | a  Q+  {0}}  Ic(Q+{0})is a subsemiring of 
Ic(Q+{0}) which is a semiideal of Ic(Q+{0}).   



98 Dual Numbers 
 
 

Likewise I = {[0, a] | a  Q+{0}}  Ic(Q+{0}) is a 
subsemiring which is a semiideal of Ic(Q+{0}).   

 
Further I  J = (0) and I + J = Ic(Q+{0}).  Consider P = 

{[a, b] | a, b  Z+{0}  Q+{0}}  Ic(Q+{0}); P is only a 
subsemiring of Ic(Q+{0}) and is not a semiideal of 
Ic(Q+{0}).  Thus Ic(Q+{0}) has subsemirings which are not 
semiideals.  Also Ic(Q+  {0}) has zero divisors and units. 
 
Example 4.10:  Let  
M = {[a, b] + [c, d]g1 | a, b, c, d  Q+  {0}, g1 = 4  Z16}; M is 
a semiring which is not a semifield.  M has both semiideals and 
subsemirings which are not semiideals.  M will be known as the 
general semiring of dual interval coefficient numbers.  
Take  
P = {[a, 0] + [0, b]g1 | a, b  Q+  {0}, g1 = 4  Z16}  M is a 
semisubring of M.  Suppose  
T = {[a, 0] + [0, b]g1 | a, b  Z+{0}, g1 = 4  Z16}  M; then 
T is only a subsemiring and not a semiideal of M.   
 
 For consider [5, 0] + [0, 8]g1 in T.   
 

Suppose [3/2, 6] + [6, 3/7] g1  M; consider  
([5, 0] + [0, 8]g1) ([3/2, 6] + [6, 3/7]g1)  

 = [15/2, 0] + [0, 48]g1 + [30, 0]g1 + (0)  
 = [15/2, 0] + [30, 48]g1  T. 
 
 Also if [6, 0] + [0, 3]g1  P and [8, 4] + [7, 1]g1  M.   
 

We see ([6, 0] + [0, 3]g1)  ([8, 4] + [7, 1]g1) 
  = [48, 0] + [0, 12]g1 + [42, 0]g1 + (0) 
  = [48, 0] + [42, 12] g1  P.  Hence the claim. 
 
 However it is interesting to observe that T is a subsemiring 
of the subsemiring P and is not a semiideal of P.  Thus we have 
subsemirings in M which are not semiideals.  Consider  
W = {[a, 0] + [b, 0]g1 | a, b  Q+  {0}, g1 = 4  Z16}  M,  
W is a subsemiring as well as a semiideal of M. 
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Suppose  
N = {[a, 0] + [b, 0]g1 | a, b  3Z+  {0}, g1 = 4  Z16}  M;  
N is only a subsemiring and is not a semiideal of M. 
 
Take  
V = {[0, a] + [0, b]g1 | a, b  Q+  {0}, g1 = 4  Z16}  M;  
V is a subsemiring as well as a semiideal of M.  
 
  Further V  W = (0) = VW and V + W = M.  We see V and 
W are orthogonal semiideals which are also known as the 
orthogonal semiideals with dual interval coefficient numbers. 
 
 We do not have fields from the rings of interval coefficients 
dual numbers but we can have semifields with interval 
coefficient dual numbers. 
 
 We will illustrate this situation by some examples. 
 
Example 4.11:  Let  
P = {[a, b] + [c, d]g1 | a, b, c, d  Q+ and g1 = 6  Z12}  {0}; 
be a semiring of natural rational interval coefficient of dual 
numbers.  P is a strict semiring and {P, +, } is a semifield 
known as the semifield of natural rational interval coefficient 
semifield.  
 
Example 4.12:  Let  
S = {[a, b) + [c, d)g1 | a, b, c, d  Z+, g1 = 20  Z100}  {0} be 
the semifield of natural closed-open interval coefficient dual 
numbers. 
 This has subsemirings which are not semifields.  
 Consider  
P = {[a, b) + [c, d) g1 | a, b, c, d  5Z+, g1 = 20 Z100}{0}  S, 
P is only a strict semiring which has no zero divisors or is a 
semidomain. 
 
Example 4.13:  Let  
P = {[a1, b1]+[a2, b2]g1+[a3, b3]g2+[a4, b4] g3 | ai, bj  Q+ {0},  
1  i, j  4; g1 = 4, g2 = 8 and g3 = 12  Z16} be a semiring of 
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dual number of closed interval coefficient of dimension four.  P 
has zero divisors, units, ideals and semisubrings which are not 
ideals.  Infact  
I = {[a,0] + [a2,0]g1 + [a3,0]g2 + [a4,0]g3 | ai  Q+{0},1  i  4; 
g1 = 4, g2 = 8 and g3 =12Z16}  P is a semiideal of P.   
 

J = {[0, b1] + [0, b2] + [0, b3]g2 + [0, b4]g3 | bj  Q+  {0};  
1  j  4, g1 = 4, g2 = 8 and g3 = 12  Z16}  P is also a 
semiideal of P with I + J = P and I  J = (0).   
 

In view of this we have the following theorem. 
 
THEOREM 4.1:  Let S = {[a1, b1] + [a2, b2]g1 + … + [an, bn]gn–1 
| [ai, bi]  Nc(R+  {0}); 1  i  n and gi  T where T  {0} is a 
null semigroup and 2

ig =0, gi gj = gj gi = 0 if i  j; 1 i, j  n–1} 
be a dual semiring of closed natural interval coefficient 
numbers then S has two disjoint semiideals I and J such that  
   I + J = S and 
   I  J = I. J = {0}. 
 
Proof:  Follows from the simple fact if we take  
I = {[a1, 0] + [a2, 0]g1 + … + [an, 0]gn–1 | ai  R+  {0}, gj  T; 
1  i  n and 1  j  n–1}  S and  
 
J = {[0, b1] + [0, b2]g1 + … + [0, bn]gn–1 where bi  R+  {0},  
gj  T; 1  i  n and 1  j  n–1}  S then I and J are semiideals 
such that I  J = (0) and I + J = S.   
 

Now we prove the following theorem. 
 
THEOREM 4.2: Let S = {[a1, b1] + [a2, b2]g1 + … + [an, bn]gn–1 
| [ai, bi]  Nc(Q+) 1  i  n and gj  T = {n, 2n, …, (n–1)n}  

2n
Z ( 2

jg  = 0 gpgj = 0) 1  j, p  n–1}  {0} be a semifield of 
closed natural interval coefficient dual numbers. P has 
semiinterval domains and no zero divisors. 
 
Proof:  P = {[a1, b1] + [a2, b2] g1 + … + [an, bn]gn–1 | [ai, bi]  
Nc(3Z+); 1  i  n and gj  T}  S is a semiinterval domain.  



Dual Interval Numbers and Interval Dual Numbers 101 
 
 
Replace Nc(3Z+) by Nc(mZ+); 2  m <  we get infinite number 
of semiintegral domains. 
 
Note:  If Q+ is replaced by R+ or Z+ the claims in the theorem 
hold good. 
 
Example 4.14: Let M = {[a1, b1] + [a2, b2]g1 + [a3, b3]g2 + … + 
[a9, b9]g8 | ai, bi  Q+; 1  i  9 and gj  T = {9, 18, 27, 36, 45, 
54, 63, 72}  Z81; gj’s distinct; 1  j  8}  {0}; be a semifield 
of closed natural of interval coefficients of dual numbers. 
 
 Take P = {[a1, b1] + [a2, b2]g1 + … + [a9, b9]g8 | [aj, bj]  
Nc(5Z+); 1  j  9; gp  T; 1  p  8}  {0}  M; P is only a 
semiintegral domain of M and not a subsemifield. 
 
 Take S = {[a1, b1] + [a2, b2]g1 + … + [a9, b9] g8 | [ai, bi]  
Nc(Q+)), 1  i  9, gj  T, 1  j  8}  {0}  M, S is a 
subsemifield of M.  Infact M has infinitely many semiintegral 
domains but only one subsemifield.  However if Q+ is replaced 
by R+ then M will have two subsemifield and infinitely many 
semi integral domains.   
 

Now we wish to bring in some relation between the vector 
spaces and semivector spaces. 
 
We see if V is a vector space over R say  
V = {(a1, …, an) | ai  R; 1  i  n} is a vector space over R.   
 
Consider  
W = {(a1, …, an) | ai  R+  {0}, 1  i  n}  V; W is a 
semivector space over R+  {0} and infact the positive cone of 
V.   

This result will always be true in case of vector space V, of 
dual numbers with interval (natural) coefficient from R or Q; if 
only positive natural class of intervals are taken as coefficient 
and then W  V is a positive cone of dual numbers with interval 
coefficients or it is semivector space over R+  {0}. 
 
 We will just illustrate this fact from some examples. 
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Example 4.15:  Let  

M = {[a1, b1] + [a2, b2]g1 + … + [a10, b10]g9 | [ai, bi]  Nc(R);  
1  i  10, gj  T = {10, 20, 30, 40, 50, 60, 70, 80, 90}  Z100, 
gj’s distinct 1  j  9} be a vector space of dual numbers with 
coefficients from natural class of interval Nc(R) over the field R.  
Consider W =   {[a1, b1] + [a2, b2]g1 + … + [a10, b10]g9 | [ai, bi]  
Nc(R+  {0}); gj  T  Z10, gj’s are distinct  1  i  10 and  
1  j  9}  M;  clearly W is a semivector space of dual 
numbers with coefficients from Nc (R+  {0}) over the 
semifield R+  {0}.  Infact W is a positive cone of M.   
 
 Inview of this we have the following theorem. 
 
THEOREM 4.3:  Let  
V  = {[a1, b1] + [a2, b2]g1 + … + [an, bn]gn–1 | [ai, bi]  Nc(R) 
(or Nc(Q)) 1  i  n; gj  T = {n, 2n, 3n, …, (n–1)n}  2n

Z ; gj’s 
distinct; 1  j  n–1} be vector space of interval coefficient dual 
numbers over R (or Q).   
 

W = {[a1, b1] + [a2, b2]g1 + … + [an, bn]gn–1 | [ai, bi]  Nc 
(R+  {0}) (or Nc (Q+  {0});1  i  n; gj  T, gj’s distinct 1  j 
 n–1}  V is a semivector space of interval coefficient dual 
numbers from Nc(R+{0}) (or Nc(Q+{0}) over the semifield 
R+{0} (or Q+{0}).  W is always a positive cone of V. 
 
 Proof is straight forward and hence left as an exercise to the 
reader. 
 
 Now we proceed onto illustrate different types of dual 
numbers with coefficients from interval matrices or matrices 
with interval entries.  The definition of this concept is a matter 
routine and hence is left as exercise to the reader. 
 
Example 4.16:  Let  
 

P = {([ 1 1
1 1a ,b ], [ 1 1

2 2a ,b ], [ 1 1
3 3a ,b ]) +([ 2 2

1 1a ,b ] + [ 2 2
2 2a ,b ] + 

[ 2 2
3 3a ,b ])g1 + ([ 3 3

1 1a ,b ], [ 3 3
2 2a ,b ], [ 3 3

3 3a ,b ])g2 + ([ 4 4
1 1a ,b ], [ 4 4

2 2a ,b ], 
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[ 4 4

3 3a ,b ])g3 | [ t t
i ia ,b ]  Nc (R+{0}); 1  i  3, 1  t  4 and  

g1 = 4, g2 = 8 and g3 = 16  Z16} be a semivector space of 
interval matrix coefficient dual numbers over the semifield 
R+{0} (or Q+{0} or Z+{0}). 
 
Example 4.17:  Let  
 

S = 

1 1
1 1
1 1
2 2
1 1
3 3
1 1
4 4
1 1
5 5

[a ,b ]
[a ,b ]
[a ,b ]
[a ,b ]
[a ,b ]

 
 
  
 
 
  

 + 

2 2
1 1
2 2
2 2
2 2
3 3
2 2
4 4
2 2
5 5

[a ,b ]
[a ,b ]
[a ,b ]
[a ,b ]
[a ,b ]

 
 
 
 
 
 
 
 

g1 +

3 3
1 1
3 3
2 2
3 3

23 3
3 3
4 4
3 3
5 5

[a ,b ]
[a ,b ]

g[a ,b ]
[a ,b ]
[a ,b ]

 
 
 
 
 
 
 
 

[ t t
i ia ,b ]   

 
Nc(Z+{0}); 1  i  5 and 1  t  3, g1 = 3 and g2 = 6  Z9} 

 
be a semivector space of column interval matrix coefficient of 
dual numbers over the semifield Z+{0}. 
 
Example 4.18:  Let  
 

P = 

1 1 1 1
1 1 2 2
1 1 1 1
3 3 4 4
1 1 1 1
5 5 6 6
1 1 1 1
7 7 8 8

[a ,b ] [a ,b ]
[a ,b ] [a ,b ]
[a ,b ] [a ,b ]
[a ,b ] [a ,b ]

 
 
     

 + 

2 2 2 2
1 1 2 2
2 2 2 2
3 3 4 4

12 2 2 2
5 5 6 6
2 2 2 2
7 7 8 8

[a ,b ] [a ,b ]
[a ,b ] [a ,b ]

g
[a ,b ] [a ,b ]
[a ,b ] [a ,b ]

 
 
 
 
 
  

[ t t
i ia ,b ]   

 
Nc(Q+{0}); 1  i  8, t = 1, 2 and g1 = 12  Z24} 

 
be a semivector space of dual numbers with interval matrix 
coefficients over the semifield Q+{0} (or Z+{0} we can 
define natural product n on matrices so that P is also a 
semilinear algebra. 
 
 We now can rewrite P as follows: 
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P = 

1 2 1 2 1 2 1 2
1 1 1 1 1 2 2 2 2 1
1 2 1 2 1 2 1 2
3 3 3 3 1 4 4 4 4 1
1 2 1 2 1 2 1 2
5 5 5 5 1 6 6 6 6 1
1 2 1 2 1 2 1 2
7 7 7 7 1 8 8 8 8 1

[a a ,(b b )g ] [a a (b b )g ]
[a a ,(b b )g ] [a a (b b )g ]
[a a ,(b b )g ] [a a (b b )g ]
[a a ,(b b )g ] [a a (b b )g ]

    
     
    
 

     

 

 

= 

1 2 1 2 1 2 1 2
1 1 1 1 1 2 2 2 2 1
1 2 1 2 1 2 1 2
3 3 3 3 1 4 4 4 4 1
1 2 1 2 1 2 1 2
5 5 5 5 1 6 6 6 6 1
1 2 1 2 1 2 1 2
7 7 7 7 1 8 8 8 8 1

[a a (b b )g ,a a (b b )g ]
[a a ,(b b )g ,a a (b b )g ]
[a a ,(b b )g ,a a (b b )g ]
[a a ,(b b )g ,a a (b b )g ]

     
     
    
 

     

 

 
is the matrix with interval coefficient dual numbers as its 
entries.  
 
 Thus we can go from interval matrix structure to coefficient 
interval matrix structure and vice-versa.  However it is 
interesting to note that P under natural product n of matrices is 
a semilinear algebra of interval dual numbers. 
 

Example 4.19:  Let T = 

1 1 1
1 2 3
1 1 1
4 5 6
1 1 1
7 8 9

a a a
a a a
a a a

 
 
 
  

 + 

2 2 2
1 2 3
2 2 2
4 5 6
2 2 2
7 8 9

a a a
a a a
a a a

 
 
 
  

g1 +  

3 3 3
1 2 3
3 3 3
4 5 6
3 3 3
7 8 9

a a a
a a a
a a a

 
 
 
  

g2 where g1 = 2 and g2 = 2+ 2iF  C(Z4) and  

 
t
ia  = [ t t

i ix , y ]  Nc(R+{0}); t = 1, 2, 3 and 1  i  9} be a 
semivector space of matrix interval coefficient dual numbers 
over the semifield R+{0}.   
 

Now if usual product of matrices is taken then T is a 
semilinear algebra which is non commutative.  If on T for the 
coefficient matrices natural product n is defined then T is 
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commutative semilinear algebra of matrix coefficients dual 
numbers. 
 
 We can also rewrite T as  
 

T = 

1 2 3 1 2 3 1 2 3
1 1 1 1 2 2 2 1 2 2 3 3 1 3 2
1 2 3 1 2 3 1 2 3
4 4 1 4 2 5 5 1 5 2 6 6 1 6 2
1 2 3 1 2 2 1 2 3
7 7 1 7 2 8 8 1 8 2 9 9 1 9 2

a a g a g a a g a g a a g a g
a a g a g a a g a g a a g a g
a a g a g a a g a g a a g a g

      
       
       

 

 
where t

ia  = [ t t
i ix , y ]  Nc(R+{0}); t = 1, 2, 3 and 1  i  9}, T 

is defined as the semivector space of interval coefficient dual 
number matrices over the semifield R+{0}.  Further T is a 
semilinear algebra, commutative or otherwise depending on the 
operation defined on the matrices.   
 

We can also derive all properties associated with these 
semivector spaces.  Infact all these semivector spaces can be 
realized as the positive cone of the appropriate vector space of 
interval  coefficient dual number matrices.  We can also use 
interval dual numbers [gi, gj] where gi, gj  S; S a null 
semigroup under product we have the concept of n-tuple 
intervals, that is  

 
[(x1, x2, …, xn), (y1, y2, …, yn)] where xi, yi  S.  S a null 

semigroup 1  i, j  n.   
 
 

Also we have 

1 1

2 2

t t

a b
a b

,

a b

    
    
    
    
         

 
 where ai, bj  S;  

 
S a null semigroup 1  i, j  t. 
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Further we can have  
 

1 2 m 1 2 m

m 1 m 2 2m m 1 m 2 2m

(p 1)m 1 (p 1)m 2 pm (p 1)m 1 (p 1)m 2 pm

g g ... g b b ... b
g g ... g b b ... b

,

g g ... g b b ... b

   

       

    
    
    
    
            

     

 
 where gi, bj  S, S a null semigroup, 1  i, j  pm and so on.   
 

We will just illustrate all these situations by some examples. 
 
Example 4.20:  Let W = {([g1, g2, g3, g4], [h1, h2, h3, h4]) | gi, hj 
 S = {5, 10, 15, 20, 0}  Z25, 1  i, j  4} be a row matrix 
interval of nilpotent elements of order two.  Clearly W is a null 
semigroup under product.   
 
For if x = ([5, 0, 10, 0], [15, 20, 5, 10]) and y = ([10, 5, 10, 5], 
[0, 10, 0, 15]) are in W then x  y = (0); easy to verify. 
 
 Infact (W, +, ) is a ring defined as the null ring. 
 
 Using the elements of the null ring W we can build vector 
spaces of interval dual numbers.  For if we take  
X ={a+bw | a, b  R and w=([5, 10, 16, 20], [10, 5, 0, 0]) W}, 
it is easily verified  X is a semigroup under product and X is not 
closed under addition. 
 
However if Y ={a1 +

i

i i
w W\{(0)}

a w

  ai, ai  R; wi  W \ {0},  

1  i  |W| – 1} then Y is a group under addition and Y is a 
vector space of matrix interval dual numbers over the field R.  
Infact Y is a linear algebra over R.  
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Example 4.21:  Let  
 

V = 
1 1

1 2 2 3 2

3 3

a b
x x a x b

a b

    
         
       

 + 
1

4 2

3

c
x c

c

 
 
 
  

 x1, x2, x3, x4  Q, 

 
2
2
2

 
   
  

 
1

2

3

a
a
a

 
 
 
  

, 
1

2

3

c
c
c

 
 
 
  

= 
2
0
2

 
 
 
  

, 
1

2

3

b
b
b

 
 
 
  

 = 
0
2
0

 
 
 
  

 where 2  Z4} 

 
be a vector space of dual column matrix numbers over the field 
Q. 
 
Example 4.22:  Let  
 

M = {x1 + x2 
2 0
2 , 2
2 0

    
    
    
        

 + x3 
2 2
0 , 0
2 2

    
    
    
        

 + x4 
0 2
2 , 2
0 2

    
    
    
        

  

 
xi  R; 1  i  4, and 2  Z4} 

 
be a vector space of dual matrix interval numbers over Q or R. 
 
 Infact by defining natural product we see M is a linear 
algebra over Q or R.  
 
Example 4.23:  Let  
 

P = {x1 + x2 
F F F

F F

F F F

2 2i 2 2i 0 2 2i
0 2i 0 , 2 2i 0
2 0 2 2i 2 2 2i 2i

    
    
    
         

 +  
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x3 
F F F F

F

F F F

2i 2 2i 0 2 2i 2 2i
0 2 2 2i , 0 2 0
2 0 2i 2i 0 2i

     
        
        

 + 

 

x4 
F F F F

F F

F F

2 2i 2i 2 2 2i 2 2i
0 2 2i 2 2i , 0 2 0
0 0 2 2i 0 2i

     
         
        

 xi  Q; 

 
1  i  4 and {2, 2+2iF, 2iF, 0}  C(Z4)}  is a vector space of 
interval matrix dual numbers over Q.  
 
 Infact each interval is a nilpotent of order two.  We see P is 
a linear algebra over Q. 
 
Example 4.24:  Let  
 

W ={x1 + x2 
F F

F

F F

5 5i 0 5 5i
0 0 , 5 5i

5i 5 5 5i 0

    
    
    
        

 +  

 

x3 

F F

F

F F

0 5i 5 5 5i
0 0 , 5 5i

5i 5 5 5i 0

    
    
    
        

 + 

 

x4 
5 0 5 0
0 0 , 0 0
0 0 0 0

    
    
    
        

 x1, x2, x3, x4  Q and  

 
{0, 5, 5iF, 5+5iF}  C(Z10)} 

 
be a linear algebra of interval matrix dual numbers under natural 
product over Q.   
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We can also define the notion of semivector spaces of 
interval matrix dual numbers over semifield.   

 
We will only give examples of them as the definition a 

matter of routine. 
 
Example 4.25:  Let S = {0, 6, 12, 18, 24, 30}  Z36 be the null 
semigroup.  Suppose  

P = {((a1, a2, a3, a4), (b1, b2, b3, b4))| ai, bj  S, 1  i, j  4}; P 
is also a null semigroup under product. 
     Let M = {x1 + x2g1 + x3 g2 + … + xo(p) go(p)–1 |  xi  Z+  {0};  
1  i  o(P) and gj  P \ {0} with each gj distinct and 1  j  
o(P) – 1}.  It is easily verified M is a semivector space of 
interval dual numbers over the semifield Z+{0}.   
 

Further M is a semilinear algebra of interval dual numbers 
over the semifield Z+{0}. 
 
Example 4.26:  Let S = {0, 7, 14, 21, 28, 35, 42, 7iF, 14iF, 21iF, 
28iF, 35iF, 42iF, 7+7iF, 7+14iF, 7+21iF, 7+28iF, 7+35iF, 7+42iF, 
14+7iF, 14+14iF, …, 35+42iF, …, 42+42iF}  C(Z49); be a null 
semigroup under multiplication modulo 49.   
 

V = {x1 +x2 
1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4
1 1 1 1 1 1 1 1
5 6 7 8 5 6 7 8

a a a a b b b b
,

a a a a b b b b

    
         

 + … + 

 

x16

15 15 15 15 15 15 15 15
1 2 3 4 1 2 3 4
15 15 15 15 15 15 15 15
5 6 7 8 5 6 7 8

a a a a b b b b
,

a a a a b b b b

    
         

   

 
where xi  Q+ {0} and t t

p ja ,b   S; 1  t  15 and  
1  p, j  8 and 1  i  16} 

 
is a semivector space of interval matrix dual numbers over the 
semifield Q+  {0}.  Infact this is the positive cone of the vector 
space if xi  Q instead of Q+ {0} and defined over the field Q 
instead of semifield Q+ {0}. 
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 Further this V has subsemispaces.  It is a matter of routine 
to find a basis, semilinear operator on V and semilinear 
functionals from V to Q+ {0}.  
 
Example 4.27:  Let  
 

M = {x1 + x2 

F F

F F

F F

F F

F F F

10 10 10i 10i 10
0 10i 10 10i

,10 10i 0 10 10i 0
10i 10 0 10 10i
10 10i 10 10i 10i

    
    
    
     
    

    
        

 

 
10, 10+10iF,  10iF  C(Z20), x1, x2   Z+ {0}} 

be a semilinear algebra of interval dual number of dimension 
two over the semifield Z+ {0}. 
 
 Clearly a = x1 + x2g1 where  
 

g1 = 

F F

F F

F F

F F

F F F

10 10 10i 10i 10
0 10i 10 10i

,10 10i 0 10 10i 0
10i 10 0 10 10i
10 10i 10 10i 10i

    
    
    
     
    

    
        

 

 

is such that 2
1g  = 

0 0 0 0
0 0 0 0

,0 0 0 0
0 0 0 0
0 0 0 0

    
    
    
    
    
    
        

 and a2 = X1 + X2 g1 where 

X1, X2  Z+ {0}. 
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For if a = 7 + 3g1 then  
 
a2 = (7 + 3g1)2 = 49 +9.0 + 2  7.3  g1 = 49 + 42g1 is again in 
the same form.   

 
Interested reader can find subsemispaces, bases, linear 

operators on M.  
 
Example 4.28:  Let V = {x1 + x2g1 + x3g2 + x4g3 | (x1, x2, x3, x4)  

 

 Q+  {0}; g1 = 
4 8 4
4 4 8

12 12 4

 
 
 
  

,  g2 = 
8 0 8
8 8 0
8 8 8

 
 
 
  

 and 

 

g3  =
12 8 12
12 12 8
4 4 12

 
 
 
  

 and 4, 8, 12  Z16} 

 
be a semivector space of interval dual numbers over the 
semifield Q+  {0}. 
 
 Clearly 2

1g  = (0), 2
2g  = (0) and 2

3g  = (0), also g1g2 = (0), 
g3g2 = (0) and g1g3 = (0).  
 
 It is easily verified V is also a dual semilinear algebra over 
the semifield Q+  {0}. 
 
Example 4.29:  Let  
 

M = {x1 + x2 
F F

F F F

F F

2 2 2i 0 2i 2
2i 2 0 2 2i 2i
0 2i 2 2i 0 2

 
  
  

2, 2iF,  

 
2+2iF C(Z4), x1, x2  Q+  {0}} 
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be a semivector space of matrix dual numbers over the semifield 
Z+  {0}.  M is also a semilinear algebra.  
 
 We can also define polynomials of null semigroup.  We first 
describe this concept.  
 
 Consider  
 

P = i
i

i 0
a x








  ai  {4, 8, 12, 0}  Z16} 

 
a collection of polynomials in the variable x.  We see (P, +) is 
an abelian group and (P, ) is a semigroup.  Infact P is a null 
semigroup. 
 
 Suppose S = {a + bg | a, b  Q g  P (g fixed)}; S is a 
general ring of dual polynomials. 
 
 It is pertinent to mention here g can be finite or infinite in 
both cases a + bg is a dual number.  
 
 Let  

P = i
i

i 0
a x








  ai  {2iF, 2, 2iF + 2, 0}  C(Z4)} 

be the polynomials with coefficients from  
{2iF, 2, 2+2iF, 0}  C(Z4).  P is again a null semigroup as well 
as null ring.  Several properties can be built using this structure. 
 
 Again S = {a + bg | g  P and a, b  Z} is a dual 
polynomial general ring of dimension two. 
 
 Suppose X = {a1 + a2g1 + a3g2 + … + angn–1 | gi  P \ {0}, 
gi’s distinct, 1  i  n–1 and aj  Q; 1  j  n} .  X is not a 
general dual polynomial ring of dimension n.  For we see X is 
not closed under addition.  However X is closed under product 
and is a commutative semigroup. 
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 Consider  
 

S = i
0 i

i 0
a a x









  gj  P, a0, ai  Q}, 

 
S is a general ring of infinite dimensional dual polynomial 
numbers. 
 
 Further every s in S \ Q is a dual number.  
 
 Only by this method we get infinite dimensional dual 
number. 
 
 It is pertinent to mention here that Q or R or Z can also be 
replaced by C = {a + bi | a, b  R} and still all the results 
mentioned about dual numbers will hold good.  As it not a new 
theory but a usual outcome we have not made a special mention 
of it.   
 

Now we can define semirings of dual polynomials numbers.  
Here it is very important to note that we cannot define semirings 
using complex numbers for they will not be proper semirings. 

 
 Now we can define semirings by replacing Q by  Q+  {0} 
or Z+  {0} or R+  {0} in the examples or to be more specific 
in 
  

S = 0 i i
i 0

a a g








  gj  P; a0, ai  Q+  {0} or R+  {0} or  

 
Z+  {0}, gj’s  distinct and gj  P =  aixi | ai   

 
{null semigroup}  C(Zn) or Zn}. 

 
The properties associated to infinite dimensional semirings of 
dual polynomial numbers can be studied and it is left as an 
exercise to the reader. 
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 Construction of vector spaces / linear algebras as well as 
semivector spaces / semilinear algebras are a matter of routine 
and this is also left as an exercise to the reader.  
 
 However authors felt the book would not be complete if 
study / definition of dual neutrosophic numbers is not defined.  
So we now proceed onto define the new notion of neutrosophic 
dual numbers for the first time. 
 
 Let x = a+bg if g contains a neutrosophic part or only a 
neutrosophic number such that g = t + vI, t, v  Zn and g2 = (0) 
then x2 =  A + Bg with A, B, a, b  R or C or Q or Z. 
 
 We define x as a dual neutrosophic number.  We describe 
this situation by some simple examples. 
 
Example 4.30:  Let  
V = {a + bg | g = 2 + 2I  Z4  I, a, b  Q} be the collection 
of all dual neutrosophic numbers.  V is a general neutrosophic 
dual number ring. 
 
Example 4.31:  Let  
M = {a + bg | g = 4 + 4I  Z16  I, a, b  Z} be the collection 
of all dual neutrosophic numbers.  M is a general neutrosophic 
dual number ring. 
 
Example 4.32:  Let Z4  I be the neutrosophic modulo integer 
ring.  Take P = {2I, 2I+2, 2, 0}  Z4  I, P is null semigroup, 
defined as the neutrosophic null semigroup. 
 
Example 4.33:  Let Z16  I be the neutrosophic modulo 
integer ring. 
 
 Consider S = {0, 4, 4I, 4+4I, 8I, 8, 8+8I, 4+8I, 8+4I, 12, 
12I, 12+12I, 4+12I, 8+12I, 12+4I, 12+8I}  Z16  I is also a 
null semigroup. 
 
 Any element g  S with a + bg, a, b  Q gives a general 
neutrosphic dual number ring for varying a and b in Q. 
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 Now as in case of usual dual numbers we can in case of 
neutrosophic dual numbers also define several dimensions in 
them.  We first record x = a + bg with a, b  Q (or Z or R) and 
g2 = 0 is a two dimensional neutrosophic number.  Consider  
 

x = a1 + a2g1 + a3g2 where g1 and g2 are two distinct 
neutrosophic numbers such that 2

1g  = 0, 2
2g  = 0 and g1, g2 = g2 

g1 = 0; a1, a2, a3  Q (or Z or R); we define x to be a three 
dimensional neutrosophic number.  
 
Finally suppose  

S = {0, 3I, 6I, 3, 6, 3+3I, 6+6I, 3+6I, 6+3I}  Z9  I; S is 
a null semigroup of neutrosophic numbers and we can use this S 
to get maximum number of neutrosophic dual number of 
dimension / cardinality of S.   

 
Consider x = a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + 

a8g7 + a9g8; gi  S \ {0}, gi’s are distinct, aj  Q (or Z or C or 
R); 1  j  9, 1  i  8. 
 
 Thus we get a neutrosophic dual number of dimension nine 
which is the cardinality of S. 
 
 Let M = {0, 6, 6I, 6+6I, 12, 12I, 12+12I, 6+12I, 12+6I, 18, 
18I, 18+18I, 18+6I, 18+12I, 6+18I, 12+18I, 24, 24I, 24+24I, 
24+6I, 24+12I, 24+18I, 6+24I, 12+24I, 18+24I, 30, 30I, 
30+30I, 30+6I, 30+2I, 30+18I, 30+24I, 6+30I, 18+30I, 12+30I, 
24+30I}  Z36  I be a null semigroup of neutrosophic 
numbers.  Clearly o(M); that is cardinality of M is 36 we can 
using M get maximum or atmost a general ring of dimension 36 
of dual neutrosophic numbers. 
  

In view of this we can have the following two theorems. 
 
THEOREM 4.4:  Let  2n

Z   I = P be a neutrosophic ring of 
integers modulo n; n  2.  Then S = {collection of all numbers x 
in P which are such that x2 = 0 and x.y = 0 for every pair x, y in 
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P}    2n

Z   I = P, is null semigroup of neutrosophic numbers 
of order n2.  Further S is a null ring. 
 
 The proof is left as an exercise to the reader as it is direct. 
 
THEOREM 4.5:  Let M = {a1 + a2g1 + … + ao(S) go(S)–1 |  ai  Q 
(or Z or R or C); 1  i  o(S) and  

gi  S = {all neutrosophic numbers x from  2n
Z   I such 

that x2 = 0; xy = 0 for every pair x, y   2n
Z   I}} that is, S is 

the null semigroup of  2n
Z   I.   M is a o(S) dimensional 

general neutrosophic dual number ring. 
 
 This proof is also simple and direct and hence is left as an 
exercise to the reader. 
 
 Now we give one or two examples of general neutrosophic 
dual number ring. 
 
Example 4.34:  Let  

S = {0, 3, 3I, 3+3I, 6, 6I, 6+6I, 3+6I, 6+3I}  Z9  I be a 
null semigroup.   
 
    P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + a8g7 + a9g8 | 
ai  Q; 1  i  9, gj  S \ {0} and gj’s are distinct 1  j  8} be a 
nine dimensional neutrosophic dual number general ring. 
 
Example 4.35:  Consider  
S = {0, 6, 6I, 6+6I, 12, 12I, 12+12I, 6+12I, 12+6I}  Z18  I, 
S is a null semigroup.  Take  
P = {a1 + a2g1 + a3g2 + … + a9g8 | ai  Z; 1  i  9, gj  S\ {0}; 
gj’s are distinct, 1  j  8}, P is a dual neutrosophic number 
general ring of dimension nine. 
 
Example 4.36:  Let S = {0, 12, 12I, 24, 24I, 36, 36I, 12+12I, 
12+24I, 12+36I, 24+12I, 24+36I, 36+12I, 36+24I, 36+36I, 
24+24I}  Z48  I be the null neutrosophic semigroup.  
Consider P = {a1 + a2g1 + … + a16 g15 | ai  Q, 1  i  16, gj   
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S \ {0} and gj’s are distinct, 1  j  15} be the 16 dimensional 
neutrosophic dual number general ring. 
 
 Now having seen general dual number neutrosophic rings 
we leave it as an exercise to the reader to find all the properties 
associated with such rings. 
 
 We can also define semirings of neutrosophic dual numbers 
which is a matter of routine and hence left as an exercise to the 
reader.  However we substance this by examples. 
 
Example 4.37:   Let S = {0, 4, 4I, 8, 8I, 12, 12I, 12+12I, 4+4I, 
8+8I, 4+12I, 4+8I, 8+4I, 8+12I, 12+4I, 12+8I}  Z16  I be 
the null semigroup. 
 
 Consider A = {a1 + a2g | a1, a2  R+  {0}, g = 4+4I}; A is a 
two dimensional semiring of neutrosophic dual numbers.  Infact 
S is a strict semigroup.  
 
 Consider B = {a1 + a2g1 + a3g2 | ai  Q+  {0}, 1  i  3, g1 
= 4+4I and g2 = 12+8I}, B is a three dimensional semiring of 
neutrosophic dual numbers. 
 
Take C = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | ai  Z+  {0};  
1  i  6, g1 = 12+8I, g2 = 8+8I, g3 = 8+12I, g4 = 8+4I, g5 = 
4+8I}, C is a six dimensional semiring of neutrosophic dual 
numbers.   
 

Using S we can obtain a maximum of 16 dimensional 
semiring of neutrosophic dual numbers.   

 
We can also build also vector spaces / linear algebras of 

neutrosophic dual numbers.  Further the notion of semivector 
spaces / semilinear algebras using neutrosophic dual numbers is 
a matter of routine.   
 

We will only illustrate these situations by some simple 
examples. 
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Example 4.38:  Let V = 
1 1 2 2
1 2 1 1 2 1
3 3 4 4
1 2 1 1 2 1

a a g a a g
a a g a a g

  
   

 where t
ia   Q; 

1  t  4 and I = 1, 2 g1 = 4 + 4I  Z16  I}  be the collection 
of all 2  2 matrices with dual neutrosophic number V is a 
vector space over the field Q; called the dual neutrosophic 
number vector space.  Infact V is a non commutative linear 
algebra of dual neutrosophic numbers over Q.   
 

If instead of usual product natural product n is used then V 
will be a commutative dual neutrosophic number linear algebra 
over Q. 

 
 

 Take W = 
1 1 2 2
1 2 1 1 2 1
3 3 4 4
1 2 1 1 2 1

a a g a a g
a a g a a g

  
   

where t
ia   Q+  {0};  

 
1  t  4 and i = 1, 2,  g1 = 4 + 4I  Z16  I}  V; W is the 
positive cone of V and infact W is a semivector space (as well 
as semilinear algebra). 
 
Example 4.39:  Let P = {(a1, a2, a3, a4, a5) | aj  {x1 + x2g1 + 
x3g2 + x4g3 + x5g4 | xi  R, 1  i  5 g1 = 3+3I, g2 = 3I,  
g3 = 3+6I, g4 = 6+3I  Z9  I}; 1  j  5} be the collection of 
all neutrosophic dual numbers of dimension five.   
 

P is a vector space (as well as a linear algebra) over the field 
Q or R of neutrosophic dual number. 
 
If M = {(b1, b2, b3, b4, b5) | bj   {x1 + x2g1 + x3g2 + x4g3 + x5g4 | 
xi  R+  {0}; 1  i  5 and g1 = 3+3I, g2 = 3I, g3 = 3+6I,  
g4 = 6+3I  Z9  I, 1  j  5}  P, M is a positive cone of P as 
well as M is a semivector space (as well as semilinear algebra of 
dual neutrosophic numbers) over the semifield R+  {0} or  
Q+  {0} or Z+  {0}. 
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Example 4.40:  Let S = 

1 6

2 7

3 8

4 9

5 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 where ai  {x1 + x2g1 +  

 
x3g2 + x4g3 + x5g4 + x6g5 + x7g6 + x8g7 + x9g8 | xj  Q; 1  j  9 
and g1 = 6 + 6I, 6+12I = g2, g3 = 12I, g4 = 12+12I, g5 = 6I,  
g6 = 6, g7 = 12, g8 = 12+6I  Z36  I, 1  i  10}} be a vector 
space (linear algebra under natural product n) of neutrosophic 
dual numbers. 
 

 P = 

1 6

2 7

3 8

4 9

5 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 ai  {x1 + x2g1 + x3g2 + … + x9g8 | xj   

 
 Q+  {0}, 1  j  9, g1 = 6 + 6I, g2 = 12I+6, g3 = 12I, g4 = 
12+12I, g5 = 6I, g6 = 6, g7 = 12 and g8 = 12+6I  Z36  I; 1  i 
 10}}  S is a positive cone of S as well as the semivector 
space (semilinear algebra under natural product of matrices n) 
over the semifield Q+  {0} or Z+  {0}, that is P is also known 
as the dual neutrosophic number semivector space over the 
semifield.  
 
Example 4.41:  Let  
 

S = 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

a a a a a a a a
a a a a a a a a

 
 
 

  

 
ai  T ={x1 + x2g1 + … + x24g23 + x25 g24 | xj  Q; 1  j  25 and 
g1 = 7, g2 = 7I, g3 = 7+7I, g4 = 14, g5 = 14I, g6 = 14+14I,  
g7 = 7+14I, g8 = 14+7I, g9 = 21, g10 = 21I, g11 = 21+21I,  
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g12 = 21+7I, g13 = 21 + 14I, g14 = 7+21I, g15 = 14+21I, g16 = 28, 
g17 = 28I, g18 = 28+28I, g19 = 7+28I, g20 = 14+28I, g21 = 21+28I, 
g22 = 28+7I, g23 = 28+14I, g24 = 28 + 21I}  Z49  I; 1  i  
16} be a vector space of neutrosophic dual numbers over the 
field Q and infact a neutrosophic dual number linear algebra 
over the field Q if natural product n on matrices is defined.   
 

Infact P = 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

a a a a a a a a
a a a a a a a a

 
 
 

 ai  T; 

 
xj  Q+{0};  1  i  16, 1  j  25}  S is a positive cone of S 
and infact a semivector space (semilinear algebra under natural 
product of matrices n) over the semifield Q+  {0}.   
 

Infact we can using these neutrosophic  dual number extend 
the notion to neutrosophic complex modulo integer numbers.  
We will first illustrate this situation by some examples before 
we proceed to describe them generally.  
 
 Let S = {2I, 2iF, 2, 0, 2+2I, 2+2iF, 2I + 2iF, 2 + 2iF, 2I, 2iFI, 
2+2iFI, 2iF + 2iFI, 2+2I+2iFI, 2iF+2I+2iFI, 2+2iF+2I+2iFI}   
C (Z4  I); it is easily verified S is null semigroup under 
product.  Also (S, +) is group under addition and S is a null ring 
contained in C(Z4  I).  Now thus in general all complex 
neutrosophic modulo integers in C( 2n

Z  I) contain a 
semigroup S of order n2  n2 = n4, distinct nilpotent elements of 
order two.  Infact S is a null semigroup as well as S is a null 
ring contained in C( 2n

Z  I). 
 
 Also using Zn, n a composite number we have nilpotent 
elements in C(Zn I).   
 

We will illustrate by an example or two. 
 
Example 4.42:  Let M = {12, 0, 12iF, 12I, 12+12I, 12+12iF, 
12+12iF+12I, 12iFI,  12I+12iF, 12+12iFI, 12I+12iFI, 12iF+12iFI, 
12I+12iF+12iFI, 12I+12+12iFI, 12iF+12+12iFI, 12+12I+12iF+ 
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12iFI}  C(Z24 I) is a null subsemigroup of C(Z24  I) as 
well as null semigroup. 
 
 Using any g1  M we get a1 + a2g1 to be a two dimensional 
complex neutrosophic number provided.  
 
    g1 = 12 + 12iFI or  
    g1 = 12I + 12iF or  
    g1 = 12+12iF+12I or 
    g1 = 12+12iF+12I+12IiF; 
 
 i.e., g1 should have a neutrosophic term as well as a finite 
complex number term iF.  
 
 Suppose  

P = {a1 + a2g1 | a1, a2  Q, g1  12 + 12iF + 12I + 12iFI} 
then P is defined as the general complex neutrosophic dual 
number ring of dimension two. 
 
 If A = {a1 + a2g1 + a3g2 + … + a16g15 | gi  M \ {0}; gi’s 
distinct, aj  Q 1  j  16}, then A is defined as the 16-
dimensional neutrosophic complex modulo integer general ring. 
 
 Infact A contains a proper subset which is only a finite 
complex modulo integer  dual number general ring of dimension 
four; that is B = {a1 + a2g1 + a3g2 + a4g3 where g1 = 12iF; g2 = 
12+12iF, 12 = g3 ai  Q, 1  i  4}  A of dimension three.   
 

On similar line we have C = {a1 + a2g1 + a3g2 + a4g3 | ai  Q, 
1  i  4 g1 = 12, g2 = 12I, and g3 = 12+12I  M}  A; C is also 
a dimension four neutrosophic dual general ring. 
Example 4.43:  Let M = {6, 6iF, 6I, 0, 6 + 6I, 6 + 6iF, 6I + 6iF, 6 
+ 6iF + 6I, 6iFI, 6 + 6iFI, 6 + 6iF + 6I + 6iFI, 6 + 6iF + 6I, 6 + 6iFI 
+ 6iF, 6iFI + 6iF, 6iFI + 6I, 6iF + 6I + 6iF}  C(Z12 I) be a null 
semigroup. 
 
 Let V = {a1 + a2g1 + … + a36g35 | gi’s are distinct and belong 
to M \ {0}; 1  i  35 and aj’s are in Q; 1  j  36} be a general 
ring of neutrosophic complex  dual numbers.  
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 M has four types of subrings viz. subrings which are general 
subrings of neutrosophic complex dual numbers, subrings which 
are general subrings of neutrosophic dual numbers, subrings 
which are general subrings of complex modulo integer dual 
numbers modulo integer dual numbers and subrings which are 
just dual numbers. 
 
 Here X = {a + bg1 | g1 = 6  C(Z12 I); a, b  Q}  V is 
the general subring of dual numbers. 
 
 Take Y = {a + bg1 | g1 = 6+6I  C(Z12 I), a, b  Q}  V; 
Y is a general subring of neutrosophic dual numbers.  Take  
W = {a + bg1 + cg2 | g1 = 6iF and g2 = 6 + 6iF in C(Z12 I); a, 
b, c  Q}  V is the general subring of complex modulo integer 
dual numbers.   
 

Finally B = {a + bg1 | g1 = 6 + 6iF + 6I  + 6iFI  C(Z12 I), 
a, b  Q}  V is the general subring of neutrosophic complex 
modulo integer dual numbers. 
 
 Inview of this we have the following theorem. 
 
THEOREM 4.6:  Let  

S = {a1 + a2g1 + … +atgt–1 | ai  Q; 1  i  t, g  T = {all 
nilpotent elements of order two from C(Zn I)}; gj’s distinct 
and gj  0.  o(T) = t} be a general ring of complex neutrosophic 
modulo integer dual numbers. 
 
 Then S has four types of subrings say S1, S2, S3 and S4 where 
S1 is just a general subring of dual numbers of S.  
 S2 is the general subring of neutrosophic dual numbers of S, 
S3 is the general subring of complex modulo integer dual 
numbers of S and S4 is the general subring of complex modulo 
integer neutrosophic dual numbers of S.   

 
The proof is direct and straight forward hence left as an 

exercise to the reader. 
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Example 4.44:  Let S = {3, 0, 6, 3iF, 6iF, 3I, 6I, 3iFI, 6iFI, 6 + 3I, 
6 + 3IiF, 6 + 3iF, 3 + 3I, 3 + 3iF, 3 + 3iFI, 3 + 6I, 3 + 6IiF, 3 + 6iF, 
6 + 6iF, 6 + 6I, 6 + 6iFI, 3 + 3iF + 3I, …, 3 + 6iF + 6iFI + 3I, …, 
6I + 6 + 6iF + 6IiF}  C(Z9 I).   
 

We see S is a null semigroup.  S has four types of null 
subsemigroups.  Take S1 = {0, 3, 6}  S; S1 is a subsemigroup 
which is a null subsemigroup.   
 

S2 = {0, 3+3I, 6+6I, 3I, 6I, 3, 6, 3+6I, 6+3I}  S is again a 
subsemigroup which is a null subsemigroup of S. 
 
 S3 = {0, 3, 3iF, 6iF, 6, 3+3iF, 6+6iF, 3+6iF, 6+3iF}  S is 
again a subsemigroup which is a null subsemigroup of S. 
 
 Take S4 = {0, 3 + 3iF + 3I + 3iFI, 6+6iF+6I + 6iF}  S is 
again a null subsemigroup of S. Hence the claim.   
 

S1 will be known as modulo integer null subsemigroup S2 
will be known as complex modulo integer null subsemigroup, 
S3 will be known as the neutrosophic modulo integer null 
subsemigroup and S4 will be known as the complex modulo 
integer neutrosophic subsemigroup of S.   
 

Inview of this we have the following theorem the proof of 
which is left as an exercise to the reader. 
 
THEOREM 4.7:  Let S = {0, all elements x in C(Zn I) such 
that x2 = 0}  C(Zn I). 
 

(i) S is a null neutrosophic complex modulo integer 
semigroup contained in C(Zn I)  

(ii) S has four types of null subsemigroups viz. S1 

  S is 

just the null semigroup of modulo integers, S2 

  S is 

the null complex modulo integer subsemigroup of S.   
S3 


  S is the null neutrosophic subsemigroup of S.   
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S4 

  S is the null neutrosophic complex modulo integer 

subsemigroup of S. 
 

However it can be easily verified by the interested reader 
that S is a null ring of complex modulo integer neutrosophic 
numbers.  Using this null semigroup S we can construct all rings 
of complex neutrosophic modulo integers of dimension less 
than or equal to o(S). 

 
Infact these null semigroups of complex neutrosophic 

modulo integers can be used to build complex neutrosophic 
modulo dual number general ring. 

 
Further we can define the notion of semirings by restricting 

the real number in the dual number to be positive.   
 
We will give some examples of them. 

 
Example 4.45: Let S = {6, 6I, 0, 6+6I, 6iF, 6+6iF, 6I+6iF, 6+6I, 
6iF, 6iFI, 6+6iFI, …, 6+6iF + 6I + 6iFI}  C(Z12 I) be a null 
semigroup of neutrosophic complex modulo integer.  Take  
P = {a + bg1 | g1 = 6 + 6iFI  C(Z12 I) with a, b  Z+  {0}}; 
P is a dual neutrosophic complex modulo integer semiring. 
 
 Consider  
B = {a + bg1 | g1 = 6 + 6I + 6iF + 6iFI, a, b  Q+  {0}},  
B is again a dual neutrosophic complex modulo integer 
semiring.  
 
Example 4.46:  Let S = {4 + 4iF, 4, 0, 4iF, 4I, 4iFI, 8+8iF, 8, 8iF, 
8iF, 8+8I, 8I, 8iFI, 8+8iF+8I, …, 12+12iF, 12, 12iF, 12I, 12iFI, …, 
12+12iF + 12I + 12iFI}  C(Z16 I) be the null semigroup of 
complex modulo integer neutrosophic nilpotent elements of 
order two. 
 
 Consider P1 = {a1 + a2g1 + a3g2 | ai  Q+  {0}, 1  i  3, g1 
= 6 + 6iF + 6I + 6iFI and g2 = 12 + 12iF + 12I + 12IiF  S}; P is a 
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three dimensional general ring of complex neutrosophic dual 
numbers. 
 
 T = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | ai  Z+  
{0}, 1  i  7, g1 = 8iFI, g2 = 4 + 4iFI, g3 = 12I + 12iF + 12,  
g4 = 4 + 4iF + 4I, g5 = 8+8iFI + 8I and g6 = 12+12iFI + 8iF+4I  
S}; T is a general ring of seven dimensional neutrosophic 
complex modulo integer dual numbers.  
 
 We can also build vector spaces / semivector spaces of 
neutrosophic complex modulo integer dual number over field / 
semifields respectively.   
 

Here we supply a few examples. 
 
Example 4.47:  Let S = {0, 2, 2iF, 2I, 2+2iF, 2iFI, 2+2iFI, 2+2I, 
2+2iF+2I, 2+2iF+2IiF, 2+2iFI+2I, 2I+2iF+2iFI, 2+2iF+2I+2iFI, 
2I+2iF, 2I+2iFI, 2iF+2iFI}  C(Z4 I) be the null semigroup of 
complex neutrosophic modulo integers.  Consider  
 

V = {a1 + a2g1 + a3g2 + … + a16g15 | ai  Q; 1  i  16, gj  
S \ {0}, gj’s are distinct 1  j  15} be a vector space of 16 
dimensional complex neutrosophic modulo integer dual 
numbers over the field Q. 
 
 If W = {a1 + a2g1 + … + a16g15 | ai  Q+  {0}; 1  i  16, gj 
 S \ {0}; gj’s are distinct 1  j  15}  V, W is a semivector 
space over the semifield Q+{0} (or Z+{0}) of complex 
neutrosophic modulo dual numbers and if W defined over  
Q+  {0}; W is also the positive cone of V. 
 
Example 4.48:  Let S = {0, 5, 5I, 5iF, 5iFI, 5 + 5iF, 5 + 5I,  
5 + 5iFI, 5iF + 5I, 5iF + 5iFI, 5I + 5iFI, 5 + 5I + 5iF, 5 + 5I + 5iFI,  
5 + 5iF + 5iFI, 5iF + 5I + 5iFI, 5 + 5I + 5iF + 5iFI}  C(Z10 I) 
be a null semigroup of complex modulo neutrosophic integers. 
 
 Consider W = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + 
a8g7 | ai  R, 1  i  7; gj  S \ {0}, gj’s distinct, 1  j  7 (gj’s 
fixed elements in S \ {0}} be a vector space of eight 
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dimensional neutrosophic complex modulo integers of dual 
numbers over the field Q or R. 
 
 We see if V = {a1 + a2g1 + a3g2 + … + a8g7 | ai  R+  {0}, 
1  i  8 and gj’s as in W; 1  j  7}  W, V is a positive cone 
of V as well as V is a semivector space over R+  {0} of eight 
dimensional neutrosophic complex dual numbers. 
 
 Interested reader can construct several examples, study 
subspaces in these vector spaces find basis, linear operators and 
linear functionals.  All these are considered as a matter of 
routine.   
 

Now we can also define other types of vector spaces and 
rings using complex neutrosophic finite modulo dual numbers. 
 Let S = {0, 5, 5iF, 5I, 5IiF, 5 + 5iF, 5 + 5I, 5 + 5IiF, 5I + 5iF 
,…, 5 + 5iF + 5I + 5IiF}  C(Z10  I) be a null semigroup of 
nilpotent finite complex neutrosophic numbers. 
  

Let P = {(aij)55 | aij  S; 1  i, j  5}.  P is again a null 
semigroup of finite complex neutrosophic numbers.  Consider  
V = {a1 + a2g1 + … + atgt–1 | ai  Q, 1  i  t and gj  P \ {0}  
(gj are distinct and t  o (p)); V is a vector space of  
t-dimensional neutrosophic finite complex modulo matrix of 
dual numbers. 

 
 Let S be as before.   
 

Consider T = 

1 2

3 4

9 10

g g
g g

g g

 
 
    

 
 gi  S; 1  i  10}.   

 
Suppose  
M = {a1 + a2g1 + a3g2 + … + atgt–1 |ai  Q; 1  i  t and gj’s 

are distinct, gj  T \ {(0)} 1  j  t–1 o(T) = T}, T is a  
t-dimensional vector space of neutrosophic finite complex 
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numbers of dual numbers.  Likewise we can build vector spaces 
and interested reader can construct several of them. 

 
 Now  we can using the same S mentioned earlier build 
polynomials with coefficients from S.   
 

P = i
i

i 0
g x








  gi  S; gj’s are distinct}.  P is also a null 

semigroup.  Now let  
 
V = {a1 + a2g1 + … + argr–1 | gi  P are polynomials with 

coefficient from S, 1  i  r–1 and aj  Q, 1  j  r} (1  r  ) 
(P will be known as the neutrosophic complex modulo integer 
coefficient polynomial null semigroup).  V is the r dimensional 
neutrosophic complex modulo dual polynomial numbers of 
vector space over the field Q. 
 
 Now we proceed onto describe fuzzy dual numbers.   
 

Let S = {0, 4, 8, 12}  Z16 consider x1 + x2g where g  S 
and x1, x2  [0, 1], x1 + x2g is defined as the fuzzy dual number.  
V = {x1 + x2g | x1, x2  [0, 1] g = 12} is a fuzzy dual number 
semigroup under product.  For consider 0.2 + 0.4(12) = x,  
x2 = (0.2)2 + (0.4)2 (12)2 + 0.2  0.4  12 = 0.04 + 0.08.12 + 0 is 
again a fuzzy dual number.   

 
However we cannot define addition on V; we can define 

only min {x1 + x2g, y1 + y2g}  = min {x1, y1} + min {x2, y2} g or  
 
max {x1 + x2g, y1+y2g} = max {x1, y1} + min {x2, y2}g.  

Thus ‘+’ can be  replaced by max or min. 
 
 We can construct semirings and semivector spaces of fuzzy 
dual numbers. 
 
 We can consider S = {2iF, 2, 0, 2+2iF}  C(Z4).   
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If x = a1 + a2g1 = 2iF = gi  S (a1, a2  [0, 1]) then we define 
x to be a complex finite modulo integer fuzzy dual number or 
fuzzy complex finite modulo integer dual number.  
 
 Further if we take S = {0, 2iF, 2I, 2iFI, 2, 2+2iF, 2+2I, 
2+2iFI, 2iF+2I, 2+2iF+2I, …, 2+2iF+2I + 2iFI}  C(Z4 I); we 
see x = a1 + a2g1 with g1  S and g1 = 2iF + 2iFI + 2I + 2 and a1, 
a2  [0, 1] is a fuzzy neutrosophic finite complex modulo 
integer dual number.  
 
 Only a few properties can be true in case of fuzzy dual 
neutrosophic complex number as it is not possible to define a 
group structure on them with respect to ‘+’.  Even if we define 
max or min it can only be a semigroup so only semiring or 
semivector structures can be defined on them. 
 
 Interested reader can develop these properties as it is direct 
and easy by using appropriate changes. 
 
 Finally we wish to state we can in an analogous way 
develop intervals of dual numbers using intervals of complex 
modulo dual numbers or neutrosophic complex modulo dual 
numbers or fuzzy dual numbers or fuzzy complex modulo dual 
numbers or fuzzy neutrosophic complex modulo integers or 
fuzzy neutrosophic dual numbers, their matrix and polynomial 
analogues. 
 
 The development of all these concepts are direct and simple 
and with appropriate modifications can be derived / studied by 
any interested reader. 



 
 
 
 
 
Chapter Five 
 
 

 
 
APPLICATIONS OF THESE NEW TYPES OF 
DUAL NUMBERS 
 
 
 
 
 Dual number were first discovered / defined by W.K. 
Clifford in 1873. This concept was first applied by A.P. 
Kolelnikor in 1895 to mechanics. It is unfortunate that his 
original paper published in Annals of Imperial University of 
Kazan in (1895) was destroyed during Russian revolution. 
Scientist have applied this concept in various fields like 
modeling plane joint, in an iterative method for displacement 
analysis of spatial mechanisms [4-7], Yang in inertial force 
analysis of spatial mechanisms, Sugimoto and Duffy in screw 
systems, Wohlhart in computational Kinematics, Duffy in the 
analysis of Mechanisms in Robot Manipulators (1980), Y.L. Gu 
and J.Y.S. Luh, in Robotics (1987), I.S. Fisher in velocity 
analysis of mechanisms with ball Joints (2003); joints with 
manufacturing tolerances, computer aided analysis and 
optimization of mechanical system dynamics and so on [3, 7-9, 
12, 21] .  
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The authors in this book have introduced the new notion of 

finite complex modulo integer dual number, neutrosophic dual 
number and finite complex modulo integer neutrosophic dual 
number. Study of these concepts and constructing algebraic 
structures using these concepts are carried out. These new 
structures will certainly find applications in due course of time. 
Finally the concept of fuzzy dual number are defined and these 
can find applications in fuzzy models. 
 
 Now we have presently given t-dimensional: dual numbers, 
neutrosophic dual number, finite complex modulo integer dual 
number, and interval dual numbers. 
 
 Certainly all these concepts will find applications in the 
related fields of applications of dual numbers. 



 
 
 
 
 
Chapter Six 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 
 
 
 In this chapter we suggest around 116 problems of which 
some are simple, some are difficult and some of them are 
research problems.  
 
1. Give an example of a general dual number ring, which is of 

finite order and has zero divisors and idempotents. 
 
2. Prove S = {a + bg | g = (0, 3, 6, 3) where 6, 3, 0  Z9 with a, 

b  Z} is a general dual number ring. 
 
 (i)  Find subrings of S. 
 (ii)  Can S have ideals? 
 (iii) Can S have zero divisors? 
 
3. Give some interesting properties and applications of general 

dual number ring. 
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4. Let S = {a + bg | a, b  Z23, g = 

3
6
0
3
6
0

 
 
 
 
 
 
 
 
  

 with 3, 6, 0  Z9}  

 
 under natural product n on g that is g n g = (0) be the 

general dual number ring. 
 
 (i) Prove S is of finite order. 
 (ii) Does S have subrings which are not ideals? 
 (iii) Can S have units? 
 (iv) Can S have idempotents? 
 
5. Let S = {a + bg | a, b  Z23, g = 5  Z25} be a dual modulo 

number ring. 
 
 (i) Does S have subring? 
 (ii) Can S have ideals? 
 (iii) Prove S cannot have unit for all a + bg where a, b  Z23. 
 (iv) Find the number of elements in S. 
 (v) Can S have idempotents? 
 

6. Is P = 1 2

3 4

a a
a a

 
 
 

 ai = xi + yig where xi, yi  Z16; 1  i  4;  

 
 g = 8  Z16}, a dual number modulo integer ring? 
 
 
7. Is  

 M = 1 2 1 2

3 4 3 4

x x y y
g

x x y y
       
   

g=8Z16, xi,yiZ19,1i19},  

 a dual number modulo integer ring? 
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 (i) Find subrings of M which are not ideals. 
 (ii) Can M have S-ideals? 
 (iii) Can M have zero divisors? 
 
8. Let P = {(a1, a2, a3, a4, a5, a6) + (b1, b2, b3, b4, b5, b6)g | ai, bj 

Z11; 1  i, j  6; g = 2  Z4} be a dual number modulo 
integer ring. 

 
 (i) Find subrings and ideals of P. 
 (ii) Can P have ideals I and J such that I  J = (0)? 
 
9. Let  

 S = 

1 2 1 2

3 4 3 4

5 6 5 6

7 8 7 8

a a b b
a a b b

g
a a b b
a a b b

   
   
            

 ai, bj  Z17, 1  i, j  8,  

 
 g = 6  Z12} be a dual number modulo integer ring under 

natural product n. 
 
 (i) Can S have ideals? 
 (ii) Can S have units? 
 (iii)  Is S a Smarandache ring? 
 
10. Let T = {p(x) + q(x)g | p(x), q(x)  q(x) and g = 3  Z9} be 

a dual number polynomial ring. 
 
 (i) Is T commutative? 
 (ii) Is T a S-ring? 
 (iii) Can T have S-ideals? 
 (iv) Is T a principal ideal domain? 
 
11. Let Q be the field.  S = {0, 1, 4}  Z16 be a subsemigroup of 

the semigroup (Z16, ). QS be the semigroup ring of the 
semigroup S over the ring Q. 

 
 (i) Prove QS is a dual number general ring. 
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 (ii) Can QS have ideals which are dual number ideals? 
 (iii) Does QS contain subrings H which are not ideals and H  
       a dual number general ring? 
 
12. Let M = Z11S where S = {0, 1, 10}  Z20 be a semigroup 

under multiplication modulo 20. 
 
 (i) Can M have zero divisors? 
 (ii) Find the number of elements in M. 
 (iii) Can M have units? 
 (iv) Can M have ideals? 
 

13. Let P = 

1

2

3

4

a
a

a b
a
a

  
  
        

a, b  Z5, ai = 2, i=1, 2, 3, 4; 2  Z4}  

 
 be the dual number modulo integer ring. 
 
 (i) Find the number of elements in P. 
 (ii) Can P be a S-ring? 
 (iii) Can P have S-zero divisors? 
 
14. Obtain some nice applications of dual number modulo 

integer ring. 
 
15. Let V = {p(x) + q(x)g | p(x), q(x)  Z [x], g= 4  Z16} be a 

dual number polynomial general ring. 
 
 (i) Find ideals in V. 
 (ii) Can V have subrings which are not ideals? 
 (iii) Give any other interesting property enjoyed by V. 
 
16. Let  
 P = {p(x) + q(x)g | p(x), q(x) are in Z7[x] and g = 2  Z4} be 

the dual modulo number ring. 
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 (i) Find ideals if any in P. 
 (ii) Is P an integral domain? 
 (iii) Can P have zero divisors? 
 
17. Describe some applications of the dual number semifield 

Q(g) = {a+bg | a, b  Q and g2 = 0}. 
 
18. Let T = {(a1, a2, a3) | ai = xi + yig with g = 4  Z16; xi, yi  

Q+; 1  i  3}  (0, 0, 0) be the dual row matrix number 
semiring. 

 
 (i) Can T have zero divisors? 
 (ii) Can T have units? 
 
19. Let M = {(a1, a2, …, a10) + (b1, b2, …, b10)g | ai, bj  Z+,  

1  i, j  10; g = 10  Z20}  {(0 0 … 0)} be a dual row 
matrix number semiring.  Give any two striking properties 
about M. 

 
20. Let  
 

 P = 1 2 1 2

3 4 3 4

a a b b
g

a a b b
       
   

ai, bj  Z+; 1  i, j  4,  

 
g = 6  Z12} be a dual square matrix number semiring. 

 
 (i) Is P a semifield? 
 (ii) Is P commutative under usual matrix multiplication? 
 (iii) Can P have ideals? 
 (iv) Can P have S-units and S zero divisors? 
 
21. Give some nice applications of dual number square matrix  

commutative ring. 
 
22. Compare the dual number matrix ring with dual number 

matrix semiring both under usual product. 
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23. Obtain some special features enjoyed by dual number 

polynomial semirings. 
 
24. Let  
 

 M = 
1 1

2 2

3 3

a b
a b g
a b

   
      
      

 ai, bj  Z23, 1  i, j  3; g = 4  Z16}  

 
 be a dual number matrix ring. 
 
 (i) Find the number of elements in M. 
 (ii) Can M have zero divisors? 
 (iii) Does M have subrings which are not ideals? 
 
25. Let S = {p(x) + q(x)g | p(x), q(x)  Z11, g = 2  Z4} be a 

dual number polynomial general ring.  Prove or disprove S 
is an integral domain. 

 

26. Let L = 1 2 11 1 2 11

12 13 22 12 13 22

a a ... a b b ... b
g

a a ... a b b ... b
       
   

  

 
ai, bj  Q+  {0}, 1  i, j  22, g = 4  Z16} be a dual 
number matrix semiring.  Can L have zero divisors? 

 
27. Let  
 

 V = 
1 1

2 2

3 3

a b
a b g
a b

   
      
      

 ai, bj  Q, 1  i, j  3 and g = 4  Z16}  

  
 be a dual number matrix vector space over Q. 
 
 (i) Find the dimension of V over Q. 
 (ii) Find a basis for V. 
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 (iii) Write V as a direct sum. 
 (iv) Write V as a pseudo direct sum. 
 (v)  Can V = W  W where W is a dual number matrix  
       vector subspace of V and W the orthogonal space  
       of W? 
 
28. Let M = {p(x) + q(x)g | p(x), q(x)  R[x], g = 2  Z4} be a 

dual number polynomial linear algebra over the field R. 
 
 (i) Find a basis of M. 
 (ii) Is M finite dimensional? 
 (iii) Find a linear operator T on M such that T-1 does not  
        exist. 
 (iv) Define a linear functional f : M  R and find the  
        algebraic structure of LR(M) = {f : M  R}.  
 
29. Let  
 

 P = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

a a a b b b
a a a b b b g
a a a b b b

   
      
      

 ai, bj  Z13, 1  i,  

 
j  9; g = 3  Z9} be a dual number non commutative linear 
algebra over the field Z13. 

 
 (i) Find the number of elements in P. 
 (ii) Find a basis of P over Z13. 
 (iii) Write P as a direct sum. 
 (iv) Write P as a pseudo direct sum. 
 (v) Find the algebraic structure enjoyed by 

13ZHom (P, P). 
 
30. Let  
 

 V = 1 2 1 2

3 4 3 4

a a b b
g

a a b b
       
   

 g = 3  Z9, ai, bj  Q+{0}}  
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 be dual number matrix semilinear algebra over the semifield 

Z+  {0}. 
 
 (i) Is V infinite dimensional? 
 (ii) If the semifield Z+  {0} is replaced by Q+  {0}  
        will V be finite dimensional? 
 (iii) Find a basis of V, V as a semivector space over  
  Q+  {0}. 
 (iv) Write V as a direct sum of semivector subspaces.  
 (v)  Find +Q {0}

Hom


(V, V). 

 
31. Let  
 

 S =  
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  Z+(g), ai = xi + yi g with  

 
 g = 4  Z16 1  i  9} be a dual number semivector space 

over Z+  {0}. 
 

 (Note :  
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
 
 

 is a dual number matrix as  

 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
 
 

 = 
1 2 3

4 5 6

7 8 9

x x x
x x x
x x x

 
 
 
 
 

 + 
1 2 3

4 5 6

7 8 9

y y y
y y y g
y y y

 
 
 

    

. 

 
 (i)  Find dimension of S over Z+  {0}. 
 (ii)  Find the algebraic structure enjoyed by  
  

Z {0}
L  

(S, Z+{0}) 

 (iii)  Suppose Z+  {0} is replaced by Z+(g)  {0} then  
         mention the special features enjoyed by S over  
   Z+(g)  {0}. 
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32. Let  L = {(a1, a2, a3, a4, a5) = (x1, x2, x3, x4, x5) + (x1, x2, x3, 

x4, x5)g | xi, yj  Q+  {0}; g = 11  Z121, 1  i, j  5} be a 
dual number row matrix semilinear algebra over the 
semifield Q+ (g)  {0} = F.  

 
 (i) Find a basis of L over Q+ (g)  {0}. 
 (ii) Write L as a direct sum of subspaces. 
 (iii) Find the algebraic structure enjoyed by  
  a) HomF (L, L)  b) HomF (L, F). 
 
33. Give an example of a 7-dimensional dual number. 
 
34. Let  V = {a1 + a2g1 + a3g2 + a4g3 | ai  R; 1  i  4;  
 

 gi  

1

2

3

4

5

x
x
x
x
x

 
 
  
 
 
  

 xi  {4 + 4iF, 8+8iF, 12+12iF, 4+8iF, 4+12iF,  

 
 8+12iF, 8+4iF, 12+8iF, 12+4iF, 0}  C(Z16); 1  i  5} = G. 
 
 (i) Is V a dual number ring? 
 (ii) What is the maximum number of elements T can have? 
 (iii) Is V a vector space over R? 
 (iv) Can V ever be a linear algebra over R? 
 
35. Let T = {(x1, x2, x3, x4) | xi  {0, 6, 12, 18, 24, 30}  Z36,  
   1  i  4}. 
 
 (i) Is T a null ring? 
 (ii) Can T be a null semigroup? 
 (iii) What is the cardinality of T? 
 (iv) If V = {a1 + a2g1 + … + ao(T) go(T)–1 | ai  Q; gj  T; gj’s  
  distinct, 1  i  o(T) and 1  j  o(T)–1}.  Is V a o(T)- 
  dimensional dual number linear algebra over Q? 
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 (v) Is V a general null ring? 
 
36. Obtain some special properties enjoyed by a n-dimensional 

null ring. 
 
37. Find the number of elements x in Z148 such that x2  0 mod 

(148). 
 
38. Let  
 

 T = 1 2 3

4 5 6

g g g
g g g

 
 
 

 gi  {9, 18, 27, 36, 45, 54, 63, 72, 0}  

       Z81; 1  i  6}.  
 
 (i) What is the algebraic structure enjoyed by T? 
 (ii) Find the number of elements in T. 
 (iii) Sg = {a + bg | g  T, g fixed element a, b  R}.   
        Is Sg a general dual number ring? 
 (iv) How many three dimensional dual number rings can be  
  constructed using T? 
 (v)  Can Sg have proper subrings which are not ideals? 
 (vi)  Does Sg contain ideals? 
 (vii) Can S = {a + bg | g  T; a, b  R} be a ring or a  
   semigroup? 
 
39. Let  
 

 M =

1 2

3 4

5 6

7 8

g g
g g
g g
g g

 
 
    

gi  {11, 22, 33, 44, 55, 66, 77, 88, 99,  

        110, 0}  Z121; 1  i  8}. 
 
 (i) Find the number of elements in M. 
 (ii) If S = {a1 + a2m1 + … + atmt–1 | ai  Q, mj  M;  
                1  j  t–1,. 1  i  t}. 
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  a) What is the value of t so that S is a ring? 
  b) Is S a null ring? 
  c) Can S have zero divisors? 
  d) Is S a general dual number ring for t = 5? 
  e) What value of t, will S be a general dual number ring  
       under natural product? 
 (iii) Can S be a dual number linear algebra for all values of  
  t? 
 (iv) Can S be a dual number vector space for all values of  
        t–1, 1  t  o(M) – 1. 
 
40. Obtain some special properties enjoyed by zero square 

semigroup. 
 
41. What is the speciality of the semigroup ring, QS where S is 

a null semigroup? 
 
42. Can QS in problem 41 have subrings which are not ideals? 
 
43. What are the special properties enjoyed by the null ring? 
 
44. Can a dual general ring be a null ring? 
 
45. Suppose S = Z48.  Can S have elements which are nilpotent 

of order two? 
 
46. (For what values of n) Zn (n not a prime) be free from 

nilpotent elements of order 2? 
 
47. Prove for any given n one can construct a n-dimensional 

dual number. 
 
48. What are the special features enjoyed by dual number 

vector spaces? 
 
49. Let V = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  Q \ {0}, 1  i  

5, g1 = 3 + 3iF, g2 = 6+6iF, g3 = 6+3iF and g4 = 3+6iF gj  
C(Z9); 1  j  4} be a dual number vector space over the 
field Q. 
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 (i) Find a basis of V over Q. 
 (ii) What is the dimension of V over Q? 
 (iii) Can V be written as a direct sum of subspaces? 
 (iv) Find HomQ (V,V). 
 (v) Can V be a linear algebra? 
 
50. Let P = {a + bg1 + cg2 | a, c, b  Q; g1 = 4 + 4iF and g2 = 8 + 

8iF, g1, g2  C(Z16)} be a dual number vector space of finite 
complex modulo integers over Q. 

 
 (i) Find a basis for P. 
 (ii) Write P as a direct sum of subspaces. 
 (iii) Find the algebraic structures enjoyed by HomQ (P, P). 
 (iv) What is the algebraic structure associated with  
  L (P, Q)? 
 
51. Let M =  
 

     

F

FF F
1 2 3 4 5

F F

F F

0 03 3i 0
0 3 3i6 6i 3 3i

a a a a a
3 3i 00 6 6i
6 6i 6 6i0 0

        
                                          

+  

 

      

F F

F
6 7

F

6 6i 6 6i
0 3 3i

a a
3 3i 0

0 0

    
      
   
   
   

 ai  Q; 1  i  7, 6 + 6iF,  

 
       3+3iF  C(Z9)} be a dual number vector space of finite 

complex modulo integers over Q. 
 
 (i)   Find dimension of M over Q. 
 (ii)  Find a basis of M over Q. 
 (iii) Find HomQ (M, M). 
 (iv) Can M be a linear algebra? 
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52. Obtain some interesting properties about dual number 

semivector spaces / semilinear algebras. 
 
53. Let T = {a1 + a2g1 + a3g2 + a4g3 | ai  R+, 1  i  4,  

g1 = 3+3iF, g2 = 6+6iF, g3 = 3+6iF, gi  C(Z9); 1  i  3}  
{0} be a semivector space of finite complex modulo integer 
dual numbers over the semifield F = R+  {0}. 

 
 (i) What is the dimension of T over F? 
 (ii) Find a basis of T over F. 
 (iii) Can T have more than one basis? 
 (iv) Find HomF(T,T). 
 (v)  Find the algebraic structure enjoyed by L(T, F). 
 
54. Let M =   
 

    
F F

1 2 F 3 4 5 F

F F

2 2i 0 2 2i 0
a a 2 2i a 0 a 0 a 2 2i

2 2i 2 2i 0 0

         
                     
                

+ 

 

 
F F

6 F 7 8 F

F F

2 2i 2 2i 0
a 2 2i a 0 a 2 2i

0 2 2i 2 2i

      
             
           

 2+2iF  C(Z4);  

 
 ai  Q+  {0},  1  i 8} be a dual number complex modulo 

integer semilinear algebra over the semifield F = Q+  {0}. 
 
 (i)   Find a basis of M as a semilinear algebra? 
 (ii)  Find a basis of M, M treated as a semivector space. 
 (iii) Write M as a direct sum of semilinear subalgebras. 
 
55. Prove or disprove the set S of nilpotent elements of order 

two in C(Zn) (n a composite number) is a semigroup. 
 
56. Can S in problem (55) be a subring? 
 
57. Can S in problem (55) be an ideal? 
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58. Let C ( 2p

Z ) = S be the semigroup of complex modulo 

integer.  Q be the field of rationals, QS be the semigroup 
ring of S over Q. 

 
 (i) Can QS have general dual number complex modulo  
  integer subring? 
 (ii) Can QS have dual number finite complex modulo  
  integers? 
 (iii) Give some interesting properties enjoyed by QS.  
 
59. Let S = {(s, 0, 0), (s, s, s), (0, s, s), (s, 0, s), (s, s, 0), (0, 0, 

0), (0, 0, s), (0, s, 0) | s = 2 + 2iF  C(Z4)} be the null 
semigroup.  

 Consider T = {a1 + a2g1 + … + a8g7 | gi  S \ {(0, 0, 0)}, 1  
i  7 and aj  Q+, gi’s are distinct}  {0}.   

 
 (i)   Is T a dual number finite complex modulo integer  
  semivector space over the semifield F = Q+  {0}? 
 (ii) Is T finite dimensional? 
 (iii) Find a basis of T over F. 
 (iv) Is T a dual finite complex modulo integer semilinear  
       algebra over F = Q+  {0}. 
 (v) Study all the four problems (i) to (iv) if F =  Q+  {0} is  
       replaced by K = Z+  {0}. 
 
60. Let  

 S =  

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

aiT={0, 3+3iF, 6 + 6iF, 3+6iF, 6+3iF}  C(Z9)}.  

 
 (i) Find the number of distinct elements in S. 
 (ii) Is S a null semigroup under natural product n of  
        matrices? 
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 (iii) FS where FS =  i it s ti  Z+  {0} and si  S}.  Is FS  

a dual number finite complex modulo integer semiring? 
 (iv) Can FS be a semifield? 
 
61. Compare between a dual number vector space and dual 

number semivector space. 
 
62. Can any other natural number other than modulo integers 

and finite complex modulo integers and matrices built of 
them contribute to dual number (that is the nilpotent 
element of order two in a + bg with g2 = 0, a, b  R).  

 
63. Enumerate some interesting properties enjoyed by t-

dimensional semivector spaces of complex modulo finite 
integers. 

 
64. Give some interesting properties of dual interval numbers. 
 
65. Can dual interval number find application in dynamic 

analysis of mechanisms? 
 
66. Enumerate the special features enjoyed by dual 

neutrosophic numbers. 
 
67. Can the dual neutrosophic numbers be a field? 
 
68. Can t-dimensional dual numbers be useful in engineering 

applications? 
 
69. Prove dual interval number can form a ring. 
 
70. Give an example of a 5-dimensional dual interval numbers. 
 
71. Prove we can define t-dimensional dual interval number 

vector space V over a field R or Q.  Does the positive cone 
of V, a semivector space over R+  {0}  or Q+  {0}? 

 
72. Give an example of a semiring of dual interval numbers. 
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73. Let  
 

 W = 

1 2 1 2

3 4 3 4

5 6 5 6

7 8 7 8

9 10 9 10

11 12 11 12

a a b b
a a b b
a a b b

g
a a b b
a a b b
a a b b

   
   
   
       
   
   
   
      

 ai, bj  Q,  

 
 g = 2 + 2iF  C(Z4), 1  i, j  12} be a vector space of dual 

number over the field Q. 
 
 (i) Find the positive cone of W. 
 (ii) Can W have subspaces? 
 (iii) Can W be written as a direct sum of subspaces? 
 (iv) What is the dimension of W over Q? 
 (v)  If natural product n be defined on W will W be a linear  
       algebra? 
 (vi) Will W as a linear algebra have a different basis? 
 
74. Let  
 
 M = {([a1, b1], [a2, b2], [a3, b3]) where ai, bj  {x1 + x2g1 + 

x3g2 | xt  Q; 1  t  3, g1 = 4 and g2 = 8 in Z16}; 1  i,  
j  3} be a vector space of three dimensional dual interval 
numbers over Q. 

 
 (i) Find a basis for V over Q. 
 (ii) Can V be made into a linear algebra? 
 (iii) Find T : V  V so that T–1 does not exist. 
 (iv) Find f : V  Q so that f is a linear functional. 
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75. Let S = 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a
a a a a a
a a a a a

 
 
 
  

 ai  [x1 + x2g1 + x3g2 +  

 
 x4g3, y1 + y2g1 + y3g2 + y4g3] | xi, yj  R, 1  i, j  4 and  

g1 = 8, g2 = 12 and g3 = 4 where g1, g2, g3  Z16} be the 
collection of 3  5 matrices with entries from the closed 
interval of four dimensional dual numbers. 

 
 (i) Can  S be a vector space over R? 
 (ii) Can S be given a general commutative ring structure? 
 (iii) Will S be a linear algebra if natural product n is  
  defined on it? 
 
76. Let P = {[a, b) + [c, d)g | g = 12 + 12iF  C(Z24), a, b, c, d  

R+  {0}}. 
 
 (i) Is P a dual number semiring? 
 (ii) Is P a strict semiring? 
 (iii) Can P be a semifield? 
 (iv) Can P have semiideals? 
 (v) Can P have subsemirings which are not semiideals? 
 
77. Derive some interesting properties about interval dual 

number semirings of t-dimension. 
 
78. What are the special and striking features enjoyed by t-

dimensional dual number interval vector spaces? 
 
79. Give an example of a t-dimensional dual number interval 

vector space which is not a linear algebra. 
 
80. Compare dual number semivector spaces and a dual number 

vector space. Does a vector space always contain a 
semivector space? 
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81. Let P = 

1 1

2 2

10 10

[a ,b ]
[a ,b ]

[a ,b ]

 
 
    


 ai, bj  {x1 + x2g1 + x3g2 + x4g3 | g1 = 4 

+ 4iF, g2 = 8 + 8iF and g3 = 12 + 12iF  C(Z16), xt  Q;  
       1  t  4}; 1  i, j  10}. 

 
 (i) Is P a general interval dual number ring? 
 (ii) Is P a vector space of matrix interval dual numbers over  
  Q? 
 
82. Let V =  
 

 

1 1 2 2 3 3 4 4
1 1 1 1 1 1 1 1
1 1 2 2 3 3 4 4
2 2 2 2 2 2 2 2

1 2 3

1 1 2 2 3 3 4 4
10 10 10 10 10 10 10 10

[a ,b ] [a ,b ] [a ,b ] [a ,b ]
[a ,b ] [a ,b ] [a ,b ] [a ,b ]

g g g

[a ,b ] [a ,b ] [a ,b ] [a ,b ]

       
       
                                     

   

  j t
i ja ,b   Q; 1  i, j  10, t = 1, 2, 3, 4, g1 = 4 + 4iF,  

     g2 = 8 + 8iF and g3 = 12 + 12iF  C(Z16)}. 
 
 (i) Is V a matrix interval coefficient dual number ring? 
 (ii) Can V be a linear algebra / vector space over Q? 
 (iii) Is P in problem 81 isomorphic to V as rings / vector  
  spaces? 
 
83. Give some nice applications of matrix of interval coefficient 

dual numbers? 
 
84. For problem 82 find the algebraic structure of HomQ(V,V), 

V as a vector space. 
 
85. Let P = C (Z42) be the finite complex modulo integer ring. 
 
 (i) Find the set S of all nilpotent elements of order two. 
 (ii) Does S form a null ring? 



Suggested Problems 149 
 
 
 (iii) Using S find the maximum dimension of the general  
        ring of dual numbers that can be constructed. 
 
86. Find the null semigroup S1 of C(Z273).  
 
87. Find the null semigroup S2 of Z273. 
 
88. Compare S1 and S2 given in problems 86 and 87. 
 
89. Can C(Zn), n any arbitrary large composite number have 

two distinct null semigroups S1 and S2 such that S1  S2 and 
S2  S1. 

 
90. Find the null semigroup of C(Z16)  Z9. 
 
91. Describe some special features enjoyed by neutrosophic 

dual numbers. 
 
92. Find the null semigroup S contained in Z81  I.  Using S 

construct neutrosophic dual number ring. 
 
93. Let M = {x1 + x2g1 + x3g2 + … + x10g9 | xi  Q; 1  i  10 

and g1 = 4 + 4I, g2 = 4 + 8I, g3 = 8 + 4I, g4 = 8 + 8I, g5 = 12 
+ 12I, g6 = 12 + 4I, g7 = 12 + 8I, g8 = 4+12I and g9 = 8 + 12I 
in Z16  I} be a neutrosophic dual number general ring. 

 
 (i) Does M have ideals? 
 (ii) Find subring in M. 
 (iii) Can M have zero divisors? 
 
94. Obtain some applications of complex neutrosophic finite 

modulo dual numbers. 
 
95. Let S = {x1 + x2g1 + x3g2 + x4g3 | xi  Q, 1  i  4,  
 g1 = 4 + 4iF,+4I+4iFI, g2 = 8+8iF+8I+8iFI and  
 g3 = 12 + 12iF + 12I + 12iF CZ16  I} be the dual 

neutrosophic complex modulo integer number general ring. 
 
 (i) Find subring of S which are not ideals of S. 
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 (ii) Can S have ideals? 
 (iii) Can S have zero divisors? 
 (iv) Is S a Smarandache ring? 
 
96. Let T =  
 

 1 2 3 3

5 5I 5I 5 5I 0 0
x x x x

5 0 5 5I 0 5 5I 5
                       

 

 

 4

5 5I 5I
x

5I 5
 

 
 

5 6

5 5I 5I 0
x x

0 5 5I 0
   

   
   

 xi  R, 

 
 1  i  6, 5, 5I, 5+5I  Z10  I} be a general ring of 

neutrosophic dual numbers. 
 
 (i) Find subrings of T. 
 (ii)  Find ideals in T. 
 (iii) Does T have a maximal ideal? 
 (iv) Can T have a minimal ideal? 
 
97. Let W =  
 

 

1 1 1 1 1 1
1 2 1 2 1 2
2 2 2 2 2 2
1 2 1 2 1 2

1 2 3 4 23 3 3 3 3 3
1 2 1 2 1 2
4 4 4 4 4 4
1 2 1 2 1 2

[a ,a ] [b ,b ] [c ,c ]
[a ,a ] [a ,b ] [c ,c ]

x x x x g
[a ,a ] [b ,b ] [c ,c ]
[a ,a ] [b ,b ] [c ,c ]

      
      
                               

 

 
 t t t

i j ka ,b ,c   {a1 + a2g1 + a3g2 + a4g3 + a5g3 + a7g6+ a8g7  | g1 = 
6 + 6I, g2 = 6, g3 = 6I, g4 = 6 + 6iF + 6I, g5 = 6iF, g6 = 6 + 6iF 
and g7 = 6iF+6I}  C Z12  I, ap  Q; 1  p  8, 1  t  4,  
1  i, j  4} be a neutrosophic finite complex modulo 
integer dual interval number general vector space over Q. 

 
 (i) Is W a linear algebra? 
 (ii) Find a basis for W  
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 (iii) Write W as a direct sum of subspaces. 
 (iv) Can we define positive cone of W? 
 
98. What are the interesting properties of t-dimensional 

neutrosophic complex modulo integer dual number 
semilinear algebras? 

 
99. Give an example of a semivector space of neutrosophic 

complex modulo integer dual numbers which is not a 
semilinear algebra. 

 
100. Find the null semigroup of CZ45  I. 
 
101. Can C(Z19  I) have null semigroup? 
 
102. Find the null semigroup of C 2(19)

Z   I. 

 
103. Find the order of the null semigroup of C 2n

Z   I. 
 
104. Let M = {x1 + x2g | x1, x2  [0, 1] and g = 8  Z16} be the  
   fuzzy dual number. 
 
 (i) What is the algebraic structure that can be given to M? 
 (ii)  Can M be a fuzzy dual number general ring? 
 (iii)  Can M be a fuzzy dual number vector space of the field  
        {0, 1} = Z2? 
 
105. Obtain some interesting properties enjoyed by fuzzy dual  
   numbers. 
 
106. Derive some interesting results about fuzzy interval dual  
  number. 
 
107.Study the properties of fuzzy finite complex modulo integer 

dual numbers. 
 
108. Let V = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + … + a9g8 where  

aj  [0, 1]; 1  j  9 and g1 = 3 + 3iF, g2 = 3, g3 = 3iF,  
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g4 = 6 + 6iF, g5 = 6iF, g6 = 6, g7 = 6 + 3iF and g8 = 3 + 6iF  
C(Z9)} be a fuzzy complex modulo integer semigroup under 
product.  

 
 (i) Can V have subsemigroups? 
 (ii) Can V have null subsemigroups? 
 (iii) Can V have ideals? 
 (iv) Is every null subsemigroup an ideal? 
 
109.Study the properties enjoyed by fuzzy neutrosophic dual 

numbers.  
 
110. Let S = {a1 + a2g1 + … + a9g8, ai  [0, 1], 1  i  9, g1 = 8I, 

g2 = 16I, g3 = 8, g4 = 16, g5 = 8 + 8I, g6 = 8 + 16I, g7 = 16 + 
8I and g8 = 16 + 16I  Z32  I} be a semigroup of fuzzy 
neutrosophic dual numbers. 

 (i) Define min and max on S.  Will {S, min, max} be a  
        semiring? 
 (ii) Find the null subsemigroup of S under product. 
 (iii) Can {S, min} have dual number properties? 
 
111.Give an example of a interval fuzzy neutrosophic dual 

number semigroup? 
 
112. Does a fuzzy neutrosophic complex modulo integer dual     
   number semiring exist? 
 
113. Does a fuzzy interval dual number semiring exist?  Justify  
   your claim. 
 
114. Find the fuzzy integer neutrosophic semigroup using the  
   null semigroup of Z12  I. 
 
115. Can these dual number fuzzy matrices be applied / used in  
   fuzzy models? 
 
116.Enumerate any other interesting property associated with 

fuzzy neutrosophic complex modulo integer interval 
matrices of dual numbers. 
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