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PREFACE 
 

 

 

 

 
 

In this book the authors study the erasure techniques in 

concatenated Maximum Rank Distance (MRD) codes. The authors for 

the first time in this book introduce the new notion of concatenation of 

MRD codes with binary codes, where we take the outer code as the RD 
code and the binary code as the inner code. The concatenated code 

consists of the codewords of the outer code expressed in terms of the 

alphabets of the inner code.  These new class of codes are defined as 
CRM codes. This concatenation techniques helps one to construct any 

CRM code of desired minimum distance which is not enjoyed by any 

other class of codes.  
Also concatenation of several binary codes are introduced using the 

newly defined notion of special blanks. These codes can be used in bulk 

transmission of a message into several channels and the completed work 

is again consolidated and received.  
Finally the notion of integer rank distance code is introduced. This 

book is organized into six chapters. The first chapter introduces the 

basic algebraic structures essential to make this book a self contained 
one. Algebraic linear codes and their basic properties are discussed in 

chapter two. In chapter three the authors study the basic properties of 

erasure decoding in maximum rank distance codes. 
Some decoding techniques about MRD codes are described and 

discussed in chapter four of this book. Rank distance codes with 

complementary duals and MRD codes with complementary duals are 
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introduced and their applications are discussed. Chapter five introduces 

the notion of integer rank distance codes. The final chapter introduces 
some concatenation techniques.  

We thank Dr. K.Kandasamy for proof reading and being extremely 

supportive. 

  

W.B.VASANTHA KANDASAMY 

FLORENTIN SMARANDACHE 

R. SUJATHA  

R. S. RAJA DURAI 
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Chapter One 
 
 

 
 
BASIC CONCEPTS 
 
 
 
In this chapter we give the basic concepts to make this book a 

self contained one. Basically we need the notion of vector 
spaces over finite fields and the notion of irreducible 

polynomials over finite fields. Also the notion of cosets of 

groups for error correction is needed. We will briefly recall only 

those facts, which is essential for a beginner to under stand 
algebraic coding theory. 

 

DEFINITION 1.1: Let G be a non empty set ‘*’ a closed 

associative binary operation defined on G such that; 

 

(i) there exists a unique element e in G with  

g * e = e * g = g for all g ∈ G. 

 

(ii) For every g ∈ G there exists a unique g′ in G 

such that g * g′ = g′ * g = e;  

g′ is called the inverse of g in G under the  

binary operation *.  

 

Then (G, *) is defined as a group. 
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If in G for every pair a, b ∈ G; a*b = b*a then we say G is 

an abelian group. 

 

If the number of distinct elements in G is finite then G is 
said to be a finite group otherwise G is said to be an infinite 

group.  

 
Example 1.1: Z2 = {0, 1} is an additive abelian group given by 

the following table: 

 

0 1

0 0 1

1 1 0

+

 

 

 Z2 under multiplication is not a group. 
 

Example 1.2: (Z3, +) is an abelian group of order 3 given by the 

following table: 

 

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

+

 

 

Example 1.3: (Zn, +), (1 < n < ∞) is an abelian group of order n.  
 

Example 1.4: G = Z2 × Z2 × Z2 = {(a, b, c) / a, b, c ∈ Z2} is a 
group under addition modulo 2. G is of order 8. 

 

Example 1.5: Let G = Z2 × Z2 × … × Z2, n times with  

G = {(x1, x2, …, xn) / xi ∈ Z2; 1 ≤ i ≤ n} 
is an abelian group under addition modulo 2 of order 2

n
. 

 

Example 1.6: H = Zp × Zp × … × Zp - t times is an abelian group 
under addition modulo p of order p

t
.  

 

Now we will just define the notion of a subgroup. 
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DEFINITION 1.2: Let (G, *) be a group. H a proper subset of G. 

If (H, *) is a group then, we call H to be a subgroup of G. 

 

Example 1.7: Let G = (Z12, +) be a group. H = {0, 2, 4, 6, 8, 10} 

⊆ Z12 under + is a subgroup of G. 
 
Example 1.8: Let (Z, +) be a group under addition (Z the set of 

positive, negative integers with zero) (3Z, +) ⊆ (Z, +) is a 
subgroup of G. 

 

Example 1.9: Let (Q, +) be a group under addition. Q the set of 
rationals. Q is an abelian group of infinite order. 

 

 (Z, +) ⊆ (Q, +) is a subgroup, (Z, +) is also of infinite order. 
(Q, +) has no subgroup of finite order. 

 
Example 1.10: Let (R, +) be the group under addition. (R, +) is 

an infinite abelian group. (R, +) has infinitely many subgroups 

of infinite order.  
 

Example 1.11: Let (R \ {0}, ×) be a group under multiplication 
of infinite order. Clearly R \ {0} is an abelian group;  

H = {1, –1} ⊆ R \ {0} is a subgroup of R \ {0} of order two. 
 

Example 1.12:  G = (Q \ {0}, ×) is an abelian group of infinite 

order. H = {1, –1} ⊆ (Q \ {0}, ×) is a subgroup of finite order in 
G. 

 

 Interested reader can refer and read the classical results on 
groups [2]. 

 

 Now we proceed onto define normal subgroup of a group. 
 

DEFINITION 1.3: Let (G, *) be a group. (H, *) be a subgroup of 

G we say, H is a normal subgroup of G if gH = Hg or gHg
-1

 = 

H for all g ∈ G. 
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 We will illustrate this with examples. First it is important to 

note that in case of commutative groups every subgroup is 
normal.  

 

 We have so far given only examples of groups which are 

commutative. 
 

Example 1.13: Let  

 

G = 
a b

c d

 
 
 

 ad – bc ≠ 0, a, b, c, d ∈ Q
+
 ∪ {0}}. 

 
 G is a non commutative group under multiplication of 

matrices.  

 
 It is easily verified all subgroups of G are not normal in G, 

 

 However H = 
x 0

0 x

 
 
 

 x ∈ Q
+
} is a subgroup of G and H 

is not a normal in G.  

 

 Also P = 
x 0

x, y Q
0 y

+
   

∈  
   

 is a subgroup of G and is P 

not a normal subgroup of G.  

 
 We now proceed onto recall the definition of cosets of a 

group. 

 
DEFINITION 1.4: Let G be a group H a subgroup of G. For  

a ∈ G, aH = {ah | h ∈ H} is defined as the right coset of H in G. 

 

 We have the following properties to be true. 

 
(i) There is a one to one correspondence between any 

two right cosets of H in G. 

 



 11

(ii) In case H is a normal subgroup of G we have the 

right coset to be equal with the left coset. 
 

If H is a normal subgroup of G we can define the quotient 

group or the factor group of H in G as  

G/H = {Hb / b ∈ G}  

    = {bH / b ∈ G}  (Hb = bH for all b ∈ G}. 
 

 G/H is a group and if G is finite o (G) / o (H) = o (G/H). 
 

Now we proceed onto recall definition of rings and fields.  

 
DEFINITION 1.5: Let R be a non empty set with the two binary 

operations + and ×, such that  

 

(i) (R, +) is an abelian group 

 

(ii) (R, ×) is such that ‘×’ is a closed operation on 

R and ‘×’ is an associative binary operation on 

R 

 

(iii) If for all a, b, c ∈ R we have  

a × (b+c) = a × b + a × c and (b+c) × a  

 = b × a + c × a;  

then (R, +, ×) is defined to be a ring. 

 

If a × b = b × a for all a, b ∈ R, we define R to be a 

commutative ring. 

 

If R contains 1 called the multiplicative identity such that  

a × 1 = 1 × a = a for all a ∈ R we define R to be a ring with 

unit. 
 

If is important to note that all rings need not be rings with 

unit. 

 
We will give examples of them. 
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Example 1.14: Let R = (Z, +, ×); R is a commutative ring with 
unit.  

 

Example 1.15: Consider Z15; Z15 under modulo addition and 
modulo multiplication is a commutative ring with unit. 

 

Example 1.16: Consider Z2 = {0, 1}; Z2 is a commutative ring 
with unit. 

 

Example 1.17: Let Z3 = {0, 1, 2} be the commutative ring with 
unit. 

 

Example 1.18: Let 3Z = {3n / n ∈ Z}, 3Z be a commutative 
ring but 3Z does not contain the unit 1. 

 
Example 1.19:  Let 5Z be the commutative ring, but 5Z is a ring 

and does not contain the unit. 

 

Example 1.20: (Q, +, ×) is a commutative ring with unit. 
 

Example 1.21: R = 
a b

a,b,c,d Z, ,
c d

   
∈ + ×  

   
 is a non 

commutative ring with identity 
1 0

0 1

 
 
 

 under matrix 

multiplication ×. 

 

Example 1.22: Let P = {n × n matrices with entries from Q},  
P is a non commutative ring with unit under matrix addition and 

multiplication.  

 

 We will now recall the definitions of subrings and ideals of 
a ring. 

 

DEFINITION 1.6: Let (R, +, ×) be a ring. Suppose φ ≠ S ⊆ R be 

a proper subset of R. If (S, +, ×) is a ring, we define S to be a 

subring of R. 
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 We will illustrate this situation by some examples. 

 

Example 1.23: Let R = (Z, +, ×) be a ring; S = (3Z, +, ×) is a 

subring of R. 
 

Example 1.24: Let S = (Z, +, ×) be the ring of integers,  

P = {12Z, +, ×} is a subring of S.  
 

 It is important and interesting to note that a subring of S 

need not in general have the unit however the ring S has unit.  
 

This is a marked difference between a subgroup of a group, 

for a subgroup must contain the identity but a subring need not 
contain the unit 1 with respect to multiplication. Examples 1.23 

and 1.24 give subrings of (Z, +, ×) which do not contain 1, the 
unit of Z. 

 

Example 1.25: Let R = (Q, +, ×) be a ring. (Z, +, ×) is a subring 

and it contains the unit. However (8Z, +, ×) is also a subring of 

(Q, +, ×) but (8Z, +, ×) does not contain the unit 1 of R. 
 

 We have seen subrings of a ring. All rings given are of 

infinite order except those given in examples 1.15, 1.16 and 
1.17.  

 

Example 1.26: Let Z30 be the ring. S = {0, 10, 20} ⊆ Z30 is a 

subring and 1 ∉ S. 
 

Example 1.27: Let Z12 be the ring. Consider  
P = {0, 2, 4, 6, 8, 10}, P is a subring of Z12. P does not contain 

the unit 1. 

 

Example 1.28: Let Z5 be the ring. Z5 has no proper subrings. 
Only 0 and Z5 are the subrings of Z5. 

 

Example 1.29:  Let Z8 = {0, 1, 2, 3, …, 7} be a ring. Consider 

H = {0, 4} ⊆ Z8, H is a subring of Z8 and H does not contain the 

unit.  
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Example 1.30: Zn = {0, 1, 2, …, n–1} (n < ∞) is the 
commutative ring with unit having n elements. If n is a prime, 

Zn has no proper subrings. 

 
DEFINITION 1.7: Let R be a ring. H be a subring of R. If for all 

r ∈ R and h ∈ H; rh ∈ H then we define H to be left ideal. 

 

 Similarly if for all r ∈ R and h ∈ H, hr ∈ H we define H to 

be a right ideal. If H is both a left ideal and a right ideal then 

we define H to be an ideal of R. 

 

The following observations are important. 

 
(i) If R is a commutative ring the notion of right 

ideal and left ideal coincides. 

 

(ii) If I is an ideal of a ring R then (0) ∈ I. 
 

(iii) (0) is called the zero ideal of R. 

 

(iv) If I is an ideal of the ring R then 1 the unit of R 

is not in I. 

For if 1 ∈ I then I = R.  
 

We will now give examples of ideals. 

 

Example 1.31: Let (Z, +, ×) be the ring of integers. 2Z is an 
ideal of Z. 
 

Example 1.32: Let (Q, +, ×) be the ring the rationals, Q has no 
proper ideals. 

 

Example 1.33: Let (R, +, ×) be the ring of reals. R has no 
proper ideals. 

 

Example 1.34: Let (Z, +, ×) be the ring of integers, nZ is an 

ideal of Z for n = 2, 3, …, ∞. 
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Example 1.35: Let Z12 = {0, 1, 2, …, 11} be the ring of integers 

modulo 12. 
 

 I = {0, 6} is an ideal of Z12. J = {0, 3, 6, 9} is an ideal of 

Z12. K = {0, 2, 4, 6, …, 10} is an ideal of Z12.  

 
Example 1.36: Let Z7 = {0, 1, 2, …, 6} be the ring of integers 

modulo 7. Z7 has no proper ideals. 

 
Example 1.37: Let Z23 = {0, 1, 2, …, 23} be the ring of integers 

modulo 23. Z23 has no ideals. 

 

Example 1.38: Let S = 
a b

a,b,c,d Z
c d

   
∈  

   
 be the ring. 

Clearly S is a non commutative ring.  
 

Consider I = 
a 0

a,b Z
b 0

   
∈  

   
 ⊆ S. I is only a left ideal of 

S.  
 

For consider 
a b

c d

 
 
 

x 0

y 0

 
 
 

 = 
ax by 0

cx dy 0

+ 
 

+ 
 ∈ I for every  

 

a b

c d

 
 
 

 ∈ S and 
x 0

y 0

 
 
 

 ∈ I. I is not a right ideal of S for  

 

x 0

y 0

 
 
 

 
a b

c d

 
 
 

 = 
ax bx

ya yd

 
 
 

 ∉ I for any 
a b

c d

 
 
 

 ∈ S and  

 

x 0

y 0

 
 
 

 ∈ I.  

 
 Thus we see in general in a non commutative ring R a left 

ideal is not a right ideal of R. 
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 Now just like quotient groups we can define quotient rings 

using two sided ideals of the ring R. Let R be a ring and I a two 

sided ideal of R. R/I = {a + I / a ∈ R} is a ring defined as the 

quotient ring of R [2]. 
 

 We will illustrate this situation by some examples. 

 
Example 1.39: Let Z be the ring. I = 2Z is an ideal of Z. Z/2Z=I 

= {I, 1 + I}. Clearly I acts as the additive identity for Z/I. Since 

1 + I + I = 1 + (I+I) = 1 + I, as I is an ideal, I + I = I. Further 
(1+I) is the unit in Z/I for (1+I) (1+I) = 1+I + 1.I = 1+I. 

 

 Thus Z/I is a ring and Z/2Z = Z/I is isomorphic with Z2. For 

0 � I and 1 �  1+I so Z2 ≅ Z/I = {I, 1+I}.  
 
Example 1.40: Let Z be the ring. I = 5Z be the ideal of Z.  

Z/I = Z/5Z = {I, 1+I, 2+I, 3+I, 4+I} is the quotient ring. 

 

Example 1.41: Let Z be the ring. nZ = I be the ideal of Z.  
Z/I = {I, 1+I, 2+I, …, n–1 + I} is the quotient ring. 

 

Example 1.42: Let Z12 be the ring of modulo integers.  
 

 I = {0, 6} be an ideal of Z12.  

 
Z12/I = {I, 1+I, 2+I, 3+I, 4+I, 5+I} is the quotient ring. 

 

 Now we have seen examples of quotient rings. 

 
 We proceed onto recall the definition of a field. 

 

DEFINITION 1.8: Let (F, +, ×) be such that F is a non empty set. 

If  

 

(i) (F, +) is an abelian group under addition, 

 

 (ii) {F \ {0}, ×} is an abelian group under multiplication 

and 
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 (iii) if a × (b+c) = ab + ac for all a, b, c ∈ F, then we define 

F to be a field. 

 

 If in F we have nx = 0 for all x ∈ F only if n = 0 where n is 

any positive integer then we say F is a field of characteristic 

zero. 

 

 If for some n; nx = 0 for all x ∈ F where n is the smallest 

such number then we say F is a field of characteristic n. Clearly 

n will only be a prime.  

 

 We will now proceed onto give examples of fields. 

 
Example 1.43: Let Z5 = {0, 1, 2, 3, 4} be a field and Z5 is a field 

of characteristic 5. 

 

Example 1.44: Let Z43 = {0, 1, 2, …, 42} be a field and is of 
characteristic 43. 

 

Example 1.45: (Q, +, ×) is a field and is a field of characteristic 
zero. 

 

Example 1.46: (R, +, ×) is a field and is of characteristic zero 
and we see the set of integers, Z is not a field, only a ring. 

 

Example 1.47: Z15 is not a field only a ring as 3.5 ≡ 0 (mod 15) 
so Z15 \ {0} is not a group. 

  
It is easily verified that every field is a ring and a ring in 

general is not a field. 

 
 We recall the definition of a subfield. 

 

DEFINITION 1.9: Let (F, +, ×) be a field. A proper subset P ⊆ F 

such that if (P, +, ×) is a field, then we define P to be a subfield, 

of F. If F has no subfield then we call F to be a prime field. 

 

 We will give examples of prime fields. 
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Example 1.48: Let Q be the field. Q has no proper subfield. 

Hence Q is the prime field of characteristic zero. 
 

Example 1.49: Let (R, +, ×) be the field of reals, R is not a 

prime field of characteristic zero as (Q, +, ×) ⊆ (R, +, ×) is a 
proper subfield of R. 

 

Example 1.50: Z2 = {0, 1} is the prime field of characteristic 

two as Z2 has no proper subfields. 
 

Example 1.51: Z3 = {0, 1, 2} is the prime field of characteristic 

three. Z3 has no proper subfields.  
 

Example 1.52: Z17 = {0, 1, 2, …, 16} is the prime field of 

characteristic 17. 
 

Example 1.53: Zp = {0, 1, 2, …, p–1} is the prime field of 

characteristic p, p a prime. 

  
Now it is an interesting fact that fields cannot have ideals in 

them. This work is left as an exercise to the reader [2]. 

 
 Now we see we do not have non prime fields of finite 

characteristic p, p a prime; we proceed on to give methods for 

constructing them. 
 

 We will recall the definition of polynomial rings. 

 

DEFINITION 1.10: Let R be a commutative ring with unit. x an 

indeterminate; 

  

R[x] =
∞

=

 
∈ 

 
∑ i

i i

i 0

a x a R , 

 

R[x] under usual polynomial addition and multiplication is a 

ring called the polynomial ring. R[x] is a again a commutative 

ring with unit and R ⊆ R[x]. 
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 We will give examples of them. 

 
Example 1.54: Let R be the field of reals. R[x] is the 

polynomial ring in the indeterminate x. 

 

 Clearly R[x] is not a field; R[x] is only a commutative ring 
with unit. 

  

Example 1.55: Let Q be the field of rationals. Q[x] is the 
polynomial ring. 

 

Example 1.56: Let Z2 be the field of characteristic two.  
 

 Z2[x] is the polynomial ring. 

 

Example 1.57: Let Z be the ring of integers. Z[x] is the 
polynomial ring. 

 

Example 1.58: Let Z5 be the field of characteristic five. Z5[x] is 
the polynomial ring. 

 

Example 1.59: Let Z6 be the ring of integers modulo 6. Z6[x] is 
the polynomial ring. 

 

Example 1.60: Z2 [x] is the polynomial ring; let p(x) = x
2
 + 1 be 

in Z2[x]; p(x) is reducible in Z2 [x] for p(x) = (x+1)
2
. 

 

 Consider q(x) = x
2
 + x + 1 ∈ Z2[x]; q(x) is irreducible as 

q(x) cannot be written as the product of polynomials of degree 

one in Z2[x]. 

 
 Inview of this we will define the notion of reducible 

polynomial and irreducible polynomial.  

 

Let p(x) ∈ R[x] be a polynomial of degree n in R[x] with 

coefficients from R. We say p(x) is reducible in R[x] if p(x) = 
g(x) b(x) where g(x) and b(x) are polynomials in R(x) with deg 

g(x) < deg p(x) and deg b(x) < deg p(x). 
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 If p(x) is not reducible that is p(x) = g(x) b(x) implies  

deg g(x) = deg p(x) or deg b(x) = deg p(x) then we define p(x) 
to be irreducible in R[x]. 

 

 p(x) = x
2
 + 1 ∈ R[x]; R reals is an irreducible polynomial in 

R[x]. 

 

 p (x) = x
2
 + 1 ∈ Z2 [x] is reducible in Z2 [x] as  

 
p(x) = (x+1) (x+1).  

 

 p(x) = x
2 

– 4 ∈ R[x] is a reducible polynomial as  
x

2
 – 4 = (x+2) (x–2) where R is the set of reals. 

 

 p (x) = x
2
 + q is irreducible polynomial in R[x] where q is a 

positive value in R, R-reals.  

 
We have seen examples of reducible and irreducible 

polynomials. 

 
 We first see the concept of reducibility or irreducibility is 

dependent on the ring or the field over which they are defined. 

The purpose of these irreducible polynomials is they generate a 

maximal ideal and this concept will be used in the construction 
of fields and finite fields.  

 

 Let Z[x] be the polynomial ring. x
2
 + 1 is a irreducible 

polynomial in Z[x]. 

 

 Let I be the ideal generated by x
2
 + 1. Thus  

I = {all polynomials of degree greater than or equal to two} 

 

 
Z[x]

I
 = {I, b+I, ax + I, (b + ax) + I / a, b ∈ Z} 

   = {a + bx + I / a, b ∈ Z}. 
 

 Suppose we replace Z by Z2 and consider the polynomial 
ring Z2 [x]; x

2
 + 1 is a reducible polynomial in Z2 [x]. 
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 Let I be the ideal generated by x
2
 + 1.  

 

Consider 2Z [x]

I
 = {I, 1 + I, x + I, x + 1 + I} 

 

 I acts as the additive identity 1 + I acts as the multiplicative 

identity. 
 

 Clearly 2Z [x]

I
 is not a field; for  

 

(1 + x + I) (1 + x + I) = (1 + x)
2
 + I = x

2
 + 1 + I = I is a zero  

 

divisor so 2Z [x]

I
 is only a ring. 

 

 Now if we consider p(x) = x
2
 + x + 1 ∈ Z2[x], clearly p(x) is 

irreducible in Z2[x]. 
 

 We see 2 2

2

Z [x] Z [x]

x x 1 I
=

〈 + + 〉
  

 

 = {I, 1 + I, x + I, 1 + x + I} 

 
where I is the ideal generated by p(x) and I acts as the additive 

identity. 

 
 Now 1 + I is the multiplicative identity. 

 

 Further x + I is the inverse of 1 + x + I. To prove this we 

must show 
 

 (x + I) (1 + x + I) = 1 + I. 

 
 Now (x + I) (1 + x + I) = 

 x (1 + x) + I  = x
2
 + x + I 

     = (x
2 
+ x + 1) + 1 + I 

     = 1 + I as 1 + x + x
2
 ∈ I. 
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 Thus 2Z [x]

I
 is a field with four elements and is of 

characteristic two so 2Z [x]

I
 is not a prime field of characteristic 

two as P = {I, 1+I} ⊆ 2Z [x]

I
 is a subfield of 2Z [x]

I
. 

 

 Now based on this we give the following facts interested 

reader can refer [2]. 
 

 Let Zp[x] be a polynomial ring with coefficients from the 

field Zp, p a prime. p (x) ∈ Zp[x] be a polynomial of degree n. 
Suppose p(x) is irreducible over Zp and I be the ideal generated 

by p (x).  
 

Now 
pZ [x]

I
 is a field and this field has p

n
 elements in it and 

its characteristic is p.  

 
 Thus this method gives one the way of constructing non 

prime fields of characteristic p. 

 

 Suppose V = 2

3

Z [x]

I x x 1= 〈 + + 〉
  

 
 = {I, 1 + I, x + I, x

2 
+ I, 1 + x + I, 1 + x

2 
+ I, x + x

2 
+ I,  

 1 + x + x
2 
+ I}. 

 

 V = 2Z [x]

I
 is a field of characteristic two and V has 2

3
 

elements and the irreducible polynomial x
3
 + x + 1 is of degree 

3 so V has 2
3
 elements in it. Suppose p(x) = x

3
 + 1, clearly p(x) 

is reducible in Z2[x] for x
3
 + 1 = (x + 1) (x

2 
+ x + 1). 
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 Consider 2 2Z [x] Z [x]

p(x) I
=

〈 〉
= V = {I, 1 + I, x + I, x

2 
+ I,  

1 + x + I, 1 + x
2 

+ I, x + x
2 
+ I, 1 + x + x

2 
+ I}. V is not a field 

for V has zero divisors. I is the additive identity or zero in V. 

Consider 1 + x + I, 1 + x + x
2
 + I in V. (1+x+I) (1+ x

2
+x) = I 

(using the fact I is an ideal of Z2 [x] so (x+1) I = I and (1+x+x
2
)I 

= I and I + I + I). 

 
(1 + x) (1 + x

2 
+ x) + I = 1 + x

2
 + x + x + x

2 
+ x

3
 + I = 1 + x

3
 + I 

(as 2x = 0 and 2x
2
 = 0) 

 

 = I as 1 + x
3
 ∈ I. 

 
 Thus V has zero divisors; so V is not a field only a ring as 

p(x) is a reducible polynomial.  

 
Thus we wish to make a mention that the ideals generated 

by a single element will be known as principal ideals. Also we 

expect the reader to be familiar with the notion of minimal 

ideals, maximal ideals and prime ideals. 
 

 However we just give some examples of them. 

 
Example 1.61: Let Z12 = {0, 1, 2, …, 11} be the ring of modulo 

integers. 

 

 Consider I = {0, 2, 4, 6, 8, 10} ⊆ Z12 to be a maximal ideal 

of Z12. Take J = {0, 6} ⊆ Z12, J is a minimal ideal of Z12. 

However K = {0, 3, 6, 9} ⊆ Z12 is also a maximal ideal. T = {0, 

4, 8} ⊆ Z12 is also a minimal ideal of Z12. Thus a ring can have 
many maximal ideals and many minimal ideals. 

 
 However we show a ring which has no minimal ideals.  

 

Example 1.62: Let Z be the ring of integers. Z has several 

maximal ideals, pZ is a maximal ideal where p is a prime.  
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For all primes p we obtain an infinite collection of maximal 

ideals. 
 

 However Z has no minimal ideal but it has infinite number 

of ideals which are neither maximal nor minimal. For nZ when 

n is a non prime is neither a maximal nor a minimal ideal. 
 

 2Z, 5Z, 3Z, 7Z, 11Z are maximal ideals. 

 
 When R is a commutative ring with unit and I a maximal 

ideal of R; then R / I is a field.  

 
 This property is used in the construction of finite fields of 

desired order. 

 

 We consider Zp[x]; p a prime Zp[x], the polynomial ring.  
I be the ideal generated by an irreducible polynomial p(x); then  

 

pZ [x]

I

 
 
 

 is a field.  

 

 If p(x) is of degree n then Zp [x] / I is a field of order 
n

pZ .  

 

 Thus this method helps us in generating finite fields which 

are not prime. 
 

 We will give some examples. 

 

Example 1.63: Let Z5 [x] be the polynomial ring. 
 

 Consider p(x) = x
2
 + x + 1 in Z5[x]. p(x) is irreducible in 

Z5[x]. Let I be the ideal generated by p(x). Now  
 

 Z5[x] / I = {I, 1 + I, 2 + I, 3 + I, 4 + I, x + I, 2x + I, 3x + I, 

4x + I, 1 + x + I, 2x + 3 + I, …, 4x + 4 + I}. It is easily verified 

Z5[x] / I is a field with 25 elements in it. 
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 However Z5 [x] / I is not a prime field for it has a subfield 

{I, 1 + I, 2 + I, 3 + I, 4 + I} ≅ Z5. 
  

But characteristic of the field Z5 [x] / I is five. 
 

 Now if we take p(x) = x
2
 + 2x + 2, we see p(x) is a 

reducible polynomial in Z5[x]. For (x + 3) (x + 4) = x
2
 + 2x + 2. 

So –3, –4 or 1, 2 are the roots of p(x). 

 

 Z5[x] / I = 〈p(x)〉 = {I, 1 + I, 2 + I, …, x + 3 + I, x + 4 + I} is 
not a field only a commutative ring with unit 1 + I. 

 
 For consider x + 3 + I and x + 4 + I in Z5[x] / I. 

 

 (x + 3 + I) (x + 4 + I)  = (x + 3) (x + 4) + I 
        = x

2
 + 2x + 2 + I 

       = I.  

 (I is the zero element in Z5[x] / I). 

 
 Hence Z5 [x] / I cannot be a field. 

 

 Likewise we can create fields or rings of finite order. 
 

Notation: If p(x) = a0 + a1x + … + anxn then p(x) has a 

representation in n + 1 tuples given by (a0, a1, …, an), ai’s are 
coefficients using which the polynomial ring R[x] is defined 

and p(x) ∈ R[x].  
 

Now we just recall the definition of a primitive polynomial. 

 
 A polynomial p(x) = a0 + a1x + … + anxn in R[x] is said to 

be a primitive polynomial (where a0, a1, …, an are integers) if 

the greatest common divisor of a0, a1, …, an is 1. 

 
 We will use this concept also in the construction of linear 

codes. Now we proceed onto recall the definition of vector 

space as we associate or define the algebraic code as a subspace 
of a vector space.  
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DEFINITION 1.11: Let V be an additive abelian group. F a field. 

We say V is a vector space over the field F if the following 

conditions are true. 

 

(1) For every v ∈ V and a ∈ F we have av and va are 

in V (av = va and conventionally we write as av a is 

called the scalar and v a vector). 

 

(2) a (v1 + v2 ) = av1 + av2 . 

 

(3) (a+b) v = av + bv. 

 

(4) a (bv) = (ab) v. 

 

(5) 1.v = v for all a, b ∈ F and v1, v2, v ∈ V and  

0.v = 0 ∈ V. 

(Here 1 represents the unit element of F). 
 

We give examples of vector spaces. 

 

Example 1.64: Let V = Z2 × Z2 × Z2 × Z2 be a group under 

addition, V is a vector space over the field Z2. 
 

Example 1.65: Let V = Q[x] be an additive abelian group. V is 

a vector space over the field Q. 
 

Example 1.66: Let V = Z2[x], polynomial group under addition. 

V is a vector space over Z2.  
 

 We recall the definition of a vector subspace of a vector 

space. 

 
DEFINITION 1.12: Let V be a vector space over the field F.  

 W ⊆ V be a proper subset of V. If W itself is a vector space over 

the field F then we call W to be vector subspace of V over the 

field F. 

 
 We will illustrate this situation by some examples. 
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Example 1.67: Let V = Z2 × Z2 × Z2 × Z2 be a vector space over 

the field Z2. Consider W = {Z2 × {0} × Z2 × {0}} ⊆ V; W is a 
vector subspace of V over Z2. 

 

Example 1.68: Let V = Q[x] be the vector space over Q.  
 

Consider  

P = 2i

i i

i 0

a x a Q
∞

=

 
∈ 

 
∑  ⊆ V; 

 

P is a vector subspace of V over Q. 
 

Example 1.69: Let V = Q × Q × Q × Q × Q × Q be a vector 

space over Q. Consider W = Q × {0} × Q × {0} × Q × Q ⊆ V; 
W is a vector subspace of V over Q. 

 

Example 1.70: Let V = R × R × R × R × R be a vector space 
over Q. Consider  
 

W = Q × Q × Q × Q × Q ⊆ R × R × R × R × R; W is a 
vector subspace of V over Q.  

 

Now the reader is expected to recall the definition of basis 
and dimension of a vector space [2, 16]. 

 

 We will be using only finite dimensional vector spaces that 

too defined over the finite field. Infact we will be mainly using 

the field Z2 or n

2Z of order 2
n
 and of characteristic two; denoted 

by GF(2
n
) as most of the messages transmitted are binary, it is 

sufficient to study over Z2 or GF(2
n
).  

 
 Now we just recall the definition of Hamming distance and 

Hamming weight in vector spaces. 

 
 We say for any two vectors v1 = (x1, …, xn) and v2 = (y1, 

…,yn); v1 and v2 ∈ V = F × … × F; n-times where F is a field 
and V is a vector space over F. The Hamming distance between 
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v1 and v2 denoted by d (v1, v2) = number of places in which  

v1 is different from v2.  
 

 For instance if v1 = (1 0 0 1 0 0 1) and v2 = (0 1 1 1 0 0 1) 

then the Hamming distance between v1 and v2 denoted by  

d (v1, v2) = 3. 
 

 Now Hamming weight x of a vector in V is the distance of x 

from the zero vector. Thus Hamming weight of x is the number 
of non zero co ordinates in the vector x, thus d(x, 0) = w(x) = 

number of non zero coordinates in x.  

 
 Thus if x = (1 0 1 0 1 0 0 1 1 1) be a vector in V then  

w(x) = d (x, 0) = 6. 

 

 Now having defined Hamming weight and Hamming 
distance we now proceed onto define linear codes and illustrate 

them with examples in chapter two. 
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Chapter Two 
 
 

 
 
ALGEBRAIC LINEAR CODES AND  
THEIR PROPERTIES 
 
 
 
 

 
 In this chapter we recall the definition of algebraic linear 

codes and discuss the various properties associated with them.  

We give examples and define several types of codes. 
 

 Let x = (x1, x2, …, xn) where xi ∈Fq, where Fq is a finite 
field.  (q, a power of a prime).  In x the first k symbols are taken 

as message symbols and the remaining n – k  elements xk+1, xk+2, 

…, xn are check symbols (or control symbols).  x = (x1, …, xn) 
is defined as the code word and it can be denoted by (x1, …, xn) 

or x1 x2 … xn or x1, x2 , …, xn. 

 
 We will now roughly indicate how messages go through the 

system starting from the sender (Information source). 
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We shall consider senders with finite number of discrete signals 

(telegraph) in contrast to continuous sources (examples radio). 

 

 Further the signals emanating from the source cannot be 
transmitted directly by the channel.  For instance, a binary 

channel cannot transmit words in the usual latin alphabet.  

Encoder performs the important work of data reduction and 
suitably transforms the message into usable form.  Thus there is 

a difference between the source encoding and the channel 

encoding. 
 

 The former reduces the message to its essential parts and the 

latter adds redundant information to enable detection and 

correction of possible errors in the transmission.  
 

 Also the channel decoding and the source decoding are 

distinct for they invert the corresponding channel and source 
encoding besides detecting and correcting error.  

 

 The main aim of coding theory is to formulate techniques 
for transmitting message, free of errors, at a less cost and with a 

great speed.  However in few cases the possibility of repeating 

messages is acceptable; in some cases repeating messages is 

impossible; like in case of taking picture of planets or Mars or 
Moon where there is a steady motion of the unmanned machine.  

In these cases repetition is impossible and also the cost is very 

high so high accuracy is expected with minimum or no error.  
As repeating the message is also time consuming besides being 

costly. 

Information 

Source 
Source 

Encoder 
Channel 
Encoder 

Modulator 

(writing unit) 

 

Channel 

 

Destination 
Source 

Decoder 
Channel 

Decoder 

 

Demodulator 

Noise 

u v 

u r 
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 We want to find efficient algebraic methods to improve the 
realiability of the transmission of messages. 

 

 In this chapter we give only simple coding and decoding 

algorithms which can be easily understood by a beginner.  
 

 Binary symmetric channel is an illustration of a model for a 

transmission channel.  Now we will proceed onto define a linear 
code algebraically. 

 

 Let x = (x1 … xn) be a code word with k message symbols 
and n–k check symbols or control symbols.  We know the 

message symbols are from Fq, to determine the check symbols.   

We obtain the check symbols from the message symbols in such 

a way that the code words x satisfy the system of linear 
equations.  

 

 Hx
t
 = (0), where H is the given n – k × n matrix with 

elements from Fq.  

 

 The standard form for H is (A, In–k) with A an n – k × k 

matrix and In–k the n – k × n – k identity matrix. 

 
 The set of all n-dimensional vectors x = (x1, …, xn) 

satisfying Hx
t
 = (0) over Fq is called a linear (block) code C 

over Fq of block length n. 
 

 The matrix H is called the parity check matrix of the linear 

(n,k) code C.  If q = 2 then we call C a binary code.  k/n is 
called transmission (or information) rate.  

 

 Since C under addition is a group we call C as a group code.  

Also C can be defined as the null space of the matrix H. 
 

 We will first illustrate this situation by some examples. 

 
Example 2.1: Let q = 2, n = 7 and k = 4 and C be a C(7, 4) code 

with entries from Z2. The message a1, a2, a3, a4 is encoded as the 
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code word x = a1 a2 a3 a4   x5 x6 x7.  Here the check symbols are 

x5 x6 x7,  such that for the given parity check matrix   
 

H = 

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 1 1 1 0 0

 
 
 
 
 

, 

with the set of message symbols from 4

2Z  the code words are 

given by  

 

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

      

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

      

0 0 1 1

1 1 1 0

1 1 0 1

1 0 1 1

     
0 1 1 1

1 1 1 1
  . 

  

 To find C.   C = {x ∈ 
7

2
Z / Hx

t
 = (0)}. Hence | C | = 2

4
 = 16. 

 

 Hx
t
 = 

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 1 1 1 0 0

 
 
 
 
 

  (x1 x2 x3 x4 a5 a6 a7)
t
 =(0) 

gives  

 

C = 

{0 0 0 0 0 0 0 1 0 1 0 0 0 1

1 0 0 0 1 1 0 1 0 0 1 0 1 1

0 1 0 0 0 1 1 0 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1 0 0 1 0

0 0 0 1 1 0 1 1 0 1 1 1 0 0

1 1 0 0 1 0 1 1 1 0 1 0 0 0

0 1 1 0 1 0 0 0 1 1 1 0 0 1

0 0 1 1 0 1 0 1 1 1 1 1 1 1}

 

 
Example 2.2:  Take n = 7, k = 4 and q = 2.  To construct the 

C(7, 4) code using the parity check matrix 
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H = 

1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

 
 
 
 
 

. 

 

 C = {Hx
T
 = (0) where x ∈ 4

2Z }. 

 
 C = {0 0 0 0 0 0 0, 1 0 0 0 1 0 1, 0 1 0 0 1 1 1, 0 0 1 0 1 1 0, 

0 0 0 1 0 1 1, 1 1 0 0 0 1 0, 1 0 1 0 0 1 1, 1 0 0 1 1 1 0, 0 1 1 0 0 

0 1, 0 0 1 1 1 0 1, 0 1 0 1 1 0 0, 1 1 1 0 1 0 0, 1 1 0 1 0 0 1, 1 0 1 

1 0 0 0, 0 1 1 1 0 1 0, 1 1 1 1 1 1 1}. 
 

 We see the two codes given in examples 2.1 and 2.2 are  

C(7, 4) codes but they are different as their parity check 
matrices are different.  Further both the codes have the same set 

of message symbols. 

 
Example 2.3: Let C be a (4, 2) code given by the parity check 

matrix 

H = 
1 1 1 0

0 1 0 1

 
 
 

. 

 

 C = {x ∈ 
4

2
Z / Hx

t
 = (0)}. 

 

  = {0 0 0 0, 1 0 1 0,  0 1 1 1,  1 1 0 1}. 

 
 Suppose we consider the (4, 2) code using another parity 

check matrix. 

 

  H1  = 
1 0 1 0

1 1 0 1

 
 
 

 we get  

 

C  = {x ∈ 
4

2
Z / H1x

t
 = (0)}. 

 

 = {0 0 0 0, 1 0 1 1, 0 1 0 1,  1 1 1 0}. 
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We see both the codes are different though they have the 

same set of message symbols. 
 

We now recall how the repetition code is constructed and 

the parity check matrix associated with it.  If each code word of 

a code consists of only one message symbol x1 ∈ Z2 and n–1 
check symbols a2 = a3 = … = an are all equal to x1 (x1 is repeated 
n–1 times).  Thus we obtain a binary (n, 1) code with parity - 

check matrix; 

 

 H = 

1 1 0 ... 0

1 0 1 ... 0

1 0 0 ... 1

 
 
 
 
 
 

� � � �
. 

 
There are only two code words in this code namely (0 0 … 

0) and (1 1 … 1). 

 
This code is used when it impossible and impracticable or 

too costly to send original message more than once, like 

transmission of information from space crafts or satellites where 

it is impossible to use ARQ protocols owing to time limitations.  
Moving space crafts which takes photos of heavenly bodies is 

an example where this code can be used.  

 
Example 2.4: Let  C(5, 1) be a binary code obtained from the 

parity check matrix; 

 

H = 

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

 
 
 
 
 
 

.  The two code words are 1 1 1 1 1 

and 0 0 0 0 0.   
 

 

 
Now we proceed onto describe the parity-check code. 
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 Parity check code is a (n, n–1) code where we have n–1 
message symbols and one check symbol.  The parity check 

matrix is H = (1 1 … 1). 

 

 Each code word has only one check symbol and H has only 
even number of ones. 

 These codes are used in banking where the last digit of the 

account number, usually is a control digit. 
 

Example 2.5: Let H = (1 1 1 1 1 1) be the parity check code.  C 

is a (6, 5) code and  
 

 C ={0 0 0 0 0 0  1 1 1 1 1 1   1 1 0 0 0 0  

 1 0 0 0 0 1   1 0 1 0 0 0   1 0 0 0 1 0    

 1 0 0 1 0 0   0 1 1 0 0 0   0 1 0 1 0 0     
 0 1 0 0 1 0   0 1 0 0 0 1    0 0 1 1 0 0   

 0 0 1 0 1 0   0 0 1 0 0 1   0 0 0 1 1 0    

 0 0 0 1 0 1   0 0 0 0 1 1  1 1 1 1 0 0   
 1 1 1 0 1 0   1 1 1 0 0 1  1 1 0 1 1 0   

 1 1 0 1 0 1  1 1 0 0 1 1  1 0 1 1 1 0   

 1 0 1 1 0 1  1 0 1 0 1 1  1 0 0 1 1 1    
 0 1 0 1 1 1  0 0 1 1 1 1  1 0 1 1 1 0   

 0 1 1 1 0 1  0 1 1 1 1 0}   

 

is code associated with the parity check matrix H.   
 

Now we will proceed onto describe the canonical generator 

matrix of a linear (n, k) code.  Suppose H = (A, In–k) is the parity 
check matrix associated with the (n, k) code then the generator 

matrix G = (Ik – A
t
) is such that GH

T
 = (0).  

 

 Further every code word x = (x1, …, xn) = (a1, …, ak) G. 
 

 We will now describe this situation by some examples. 
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Example 2.6: Let H = 

0 1 1 0 1 0 0

1 0 0 1 0 1 0

0 1 1 1 0 0 1

 
 
 
 
 

 be a parity 

check matrix of a C(7, 4) code. 
 

 The generator matrix G associated with this (7, 4) code with 

the parity check matrix H is given by  
 

G = 

1 0 0 0 0 1 0

0 1 0 0 1 0 1

0 0 1 0 1 0 1

0 0 0 1 0 1 1

 
 
 
 
 
 

.  

 

 Now using the message symbols from 4

2Z  we get the 

following code words generated by G. 
 

 C = {0 0 0 0 0 0 0, 1 0 0 0 0 1 0, 0 1 0 0 1 0 1, 0 0 1 0 1 0 1, 

0 0 0 1 0 1 1, 1 1 0 0 1 1 1, 1 0 1 0 1 0 1, 1 0 0 1 0 0 1, 0 1 1 0 0 

0 0, 0 1 0 1 1 1 0, 0 0 1 1 1 1 0, 1 1 1 0 0 1 0, 0 1 1 1 0 1 1, 1 1 0 
1 1 0 0, 1 0 1 1 1 0 0, 1 1 1 1 0 0 1}. 

 

Example 2.7: Let H = 

1 0 1 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

0 1 0 0 0 0 1

 
 
 
 
 
 

 be parity check 

matrix associated with a C = C(7, 3) code.   

 
The associated generator matrix  

 

G = 

1 0 0 1 0 1 0

0 1 0 0 1 1 1

0 0 1 1 1 1 0

 
 
 
 
 

. 
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Now we generate the code,   

C = {0 0 0 0 0 0 0, 1 0 0 1 0 1 0, 0 1 0 0 1 1 1, 0 0 1 1 1 1 0, 
1 0 1 0 1 0 0, 0 1 1 1 0 0 1, 1 1 0 1 1 0 1, 1 1 1 0 0 1 1} is the 

code generated by G. 

 

 Consider GH
T
 =  

1 0 0 1 0 1 0

0 1 0 0 1 1 1

0 0 1 1 1 1 0

 
 
 
 
 

 

1 0 1 0

0 1 1 1

1 1 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 
 
 
 
 
 

  

 

= 

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 

. 

 

 Having seen the generator matrix and parity check matrix of 

a code we now proceed onto analyse the nature of the generator 
matrix. 

 

 A generator matrix G for a linear code C is a k × n matrix 
for which the rows are a basis of C. 

 
 Now a natural question would be what is the purpose of the 

parity check matrix H. 

 
 We see the parity check matrix serves as the fastest means 

to detect errors.  So error detection is done by the parity check 

matrix.  Suppose y is the received code word then find  

S(y) = Hy
T
, S (y) is defined as the syndrome.  If S(y) = (0) we 

say no error and accept y as the correct received word.   

 

If S(y) ≠ (0) we declare error has occurred.  Thus the parity 
check matrix helps in detecting the error in the received word.  
So error detection is not a very difficult task as far as coding is 
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concerned.  However it is pertinent to mention that when  

S(y) = 0, y is a code word, it need not be the transmitted code 
word.  In certain cases when the error pattern e is identical to a 

non zero code word, y is the sum of two code words which is a 

code word so Hy
T
 = (0). These errors are not detectable.  We 

accept them as a correct transmitted message.  Thus we have  
2

k 
– 1 non zero code words which can lead to undetectable 

errors, so we have 2
k
 – 1 undetectable error patterns.  Now the 

real problem lies in correcting the error.  
 

 We will just describe the coset leader method which is used 

to correct errors.  Once the error is detected, we know every 

code C is a subspace of the vector space 
n

qF  where 
n

qF  is 

defined over Fq. 
  

The factor space 
n

qF  / C consists of all cosets a + C = {a + x 

| x ∈ C} for any a ∈ 
n

qF . 

 

 Clearly each coset contains q
k
 vectors as C has 2

k
 elements 

in it.  Since a coset is either disjoint or identical we get a 

partition on 
n

qF  so 
n

qF = C ∪ (a
1
 + C) ∪ … ∪ (a

t
 + C) for t =  

q
n–k 

–1. 
 

 If a vector y is received then y must be an element of one of 

these cosets say a
i
 + C.  If the code word x

1
 has been transmitted 

then the error vector e = y – x
1
 ∈ a

1
 + C – x

1
 = a

1
 + C.   Thus we 

quote the decoding rule [16]. 
 

 If a vector y is received then the possible error vectors e are 

the vectors in the coset containing y.  The most likely error is 
the vector  with minimum weight in the coset of y.  Thus y is 

decoded as  = y – e .  The vector of minimum weight in a coset 

is called the coset leader.  If there are several coset leaders 

arbitrarily  choose any one of them.  

 

 Let a
(1)

, a
(2)

 , …, a
(t)

 be the coset leaders.  We have the 
following table. 
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  x
(1)

  = 0     x
(2)

   …  
k(q )

x } code words in C. 

a
(1)

 + x
(1)

  a
(1)

 + x
(2)

  …  a
(1)

 + 
k(q )

x } other cosets 

�    �      �  

  a
(t)

 + x
(t)

  a
(t)

 + x
(2)

  …  a
(t)

 + 
k(q )

x } other cosets 

 
coset leaders 

 

 If a vector y is received then we have to find y in the table. 
 

 Let y = a
(i)

 + x, then the decoder decides that the error e  is 

the coset leader a
(i)

.  Thus y is decoded as the code word  

x  = y – e  = x
(i)

.  The code word x  occurs as the first element 

in the column of y.  The coset of y can be found by evaluating 

the so called syndrome. 

 

 We will illustrate this situation by an example. 
 

Example 2.8: Let C be a binary linear (4, 2) code with the 

generator matrix  
 

G = 
1 0 1 0

0 1 1 1

 
 
 

 and parity check matrix 

 

  H = 
1 1 1 0

0 1 0 1

 
 
 

. 

 

 The corresponding coset table is 
 

Message symbols     0 0    10   0 1   1 1 

Code words   0 0 0 0  1 0 1 0  0 1 1 1  1 1 0 1 

Other cosets  1 0 0 0  0 0 1 0  1 1 1 1  0 1 0 1 
     0 1 0 0  1 1 1 0  0 0 1 1   1 0 0 1 

     0 0 0 1  1 0 1 1  0 1 1 0  1 1 0 0 

         Coset leaders 
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 If y = 1 1 1 1 is received then  

 

S (y) = 

1

1 1 1 0 1

0 1 0 1 1

1

 
        
 
 

  = (1 0). 

 
 Thus error e = 1 0 0 0 and y is decoded as x = y – e =  

0 1 1 1  and the corresponding message is 0 1.  

 
 Now we will proceed onto define cyclic codes. 

 

 We say a code word v in C (C a k dimensional subspace of 
n

qF ) is a cyclic code if v = (v1 … vn) is in C then (vn v1 … vn-1) 

is in C. 
 

 We generate cyclic codes using polynomial called the 

generator polynomial of a cyclic code. 
 

 If g = g0 + g1x + … + gmx
m
 

is a generator polynomial then g / x
n
 – 1 and deg g = m < n. 

 
 Let C be a linear (n, k) code with k = n–m defined by the 

generator matrix; 

 

 G = 

0 1 m

0 m 1 m

0 1 m

g g ... g 0 ... 0

0 g ... g g ... 0

0 ... ... g g ... g

−

 
 
 
 
 
 

� � � � �
 = 

k 1

g

xg

xg
−

 
 
 
 
 
 

�
. 

 
 Then C is cyclic.  The rows of G are linearly independent 

and rank G = k, the dimension of C.    

 
If x

n
 – 1 = g1 … gt is a complete factorization of x

n 
– 1 into 

irreducible polynomials over Fq then the cyclic codes (gi) 

generated by polynomials gi are called maximal cyclic codes.  
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 A maximal cyclic code is a maximal ideal in
q

n

F [x]

x 1〈 − 〉
. 

 

 If g is the polynomial that generates the cyclic code C then 
h = x

n
–1 / g is defined as the check polynomial of C. 

 

 Thus if h = Σ hi xi, hk ≠ 0 then the parity check matrix 
associated with the cyclic code C is given by  
 

H = 

k 1 0

k k 1 0

k k 1 0

0 0 ... 0 h ... h h

0 0 ... h h ... h 0

. . . . . . . .

h h ... h 0 ... 0 0

−

−

 
 
 
 
 
 

. 

  

 We will illustrate this situation by an example. 

 
Example 2.9: Let C = C (7, 4) be a code of length 7 with 4 

message symbols and q = 2. 

 

 Suppose g(x) = x
3
 + x + 1 be the generator polynomial of 

the cyclic code C.  The check polynomial of the cyclic code C is 

h = x
7
–1 / g = x

4
 + x

2
 + x + 1. 

 
 Now the generator matrix  

 

G = 

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

 
 
 
 
 
 

 

 

and the parity check matrix of this cyclic code is 
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H = 

0 0 1 0 1 1 1

0 1 0 1 1 1 0

1 0 1 1 1 0 0

 
 
 
 
 

. 

 

 Now we can generate the cyclic code using G.  aG = x 

where a is the message from 4

2Z  and x the resulting code word 

of C.  We have referred and information are from [1, 16].  
 

Now we proceed onto just recall the definition of rank 

distance codes and give some of the properties related with 
them.  

 

 Error detection, error correction for these linear block codes 

can be found in [1, 6, 16, 18].  However the erasure techniques 
for these codes are very meagre hence we just describe the 

erasure techniques in these codes.   

 
 When the code symbols are from the Galois field GF(2

n
) of 

an arbitrary dimension the function of the modulator is to match 

the encoder output to the signals of the transmission channel.  
 

 The modulator accepts the binary encoded symbols and 

produces wave forms or signals appropriate to the physical 

transmission medium. At the receiving end of the 
communication link, the demodulator operates on the signals 

received from a separate transmission symbol interval or a set of 

elements in {0, 1}.  The demodulator is designed to make a 
definite decision for each received symbol 0 or 1.  

 

 The definition of a channel includes the modulator, the 
demodulator and all intervening transmission equipment and 

media.  Most of them are discrete memoryless channel.  The 

assumption is made in that the output symbol at any instant of 

time depends statistically only on the input symbol at that time. 
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 The coding system is described by the following figure. 

  
 
        

            ↓ 
 
       

       ↓ 
    
 

       ↓ 
 
 

       ↓ 
   
 

       ↓ 
 
 

       ↓ 
 
 

 

This simple model [20] is known as the binary symmetric 

channel and is described in the following figure. 
 

 In this model the modulator input x has value 0 or 1 and the 

demodulator output y has value 0 or 1. When 0 is transmitted 
and 1 is received the error probability is p. When 0 is 

transmitted and 0 is received the probability is 1 – p.  Similarly 

when 1 is transmitted and 0 is received the probability is p and 
when 1 is transmitted and 1 is received the probability is 1 – p.  

This model can be described simply as a binary-input and 

binary-output model. 

 

• 0    • 0        0 •    • 0 
        p            1–p 

 

• 1    • 1        1 •    • 1 
 

 
 

Sender 

encoder 

modulator 

channel 

demodulator 

decoder 

receiver 

corrected message 

message 
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• 0    • 0        0 •    • 0 
               

         p 

• 1    • 1        1 •    • 1 
              1–p 

 

 

    0 •     • 0 
 
 

 

    1 •     • 1 
 

 

Binary symmetric channel 

 

 When erasure occurs [20] has studied the binary symmetric 
erasure channel.  This channel model is depicted in the 

following figure which includes a symmetric transmission from 

either input symbol to an output symbol labeled ‘?’ to denote 

ambiguity.  Now when an input symbol is sent we have the 
three possibilities. 

 

(i) The correct output is received. 
(ii) An erroneous output is received. 

(iii) The demodulator is unable to decide, the result 

is a blank space, that is ambiguous.  
 

 

• 0          • 0 
 

• 0    • ?        0 •      p  • ? 
               

    p 

• 1    • 1        1 •    • 1 
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    •  0          • 0 
      q 

• 0    • ?        0 •    • ? 
                 q  

          

• 1    • 1        1 •    • 1 

 
 

 

 

     1–p–q  •  0          • 0 

       

• 0    • ?        0 •    • ? 
                  

                       1–p–q 

• 1    • 1        1 •    • 1 
 

      
 

         • 0 
 

 

    0 •     • ? 
 
 

 

    1 •    • 1 
 

 
 

Binary symmetric erasure channel 

 

 Here when the received signal is very weak the demodulator 
does not give an output.  That is the output corresponding to 

that particular input is erased and the blank space is left out.  

Here we assume when 0 is transmitted and the demodulator 
does not give an output and the probability of that is q when 0 is 

transmitted and 0 is received the probability is 1 – p – q.  

Similarly when 1 is transmitted and the demodulator does not 
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give a output the probability is q.  When 1 is transmitted and the 

modulator does not give an output the probability is p.  When 1 
is transmitted and 1 is received the probability is 1 – p – q.  

 

 The outputs that are erased by the demodulator are called 

erasures or blank spaces [6-8].  Thus when erasures are present 
in the received code word those coordinates received in the code 

word would be blank spaces. 

 
 The study of properties of erasures out weighs the study of 

properties of errors in a code as we are sure of the number of 

errors that has occurred by counting the number of blank spaces 
(erasures) and we are also aware of their locations as they are 

blank during the transmission process.   

 

But if are to study only errors we may not completely be 
certain of the number of errors occurred during the 

transmission, for instance when a message is sent and the 

received message is also a code word different from the sent 
message, we may not be able to determine it as error but in case 

of erasures it may be blank.  

 
 Another advantage of erasure techniques over the study of 

error is that even a lay man can guess that the received message 

is an erroneous one. Also we can say whether the original 

message is retrievable or not. The study of erasures in case of 
Hamming metric has been widely studied by [21-2] and [6-8]. 

 

 We would be defining the new notion of “blanks” which are 
not erasures.  These ‘blanks’ will be known as “special blanks” 

and we will not be using the notion of erasure decoding we use 

only the error decoding technique. We will use this “special 

blank” notion in the last chapter of this book where we will be 
using them in concatenation of linear coding with Hamming 

metric defined on it.  

 
 Now refer Gabidulin for the notion of rank distance codes. 

 



 47

DEFINITION 2.1:  Let X 
n
 be a n-dimensional vector space over 

the field GF(2
N
).  Let u1, u2, …, un be a fixed basis for X 

n
 over 

GF(2
N
).  Then any element x ∈ X 

n
 can be represented as a n-

tuple (x1, x2, …, xn) where xi ∈ GF(2
N
) (1 ≤ i ≤ n). 

 
 GF(2

N
) is a vector space of dimension N over GF(2).   Let 

v1, v2, …, vN be a fixed basis for GF(2
N
) over GF(2).  Then any 

element xi ∈ GF(2
N
) can be uniquely represented in the form of 

a N-tuple (m1i, m2i, …, mNi), 
n

N
M  denote the ensemble of all  

(N × n) matrices with elements from GF(2). 

 

 Consider the bijection M : X
n
 → n

NM  defined by the 

following condition for any vector x = (x1, x2, …, xn) ∈ X
n
; the 

associated matrix;  

 

M (x) =  

11 12 1n

21 22 2n

N 1 N 2 Nn

m m ... m

m m ... m

m m ... m

 
 
 
 
 
 

� � �
 

 

where the i
th

 column represents  the i
th
 coordinate xi of x over 

GF(2). 

 

 The rank of a vector x ∈ X
n
 over GF(2) is defined as the 

rank of the matrix M(x) over GF(2).  Let r(x) denote the rank of 

the vector x ∈ X
n
 over GF(2).   By the properties of the rank of a 

matrix the mapping x → r(x) defines a norm on X
n
; called the 

rank norm. 

 

 Let X
n
 be a vector space of dimension n over GF(2

n
) 

equipped with the rank norm.  Clearly the rank norm induces a 

metric defined as the rank metric (rank distance) on X
n
 and is 

denoted by dR.  For x, y ∈ X
n
, the rank distance between x and y 

is dR(x, y) = r (x–y).  A vector space X
n
 over GF(2

n
) such that  

n ≤ N equipped with the rank metric dR is defined as a rank 

distance space.  So if X
n
 is a rank distance space, a linear (n, k) 
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rank distance code is a linear subspace of dimension k in the 

rank distance space X
n
 and is denoted by C. 

 

 A generator matrix G of C is a k × n matrix with entries 

from GF(2
N
) whose rows form a basis for C. 

 

 Then a (n – k) × n matrix H with entries from GF(2
N
) such 

that GH
T
 = (0) is called the parity check matrix of C where (0) 

denotes a k × n – k zero matrix. 

 
 Suppose C is a (n, k) rank distance code with generator 

matrix G and parity check matrix H then C is the row space of 

G or the null space of H.  We have minimum distance of C 

defined as d = min {r(x – y) : x, y ∈ C; x ≠ y}. C is a k - 

dimensional subspace of the rank distance space X
n
, if x, y ∈ C 

then x – y ∈ C.   
 

Hence d the minimum distance,  

d = min {r(x) | x ∈ C; x ≠ 0}.  The notion of maximum rank 
and the erasure techniques would be studied in the following 

chapters. 
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Chapter Three 
 
 

 
 
ERASURE DECODING OF MAXIMUM RANK 
DISTANCE CODES 
 
 
This chapter has three sections.  Section one is introductory in 

nature.  In section two we describe the class of MRD codes as 

given by E.M. Gabidulin [9].  In section three we discuss the 
systematic guessing process or filling up of the blank spaces in 

case of erasures for MRD codes [17, 29, 32]. 

 

3.1  Introduction 
 

 Algebraic coding theory is required in communication 

systems to combat the errors that occur during transmission.  In 
many communication systems, it is often convenient to 

represent the set of signals to be transmitted as a higher 

dimensional Galois field.  There are many reasons to do so.  

One is that it makes it possible to visualize the signals by means 
of vectors, which in turn has the advantage of recognizing the 

relationship among various types of signals that is to be 

considered. Secondly, the length of the message will be very 
much reduced resulting an increase in the rate of transmission. 

Here the set of basic signals will be represented by a prime 

Galois field GF(p) and all the possible linear combinations of 
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the basic signals will be represented by a higher dimensional 

Galois field, GF(p
n
). 

 

 When the code symbols are from a higher dimensional 

Galois field the function of the modulator is to match the 

encoder output to the transmission channel.  A definition of a 
channel generally includes the modulator, the demodulator and 

all the intervening transmission equipment and media.  In this 

model  in certain situations, for example when the received 
signal is very weak the demodulator does not give an output.  

That is, the output corresponding to that particular input is 

erased and a black space of left out. 
 

 The outputs that are erased by the demodulator are called 

erasures or blank spaces.  Hence the events in which the 

demodulator does not give a output when the evidence does not 
clearly indicate one signal as the most probable are called 

erasures.  Hence when erasures are present in the received 

vector those coordinates in the received vector will be blank 
spaces. Erasure decoding in case of Hamming metric has been 

widely studied by W.W. Peterson [21-2], David Forney [6-8].  

Here we obtain a method of erasure decoding for the class of 
MRD codes when the minimum distance is same as the length 

of the code. The error correcting capability of the MRD code 

depends on the minimum distance and greater the minimum 

distance greater the error correcting capability.  In this chapter 
the minimum distance of the MRD code is equal to its length. 

 

 By making use of this systematic guessing process an 
erasure or blank space can be regarded as an error which can 

either be detected or corrected by making use of the decoding 

algorithm for MRD codes.  We have proved that a MRD code of  

length n, dimension 1 and minimum distance n = 2t + 1 can 
correct atmost t erasures and detect more than t erasures. We 

have obtained the number of ways in which a particular erasure 

can be chosen during the guessing process and we have 
established that the result is unaffected by various choices for 

the erasures available during the guessing process at each stage.  
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Also the method of erasure decoding is illustrated through an 

example. 
 

3. 2    Maximum Rank Distance Codes 

 

 Maximum Rank Distance (MRD) codes are a class of codes 

which are analogs of generalized Reed-Solomon codes [26].  

MRD codes are codes of length n < N defined over GF(2
N
) 

equipped with the rank metric. 
 

 Suppose X
n
 is a n-dimensional vector space over the field 

GF(2
N
).  Let u1, u2, …, un be a fixed basis for X

n
 over GF(2

N
).  

Then any element x ∈ X
n
 can be represented as an n-tuple (x1, 

x2, …, xn) where xi ∈ GF(2
N
). 

 
 GF(2

N
)  is a vector space of dimension N over GF(2).  Let 

v1, v2, …, vN be a fixed basis for GF(2
N
) over GF(2).  Then any 

element xi ∈ GF(2
N
) can be uniquely represented in the form of 

a N-tuple (a1i, a2i, …, aNi). Let n

NA  denote the ensemble of all  

(N × n) matrices with elements from GF(2). 
 

 Consider the bijection A : X
n
 → n

NA  defined by the 

following rule: 

For any vector x = (x1, x2, …, xn) ∈ X
n
 the associated matrix 

 

 A(x) = 

11 12 1n

21 22 2n

N1 N2 Nn

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 

� � �
     (3.2.1) 

 

where the i
th
 column represents the i

th
 coordinate ‘xi’ of ‘x’ over 

GF(2).  We recall some of the basic definition from [9, 29, 30, 
32]. 

 

DEFINITION 3.2.1:  The rank of a vector x ∈ X 
n
 over GF(2) is 

defined as the rank of the matrix A(x) over GF(2).  In other 

words the rank of a vector  x ∈ X 
n
 is the maximum number of 
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columns that are linearly independent over GF(2) in the 

associated matrix A(x) of the vector x.  Let r(x) denote the rank 

of the vector x ∈ X 
n
 over GF(2).  By the properties of the rank 

of a matrix the mapping x � r (x) specifies a norm on X
n
 and is 

called the rank norm. 

 

DEFINITION 3.2.2:  Let X 
n
 be a vector space of dimension n 

over GF(2
N
) equipped with rank norm.  The rank norm induces 

a metric defined as the rank metric (rank distance) on X 
n
 and is 

denoted by dR. For x, y ∈ X 
n
 the rank distance between x and y 

is dR (x, y) = r (x–y).  

 
DEFINITION 3.2.3:  A vector space X 

n
 over GF(2

N
) such that  

n < N equipped with the rank metric dR is defined as a rank 

distance space. 

 

DEFINITION 3.2.4:  Let X 
n
 be the rank distance space.  A linear 

(n, k) rank distance code is a linear subspace of dimension k in 

the rank distance space X 
n
 and is denoted by C. 

 

DEFINITION 3.2.5:  Let C be a linear (n, k) rank distance code.  

A generator matrix G of C is a k × n matrix with entries from 

GF(2
N
) whose rows form a basis for C. 

 
DEFINITION 3.2.6: Let C be a linear (n, k) rank distance code 

with generator matrix G.  Then a (n – k) × n matrix H with 

entries from GF(2
N
) such that GH

T
 = (0) is called the parity 

check matrix of C where (0) denotes the k × (n – k) zero matrix. 

 

 Suppose C is a linear (n, k) rank distance code with 
generator matrix G and parity check matrix H, then C can be 

thought of as : 

 
1. the row space of G or 

2. the null space of H. 

 

DEFINITION 3.2.7:  Let C be a linear (n, k) rank distance code.  

The minimum distance of C is defined as d = min {r (x – y) : x, y 
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∈ C, x ≠ y}.  Since C is linear space, d is also equal to min {r(x) 

: x ∈ C, x ≠  0}. 

 A linear (n, k) rank distance code C with minimum distance 

d satisfies the following bound. 

 
Singleton-style bound[12, 16]: A linear (n, k) rank distance code 

C with minimum distance d satisfies the inequality d ≤ n–k+1. 
 

DEFINITION 3.2.8:  Rank distance codes which attain equality 

in the singleton style bound are called Maximum Rank Distance 

codes (MRD codes). 

 

 MRD codes are analogs of generalized Reed-Solomon 
codes and can be defined through generator and parity check 

matrices.  A MRD code with length n = N can be defined as 

follows: 

 

 Let [i] = 2i, i = 0, ± 1, ± 2, … 
 

 Let hi ∈ GF(2
N
), i = 1, 2, …, n be linearly independent over 

GF(2). 

 

 For a given design distance d < n let us generate the matrix 
 

 H =  

1 2 n

[1] [1] [1]

1 2 n

[d 2] [d 2] [d 2]

1 2 n

h h ... h

h h ... h

h h ... h
− − −

 
 
 
 
 
 

� � �
     (3.2.2) 

 

 The linear (n, k) rank distance code with parity check 

matrix H given in equation (3.2.2) is an MRD code of length n 
and minimum distance d.  We denote a (n, k, d) MRD code as  

C[n, k]. 

 
 The encoding and decoding algorithm for MRD codes are 

given by Gabidulin [9]. 
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3.3   Erasure Decoding of MRD codes 
 
 It has long been recognized that there are advantages in 

allowing the demodulator not to guess at all on certain 

transmission (for example when the received signal is very 
weak) when the evidence does not clearly indicate one signal as 

the most probable: such events are called erasures.  In the event 

of an erasure or blank space it is convenient to passes on the 

side information to the decoder that this guess is not completely 
reliable.  By the guessing process or filling up of the blank 

space an erasure or blank space can be regarded as an error 

which can be either detected or corrected by making use of the 
decoding algorithm for MRD codes. 

 

 The guessing process or filling up of the blank spaces can 
be done systematically by making use of the decoding 

properties of the MRD codes and this procedure is described 

below. 

 
 The C[n, 1] be a (n, 1, n) MRD code defined over GF(2

n
), 

where n = 2t + 1.  Since the minimum distance of this code is n 

the associated matrix of every code word in this code has n 
columns to be linearly independent over GF(2).   

 

Suppose x = (x1, x2, …, xn) is the codeword that is 
transmitted.  Let y = (y1, y2, …, yn) be the received vector where 

t coordinates are erasures.  Let *1, *2, …*t denote the t erasures.  

The t erasures can occur either in an array or can occur 

intermittently with the yi’s or it can be randomly placed in 
between the yi’s.  Still the method adopted by us will not affect 

the result.  Without loss of generality we can assume that  *1, *2, 

…, *t be the first t coordinates of y.  Let yt+1, yt+2, …yn be the 
rest of the n – t coordinates.  The choosing of each of the *j’s for 

j = 1, 2, …, t is detailed below. 

 

 Now choose *1 (*1 ≠ 0) such that the set {*1, yt+1, yt+2, …, 
yn} is a linearly independent set over GF(2).  Having chosen *1, 

now choose *2 (*2 ≠ 0) such that the set (*2, *1, yt+1, yt+2, …, yn) 

is a linearly independent set over GF(2).  Having chosen *1, *2, 
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…, *s, s < t, *s+1 is chosen such that *s+1 ≠ 0 and the set {*s+1, *1, 
*2,… , *s, yt+1, yt+2, …, yn} is  linearly  independent  over  

GF(2). 

 
 By the above guessing process or filling up of the blank 

spaces the t erasures *1, *2, …, *t in the received vector y are 

filled by the t probable errors.  Let the vector y′ = ( 1 2 ny , y ,..., y′ ′ ′ )  

be the vector obtained from y after converting the t erasures or t 
blank spaces into t errors by using the guessing process.  Now 

we apply the decoding algorithm of the MRD codes for 

decoding y′ and obtain the correct message transmitted. 
 

 The following theorem gives the number of ways in which 
the erasures or blank spaces can be chosen by using the 

guessing process or filling up of the blank spaces. 

 
THEOREM 3.3.1:  Let C[n,1] be a (n, 1, n) MRD code defined 

over GF(2
n
) where n=2t + 1.  Let x = (x1, x2, …, xn) be the 

transmitted code word.  Let y = (y1, y2, …, yn) be the received 

vector where t coordinates are erasures or blank spaces.  Let *1, 

*2, …, *t denote the t erasures or t blank spaces.  Then *s+1, 

where s + 1 < t can be chosen in 2
n–t+2

 [2
t–s

 – 1] ways by using 

the guessing process. 

 

Proof:  Let C[n, 1] be a MRD (n, 1, n) code defined over  

GF(2
n
) where n = 2t + 1.  Suppose x = (x1, x2, …, xn) is the 

codeword that is transmitted.  Let y = (y1, y2, …, yn) be the 

received vector where t coordinates are erasures or blank 

spaces.   

 
Let *1, *2, …, *t denote the t erasures or blank spaces. 

Without loss of generality let *1, *2, …, *t be the first 

coordinates of the vector y.  Then when applying the guessing 

process *1 is chosen such that *1 ≠ 0 and the set {*1, yt+1, yt+2, 
…, yn}  is a linearly independent set over GF(2).  That is, *1 is 

chosen from the set B1 = GF(2
n
) \ {0, yt+1, …, yn, yt+1 + yt+2, …, 

yn–1 + yn, yt+1 + yt+2 + yt+3, …, yn–2 + yn–1 + yn, …, yt+1 + yt+2 + … 

+ yn–1 + yn}. 
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 Hence *1 can be chosen in |B1| ways, where |B1| denotes the 

number of elements in the set B1.  Clearly  
 

|B1| = 2
n
 – (1 + n – tC1 + n – tC2 + n – tC3  

     + … + n – tCn–t–1 + n – tCn–1) 

=  2
n
 – (1+1)

n–1
   (by Binomial theorem) 

     =  2
n
 – 2

n–t
 

  =  2
n–t

  [2
t
 – 1]. 

 

 Having chosen *1, *2 can be chosen such that *2 ≠ 0 and the 
set {*2, *1, yt+1, yt+2, …, yn} is linearly independent over GF(2).  

That is, *2 is chosen from the set  

 

 B2  = GF(2
n
) \ {0,*1, yt+1, …, yn, *1 + yt+1, yt+1 + yt+2, …, yn–1 

+ yn, *1 + yt+1 + yt+2, yt+1+ yt+2 + yt+3, …, yn–2 + yn–1 + yn, …, *1 + 

yt+1 + yt+2 + … + yn–1 + yn}.  Hence *2 can be chosen in |B2| 

ways.  Clearly |B2| is given by; 
 

|B2|  = 2
n
 – (1 + n – (t+1)C1 + n – (t+1)C2   

     + … + n – (t+1)Cn–t + n – (t+1)Cn–t+1) 

 
  = 2

n
 – (1+1)

n–t+1
  (By binomial theorem) 

  = 2
n
 – 2

n–t+1
 

  = 2
n–t+1

 [2
t–1

 – 1]. 
 

 Having chosen *1, *2,..., *s, s < t, *s+1 is chosen such that 

*s+1 ≠ 0 and {*s+1, *1, *s, …, *s, yt+1, yt+2, …, yn} is linearly 
independent set over GF(2).  Hence *s+1 can be chosen in |Bs+1| 

ways.  Clearly |Bs+1| is  
 

|Bs+1|  = 2
n
 – (1 + n – (t+s)C1 +  n – (t+s)C2 + n – (t+s)C3 

      + … + n – (t+s)Cn–t+s–1 + n – (t+s)Cn–t+s)          
 

= 2
n
 – (1+1)

n–t+s
 

= 2
n
  – 2

n–t+s
 

= 2
n–t+s 

 [2
t–s

 – 1]. 
 

 Hence the theorem.    
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THEOREM 3.3.2: Let C[n, 1] be a (n, 1, n) MRD code with 

minimum distance n = 2t + 1.  Then C[n, 1] corrects atmost t 

ensures and detects more than t erasures. 

 

Proof:  Let C [n, 1] be a (n, 1, n) MRD code with minimum 

distance n = 2t + 1.  Suppose x = (x1, x2, …, xn) is the codeword 
that is transmitted.  Let y = (y1, y2, …, yn) be the received vector 

where t coordinates are erasures or blank spaces.  Let y′ = 

( 1 2 ny , y ,..., y′ ′ ′ ) be the vector obtained from y after converting the 

t erasures into t errors by using the guessing process or filling 

up of the blank spaces. Therefore, dR (x, y′) < t, by [9, 29, 30] 

we know that a MRD code with n = 2t + 1 can correct atmost t 
errors and detect more than t errors.  Hence C[n, 1] can correct 

atmost t erasures and detect more than t erasures. 

 
THEOREM 3.3.3: Let C[n, 1] be a (n, 1, n) MRD code defined 

over GF(2
n
) where n = 2t + 1. Let x = (x1, x2, …, xn) be the 

transmitted codeword.  Let y = (y1, y2, …, yn) be  the received 

vector where t coordinates are erasures.  Let *1, *2, …, *t 

denote the t erasures.  The erasures *s+1, where s + 1 ≤ t can be 

chosen in 2
n–t+s

 [2
t–s

–1] ways by using the guessing process.  

Then the various choices of *j’s does not affect the erasure 

correcting capability of the MRD code. 
 

Proof :  Let C[n, 1] be a (n, 1, n) MRD code defined over  

GF(2
n
) where n = 2t + 1.  Suppose x = (x1, x2, …, xn) be the 

transmitted codeword. Let y = (y1, y2, …, yn) be the received 
vector where t coordinates are erasures or blank spaces.  Let *1, 

*2,…, *t denote the t erasures or t blank spaces. Let  

y′ = ( 1 2 ny , y ,..., y′ ′ ′ ) be the vector obtained from y after applying 

the guessing process or filling up of the blank spaces to obtain 
from y after applying the guessing process or filling up of the 

blank spaces to the received vector y.  Let y″ = ( 1 2 ny , y ,...., y′′ ′′ ′′ ) 

be another vector obtained from y after applying the guessing 

process or filling up of the blank spaces to the received vector y 

and be such that y′ ≠ y″, then dR(y′, y″) ≤ t.  By the guessing 

process the t erasures in the received vector y are converted into 

t errors. Hence dR(x, y′) ≤ t and dR(x, y″) ≤ t. We know MRD 
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code with n = 2t + 1 can correct atmost t errors and detect more 

than t errors.  Since dR(x, y′) ≤ t and dR(x, y″) ≤ t both the vector 

y″ and y′ are both decoded as the vector x, which is the 
transmitted message.  Hence the theorem. 

 
 The guessing process and the above results are illustrated by 

the following example. 

 

Example 3.3.1: Consider GF(2
3
) where GF(2

3
) = {0, 1, α, α2

, 

…, α6
} and α is the root of the primitive polynomial p(x) = x

3
 + 

x + 1.  Consider the (3, 1, 3) MRD code having parity check 

matrix H. 
 

  H = 
2

2 4

1

1

 α α
 

α α 
        (3.3.1) 

obtained by choosing h1 = 1, h2 = α, h3 = α2
 in the  matrix 

(3.3.1). 

 

 Let m1 = α5
 be the message.  Let x = (α5

, a1, a2). The Hx
T
 = 

(0) gives a1 = α6
  and a2 = α2

. The codeword corresponding to 

the message m1 = α5
 is c = (α5

, α6
, α2

).  Suppose c is the 

transmitted vector and let y = (α5
, *, α2

) be the received vector 
with one erasure or one blank space.  By applying the guessing 

process we choose * ≠ 0 and such that the set {*, α5
, α2

} is 
linearly independent over GF(2).  Then there are four choices 

for * namely * = 1, * = α, * = α4
 and * = α6

.  We see that the 
choice of * does not change the result and we get the corrected 

message for all the four choices of *. 
 

 Choose * = 1. 

 

 Now the vector y′ obtained after filling up of the blank 

space in the received vector y is y′ = (α5
,1, α2

).  By applying the 

decoding algorithm for MRD codes to the vector y′ we have 
 

1. Syndrome = (α3
, α4

) = (s0, s1). 
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2. ∆ (z) = α2 
z + z

2
. 

 

3. The non zero root of ∆ (z) is E1 = α2
. 

4. Solving sp = 
1

[p]

j j

j 1

E x
=

∑ , p = 0 we get x1 = α . 

5. Solving x1 = 
3

1j j

j 1

Y h
=

∑  gives Y11 = 0, Y12 = 1,  

Y13 = 0 and hence the matrix Y = (0 1 0). 

 

6. Error vector e = E1 Y = (0, α2
, 0). 

 

7. y′ + e = (α5
, α6

, α2
) is the required codeword. 

 

Choose * = α. 

 

Now the vector y′ obtained after filling up of the blank 

space in the received vector y is y′ = (α5
, α, α2

).  By applying 

the decoding algorithm for MRD codes to the vector y′ we have 
 

1 Syndrome = (α6
,1) = (s0, s1). 

 

2.    ∆ (z) = α5 
z + z

2
. 

 

3. The non zero root of ∆ (z) is E1 = α5
. 

 

4. Solving sp = 
1

[p]

j j

j 1

E x
=

∑ , p = 0 we get x1 = α . 

 

5. Solving x1 = 
3

1j j

j 1

Y h
=

∑  gives Y11 = 0, Y12 = 1,  

Y13 = 0 and hence the matrix Y = (0 1 0). 

 

6. Error vector e = E1 Y = (0, α5
, 0). 
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7. y′ + e = (α5
, α6

, α2
) is the required codeword. 

 

Choose * = α4
. 

 

Now the vector y′ obtained after filling up of the blank 

space in the received vector y is y′ = (α5
, α4

, α2
).  By applying 

the decoding algorithm for MRD codes to the vector y′ we have 
 

Syndrome = (0, 0).   

 

This indicates that y′ is the correct message.  
 

Let m2 = α3
 be the message.  Let x = (α3

, a1, a2). The Hx
T
 = 

(0) gives a1 = α4
  and a2 = 1 . The codeword corresponding to 

the message m1 = α3
 is c = (α3

, α4
, 1).  Suppose c is the 

transmitted vector and let y = (α3
, *1, *2) be the received vector 

with two erasures or blank spaces.  By applying the guessing 

process we choose *1 ≠ 0 and such that the set {*1, α3
} is 

linearly independent over GF(2). Since the set {α6
, α3

} is 

linearly independent over GF(2) choose *1 = α6
.  Again since 

the set {α2
, α6

, α3
} is a linearly independent set over GF(2) 

choose *2 = α2
.  Now the vector y′ obtained after filling up of 

the blank spaces in the received vector y is y′ = {α3
, α6

, α2
}. 

 

By applying the decoding algorithm for MRD codes to the 

vector y′ we have 
 

1. Syndrome = (α4
, α5

) = (s0, s1). 
 

2.   ∆ (z) = α3 
z + z

2
. 

 

3. The nonzero root of ∆ (z) is E1 = α3
.  

 

4. Solving sp = 
1

[p]

j j

j 1

E x
=

∑ , p = 0 we get x1 = α . 
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5. Solving x1 = 
3

1j j

j 1

Y h
=

∑  gives Y11 = 0, Y12 = 1,  

Y13 = 0 and hence the matrix Y = (0 1 0). 

 

6. Error vector e = E1 Y = (0, α3
, 0). 

 

8. y′ + e = (α5
, α6

, α2
) is the required codeword. 

 

Choose * = α6
. 

 

Now the vector y′ obtained after filling up of the blank 

space in the received vector y is y′ = (α5
, α6

, α2
).  By applying 

the decoding algorithm for MRD codes to the vector y′ we have 

 
Syndrome = (0, 0).   

 

This indicates that y′ is the correct message.  
 

Let m2 = α3
 be the message.  Let x = (α3

, a1, a2). The Hx
T
 = 

(0) gives a1 = α4
  and a2 = 1 . The codeword corresponding to 

the message m1 = α3
 is c = (α3

, α4
, 1).  Suppose c is the 

transmitted vector and let y = (α3
, *1, *2) be the received vector 

with two erasures or two blank space.  By applying the guessing 

process we choose *1 ≠ 0 and such that the set {*1, α3
} is 

linearly independent over GF(2). Since the set {α6
, α3

} is 

linearly independent over GF(2) choose *1 = α6
.  Again since 

the set {α2
, α6

, α3
} is a linearly independent set over GF(2) 

choose *2 = α2
.  Now the vector y′ obtained after filling up of 

the blank spaces in the received vector y is y′ = {α3
, α6

, α2
}. 

 
By applying the decoding algorithm for MRD codes to the 

vector y′ we have 
 

1. Syndrome = (α2
, α2

) = (s0, s1). 
 

2.    ∆ (z) = α2 
z + z

2
. 
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3. The nonzero root of ∆ (z) is E1 = α2
.  

 

4. Solving sp = 
1

[p]

j j

j 1

E x
=

∑ , p = 0 we get x1 = 1 . 

 

5. Solving x1 = 
3

1j j

j 1

Y h
=

∑  gives Y11 = 1, Y12 = 0,  

Y13 = 0 and hence the matrix Y = (1 0 0). 

 
Error detected. 

 

The erasure decoding method declares that more than one 
erasure has been detected. 

 

Hence the (3, 1, 3) MRD code corrects atmost one erasure 
and detects more than one erasure in the received vector. We 

also note that the result is independent of the choice of  *. 

 

The study of erasure decoding is better than the study of 
errors. Erasure decoding in case of Hamming codes has been 

widely studied in literature. In this chapter we have started the 

study of erasure decoding of the class of MRD codes.  We give 
a guessing process by which the erasures or blank spaces in the 

received vector can be converted into errors. We have proved 

that the MRD code of length n, dimension one and minimum 
distance n = 2t + 1 can correct atmost t erasures and detect more 

than t erasures. We have obtained the number of ways in which 

a particular erasure can be chosen during the guessing process 

and we have established that the result is unaffected by the 
various choices of erasures or blank spaces that are available in 

the guessing process or filling up of the blank spaces at each 

stage.  
 

 It is pertinent to mention that these results are true for any 

(n, k, d) MRD code defined over GF(2
n
)  where d = 2t + 1. 
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Chapter Four 
 
 

 
 
MRD CODES – SOME PROPERTIES AND A 
DECODING TECHNIQUE 
 
 
 
 

4.1 Introduction 
 

 Minimum distance is a one of the chief parameters which 
determines the error-correcting capability of a code. In fact, the 

maximum number of errors corrected by a code is proportional 

to its minimum distance. For a linear code of length n, 
dimension k and minimum distance d, the upper bound for the 

minimum distance is n – k + 1. A code which has the minimum 

distance d = n – k + 1 is defined as the Maximum Distance 

Separable codes. The Reed-Solomon codes are important 
Maximum Distance Separable codes. Analogues to Maximum 

Distance Separable codes, Gabidulin in [9] defines the class of 

Maximum Rank Distance (MRD) codes. An Nq
[n,k,d] Rank 

Distance code whose minimum distance d is equal to n – k + 1 

is called an MRD code, n ≤ N. As the error-correcting capability 
of a code is proportional to its minimum distance, codes with 
larger minimum distance is preferred for error correction. It 

makes it justifiable to study the characteristics or properties 
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enjoyed by such class of codes so as to enunciate their uses in 

the communication channels. 
  

This chapter has four sections. Section one is introductory 

in nature. Section 2 introduces for the first time, a combined 

error-erasure decoding technique to the class of Nq
[n,k,d] MRD 

codes, n ≤ N. A code is said to be invertible if, knowing only the 
parity-check symbols of a codeword, the corresponding 

information symbols can be determined through an inversion 
process. The invertible property facilitates the data recovery 

process in error-control schemes. A comprehensive study on the 

invertible property for the class of Nq
[n,k,d] q-Cyclic RD codes 

is carried out in section 3. Section 3 also presents the systematic 

encoding and the shortening technique for the class of Nq
[n,k,d]  

q-Cyclic RD codes. Section 4 carries out a study on the class of 
Rank Distance codes having complementary duals. It is proved 

that the class of n2
[n,k,d]  MRD codes generated by the trace-

orthogonal-generator matrices are LCD codes. Further, 

description to the (noiseless and noisy) 2-user F-Adder Channel 

and coding for the noiseless 2-user F-Adder Channel via the 

class of n2
[n,k,d]  MRD codes having complementary duals are 

presented [25]. A coding problem for the noisy 2-user F-Adder 

Channel is explained.  

 
 
4.2 Error-Erasure Decoding Technique to MRD Codes 
 
 This section introduces a combined error-erasure decoding 

technique for the first time to the class of Nq
[n,k,d]  MRD 

codes, n ≤ N. The combined error-erasure decoding technique to 
the class of MRD codes presented later in this section enables 

the decoder to correct all combinations of r rank-errors and s 

erasures in an erroneously received vector as long as 2r + s < d, 
where d is the minimum-rank distance of the MRD codes. 
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 Let Γ denote an Nq
[n,k,d] MRD code, n ≤ N with the parity-

check matrix H. 

 

H = 

1 2 n

[1] [1] [1]

1 2 n

[d 2] [d 2] [d 2]

1 2 n

h h h

h h h

h h h
− − −

 
 
 
 
 
 

�

�

� � � �

�

   (4.1) 

 

 where h1, h2, …, hn ∈ GF(q
N
) are linearly independent over 

GF (q). 

 
 Before presenting the error-erasure decoding technique, in 

what follows are the descriptions to the deletion of m 

coordinates of x ∈ Γ and the deletion of m columns of H that 
are required in the decoding technique, where m < n. 
 

 Let x = (x1, x2, …, xn) ∈ Γ. Define the deletion of the l1
th
 

coordinate 
1l

x  of x as the (n–1)-tuple (x1, x2, …, 
1 1lx
−

, 
1 1lx
+

, …, 

xn) and denote it by x
(1)

. Similarly, the deletion of m 

coordinates, say 
1 2 ml l lx ,x ,..., x  of x is defined as the (n–m)-tuple 

(x1, x2, …, 
1 1lx
−

, 
1 1lx
+

, …, 
2 1 2 1 m 1 m 1l l l lx ,x ,..., x ,x ,...,

− + − +
xn) and is 

denoted by x
(m)

.  

 

 Generate a matrix, say H
(1)

 of order (d–2) × (n–1) from H by 

performing the following row operations so as to delete the l1
th
 

column of H. 

 

 For each j = 1, 2, …, d – 2, multiply the j
th
 row-vector of  

 

H by 1

1

[ j]

l

[ j 1]

l

h

h −
 and subtract the (j+1)

th
 row-vector from the j

th
 row- 

 

vector and let the deletion of the l1
th
 coordinate of the resultant  
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vector, namely ( [ j 1]

1h − 1

1

[ j]

l

[ j 1]

l

h

h −
 – [ j]

1h , [ j 1]

2h − 1

1

[ j]

l

[ j 1]

l

h

h −
 – [ j]

2h , …,  

 

1 1

[ j 1]

lh
−

− 1

1

[ j]

l

[ j 1]

l

h

h −
– 

1 1

[ j]

lh
−

, 
1

[ j 1]

l 1h
−

+  1

1

[ j]

l

[ j 1]

l

h

h −
 –

1

[ j]

l 1h +  , …, [ j 1]

nh − 1

1

[ j]

l

[ j 1]

l

h

h −
– [ j]

nh )  

 

be the j
th
 row-vector in H

(1)
. 

 

  

The resultant matrix H
(1)

 is given by 

 

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

[1] [1]

l l[0] [1] [0] [1]

1 1 l 1 l 1[0] [0]

l l

[2] [2]

l l[1] [2] [1] [2]

1 1 l 1 l 1[1] [1]

l l

[d 2] [d 2]

l l[d 3] [d 2] [d 3] [d 2]

1 1 l 1 l 1[d 3] [d 3]

l l

h h
h h ... h h

h h

h h
h h ... h h

h h

h h
h h ... h h

h h

− −

− −

− −

− − − −

− −− −


− −



 − −





− −


� � �

 

 

 

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

[1] [1]

l l[0] [1] [0] [1]

l 1 l 1 n n[0] [0]

l l

[2] [2]

l l[1] [2] [1] [2]

l 1 l 1 n n[0] [0]

l l

[d 2] [d 2]

l l[d 3] [d 2] [d 3] [d 2]

l 1 l 1 n n[d 3] [1]

l l

h h
h h ... h h

h h

h h
h h ... h h

h h

h h
h h ... h h

h h

+ +

+ +

− −

− − − −

+ +−


− − 



− − 





− − 


� � �

. 

 

 Let ih′  = 1

1

[ j]

l

[0]

l

h

h
 – [1]

ih  for each i ≠ l1. 
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  Then [ j 1]

ih − 1

1

[ j]

l

[ j 1]

l

h

h −
 – [ j]

ih = [ j 1]

ih −′  for each i ≠ l1 and j = 1, 2, 

…, d–2. 

 

 The (d–2) × (n–1) matrix H
(1)

 now takes the following form 
 

 H
(1)

 = 

1 1

1 1

1 1

[0] [0] [0] [0] [0]

1 1 l 1 l 1 n

[1] [1] [1] [1] [1]

1 2 l 1 l 1 n

[d 3] [d 3] [d 3] [d 3] [d 3]

1 2 l 1 l 1 n

h h ... h h ... h

h h ... h h ... h

h h ... h h ... h

− +

− +

− − − − −

− +

 ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ 
 
 
 ′ ′ ′ ′ ′ 

� � � � � � �
 

 

 where ih′  = [0]

ih  1

1

[ j]

l

[0]

l

h

h
 – [1]

ih  for each i ≠ l1. 

 
 Call the matrix H

(1)
 thus obtained as the deletion of l1

th
 

column of H. Proceeding with a similar row operations in H
(1)

 

so as to delete a column of H
(1)

 that is corresponding to the l2
th
 

column of H, one obtains a (d–3) × (n–2) matrix, say H
(2)

; call it 

as the deletion of l1
th
 and l2

th
 columns of H. 

 

 In general, proceeding with a similar row operations in  

H
(m-1)

 so as to delete a column of H
(m–1)

 that is corresponding to 

the lm
th
 column of H, one obtains a (d–1–m) × (n–m) matrix say 

H
(m)

, called as the deletion of l1
th
, l2

th
, …, lm

th
 columns of H, 

where H
(m-1)

 is the (d–m) × (n–m+1) matrix and is the deletion 
of l1

th
, l2

th
, …, lm–1

th
 columns of H. 

 

 An important relationship between x
(1)

 and H
(1)

 is proved in 

the following lemma. 
 

Lemma 4.2.1: Let Γ be an Nq
[n,k,d] MRD code with the parity-

check matrix H as defined in (4.1). Let x
(1)

 be the deletion of the 

l1
th
 coordinate of x ∈ Γ. Let H

(1)
 be the deletion of the l1

th
 

column of H. Then x
(1)

 
T(1)

H = (0). 
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Proof:  Let x = (x1, x2, …, xn) ∈ Γ. Then x
(1)

 = (x1, x2, …, 

1 1 1 1
,

− +l l
x x , …, xn) is the deletion of the l1

th
 coordinate 

1l
x  of x. 

Let y = x
(1)

 
T(1)

H = (y1, y2, …, yd–2). 

 

 Then y = x
(1)

 
T(1)

H  

 

= x
(1)

 

1 1

1 1

1 1

T
[0] [0] [0] [0] [0]

1 1 l 1 l 1 n

[1] [1] [1] [1] [1]

1 2 l 1 l 1 n

[d 3] [d 3] [d 3] [d 3] [d 3]

1 2 l 1 l 1 n

h h ... h h ... h

h h ... h h ... h

h h ... h h ... h

− +

− +

− − − − −

− +

 ′ ′ ′ ′ ′
 

′ ′ ′ ′ ′ 
 
 
 ′ ′ ′ ′ ′ 

� � � � � � �
 

 

 where [0]

ih′  = 1

1

[1]

l[0]

i [0]

l

h
h

h
 – [1]

ih  for each i ≠ l1. 

 
 One needs to show that  

 

x
(1)

 ( [ j 1]

1h − 1

1

[ j]

l

[ j 1]

l

h

h −
 – [ j]

1h , [ j 1]

2h − 1

1

[ j]

l

[ j 1]

l

h

h −
 – [ j]

2h , …,  

 

1 1

[ j 1]

lh
−

− 1

1

[ j]

l

[ j 1]

l

h

h −
–

1 1

[ j]

lh
−

, 
1

[ j 1]

l 1h
−

+  1

1

[ j]

l

[ j 1]

l

h

h −
 –

1

[ j]

l 1h +  , …, [ j 1]

nh − 1

1

[ j]

l

[ j 1]

l

h

h −
- [ j]

nh )
T
  

 

= 0, for each j = 1, 2, …, d – 2. 
  

 Now yj  = x
(1) 

( [ j 1]

1h −′ , [ j 1]

2h −′ , …,
1 1

[ j 1] [ j 1]

l 1 l 1h ,h
− −

− +
′ ′  , …, [ j 1]

nh − )
T
 

 

   = x1 
[ j 1]

1h −′ + x2
[ j 1]

2h −′  + …  

 

 +
1 1lx
− 1 1 1 1

[ j 1] [ j 1]

l 1 l l 1h x h
+

− −

− +
′ ′+  , …, xn

[ j 1]

nh −′  
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1 1 1

1 1 1 1 1 1 1 1

1 1 1

1

1 1 1 1 1 1 1

1

[ j] [ j] [ j]

l l l[ j 1] [ j 1] [ j 1]

1 1 l l l l[ j 1] [ j 1] [ j 1]

l l l

[ j]

l[ j 1] [ j] [ j] [ j] [

n n 1 1 1 1 1 1 1 1 n n[ j 1]

l

h h h
x h ... x h x h ...

h h h

h
x h (x h ... x h x h ... x h

h

− − + +

− +

− − −

− − −

−

− +−

     
+ + + + +          

     
=

 
− + + + + +  

 

j]









 

= –x1 
1

[ j 1]

lh
− 1

1

[ j]

l

[ j 1]

l

h

h −
 – (–x1 

1

[ j]

lh )   (∵  xH
T 

= (0)) 

 

= –x1 
1

[ j]

lh  + (x1 
1

[ j]

lh ) = 0 

 
 i.e. yj = 0, for each j = 1, 2, …, d–2. 

 

 Thus x
(1)

 
T(1)

H  = (0). Hence the lemma. 
 

 The above lemma is true for the general case also. That is, if 

x
(m)

 is the deletion of m coordinates, say 
1 2 ml l lx ,x ,..., x  of  

x ∈ Γ and H
(m)

 is the deletion of l1
th
, l2

th
, …, lm

th
 columns of H, 

then x
(m)

 
T(m)

H = (0).  
 

Thus the proof of the following lemma follows 
immediately. 

 

Lemma 4.2.2: Let Γ be an Nq
[n,k,d]  MRD code with the parity-

check matrix H as defined in (4.1). Let x
(m)

 be the deletion of m 

coordinates 
1 2 ml l lx ,x ,..., x of x ∈ Γ and H

(m)
 be the deletion of 

l1
th
, l2

th
, …, lm

th
 columns of H, m < n.  

 

Then x
(m)

 
T(m)

H = 0. 
 
 The above lemma gives a relationship between x

(m)
 and 

H
(m)

. This relation plays a crucial role in the combined error-
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erasure decoding technique to the class Nq
[n,k,d] MRD codes 

presented in what follows.  

 

 

Error-Erasure Decoding Technique: 
 

 Consider the parity-check matrix H of an Nq
[n,k,d]  MRD 

code, n ≤ N. 
 

H = 

1 2 n

[1] [1] [1]

1 2 n

[d 2] [d 2] [d 2]

1 2 n

h h ... h

h h ... h

h h ... h
− − −

 
 
 
 
 
 

� � � �
 

 

 where hi ∈ GF(q
N
), i=1, 2, …, N are linearly independent 

over GF(q). 
 

 Let x = (x1, x2, …, xn) ∈ Γ be a codeword transmitted over a 
noisy channel. Because of the channel noise, the receiver may 

not receive the transmitted codeword x. Let y = y  + e be the 

received vector, where e = (e1, e2, …, en) is an error-vector and 

y  denotes the codeword x with erasures; the details of the 

notations ‘ � ’ and ‘ +� ’ are given in the next line. Since the 

erroneously received vector y also has erasures and erasures are 

nothing but blank spaces, ‘ � ’ and ‘ +� ’ are so used to represent 

the received vector in terms of the error-vector and erasure-

vector. 
 

 Assume that the received vector y = (y1, y2, …, yn) has  

m ≤ r rank-errors and t ≤ s erasures such that 2r + s < d, where d 

is the minimum-rank distance of the Nq
[n,k,d]  MRD code and 

m is the rank of the error-vector e. Without loss of generality, 

assume that the received vector y has erasures in the first t 

coordinates; i.e., y  = (*1, *2, …, *t, xt+1, …, xn) with *1, *2, …, 

*t representing erasures. One should note that the t coordinates 
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of e that are corresponding to the erasures in the received vector 

y are zeros; i.e., e1, e2, …, et are all zero. Therefore, e = 

(0,0,...,0

t terms

��	�

, et+1, et+2, …, en). Then the received vector takes the 

form y �  (*1, *2, …, *t, xt+1, …, xn) +�  (0, 0, …, 0, et+1, et+2, …, 
en). 

 

 Let f = (f1, f2, …, ft, (0,0,...,0

n t terms−

��	�

) be the erasure-vector. 

 

 Let 1 2 ny (y , y ,..., y )′ ′ ′ ′=  be such that 
i i

i

i

f if x iserased
y

x otherwise


′ = 


,  

where the unknowns f1, f2, …, ft (t ≤ s) are to be determined. 

 

 Then y′  = (f1, f2, …, ft, xt+1, …, xn). Having replaced the 

erasures with the unknown f1, f2, …, ft, the received vector y is 

now expressed as y′  + e; i.e., y = y′+ e. The syndrome of y is 

given by 

 

 S = y H
T
 

 

  = ( y′  + e)H
T
 

 

  = (f1, f2, …, ft, xt+1, …, xn)H
T
  

 + (0, 0, …, 0, et+1, …, en)H
T
 

 

  = (f1, f2, …, ft, xt+1, et+1, …, xn + en) H
T
.   (4.2) 

 

 The decoder’s problem is to first determine the error-vector 

e = (0, 0, …, 0, et+1, …, en) and then the erasure-vector  
f = (f1, f2, …, ft, 0, …, 0) on the basis of the syndrome vector  

S = (s0, s1, …, sd-2), where si denotes the i
th
 coordinates of S for 

each i = 0, 1, … d–2. 

 
 Equating each component in the right-hand side of (4.2), 

 

 f1 h1 + … + ft ht + (xt+1 + et+1) ht+1 + … + (xn + en) hn = 0 
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 f1 
[1]

1h  + … + ft 
[1]

th  + (xt+1 + et+1) 
[1]

t 1h +   

+ … + (xn + en) 
[1]

nh  = 0 

       �  
 f1 

[d 2]

1h −  + … + ft 
[d 2]

th −  + (xt+1 + et+1) 
[d 2]

t 1h −

+   

+ … + (xn + en) 
[d 2]

nh −  = 0 

  

 Let ( )(0)

jθ  denote the equation  

f1 
[ j]

1h  + … + ft 
[ j]

th  + (xt+1 + et+1) 
[ j]

t 1h +  + … + (xn + en) 
[ j]

nh  = 0 

for each j = 0, 1, …, d–2 and θ(d-1)
 = ( )( (0)

0θ , ( )(0)

1θ , …, ( ))(0)

d 2−θ  

represent the above system of d–1 equations ( )(0)

0θ , ( )(0)

1θ , …, 

( )(0)

d 2−θ . 

  

In the above system θ(d–1)
 of d–1 equations, one needs to 

eliminate f1, f2, …, ft. For each i = 1, 2,…, t, the elimination of 

fi, results in a system, say θ(d–1–i)
, of d–1–i equations, say ( )(i)

0θ , 

( )(i)

1θ , …, ( )(i )

d 2 i− −θ . Let θ(d–1–i)
 = ( ( )(i)

0θ , ( )(i)

1θ , …, ( )(i )

d 2 i− −θ ). 

 

 Therefore, θ(d–1–t)
 = ( )( ( t )

0θ , ( )(t )

1θ , …, ( ))(t )

d 2 t− −θ would 

represent the system θ(d–1–t)
 of d–1–t equations obtained after the 

elimination f1, f2, …, ft from the system θ(d–1)
. 

 
 The recursive procedure for the elimination of f1, f2, …, ft 

from the system θ(d–1)
 = ( )(0)

0θ , ( )(0)

1θ , …, ( )(0)

d 2−θ  is given as 

follows. 
 

 For each i = 1, 2, …, t, perform the operation. 

 
 Define  

 

Z(i–1)= 
(i 1) (d i)

i

(i 1) (d i)

i 0

Coefficient of f  in equation (θ ) of system θ

Coefficient of f  in equation (θ ) of system θ

− −

− −
. 
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Then (to eliminate fi from the system θ(d–i)
 of d–i equations) 

multiply the equation ( )(i 1)

j

−θ  by 
[ j]

(i 1)Z −  and subtract the equation 

( )(i 1)

j 1

−

+θ  from the equation ( )(i 1)

j

−θ  for each j = 0, 1, 2, …, d–2–i. 

Then one obtains the system θ(d–1–i)
 = ( )( (i )

0θ , ( )(i)

1θ , …, 

( ))(i )

d 2 i− −θ  of d–1–i equations after the elimination of fi. 

 

 The reduced system θ(d–1–t)
 of d–1–t equations ( )(t )

0θ , 

( )(t )

1θ , …, ( )(t )

d 2 t− −θ  after the elimination of f1, f2, …, ft from the 

system θ(d–1)
 = ( )( (0)

0θ , ( )(0)

1θ , …, ( ))(0)

d 2−θ  is of the following 

form. 

 

 0s′  = (xt+1 + et+1) t 1h +
′  + (xt+2 + et+2) t 2h +

′  + … + (xn + en) nh′  

 1s′  = (xt+1 + et+1)
[1]

t 1h +
′  + (xt+2 + et+2) 

[1]

t 2h +
′  + … + (xn + en) 

[1]

nh′  

 �  
and d 2 ts − −

′  = (xt+1 + et+1)
[d 2 t]

t 1h − −

+
′  + (xt+2 + et+2) 

[d 2 t]

t 2h − −

+
′   

    + … + (xn + en) 
[d 2 t]

nh − −′ . 

 
 The above system of equations can be rewritten as, 

  

( 0s′ , …, d 2 ts − −
′ )  

= (xt+1 + et+1, …, xn + en) 

T

1 2 n

[1] [1] [1]

t 1 t 2 n

[d 2 t] [d 2 t] [d 2 t ]

t 1 t 2 n

h h ... h

h h ... h

h h ... h

+ +

− − − − − −

+ +

′ ′ ′ 
 ′ ′ ′ 
 
 

′ ′ ′ 

� � � �
 

 

= (xt+1 + et+1 , …, xn + en)
T(t )

H  
 

= (xt+1, …, xn) 
T(t )

H  + (et+1, …, en)
T(t )

H  
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= x
(t)

 
T(t )

H + e
(t)

 
T(t )

H  
 

= (0) + e
(t)

 
T(t )

H  (by Lemma 4.2.2) 
 

= e
(t)

 
T(t )

H  
 

 i.e., ( 0s′ , …, d 2 ts − −
′ ) = e

(t)
 

T(t )
H     (4.3) 

 

where 
 e

(t)
 = (et+1, et+2, …, en) is the deletion of the first  

t coordinates of e and 

 

 H
(t)

 = 

t 1 t 2 n

[1] [1] [1]

t 1 t 2 n

[d 2 t] [d 2 t] [d 2 t]

t 1 t 2 n

h h ... h

h h ... h

h h ... h

+ +

+ +

− − − − − −

+ +

′ ′ ′ 
 ′ ′ ′ 
 
 

′ ′ ′ 

� � � �
 

 

is the (d–1–t) × (n–t) matrix, which is the deletion of the first  

t columns of H. 
 

 If is′  = 0 for each i, then it is concluded that the received 

vector y contains no errors. Then solving the system θ(d–1)
 of  

d–1 equations, one can determine the values for the unknowns 

f1, f2, …, ft. If is′  ≠ 0 for some i, then the received vector y 

contains errors. To find the error-vector  

 

e = (0, 0, …, 0, et+1, et+2, …, en), one is to continue the 

following procedure with the known syndrome values is′ ,  

i = 0, 1, …, d–2–t. Actually, one needs to find the error vector 

e
(t)

 = (et+1, et+2, …, en). 

 
 Since the rank norm of the error-vector e is assumed to be 

m, e
(t)

 can be written in the following form: 

 
  e

(t)
 = EY = (E1, E2, …, Em)Y,     (4.4) 
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where (E1, E2, …, Em) are linearly independent over GF(q), and 

Y = 
m,n

ij i , j 1,t 1
Y

= +
    is an m × (n – t) matrix of rank m with entries 

from GF(q). 
 

 Equation (4.3) becomes, 

 ( 0s′ , …, d 2 ts − −
′ ) = EY

T(t )
H  = EX,    (4.5) 

 where the transposed matrix of X = Y
T(t )

H  has the form 
 

X
T
 = 

1 2 m

[1] [1] [1]

1 2 m

[d 2 t ] [d 2 t ] [d 2 t]

1 2 m

x x ... x

x x ... x

x x ... x
− − − − − −

′ ′ ′ 
 ′ ′ ′ 
 
 

′ ′ ′ 

� � � �
   (4.6) 

and 
n

p pj j

j t 1

x Y h
= +

′ ′= ∑ , p = 1, 2, …, m.    (4.7) 

are linearly independent over GF(q). 

 
 Equation (4.5) is equivalent to the following system of 

equations in the unknowns E1, E2, …, Em, 1 2 mx ,x ,..., x′ ′ ′ , 

 

 
m

[p]

p i i

i 1

s E x
=

′ ′=∑ , p = 0, 1, …, d–2–t.    (4.8) 

 

 If the solution of the system (4.8) has been found, then from 

(4.7) and (4.4), one can determine the matrix Y and the error-

vector e
(t)

 respectively. Note that the above system (4.8) has 

many solutions for a specified m; for m ≤
d 1 t

2

− − 
  

. However, 

all solutions lead to the same vector e
(t)

. Thus, the decoding 

problem reduces to finding the solution of the system (4.8). 

 

 Let S′(z) =
d 2 t [ j]

jj 0
s z

− −

=
′∑  be termed as the syndrome 

polynomial. 
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 Set F0(z) = z
[d–1–t]

, F1(z)=S′(z) and employ Euclid’s division 
algorithm until reaching a remainder polynomial Fm+1(z) such 

that deg(Fm(z)) ≥ q
(d–1–t)/2

 and deg(Fm+1(z)) < q
(d–1–t)/2

. Then it is 
concluded that the received vector y has m rank-errors; that is,  

r[e
(t)

; q] = m. 
 

 Let ∆(z) = 
m [p]

pp 0
z

=
∆∑ , ∆m = 1 be a polynomial whose roots 

are all possible linear combinations of E1, E2, …, Em with 
coefficients from GF(q). 

 

 Using the coefficients of the remainder polynomial Fm+1(z), 

the coefficients ∆0, ∆1, …, ∆m of the polynomial ∆(z) can be 
determined recursively as follows: 
 

 Let j be such that is′= 0 and js′  ≠ 0 for i < j. 

 

 Then ∆0 = fj / js′ , 

 

 ∆p = (fj+p – 
p i [i] [p]

i p j 1 ji 0
/ s ,

−

− + −=
′∆∑  p = 1, 2, …, m, 

 
where fj is the coefficient of Fm+1(z) for degree [j] and for  

j + p ≥ m, set fj+p = 0. 
 

 Determine the roots E1, E2, …, Em of ∆(z) that are linearly 
independent over GF(q). Methods for determining the roots of 

∆(z) are described in [25]. After determining the roots E1, E2, 

…, Em of ∆(z), consider the following truncated system; 
 

 
m

[p]

p i i

i 1

s E x
=

′ ′=∑ , p = 0, 1, …, m–1   (4.9) 

 

 Solving the system (4.9), one obtains 
[p]

jx′  and hence the 

error-vector e
(t)

. Then, by substituting e
(t)

 in the system θ(d–1)
 of d 

– 1 equations, one can determine the values for the unknowns f1, 

f2, …, ft. Hence x = y – e, which is the actually transmitted 
codeword. 
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Summary of the error-erasure decoding technique: 

 

 Step 1:  Compute the syndrome values ( 0s′ , …, d 2 ts − −
′ ) for 

the vector y = (f1, f2, …, ft, xt+1, …, xn) + (0, 0, …, 0, et+1, …, en) 

and the corresponding syndrome polynomial  
 

S′(z) = 
d 2 t [ j]

jj 0
s z

− −

=
′∑ . 

 

 Step 2: Set F0(z) = z
[d–1–t]

, F1(z) = S′(z) and employ Euclid’s 
division algorithm until reaching a Fm+1(z) such that deg (Fm(z)) 

> q
(d–1–t)/2

 and deg (Fm+1(z)) < q
(d–1–t)/2

. Let ∆(z) = 
m [p]

pp 0
z

=
∆∑ , 

∆m = 1 be such that its roots are all possible linear combinations 
of E1, E2, …, Em over GF(q). 

 

 Step 3: Determine the coefficients of ∆(z) as follows: 

   Let j be such that is′  = 0 and js′  ≠ 0 for i < j. 

 

       ∆0 = fj / js′ , 

 

 ∆p = (fj+p, 
p i [i] [p]

i p j 1 ji 0
/ s ,

−

− + −=
′∆∑  p = 1, 2, …, m. 

 

where fj is the coefficient of Fm+1(z) for degree [j] and  

fj+p = 0 for j + p ≥ m. 
 

 Step 4: Compute the roots E1, E2, …, Em of ∆(z) that are 

linearly independent over GF(q). Then, by substituting E1, E2, 

…, Em in system (4.9), one can determine 
[p]

jx  and hence the 

error-vector e
(t)

. 

 

 Step 5: Substituting e
(t)

 in system θ(d–1)
, one can obtain the 

values for the unknown f1, f2, …, ft. 

 
 Step 6: The transmitted codeword is then obtained as  

 

    x = y – e. 
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 Using the combined error-erasure decoding technique to the 

class of Nq
[n,k,d]  MRD codes presented above, one can correct 

any combination of m ≤ r rank-errors and t ≤ s erasures in an 
erroneously received vector as long as 2r + s < d, where d is the 
minimum-rank distance of the MRD codes. 

 

 A detailed description of the combined error-erasure 

decoding technique to the class of N2
[n,k,d]  MRD codes 

presented above is demonstrated through the following example 
which applies the combined error-erasure decoding technique to 

the 82
[7,1,7]  MRD code for the correction of 2 errors and 2 

erasures in an erroneously received vector. 

 

Example 4.2.1:  Let Γ = 82
[7,1,7] be the MRD code defined 

over GF(2
8
) = {0, 1, α, …, 

82 2−α } with the parity-check matrix 

H: 

H = 

2 3 4 5 6

2 4 6 8 10 12

4 8 12 16 20 24

8 16 24 32 40 48

16 32 48 64 80 96

32 64 96 128 160 192

1

1

1

1

1

1

 α α α α α α
 

α α α α α α 
 α α α α α α
 

α α α α α α 
 α α α α α α
 

α α α α α α  

 

 

where α is a root of the primitive polynomial  
x

8
 + x

6
 + x

5
 + x + 1 over GF(2).  

 

 Let x = (0, 0, 0, 0, 0, 0, 0) ∈ Γ be the transmitted codeword 

and y = α31
, α147

, 0, 0, *5, 0, *7) be the received vector, where 
‘*5’ and ‘*7’ represent erasures. Note that the received vector y 
has two erasures. 

 

 Let f = (0, 0, 0, 0, f5, 0, f7). Then replacing the erasures with 

unknowns f5 and f7, one has the vector y′ = (α31
, α147

, 0, 0, f5, 0, 
f7) where the unknowns f5 and f7 are to be determined. Let e = 
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(e1, e2, e3, e4, 0, e6, 0) be the error-vector to be determined. Then 

x = y′ – e would be the transmitted code word. The syndrome of 

y′ – e is 
 

 S  = (y′ – e)H
T
 

 

  = (α31
, α147

, 0, 0, f5, 0, f7)H
T
 – (e1, e2, e3, e4, 0, e6, 0)H

T

              (4.10)  
 

 Equating each component on the right-hand side of (4.10) to 

0, 

 

 α4
 f5 + α6

 f7 + 1 = e1 + αe2 + α2
 e3 + α3

 e4 + α5
 e6,  

  α8
 f5 + α12

 f7 + α147
 = e1 + α2

e2 + α4
 e3 + α6

 e4 + α10
 e6, 

 α16
 f5 + α24

 f7 + α108
 = e1 + α4

e2 + α8
 e3 + α12

 e4 + α20
 e6, 

 α32
 f5 + α48

 f7 + α113
 = e1 + α8

e2 + α16
 e3 + α24

 e4 + α40
 e6, 

 α64
 f5 + α96

 f7 + α41
 = e1 + α16

e2 + α32
 e3 + α48

 e4 + α80
 e6, 

and  

 α128
 f5 + α192

 f7 + α62
 = e1 + α32

e2 + α64
 e3 + α96

 e4 + α160
 e6. 

 

 Let θ(6)
 = ( )( (0)

0θ , ( )(0)

1θ , ( )(0)

2θ , ( )(0)

3θ , ( )(0)

4θ , ( ))(0)

5θ  

denote the above system of 6 equations.  

 

Here  
 

Z(0) = 
(0) (6)

5 1

(0) (6)

5 0

Coefficient of f  in equation (θ ) of system θ

Coefficient of f  in equation (θ ) of system θ
 = α4

. 

 

 The eliminate f5 from the above system θ(6)
 of 6 equations, 

multiply the equation ( )(0)

jθ  by 
[ j]

(0)Z  and subtract the equation 

( )(0)

j 1+θ  from the equation ( )(0)

jθ for each j = 0, 1, 2, 3, 4. Then 

one obtains the following reduced system θ(5)
 = ( )( (1)

0θ , ( )(1)

1θ , 

( )(1)

2θ , ( )(1)

3θ , ( ))(1)

4θ  of 5 equations after the elimination of f5. 
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  α149
 f7 + α78

 = α23
e1 + α52

 e2 + α143
 e3 + α203

 e4 + α206
 e6, 

 α43
 f7 + α105

 = α46
e1 + α104

 e2 + α31
 e3 + α151

 e4 + α157
 e6, 

 α86
 f7 + α104

 = α92
e1 + α208

 e2 + α62
 e3 + α47

 e4 + α59
 e6, 

 α172
 f7 + α16

 = α184
e1 + α161

 e2 + α124
 e3 + α94

 e4 + α118
 e6, 

 
and   

 

α89
 f7 + α240

 = α113
e1 + α67

 e2 + α248
 e3 + α188

 e4 + α236
 e6. 

 

Now 
 

Z(1) =
(1) (5)

7 1

(1) (5)

7 0

Coefficient of f  in equation (θ ) of system θ

Coefficient of f  in equation (θ ) of system θ
=α149

.  

 

To eliminate f7 from the above system θ(5)
 of 5 equations, 

multiply the equation ( )(1)

jθ  by 
[ j]

(1)Z  and subtract the equation 

( )(1)

j 1+θ  from the equation ( )(1)

jθ for each j = 0, 1, 2, 3. Then one 

obtains the following reduced system θ(4)
 = ( )( (1)

0θ , ( )(1)

1θ , 

( )(1)

2θ , ( ))(1)

3θ  of 4 equations after the elimination of f7. 

 

α95
  = α197

e1 + α71
 e2 + α131

 e3 + α196
 e4 + α10

 e6, 

α68
  = α139

e1 + α142
 e2 + α7

 e3 + α137
 e4 + α20

 e6, 

α44
  = α23

e1 + α29
 e2 + α14

 e3 + α19
 e4 + α40

 e6, 

and  α48
  = α46

e1 + α58
 e2 + α28

 e3 + α38
 e4 + α80

 e6. 
 

  

The above system θ(4)
 of 4 equations can be written as 

 (α95
, α68

, α44
, α48

)  
 

 = (e1, e2, e3, e4, e6) 

T
197 71 131 196 10

139 142 7 137 20

23 29 14 19 40

46 58 28 38 80

 α α α α α
 
α α α α α 
 α α α α α
 

α α α α α  

(4.11) 
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Let ( )0 1 2 3s ,s ,s ,s′ ′ ′ ′ = (α95
, α68

, α44
, α48

)  

and e
(2)

 = (e1, e2, e3, e4, e6) 
 

Here S′(z) = α95
z

[0] 
+ α68

 z
[1] 

+ α44
 z

[2]
+ α48

 z
[3]

. 
 

Let F0(z) = z
[4]

 and  

 

F1(z) = α95
z + α68

 z
2
 + α44

 z
4
 + α48

 z
8
 

 
Dividing F0(z) on the right by F1(z). 

 

F0(z) = (α207
z

8
 + α203

 z
4
 + α227

 z
2
+ α254

 z + α199
)  

 * F1(z) + F2(z). 

where F2(z) = α103
z

4
 + α136

 z
2
 +α39

 z. 

 
Dividing F1(z) on the right by F2(z). 

 

F1(z) = (α200
z

4
 + α233

 z
2
 + α136

 z) * F2(z) + F3(z), 

where F3(z) = α48
z

2
 + α72

 z. 
 

Since deg(F2 (z)) = 4 ≥ 2
2
 and deg (F3 (z)) = 2 < 2

2
, it follows 

the received vector has m = 2 rank-errors i.e., r [e
(2)

; 2] = 2. 

 
Since e

(2)
 is of rank norm m = 2, 

 

e
(2)

  = (E1, E2) 
11 12 13 14 16

21 22 23 24 26

Y Y Y Y Y

Y Y Y Y Y

 
 
 

  (4.12) 

 

 = ( )1 2 3 4 6Y ,Y ,Y ,Y ,Y  (say) 

 
where E1 and E2 are linearly independent over GF(2), and  

Y = [Yij] is the 2 × 5 matrix of rank 2 with entries from GF(2). 
 

Equation (4.11) becomes, 

 (α95
, α68

, α44
, α48

)  
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= ( )1 2 3 4 6Y ,Y ,Y ,Y ,Y

T
197 71 131 196 10

139 142 7 137 20

23 29 14 19 40

46 58 28 38 80

 α α α α α
 
α α α α α 
 α α α α α
 

α α α α α  

 (4.13) 

 

 Here ∆ (z) =∆0 Z
[0]

 + ∆1 Z
[1] 

+ ∆2 Z
[2]

 with ∆0 = α232
,  

∆1 = α160
 and ∆2 = α160

. 
 

 The roots of ∆ (z) are α31
, α147

, α149
 and 0. Take E1 = α31

, 

and E2 = α147
.  

 

 α95
 = 

197 71 131 196 10

1 11 12 13 14 16

197 71 131 196 10

2 21 22 23 24 26

E ( y y y y y )

E ( y y y y y )

 α + α + α + α + α +


α + α + α + α + α
 

and   

 

α68
 = 

139 142 7 137 20

1 11 12 13 14 16

139 142 7 137 20

2 21 22 23 24 26

E ( y y y y y )

E ( y y y y y )

 α + α + α + α + α +


α + α + α + α + α
. 

 
Solving the above equation, 

 

Y = 
1 0 0 0 0

0 1 0 0 0

 
 
 

. 

 

 Therefore, e = (α31
, α147

, 0, 0, 0, 0, 0). By substituting  

e = (α31
, α147

, 0, 0, 0, 0, 0) in the system θ(6)
 of 6 equations, one 

obtains f5 = 0 and f7 = 0. 

 

 Hence x = y′ – e 
 

   = (α31
, α147

, 0, 0 , 0, 0, 0) – (α31
, α147

, 0, 0, 0, 0, 0) 
 

   = (0, 0, 0, 0, 0, 0, 0),  
 

which is the actually transmitted codeword. 
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4.3 Invertible q-Cyclic RD Codes 
 

 There are two categories of techniques for controlling 

transmission errors in data transmission systems: the Forward-
Error Control (FEC) scheme and the Automatic-Repeat – 

Request (ARQ) scheme. In an FEC system, an error-correcting 

code is used, when the receiver detects the presence of errors in 

a received vector, it attempts to determine the error locations 
and then corrects the errors. If the exact locations of errors are 

determined, the received vector will be correctly decoded; if the 

receiver fails to determine the exact locations of errors, the 
received vector will be decoded incorrectly and erroneous data 

will be delivered to be destination. In an ARQ system, a code 

with good error-detecting capability is used. At the receiver, the 
syndrome of the received vector is computed. If the syndrome is 

zero, the received vector is assumed to be error-free and is 

accepted by the receiver. At the same time, the receiver notifies 

the transmitter, via a return channel, that the transmitted 
codeword has been successfully received. If the syndrome is not 

zero, errors are detected in the received vector. Then the 

transmitter is instructed, through the return channel, to 
retransmit the same codeword. Retransmission continues until 

the codeword is successful received. 

 
 The throughput efficiency (or throughput) is a measure of 

performance of an ARQ system. Throughout efficiency is 

defined as the ratio of the average number of information 

symbols successfully accepted by the receiver per unit of time 
to the total number of symbols that could be transmitted per unit 

of time. The retransmission of an erroneously received vector 

continues until the received vector is successfully received by 
the receiver. Though the retransmission requests provide a 

powerful means of improving reliability performance at the cost 

of a reduction in throughput, the frequency of retransmission 

must be reduced to improve the throughout efficiency. Both 
systems have their own limitations and drawbacks. To improve 

the throughput efficiency, a hybrid - ARQ scheme which is a 

combination of both FEC and ARQ, came into existence [25]. 
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There are two types of hybrid - ARQ schemes : type I hybrid – 

ARQ scheme [25] and type II hybrid – ARQ scheme [25]. This 
section deals only the type II hybrid-ARQ scheme, the 

description of it is given in the following.  

 

 The type II hybrid - ARQ scheme is devised based on the 
concept that the parity - check symbols for error correction are 

sent to the receiver only when they are needed [25]. Two linear 

codes are used in this type of scheme; one is a high-rate (n, k) 
code C0, which is designed for error detection only, the other is 

a half-rate invertible (2k, k) code C1, which is designed for 

simultaneous error correction and error detection.  
 

When a message, say u of k information symbols is ready 

for transmission, it is encoded into a codeword v = (f(u), u) of n 

symbols based on the error-detecting code C0, where f(u) 
denotes the n–k parity-check symbols. The codeword v = (f(u), 

u) is then transmitted. At the same time, the transmitter 

computes the k parity-check symbols, denoted by q(u), based on 
the message u and the half-rate invertible code C1. Clearly the 

2k-tuple (q(u), u) is a buffer of the transmitter for later use.  

 
The invertible property facilities the data recovery process. 

This section carries out a comprehensive study on the invertible 

property enjoyed by the class of nq
[n,k,d] q-Cyclic RD codes. 

 

This section is divided into three subsections. In subsection 

1, the systematic encoding of the class of nq
[n,k,d]  q-cyclic RD 

codes analogues to the class of cyclic codes is given. Making 
use of the systematic encoding, the subsection 2 gives the 

shortening technique to the class of nq
[n,k,d] q-cyclic RD 

codes. Subsection 3 studies the invertible property enjoyed by 

the class of nq
[n,k,d]  q-cyclic MRD codes for both the cases  

n – k ≥ k and n – k < k. 
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Systematic Encoding of q-Cyclic RD Codes 

 
 The generator and parity-check matrices for linear codes 

greatly simplify encoding at the transmitter and error detection 

at the receiver. The problem of recovering the message block 

from a codeword can be greatly simplified through the use of 
systematic encoding. As in the case of ordinary cyclic codes, 

systematic encoding for the class of nq
[n,k,d]  q-Cyclic RD 

codes can be done either by means of a generator polynomial or 

by means of a generator matrix in systematic (or standard) form. 

 

(a) Systematic encoding through generator polynomial 

 

 Let G(z) = 
n k [i]

ii 0
G z

−

=∑  be the given generator polynomial 

of an nq
[n,k,d]  q-Cyclic RD code, say C.  

 

Let H(z) = 
k [i]

ii 0
H z

=∑  be such that z
[n]

 – z = H(z) * G(z). If 

one assumes that gn–1, gn–2, …, gn–k are information symbols, 

then s/he can determine the parity-check symbols gn–k–1, gn–k–2, 

…, g0 as follows. 

 
 Let u(z) = gn–1z

[n–1]
 + gn–2z

[n–2]
 + … + gn–kz

[n–k]
 be a message 

polynomial to be encoded. 

 
 Divide u(z) on the right by G(z); 

 

 u(z) = q(z) * G (z) + f(z), deg (f (z)) < [n–k]. 

 
where q(z) is the quotient polynomial and f(z) is the remainder 

polynomial. 

 
 Then the coefficients gn–i for degree gn–i for degree [n–i],  

i = k+1, k+2, …, n of the remainder polynomial f (z) will be the 

parity-check symbols. Then g(z) = u(z) – f(z) is the 
systematically encoded code polynomial corresponding to the 

message polynomial u(z), where f(z) is called as the parity-

check polynomial. 



 86

 

 

(b) Systematic encoding through generator matrix 

 

 The systematic encoding of the nq
[n,k,d]  q-cyclic RD code 

C can also be carried out through generator and parity-check 

matrices in systematic form. This is accomplished in the 
following. 

 

 The generator matrix and the parity-check matrix 

corresponding to G(z) and H(z) of C in systematic form can be 
obtained as follows: 

 

 Dividing z
[n–k+i]

 on the right by G(z) for each i = 0, 1, …,  
k–1, one gets 

 

 z
[n–k+i]

 = qi(z) * G(Z) + fi(z), where qi(z) is the quotient 
polynomial and fi(z) = fi0z

[0]
 + fi1z

[1]
 + … + fi, n–k–1z

[n–k–1]
 is the 

remainder polynomial. 

 

 Since G(z) is a right divisor of z
[n–k–i] 

– fi(z), i = 0, 1, …,  
k–1, they are code polynomials of C.  

 

Arranging these k code polynomials as rows of a k × n 
matrix, one obtains the matrix say G:  

 

 G = 

00 01 0,n k 1

01 11 1,n k 1

k 1,0 k 1,1 k 1,n k 1

f f ... f 1 0 0 ... 0

f f ... f 0 1 0 ... 0

0

f f ... f 0 0 0 ... 1

− −

− −

− − − − −

 
 
 
 
 
  

� � � � � � � �
 

 
which is the generator matrix of C in systematic form. Recall 

that any set of k linearly independent vectors can be used as the 

rows of the generator matrix to form a k-dimensional linear 

code. 
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 The corresponding parity-check matrix, say H in systematic 
form is given by 

 

H = 

00 10 k 1,0

01 11 k 1,1

0,n k 1 1,n k 1 k 1,n k 1

1 0 0 ... 0 f f ... f

0 1 0 ... 0 f f f

0 0 0 ... 1 f f ... f

−

−

− − − − − − −

− − − 
 

− − − 
 
 

− − −  

� � � � � � � �
 

 

 Note that GH
T
 = (0). If u = (gn–k, gn–k+1, …, gn–1) is a 

message vector, then v = uG = (g0, g1, …, gn–1) is the 
systematically encoded codeword corresponding to the message 

vector u and one can note that H
T
 = (0), where g0, g1, …, gn–k–1 

are the corresponding parity-check symbols.  

 

 The systematic encoding for the class of nq
[n,k,d] q-Cyclic 

RD codes given above is demonstrated through the following 

example. 

 

Example 4.3.1.1: Consider the [ ] 52
5,3 2-Cyclic RD code 

generated by G(z) = α24
 z + α3

 z
2
 + α2

 z
4
, where α is a root of 

the primitive polynomial x
5
 + x

2
 + 1 over GF(2). 

 
 Dividing z

[2]
 on the right by G[z], one gets 

 

 z
4
 = α29

 z * G (z) + αz
2
 + α22

z with f1(z) = α z
2
 + α22

z. 
 

 Dividing z
[3]

 on the right by G[z], one gets 
 

 z
8
 = (α27

 z
2
 + z) * G (z) + α7

z
2
 + α24

z with  

 f2 (z) = α7
z

2
 + α24

z. 
 

 Dividing z
[4]

 on the right by G[z], one gets 

 

 Z
16

 = (α23
z

4
 + z

2
 + α12

z) * G(z) + α20
z

2
 + α5

z with  

f3(z) = α20
z

2
 + α5

z. 
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 Then the generator matrix G and the parity-check matrix H 

for the 52
[5,3]  5-Cyclic RD code in systematic form are 

respectively given by 

 

G = 

22

24 7

5 20

1 0 0

0 1 0

0 0 1

 α α
 
α α 
 α α 

  

and 

H = 
22 24 5

7 20

1 0

0 1

 α α α
 

α α α 
. 

 

 Let u1(z) = α5
z

[4]
 + z

[3]
 + α23

z
[2]

 be the message polynomial 
to be encoded. Dividing u1(z) on the right by G(z), one gets. 

 

u1(z) = (α28
z

4
 + α12

z
2
 + α6

z) * G(z) + α17
 z

2
 + α30

 z. 
 

 Then g1(z) = α30
z + α17

 z
[1]

 + α23
 z

[2]
 + z

[3]
 + α5

 z
[4]

 is the 
systematically encoded code polynomial corresponding to the 
message polynomial u1(z). Note also that  

 

(α30
, α17

,  α23
, 1, α5

) H
T
 = (0). 

 

Similarly, g2(z) = α13
z + α11

z
[1]

 + α9
z

[2]
 + 0z

[4]
 is the code 

polynomial corresponding to the message polynomial u2(z) = 

0z
[4]

 + α21
z

[3]
 + α9

z
[2]

 and that (α13
, α11

, α9
, α21

, 0) H
T
 = (0). 

 
 The next subsection gives the shortening technique to the 

class of nq
[n,k,d]  q-Cyclic RD codes. In shortening of an 

nq
[n,k,d]  q-Cyclic RD code, each codeword is shortened (in 

length) by t information symbols, resulting in a linear code of 

length n – t, dimension k – t with the same error-correcting 

capability as the original code, t < k. 
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4.3.2 Shortened q-Cyclic RD codes 

 
 In many applications, there are external constraints such as 

puncturing, extending, shortening, lengthening, expurgating, or 

augmenting [25], which are unrelated to error-control but 

determine the allowed length of the error-control code. In 
system design, if a code of suitable length or suitable number of 

information symbols can not be found, it may be possible to 

shorten a code to meet the requirements. In extending, a code is 
extended by adding an additional redundant coordinate. Thus an 

(n, k) code becomes an (n + 1, k) code. In shortening, a code is 

shortened by deleting a message coordinate from the encoding 
process. Thus an (n, k) code becomes an (n – 1, k – 1) code. 

This section gives shortening technique to the class of nq
[n,k,d]  

q-Cyclic RD codes. This shortening technique to the class of 

nq
[n,k,d]  q-Cyclic RD codes enables the subsection 4.3.3, to 

study the invertible property for the class of nq
[n,k,d]  q-Cyclic 

MRD codes when n – k < k. 

 

 Let C denote an nq
[n,k,d]  q-Cyclic RD code.  

 

Let G(z) = 
n k [i]

ii 0
G z

−

=∑ be a generator polynomial of C.  

 

Let H(z) = 
k [i]

ii 0
H z

=∑  be such that z
[n]

 – z = H(z) * G(z). 

Consider the set of codewords of C for which the t < k leading 

higher-order information symbols are identical to zero. There 

are q
n(k–t)

 such codewords in C and these q
n(k–t)

 codewords in fact 
form a linear subcode of C. If the t zero information symbols are 

deleted from each of these codewords, one obtains a set of q
n(k–t)

 

vectors of length n–t. These set of q
n(k–t)

 shortened vectors forms 

an nq
[n t,k t]− −  linear code. Call it as the shortened 

nq
[n t,k t]− − q-Cyclic RD code and denote it by C(t). The 

shortened nq
[n t,k t]− −  q-Cyclic RD code C(t) has the same 

error-correcting capability as C. Also the encoding and 
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decoding for the shortened nq
[n t,k t]− −  q-Cyclic RD code C(t) 

can be accomplished by the generator polynomial G(z) and the 

parity-check polynomial H(z) in the same way as C. This is so 

because the deleted t zero information symbols do not affect the 
parity-check and syndrome computations. 

 

 The following example shortens the 52
[5,3]  2-Cyclic RD 

code by t = 1, 2 information symbols and describes encoding of 
the shortened codes. 

 

Example 4.3.2.1: Consider the 52
[5,3]  2-Cyclic RD code C 

generated by G(z) = α24
z + α3

z
2
 + α2

z
4
, where α is a root of the 

primitive polynomial x
5
 + x

2
 + 1 over GF(2). 

 
 The generator matrix G and the parity-check matrix H in 

systematic form are respectively given by 

 

G = 

22

24 7

5 20

1 0 0

0 1 0

0 0 1

 α α
 
α α 
 α α 

 

 and 

H = 
22 24 5

7 20

1 0

0 1

 α α α
 

α α α 
. 

 

 Shortening the code C by t = 1 leading zero information 

symbol, one obtains the shortened 52
[4,2] 2-Cyclic RD code 

C(1). Take (α24
, α3

, α2
, 0, 0) ∈ C. Then the shortened codeword 

(α24
, α3

, α2
, 0) (by one information symbol) is in C(1). 

 

 Similarly shortening the code C by t = 2 leading zero 

information symbols, one obtains the shortened 52
[3,1]  2-Cyclic 

RD code C(2) and the shortened codeword (α24
, α3

, α2
), 

shortened by two zero information symbols from (α24
, α3

, α2
, 0, 

0), is in C(2). 
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 Having given the shortening technique to the class on 

nq
[n,k,d]  q-Cyclic RD codes, the next subsection studies the 

invertible property enjoyed by the class of nq
[n,k,d] q-Cyclic 

MRD codes, for the cases: n – k ≥ k and n – k < k. 
 

4.3.3 Invertible Property of q-Cyclic MRD Codes 

 
 If one is able to find the k message symbols in a codeword 

of an (n, k) F-ary linear code only with the knowledge of n – k 

parity-check symbols through an inversion process, the code is 
said to be invertible. This section explores the invertible 

property for the class of nq
[n,k,d]  q-Cyclic MRD codes and 

infers some interesting results. 

 

 It is observed that, the case when n – k ≥ k, the nq
[n,k,d]  q-

Cyclic MRD codes are invertible and for the case when  

n – k < k, the shortened n0 0 q
[n t , k t ]− − q-Cyclic MRD codes 

are invertible; where 2k – n ≤ t0 < k. 
 

 The detailed discussion of invertible property for the class 

of nq
[n,k,d]  q-Cyclic MRD codes is carried out in two cases: 

Case (i): n – k ≥ k and case (ii): n – k < k.  
 

Case (i) n – k ≥≥≥≥ k 

 

 Let C denote an nq
[n,k,d]  q-Cyclic MRD code of length n, 

dimension k and minimum-rank distance d generated by  

G(z) = 
n 1 [i]

ii 0
g z

−

=∑  be a systematically encoded code 

polynomial. Then as described in subsection 4.3.1, in systematic 
encoding, the k leading high-order coefficients gn–k, gn–(k–1), …, 

gn–1 are identical to the information symbols, the n – k low-order 

coefficients g0, g1, …, gn–k–1 are the corresponding parity-check 

symbols. 
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 Let u(z) = un–1 z
[n–1]

 + un–2 z
[n–2]

 + … + un–k z
[n–k]

 be a 

message polynomial to be encoded. Divide u(z) on the right by 
G(z). 

 u(z) = q(z) * G(z) + f(z), deg (f(z)) < [n – k]   (4.14) 

 

where q(z) and f(z) are respectively the quotient and the 
remainder polynomials. 

 

 Then g(z) = u(z) – f(z) is the code polynomial 
corresponding to the message polynomial u(z). 

 

 Now one raises the question: Does there exists a one-to-one 
correspondence between the information symbols and parity-

check symbols in a codeword of the nq
[n,k,d]  q-Cyclic MRD 

code C so that one can talk about the invertible property of 

nq
[n,k,d]  q-Cyclic MRD codes for n – k ≥ k?. The following 

theorem answers this question. 

 

THEOREM 4.3.3.1: If C denotes an n
q

[ n,k ,d ]  q-Cyclic MRD 

code such that n – k ≥ k, then no two codewords of C will have 

same parity-check symbols. 

 

Proof: Consider the generator polynomial G(z) of C in the 
form: G(z) = z

[n–k]
 + Gn–k–1z

[n–k+1]
 + … + G0z

[0]
. 

 

 Let u
(1)

 (z) = 
k

(1) [n i]

i

i 1

u z
−

=

∑  and  

 

 u
(2)

 (z) = 
k

(2) [n i]

i

i 1

u z
−

=

∑   

 
be two distinct message polynomials to be encoded. 

 

 Dividing u
(1)

 (z) and u
(2)

 (z) on the right by G(z). 

 
 u

(1)
 (z) = q1 (z) * G(z) + f1(z), deg (f1 (z)) < [n–k] (4.15) 
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 and  

 
u

(2)
 (z) = q2 (z) * G(z) + f2(z),  deg (f2 (z)) < [n–k].  (4.16) 

 

The code polynomials corresponding to u
(1)

 (z) and u
(2)

 (z) 

respectively are, 
 

g1(z) = u
(1)

 (z) – f1 (z) 

 
and g2(z) = u

(2)
 (z) – f2 (z). 

 

 Suppose that f1 (z) = f2 (z). 
 

 Subtracting (4.16) from (4.15), 

 

 u
(1)

(z) – u
(2)

(z) = (q1(z) – q2(z)) * G(z) 
 

 i.e., z
[n–k]

 * (u′(1)
(z) – u′(2)

(z)) = (q1(z) – q2(z)) * G(z), 
 

 where u
(i)

 (z) = z
[n–k]

 * u′(i)
(z) for each i = 1, 2.  

  

 The above equation shows that G(z) is a right divisor of  

z
[n–k]

 * (u′(1)
(z) – u′(2)

(z)). Since z
[n–k]

 is relatively prime to G(z), 

G(z) must be a right divisor of u′(1)
(z) – u′(2)

(z). However this is 

impossible, because u′(1)
(z) ≠ u′(2)

(z) and degree of u′(1)
(z) – 

u′(2)
(z) is less than or equal to [k – 1] but the degree of G(z) is 

[n–k] which is strictly greater than [k–1], since n – k ≥ k. 
 

 Thus f1 (z) ≠ f2(z). Hence the theorem. 
 

 Since the remainder f(z) resulting from dividing u(z) by 
G(z) is unique, the Theorem 4.3.3.1 implies that there exists an 

one-to-one correspondence between a message polynomial u(z) 

and its parity-check polynomial f(z). Therefore knowing only 

the parity-check polynomial f(z), the message polynomial u(z) 
can be determined uniquely.   
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 In what follows, it is shown how to recover the message 

polynomial u(z) from its parity-check polynomial f(z). Now one 
has the equation (4.14): 

 

 u(z) = q(z) * G(z) + f(z), deg(f(z)) < [n–k]. 

 
Consider z

[k]
 * f(z) : 

 

 z
[k]

 * f(z)= z
[k]

 * (–q(z) * G(z) + u(z)) 
 

   = z
[k]

 * (–q(z) * G(z)) + z
[k]

 * u(z) 

 

   = z
[k]

 * (–q(z) * G(z)) + (u′(z) * z
[k]

) * z
[n–k]

 

 

   = z
[k]

 * (–q(z) * G(z)) + u′(z) * z
[n] 

 

   = z
[k]

 * (–q(z) * G(z)) + u′(z) * (z
[n]

–z) + u′(z) * z 
 

   = (z
[k]

 * (–q(z))) * G(z) + u′(z) * (H(z)*G(z))+ u′(z)  
 

(since G(z) is a right divisor of z
[n]

 – z). 

 

   = (z
[k]

 * (–q(z)) + u′(z) * H(z)) * G(z) + u′(z),  
 (4.17) 

 

where u′(z) = [k] [k 1]

n 1u z −

−  + [k] [k 2]

n 2u z −

−  + … + [k] [0]

n ku z− . 

 
 See that from (4.17), the message polynomial u(z) is 

nothing but z
[n–k]

 * u′(z); 
 

 i.e., u(z) = z
[n–k]

 * u′(z) 
 

   = z
[n–k]

 *( [k] [k 1]

n 1u z −

− + [k] [k 2]

n 2u z −

−  + … + [k] [0]

n ku z− ) 

 

   = [k][n k] [n 1]

n 1u z− −

− + [k][n k] [n 2]

n 2u z− −

−  + … + [k][n k] [n k]

n ku z− −

−  

 

   = [n] [n 1]

n 1u z −

− + [n] [n 2]

n 2u z −

−  + … + [n] [n k ]

n ku z −

−  
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   = un–1 z
[n–1]

 + un–2 z
[n–2]

 + … + un–kz
[n–k]

, 

 

where u′(z) is nothing but the remainder obtained when  

z
[k]

 * f(z) is divided on the right by G(z). 
 

 Thus the class of nq
[n,k,d]  q-Cyclic MRD codes for  

n – k ≥ k are invertible. 
 

 An example is given in the following which demonstrates 

the invertible property of the 52
[5,2,4]  2-Cyclic MRD code. 

 

Example 4.3.3.1 : Consider the 52
[5,2,4]  2-Cyclic MRD code 

generated by G(z) = z
8
 + α10

 z
4
 + α17

z
2
 + α13

z, where α is a root 

of the primitive polynomial x
5
 + x

2
 + 1 over GF(2). 

 

 The generator matrix G and the parity-check matrix H for 

the 52
[5,2,4]  2-Cyclic MRD code in systematic form are 

respectively given by 
 

G = 
13 17 10

2 14 9

1 0

0 1

 α α α
 

α α α 
  

and 

H = 

13 2

17 14

10 9

1 0 0

0 1 0

0 0 1

 α α
 

α α 
 α α 

. 

 

 Let u1(z) = z
16

 + αz
8
 be the message polynomial to be 

encoded. 
 

Dividing u1(z) on the right by G(z), one obtains 

 

 z
16

 + αz
8
 = (z

2
 + α12

z) * G(z) + f1(z), 

 

where f1 (z) = α14
 z

4
 + α24

 z
2
 + α25

 z. 
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Dividing z
[2]

 * f1(z) on the right by G(z), one obtains 

 

 α25
z

16
 + α3

z
8
 + α7

z
4
 = (α25

 z
2
 + α22

 z) + G(z) + 1f (z)′ ,  

 

where 1f (z)′  = z
2
 + α4

z. Then the message polynomial u1(z) is 

z
[3]

 * (z
2
 + α4

z) = z
16

 + αz
8
. 

 

 Thus the message polynomial u1(z) = z
16

 + αz
8
 is obtained 

only with the knowledge of the parity-check polynomial  

f1(z) = α14
z

4
 + α24

 z
2
 + α25

 z. 
 
 Similarly, the message polynomial u2(z) = z

8
 can be 

obtained from the parity-check polynomial  

f2(z) = α10
z

4
 + α17

z
2
 + α13

 z, as the remainder obtained by 

dividing z
[2]

 * f2(z) on the right by G(z) is 2f (z)′  = z and thus  

u2 (z) = z
[3]

 * 2f (z)′ .  

 

 The case when n–k < k, the q-Cyclic MRD codes are not 

invertible, but the class of shortened n0 0 q
[n t , k t ]− − q-Cyclic 

MRD codes, 2k–n ≤ t0 < k has the invertible property which is 
proved in what follows. 

 

Case (ii) n – k < k 

 

 The case when n – k < k, the class of nq
[n,k,d] q-Cyclic 

MRD codes are not invertible. But the codes obtained by 

shortening the nq
[n,k,d]  q-Cyclic MRD codes by removing the 

t0 leading zero information symbols are invertible, where 2k – n 

≤ t0 < k; i.e., the shortened n0 0 q
[n t , k t ]− −  q-Cyclic MRD 

codes are invertible. 

 

 Following example shows the face that an nq
[n,k,d]  q-

Cyclic MRD code with n – k < k is not invertible. 
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Example 4.3.3.2: Consider GF (3
3
) = {0, 1, a, …, 

33 2−α }, 

where α is a root of the primitive polynomial x
3
 + 2x + 1 over 

GF(3). Let C = 33
[3,2,2]  be the 3-Cyclic MRD code with the 

generator polynomial G(z) = z
3
 + α21

 z. 
 

 The generator matrix G and the parity-check matrix H for 

the 33
[3,2,2]  3-Cyclic MRD code in systematic form are 

respectively given by 
 

 G = 
8

6

1 0

0 1

 α
 
α 

 and H = [1 –α8 
–α6

]. 

 

 Let u(z) = α22
z

9
 + α7

z
3
 be a message polynomial. 

 

 Dividing u(z) on the right by G(z), one obtains 
 

 α22
z

9
 + α7

z
3
 = α22

z
3
 * G(z) + f(z), 

 

where f(z) ≡ 0, the zero polynomial. 
 

 Then dividing z
[2]

 * f (z) on the right by G(z), one obtains 

the remainder polynomial u′(z) ≡ 0 so that z
[1]

 * u′(z) ≡ 0; but 

u(z) = α22
z

9
 + α7

z
3
, which is not the zero polynomial. 

 
 Thus from the parity-check polynomial f(z), the message 

polynomial u(z) is not retrieved. This is because the parity block 

is same for the codewords (0, 0, 0) and (0, α7
, α22

).  
 

 Thus an nq
[n,k,d]  q-Cyclic MRD code for which n – k < k 

need not be invertible. 

 

 Using the shortening technique to the class of nq
[n,k,d]   

q-Cyclic MRD codes discussed in subsection 4.3.2, one can 

obtain a class of invertible shortened n0 0 q
[n t , k t ]− −  q-Cyclic 

MRD codes as follows, 2k – n ≤ t0 < k. 
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 Let C denote an nq
[n,k,d]  q-Cyclic MRD code generated 

by G(z) = 
n k [i]

ii 0
G z

−

=∑  such that n – k < k. Let H(z) = 

k [i]

ii 0
H z

=∑  be such that z
[n]

 – z = H(z) * G(z). Let t0 be such 

that 2k – n ≤ t0 < k. 
 

 Consider the shortened n0 0 q
[n t , k t ]− −  q-Cyclic MRD code 

0( )t
C  of length n – t0 and dimension k – t0. The encoding 

scheme, similar to the nq
[n,k,d]  q-Cyclic MRD code C, for the 

shortened n0 0 q
[n t , k t ]− −  q-Cyclic MRD code 

0( )t
C  is given 

below. 

 

 Let u(z) = 0 0

0 0

[( ) 1] [( ) 2] [ ]

1 2 ...
n t n t n k

n t n t n k
u z u z u z

− − − − −

− − − − −+ + +  

be a message polynomial to be encoded. Divide u(z) on the right 
by G(z): 

 

 u(z) = q(z) * G(z) + f(z), deg (f(z)) < [n – k],   (4.18) 
where q(z) and f(z) are respectively the quotient and the 

remainder polynomials. 

 

 Then g(z) = u(z) – f(z) is the code polynomial 
corresponding to the message polynomial u(z). 

 

 Now one needs to ensure that no two codewords in the 

shortened n0 0 q
[n t , k t ]− − q-Cyclic MRD code 

0( )t
C  have same 

parity block. This is proved in the following theorem. Though 
the proof is similar to the case (i), here it is given for the sake of 

completeness. 

 

THEOREM 4.3.3.2: Let C be an n
q

[ n,k ,d ] q-Cyclic MRD code 

such that n – k < k. Let 
0( )t

C  be the shortened 0 0 n
q

[ n t ,k t ]− −  

q-Cyclic MRD code, 2k – n ≤ t0 < k. Then no two codewords of 

0( )t
C  will have same parity-check symbols. 
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Proof: Consider the generator polynomial G(z) of C in the 

form: G(z) = z
[n–k]

 + 
[ 1]

1

n k

n k
G z − +

− −  + … + G0z
[0]

.  

 

 Let u
(1)

 (z) = 
0

0

k t
[n t i ](1)

i

i 1

u z
−

− −

=

∑  and  

 

 u
(2)

 (z) = 
0

0

k t
[n t i](2)

i

i 1

u z
−

− −

=

∑   

 
be two distinct message polynomials to be encoded. 

 

 Dividing u
(1)

(z) and u
(2)

(z) on the right by G(z), 
 

u
(1)

 (z) = q1 (z) * G(z) + f1(z), deg (f1 (z)) < [n–k]   [4.19] 

 
and u

(2)
 (z) = q2 (z) * G(z) + f2(z),  deg (f2 (z)) < [n–k] 

             [4.20]

  

The code polynomials corresponding to u
(1)

(z) and u
(2)

(z) 
respectively are, 

 

 g1(z) = u
(1)

(z) – f1(z) 
 

 and g2(z) = u
(2)

(z) – f2(z). 

 
 Suppose that f1(z) = f2(z). 

 

 Subtracting (4.20) from (4.19), 

 
 u

(1)
(z) – u

(2)
(z) = (q1(z) – q2(z)) * G(z) 

 

 i.e., z
[n–k]

 * (u′(1)
(z) – u′(2)

(z)) = (q1(z) – q2(z)) * G(z), 
 

 where u′(1)
, u′(2)

 are such u
(1)

(z) = z
[n–k]

 * u′(1)
(z) and  

 

u
(2)

(z) = z
[n–k]

 * u′(2)
(z).  
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 This shows that G(z) is a right divisor of  

z
[n–k]

 * (u′(1)
(z) – u′(2)

 (z)). 
 

 Since z
[n–k]

 is relatively prime to G(z), G(z) is a right divisor 

of u′(1)
(z) – u′(2)

(z). 
 

 However this is impossible, because u′(1)
(z) – u′(2)

(z) ≠ 0 and 
its degree is less than [k–t0–1] but the degree of G(z) is [n – k] 

which is strictly great than [k–t0–1]. 

 

 Thus f1 (z) ≠ f2(z). Hence the theorem. 

 
 Since the remainder f(z) resulting from dividing u(z) by 

G(z) is unique, the Theorem 4.3.3.2 implies that there exists an 

one-to-one correspondence between a message polynomial u(z) 
and its parity-check polynomial f(z). Therefore knowing only 

the parity-check polynomial f(z) alone, the message polynomial 

u(z) can be determined uniquely.   
 

 In what follows, it is shown how to recover the message 

polynomial u(z) from its parity-check polynomial f(z). Now one 

has the equation (4.18): 
 

 u(z) = q(z) * G(z) + f(z), deg(f(z)) < [n–k]. 

 
Consider z

[k]
 * f(z) : 

 

 z
[k]

 * f(z) = z
[k]

 * (–q(z) * G(z) + u(z)) 
 

   = z
[k]

 * (–q(z) * G(z)) + z
[k]

 * u(z) 

 

   = z
[k]

 * (–q(z) * G(z)) + (u′(z) * z
[k]

) * z
[n–k]

 
 

   = z
[k]

 * (–q(z) * G(z)) + u′(z) * z
[n] 

 

   = z
[k]

 * (–q(z) * G(z)) + u′(z) * (z
[n] 

–z) + u′ (z) * z 
  

= (z
[k]

 * (–q(z))) * G(z) + u′(z) * (H(z)*G(z))+ u′(z)  
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(since G(z) is a right divisor of z
[n]

 – z). 

 

 = (z
[k]

 * (–q(z)) + u′(z) * H(z)) * G(z) + u′(z),  (4.21) 

 

where u′(z) = 0

0

[k t 1][k]

n t 1u z
− −

− −  + 0

0

[k t 2][k]

n t 2u z
− −

− −  + … + [k] [0]

n ku z− . 

 

 See that from (4.21), the message polynomial u(z) is 

nothing but z
[n–k]

 * u′(z); 
 

 i.e., u(z) = z
[n–k]

 * u′(z) 
 

   = z
[n–k]

 *( 0

0

[k t 1][k]

n t 1u z
− −

− − + 0

0

[k t 2][k]

n t 2u z
− −

− −   

 + … + [k] [0]

n ku z− ) 

 

   = 0

0

[n t 1][k][n k]

n t 1u z
− −−

− − + 0

0

[n t 2][k][n k]

n t 2u z
− −−

− −   

 + … + [k][n k] [n k]

n ku z− −

−  

 

   = 0

0

[n t 1][n]

n t 1u z
− −

− − + 0

0

[n t 2][n]

n t 2u z
− −

− −  + … + [n] [n k ]

n ku z −

−  

    

= 0

0

[n t 1]

n t 1u z
− −

− − + 0

0

[n t 2]

n t 2u z
− −

− −  + … + [n k ]

n ku z −

− ,  

 

where u′(z) is nothing but the remainder obtained when  
z

[k]
 * f(z) is divided on the right by G(z). 

 
 Having carried out a comprehensive study on a 

characteristic of RD codes, namely the invertible property of the 

class of RD codes, the next section deals yet another 
characteristic enjoyed by the class of RD codes: Rank Distance 

codes having complementary duals. 

 

4.4 Rank Distance Codes With Complementary Duals 

 

 It is known that an (n, k) F-ary linear code is just a k-

dimensional subspace of the n-dimensional vector space F
n
 of n-

tuples with coordinates in the finite field F. Recall that the 

vectors u and v in F
n
 are said to be orthogonal if 〈u, v〉 = 0 and 
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that, if Γ is an (n, k) F-ary linear code, the dual code Γ⊥
 is the 

(n, n–k) F-ary linear code consisting of all vectors v ∈ F
n
 that 

are orthogonal to every vector u in Γ. The class of Linear codes 
with Complementary Duals (LCD codes) is defined by J.L. 

Massey [19] in 1992. A F-ary linear code Γ is called an LCD 

code if Γ ∩ Γ⊥
 = {0}. It is immediate that Γ is an LCD code just 

when the following occurs 

 

F
n
 = Γ ⊕ Γ⊥

 ; 
 

that is, when F
n
 is the direct sum of Γ and Γ⊥

. 
 

 The following theorem due to J.L. Massey [19] gives an 
algebraic characterization to the class of LCD codes. 

 

THEOREM 4.4.1: [19] Let Γ be an (n, k) F-ary linear code with 

generator matrix G. Then Γ is an LCD code if and only if the k 

× k matrix GG
T
 is non-singular. Further, if Γ is in LCD code, 

then ∏Γ = G
T
 (GG

T
)

–1
 G is the orthogonal projector from F

n
 

onto Γ. 

 

 Recall that the trace function tr : GF(2
n
) → GF(2) is defined 

by tr(a) =
n 1 2 j

j 0
a

−

=∑ . Let B = {b1, b2, …, bn} be an ordered basis 

of GF(2
n
) over GF(2) and 1 2 n{b , b ,..., b }  be the dual basis of B 

with respect to the trace function, i.e.,  
 

tr i j(b b )  = δij for 1 ≤ i, j ≤ n, where δij is the Kronecker’s 

symbol. Then B is called trace-orthogonal if bi = ib , 1 ≤ i ≤ n. 

The dual basis of any basis of GF (2
n
) over GF (2) is determined 

uniquely [20, Theorem 4.1.1]. It is known that a trace-

orthogonal basis of GF(2
n
) over GF(2) exists for any positive 

integer n [23]. 

 

 This section carries out a brief study on the class of 

n2
[n,k,d]  Rank Distance codes having complementary duals. 
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 Consider the generator matrix of an n2
[n,k,d]  MRD code: 

 

G =

1 2 n

[1] [1] [1]

1 2 n

[k 1] [k 1] [k 1]

1 2 n

...

...

...
− − −

α α α 
 

α α α 
 
 
α α α 

� � � �
   (4.22) 

 

where α1, α2, …, αn are linearly independent over GF(2). 
 
 Represent the generator matrix G defined as in (4.22) by  

G = 
k 1,n

2i

j i, j 0,1

−

=
 α   where α1, α2, …, αn are linearly independent 

GF(2). This book calls the matrix G = 
k 1,n

2i

j i, j 0,1

−

=
 α   with the first 

row entries α1, α2, …, αn being a trace-orthogonal basis in 
GF(2

n
) as the trace-orthogonal-generator matrix. Clearly, G 

generates an n2
[n,k,d] MRD code. 

 

 This section is divided into three subsections. The 

subsection 1 proves that the class of n2
[n,k,d] MRD codes 

generated by the trace-orthogonal-generator matrices are LCD 

codes. Description to the (noiseless and noisy) 2-user F-Adder 

Channel is given in subsection 2. The final subsection gives the 
coding for the noiseless 2-user F-Adder Channel via the class of 

n2
[n,k,d] MRD codes having complementary duals and 

describes a coding problem with the noisy 2-user F-Adder 

Channel. 
 

4.4.1 MRD Codes with Complementary Duals 

 

 It is observed that an nq
[n,k,d]  RD code, n ≤ N with  

d < n – k + 1 need not be an LCD code but it is interesting to see 

that the class of n2
[n,k,d]  MRD codes generated by the trace-

orthogonal-generator matrices are LCD codes. 
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 The following counter example shows that an nq
[n,k,d]  RD 

code, n ≤ N with d < n – k + 1 need not be an LCD code.  
 

Example 4.4.1.1: Let GF (2
3
) = {0, 1, α, α2

, α3
, α4

, α5
, α6

}, 

where α is a root of the primitive polynomial x
3
 + x + 1 over 

GF(2). 

 

 Let Γ = 32
[3,2,1] be the 2-Cyclic RD code with the generator 

matrix G corresponding to the generator polynomial  

G(Z) = z
2
 + αz is given as 

 

G = 
2

1 0

0 1

α 
 

α 
. 

 

 Clearly |GG
T
| = (0). Thus the 32

[3,2,1]  2-Cyclic RD code is 

not an LCD code. 

 

 The following theorem proves that an n2
[n,k,d]  MRD code 

generated by a trace-orthogonal-generator matrix is an LCD 

code. 

 

THEOREM 4.4.1.1: An 
2n[ n,k ,d ]  MRD code generated by  

G = 
1

2

0 1

k ,n
i

j
i , j ,

−

=
  α  with {α1, α2, …, αn} being a trace-orthogonal 

basis in GF(2
n
) is an LCD code. 

 

 Let Γ denote an n2
[n,k,d] MRD code generated by 

 

G = 

1 2 n

[1] [1] [1]

1 2 n

[k 1] [k 1] [k 1]

1 2 n

...

...

...
− − −

α α α 
 

α α α 
 
 
α α α 

� � � �
, 

 

where {α1, α2, …, αn} is a trace-orthogonal basis in GF(2
n
). 
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 In order to prove that Γ is an LCD code, one has to prove 

that the k × k matrix GG
T
 is non-singular. 

 

 Since {α1, α2, …, αn} is a trace-orthogonal basis in GF(2
n
), 

the k row vectors 2i 2i 2i

1 2 n( , ,..., )α α α , i = 0, 1, …, k–1 are 

orthonormal vectors. It follows that GG
T
 = I, where  

I denotes the identity matrix. Thus, GG
T
 is non-singular. 

Therefore, Γ is an LCD code. 

 

 Further, the orthogonal projector ∏Γ from [GF(2
n
)]

n
 onto Γ 

defined by r∏Γ = rG
T
(GG

T
)

-1
G for each r ∈ [GF(2

n
)]

n
 exists. 

 

 In the above theorem, it is proved that the class of n2
[n,k,d]  

MRD codes generated by the generator matrices of the form  

G = 
i k 1,n

2

j
i, j 0,1

−

=

 α   with {α1, α2, …, αn} being a trace-orthogonal 

basis in GF(2
n
) are LCD codes. But there exists Nq

[n,k,d]  MRD 

codes, n ≤ N generated by generator matrices of the form G = 
i k 1,n

q

j
i, j 0,1

−

=

 α   with the first row entries α1, α2, …, αn are linearly 

independent over GF(q) are LCD codes. This is evident from 
the following example. 

 

 

Example 4.4.1.2: Let Γ = 43
[3,1,3]  be the MRD code with the 

generator matrix G :  
 

G = [α4
 α65

 1], 

where α is a root of the primitive polynomial x
4
 + x + 2 over 

GF(3). Clearly |GG
T
| ≠ (0). 

 

 The class of n2
[n,k,d] MRD codes having complementary 

duals is effective at coding over the noiseless 2-user F-Adder 

Channel, which can be seen in the next subsection. 
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4.4.2 The 2-user F-Adder Channel 

 
 Given a finite field F, the F-Adder Channel is described as 

the channel whose inputs are elements of F and the output is the 

sum (over F) of the inputs [25]. This section describes 2-user F-

Adder Channel as the F-Adder Channel shared by 2 users. 
Following are the descriptions to the 2-user F-Adder Channel, 

for both the noiseless and noisy cases. 

 

Case (i) Noiseless 2-user F-Adder Channel 

 

 A pictorial representation of the noiseless 2-user F-Adder 
Channel is depicted in the following figure. In this noiseless 

communication channel, the two users of the 2-user F-Adder 

Channel transmit two n-tuples, say γ1 and γ2 respectively from 

the F-ary linear codes Γ1 and Γ2. Then the received vector, say r 

is the componentwise sum γ1 + γ2 over the finite field F. 
 

 

 

 

 

 

 

Noiseless 2-user F-Adder Channel 

 

 

In this noiseless channel, the problem for the receiver is to 

decode the received vector r = γ1 + γ2 into the codewords γ1 and 

γ2 originally transmitted. The next subsection provides a 

solution to this problem through the class of n2
[n,k,d] MRD 

codes having complementary duals. 

 
 

+ 
r = γ1 + γ2 

γ1 

γ2 
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Case (ii) Noisy 2-user F-Adder Channel 

 

 Consider the pictorial representation of the noisy 2-user F-

Adder Channel depicted in the following figure in which the 

two users are attempting to transmit two 
 

 

 

 

 

Noisy 2-user F-Adder Channel 

 

codewords, say γ1 and γ2 respectively from the F-ary linear 

codes Γ1 and Γ2. Then, in this noisy channel, the received 

vector, say r′ is the componentwise sum γ1 + γ2 + e over F, 
where e is an error-vector. The problem for the receiver is to 

decode the received vector r′ = γ1 + γ2 + e into the transmitted 

codewords γ1 and γ2. 
 

4.4.3 Coding for the 2-user F-Adder Channel 

 

 As described in the previous subsection, the 2-user F-Adder 

Channel is a F-Adder Channel shared by 2 users. This 

subsection describes how the class of n2
[n,k,d] MRD codes 

having complementary duals can be effectively used over the 

noiseless 2-user GF(2
n
) - Adder Channel. For the case when the 

2-user F-Adder Channel is noisy, the coding problem is 
described. It is observed that the class of LCD codes is not 

suitable for coding over the noisy 2-user F-Adder Channel. 

 

+
r′ = γ1 + γ2 + e 

γ1 

γ2 
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Case (i) Noiseless 2-user F-Adder Channel 

 
 Consider the pictorial representation of the noiseless 2-user 

F-Adder Channel given in figure for F = GF (2
n
). Let Γ be an 

n2
[n,k]  MRD code generated by a trace-orthogonal-generator 

matrix and Γ⊥
 = n2

[n,n k]−  denote its dual code. Assume that 

the two users of the noiseless 2-user GF(2
n
)-Adder Channel 

transmit the codewords γ and β from Γ and Γ⊥
 respectively. 

Then, in this noiseless 2-user GF(2
n
) - Adder Channel, the 

received vector r is the componentwise sum γ + β over GF(2
n
). 

 

 Since Γ is an LCD code, the orthogonal projector  

∏Γ = GT (GG
T
)

–1
 G defined from [GF(2

n
)]

n
 onto Γ exists. To 

receive the codewords γ and β, the receiver simply applies the 

orthogonal projector ∏Γ on r which gives r∏Γ = γ. The 

codeword β is then obtained by subtracting γ from r = γ + β. 

Thus the codewords γ and β transmitted are retrieved from the 
received vector r successfully. 

 
 The following example describes the coding for the 

noiseless 2-user GF(3
4
)-Adder Channel via 43

[3,1,3]  MRD code. 

 

Example 4.4.3.1: Let Γ = 43
[3,1,3]  be the 3-Cyclic MRD code 

with the generator matrix G and parity-check matrix H.  

 

G = [α4
 α65

 1] and H =
2

3 6

1

1

 α α
 

α α 
, 

 

where α is a root of the primitive polynomial x
4
 + x + 2 over 

GF(3). Note that the generator matrix for the dual code Γ⊥
 is H. 

 

 Since Γ being an LCD code, the orthogonal projector ∏Γ 

defined from [GF (3
4
)]

4
 onto Γ is given by  
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∏Γ = 

41 22 37

22 3 18

37 18 33

 α α α
 
α α α 
 α α α 

. 

 

 Suppose the codewords γ1 = (1, α61
, α76

) and  

γ2 = (α2
, α5

, α8
) from Γ and Γ⊥

 respectively be transmitted over 

the noiseless 2-user GF (3
4
)-Adder Channel. Then r = γ1 + γ2 = 

(α24
, α78

, α35
) is the received vector. 

 

 Applying the orthogonal projector ∏Γ on r: 
 

 γ1 = (α24
, α78

, α35
) ∏Γ = (1, α61

, α76
). 

 

 Then γ2 = r – (1, α61
, α76

) = (α2
, α5

, α8
). Hence the 

codewords γ1 = (1, α61
, α76

) and γ2 = (α2
, α5

, α8
) are retrieved 

from r = (α24
, α78

, α35
). 

 

Case (ii) Noisy 2-user F-Adder Channel 

 
 Consider the pictorial representation of the noisy 2-user F-

Adder Channel depicted in figure.  

 

In this noisy channel, the received vector r′ may not always 

be the sum of the transmitted codewords γ1 and γ2, but may be a 

sum of the transmitted codewords along errors, i.e., r′ = γ1 + γ2 + 

e, where e is an error-vector. Let r[e; q] ≤ 
d 1

2

− 
  

 with d being 

a positive integer. 

 
 The problem here for the decoder is to employ an error-

correcting decoding scheme to decode the received vector r′. If 
one employs the coding scheme described for the noiseless case 

s/he would not recover the transmitted codewords γ1 and γ2 from 

the erroneously received vector r′. Suppose Γ is an LCD code 

such that γ1 ∈ Γ, γ2 ∈ Γ⊥
, then γ1 + γ2 ∈ F

n
 = Γ ⊕ Γ⊥

 so that 
error correction is not possible in the erroneously received 
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vector r′ = γ1 + γ2 + e. Consider a situation wherein γ1 + γ2 is a 
codeword of an (n, k, d) F-ary linear code with the parity-check 

matrix H. Then employing the associated error-correcting 

decoding technique and using the syndrome r′HT
, one can 

decode the received vector r′ into γ1 and γ2.  
 

If this is the situation, one can correct upto 
d 1

2

− 
  

 errors in 

the erroneously received vector r′. So, the prime motivation is to 
construct multiuser error-correcting codes that can be employed 

over the noisy 2-user F-Adder Channel effectively.  
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Chapter Five 
 
 

 
 
EFFECTIVE ERASURE CODES FOR 
RELIABLE COMPUTER COMMUNICATION 
PROTOCOLS USING CODES OVER 

ARBITRARY INTEGER RINGS 
 
 
 
Linear algebraic codes can be defined using symbols chosen 
from a set of arbitrary size. However, most of the results of 

coding theory have been derived assuming that the code 

symbols are elements of a finite field especially the finite field 
Z2 = {0, 1}. Recently linear codes over integer rings have raised 

a great interest for their role in algebraic coding theory and their 

successful applications in combined coding and modulation. [2, 
3] has constructed cyclic codes over Zm (the ring of integers 

modulo m) where m is an interger of the form p1, p2, …, pk 

where pi’s are distinct primes, from cyclic codes over 
ipZ . In 

his later paper, Blake derived parity check matrices for codes 

over Zm analogous to Hamming codes and Reed-Solomon 
codes. Calderbank and Sloane [4], Priti Shanker [23], J.C. 

Interlando et al [13] extended the notion of cyclic codes, Reed-

Solomon codes and BCH codes over GF(q) to class of codes 
over finite rings Zq, with q a power of a prime. Most studies in 
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algebraic coding theory deal with Hamming metric. Since the 

Hamming metric is not always well matched to the 
characteristics of the real channels EM. Gabidulin [9] 

introduced a new metric, called the rank metric, and he called 

the codes equipped with this metric as rank distance codes. 

 
 In this chapter we study the codes with rank metric over the 

ring of integers modulo 2m, where 2m = 2p1, p2, …, pt, where 

pi’s are distinct primes. These codes are proved to be better than 
the codes with Hamming metric as they can cater to the 

complex and unpredictable situations in the communicating 

channels. Further, they are found to have a better error 
correcting capability. 

 

 This chapter is divided into two sections. In the first section 

we define a new class of codes, called the integer rank distance 
codes using the ring of integers modulo 2m. In the second 

section we define the Maximum Integer Rank Distance codes 

(MIRD codes) using the main result - Singleton - style bound 
for integer rank distance codes. Further we give the method of 

coding and decoding algorithm for this new class of MIRD 

codes without which the construction will not be complete. 
 

5.1. Integer Rank Distance Code 
 
 As said earlier Z2m is the ring of integers modulo 2m where 

2m = 2p1 p2… pt, where pi’s are distinct primes. Let Z2m [x] be 

the ring of polynomials in the indeterminate x. Let p(x) ∈ 
Z2m[x] be an irreducible polynomial of degree n over Z2m. Let V 

be Z2m[x] / 〈p (x)〉, where 〈p(x)〉 denotes the ideal generated by p 
(x). Clearly V is a module of dimension n over Z2m. Any 

element x ∈ V can be represented by x = (x1, x2, …, xn) where xi 

∈ Z2m i.e., a polynomial is regarded as a n-tuple. The elements 
of Z2m can be treated as polynomials in 2 over Z2. Hence an 

element x1 ∈ Z2m has representation as a N0-tuple 

( )
0i1i 2i Nx ,x ,..., x , xij ∈ Z2. Hence, with each x ∈ V we have an 

associated matrix, 
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m(x) = 

0 0 0

11 12 1n

21 22 2n

N 1 N 2 N n

x x ... x

x x ... x

x x ... x

 
 
 
 
  
 

� � �
 

 
where the i-th column represents the i-th coordinate ‘xi’ of ‘x’ 

over Z2. 

 

DEFINITION 5.1.1:  Rank of an element x ∈ V is defined as the 

rank of the matrix m(x) over Z2. 

 

 Let n(x) denote the rank of the m(x). Then it is clear that the 

function x → r1(x) is a norm on V. We call this as the integer 

rank norm and denote this by r1(x). The metric induced by the 

integer rank norm is defined as the integer rank metric on V.  

 If x, y ∈ V, then the integer rank distance between x and y is  

d1(x, y) = r1 (x + y). 

 

 We illustrate this by an example. 
 

Example 5.1.1: Let V = Z6[x] / 〈x3
 + 1〉. Then, V is a module 

over Z6 and the elements of Z6 can be treated as polynomials in 

2 over Z2. Let x = (3, 5, 2) ∈ V.  
 

Then, m(x) = 

0 1 0

1 0 1

1 1 0

 
 
 
 
 

 over Z2.  

 

Clearly rank of m(x) is 3. 

 
DEFINITION 5.1.2: The module equipped with this integer rank 

metric, for convenience we call it as the integer rank distance 

space. 

 
DEFINITION 5.1.3: A linear (n, k) integer rank distance code is 

a linear submodule of dimension k in the integer rank distance 

space V. 
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 By C(n, k), we denote a linear (n, k) integer rank distance 

code. Let d = min {d1 (x, y) : x, y ∈ C(n, k)}. This d is called the 

minimum integer rank distance of the integer rank distance 

code C(n, k). Now C(n, k) is a linear (n, k, d) integer rank 

distance code. 

 

DEFINITION 5.1.4: A generator matrix G of a linear (n, k) 

integer rank distance code C(n, k) is a k × n matrix over Z2m 

whose rows form a basis for C(n, k). We can reduce the 

generator matrix G to the form G = [Ik, Ak, n–k] where Ik is the k 

× k identity matrix and Ak, n–k is some k × (n–k) matrix over Z2m. 

 

DEFINITION 5.1.5: If G is a generator matrix of a linear (n, k) 

integer rank distance code C[n, k], then a matrix H of order  

(n – k) × n over Z2m such that GH
T
 = {0} is called a parity check 

matrix of C[n, k].  

 

H can be reduced to the form H = 
T

(n k) k n kA ,I− × −
 −  . 

 

 We define a linear (n, k) integer rank distance code as : 

 
1. The linear submodule generated by the rows of the 

generator matrix (or) 

2. the solution space of the parity check matrix. 
 

Note: The usual Hamming distance between any two vectors, x, 

y ∈ V, which is the number of places in which x and y differ 

also induces a norm on each vector x ∈ V, called the Hamming 
norm, which is denoted throughout this paper as rH(x). 

 

5.2. Maximum Integer Rank Distance Codes 
 

 In this section we mainly arrive at a singleton - style bound 

for integer rank distance codes, using which we define 
Maximum Integer Rank Distance codes, which we refer by 

MIRD codes here after. To achieve this we essentially make use 

of the following lemma. Further, we give a characterization 
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theorem for finding the maximum integer rank distance of a 

integer rank distance code. 
 

Lemma 5.2.1: Let n1 and n2 be any two norms defined on V 

with n1(x) ≤ n2(x), for all x ∈ V. Let V1(n, d) and V2(n, d) be the 
volumes of codes with maximum distance d with norms n1 and 

n2, respectively. Then, V1(n, d) ≤ V2(n, d). 
 

Proof : Since n1(x) ≤ n2(x), for all x ∈ V, any y ∈ V1(n, d) will 
also be in V2 (n, d). 
 

 Hence V1(n, d) ≤ V2(n, d). 
 

THEOREM 5.2.1: (Singleton-style bound for integer rank 

distance codes) Any linear (n, k, d) integer rank distance code 

satisfies the inequality d ≤ n – k + 1. 

 

Proof : Choosing n1 = r1(x) and n2 = rH(x), we have r1(x) ≤  
rH(x), we have by Lemma 5.2.1 and the singleton bound for 

codes over integer rings with Hamming metric, d ≤ n–k+1. 
 

DEFINITION 5.2.1: Codes which attain equality in the singleton-

style bound are called Maximum Integer Rank Distance codes 

(MIRD codes). 

 

 The following theorem is used to find the minimum integer 
rank distance of the linear (n, k) integer rank distance code. 

  

THEOREM 5.2.2: Let C be a linear (n, k) integer rank distance 

code with generator matrix G and parity check matrix H. Then, 

C has rank distance d if and only if for any (d – 1) × n matrix M 

of rank d–1 with elements from Z2,   

 

  r(MH
T
; Z2m) = d – 1    (5.2.1) 

 

and then there exists a d × n matrix M1 of rank d with elements 

from Z2 for which 

 

  r(M1 H
T
; Z2m) < d    (5.2.2) 
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Proof : Let x = (x1, x2, …, xn) be any vector in V such that  

r1(x) ≤ d. Then, there exists a matrix M1 such that x = zM1, 

where z = (z1, z2, …, zd), zi ∈ Z
2m

, i = 1, 2, …, d and M1 is a  

d × n matrix of rank d with elements from Z2. Assume that code 
C contains a codeword x with rank d. Then, xH

T
 = (0), which 

implies zM1H
T
 = (0). Consequently, r(M1H

T
; Z2m) < d. Since the 

codes has minimum distance d for any (d – 1) × n matrix N of 
rank d – 1 with elements from Z2, the equation 

 

  (z1, z2, …, zd-1) MH
T
 = (0)  (5.2.3) 

 
should have only a trivial solution i.e.,  

 

  r(MH
T
; Z2m) < d. 

 

Sufficient part is direct from the definition. 

 
THEOREM 5.2.3: A code C is a linear MIRD (n, k) code if and 

only if for any (n–k) × n matrix M of rank n – k with elements 

from Z2; 

   r(MH
T
; Z2m) = n–k   (5.2.4) 

 

Proof: From theorem 5.2.1 we get d ≤ n – k +1. By theorem 

5.2.1, n – k + 1 ≥ d. Therefore, d = n – k + 1. 
 

 We define a class of MIRD codes of length n ≤ N0. These 

codes are analogous to the generalized Reed-Solomon codes 
over integer rings. 

 

 We introduce the notation [i] = 2
i
; i = 0, ± 1, ± 2, …  

 

 Assume that hi ∈ Z2m, i = 1, 2, …, n and assume that these 
elements are linearly independent over Z2. Given the designed 
distance d < n, we generate the matrix 
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 H = 

1 2 n

[1] [1] [1]

1 2 n

[d 2] [d 2] [d 2]

1 2 n

h h ... h

h h ... h

h h ... h
− − −

 
 
 
 
 
 

� � � �
   (5.2.5) 

 

THEOREM 5.2.4: The linear (n, k) integer rank distance code C 

with parity check matrix H is a MIRD code of length n and 

minimum integer rank distance d. 

 

Proof: By theorem 5.2.3 it is sufficient to show that for any  

(d–1) × n matrix M of rank d–1 with elements from Z2, we have 
r(HM

T
 ; Z2m) = d – 1. The square matrix HM

T
 has the form, 

 

 HM
T
 = 

1 2 n

[1] [1] [1]

1 2 n

[d 2] [d 2] [d 2]

1 2 n

f f ... f

f f ... f

f f ... f
− − −

 
 
 
 
 
 

� � � �
   (5.2.6) 

 

where (f1, f2, …, fd-1) = (h1, h2, …, hd-1) M
T
. The elements f1, …, 

fd–1 ∈ Z2m are linearly independent over Z2, since otherwise, h1, 

h2, …, hd–1 would also be linearly dependent, in contradiction to 
our assumption. Clearly, HM

T
 being a Vander Monde matrix is 

non singular, i.e., r(HM
T
 ; Z2m) = d – 1. 

 
THEOREM 5.2.5: Let C be the code with parity check matrix H. 

Then, generating matrix G has the form, 

 

 G = 

1 2

[1] [1] [1]

1 2

[ 2] [ 2] [ 2]

1 2

...

...

...

n

n

k k k

n

g g g

g g g

g g g− − −

 
 
 
 
 
 

� � � �
   (5.2.7) 

 

where k = n – d + 1 and the elements g1, g2, …, gn are linearly 

independent over Z2. 
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Proof: From theorem 5.2.4 with d = n–1, there exist elements f1, 

f2, …, fn ∈ Z2m which are linearly independent over Z2 and 
satisfy 

 

 
n

[s]

1 i

i 0

f h
=

∑ , s = 0, 1, …, n–2.      (5.2.8) 

 

Since f1, f2, …, fn are linearly independent over Z2, 
[ k 1] [ k 1] [ k 1]

1 2 nf ,f ,..., f− + − + − +  are also linearly independent over Z2. We 

take g1 = [ k 1]

1f
− + , g2 = [ k 1]

2f − + , …, gn = [ k 1]

nf − +  to be the first row 

of the matrix (5.2.7). 
 

 As polynomials with coefficients from Z2m play an 

important role in the theory of maximum distance separable 
codes over Z2m the linearized polynomials play similar role in 

the theory of maximum rank distance codes over GF(2
N
) [29, 

32]. In a analogous way we can use linearized polynomial with 
coefficients from Z2m to study MIRD codes over Z2m. 

 

 A linearized polynomial is one of the form F (z) = 
n

[1]

1

i 0

f z
=

∑ , 

[i] = 2
i
, where fi ∈ Z2m. We define the sums of the polynomials 

as 

 

 F(z) + G(z)  = 
n

[1]

1

i 0

f z
=

∑  + 
n

[1]

1

i 0

g z
=

∑  

    = 
[i ]

2m i i

i 0

R (f g )z
=

+∑  

 

where R2m (fi + gi) is the least nonnegative integer when fi + gi is 
divided by the integer 2m. The multiplication product is the 

symbolic product F * G = F (G(z)). This multiplication 

operation is non-commutative. The set of all linearized 
polynomials with coefficients from Z2m form a non-

commutative ring with identity element f0 (z) = z. 
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 Generalized Inversionless Euclidean algorithm for division 

(whether left or right) of one polynomial by another exists in 
this ring. Here we consider right division. 

 

 Let F0(z) and F1(z) be two linearlized polynomials with  

degF1(z) < degF0(z). Then by generalized Euclidean algorithm 
we get a sequential chain of equalities 

 

 F0(z)  = G1(z) * F1(z) + F2(z), degF2(z) < degF1(z) 
  F1(z)  = G2(z) * F2(z) + F3(z), degF3(z) < degF2(z) 

 �     �     �       (5.2.9) 

Fs-1(z)  = Gs(z) * Fs(z) + Fs+1(z), degFs+1(z) < degFs(z) 
 Fs(z)  = Gs+1(z) * Fs+1(z) 

 

 The last non zero remainder Fs+1(z) in this chain is the right 

symbolic LCD of polynomials F0(z) and F1(z). If we introduce 
polynomials Ui(z), Ai(z), Vi(z) and Bi(z), defined recursively for 

i ≥ 1, by 
 

 Ui (z) = Ui–1(z) * Gi(z) + Ui–2(z), U0(z) = z, U–1(z) = 0 

 Ai(z) = Gi(z) * Ai–1(z) + Ai–1(z), A0(z) = z, A–1(z) = 0 
 Vi(z) = Vi–1(z) * Gi(z) + Vi–1(z), V0(z) = z, V–1(z) = z  

             (5.2.10) 

 Bi(z) = Bi–1(z) * Gi(z) + Bi–2(z), B0(z) = z, B–1(z) = z 
then, 

 

 F0(z) = Ui(z) * Fi(z) + Ui–1(z) * Fi+1(z)   (5.2.11) 
 F1(z) = Vi(z) * Fi(z) + Vi–1(z) * Fi+1(z). 

 

In addition, 

 
 Fi(z) = (–1)

i
 (Bi–1(z) * F0(z) – Ai–1(z) * Fi(z)).  (5.2.12) 

  

 Consider the factor ring 
0NR which is the ring of the 

linearlized polynomials over Z2m modulo 
[ ]0N

z  – z. The 
elements of this factor ring are also linearlized polynomials of 

degree ≤ [N0] – 1. 
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 Let F(z) = 
0N 1

[i]

1

i 0

f z
−

=

∑ ∈ 
0NR . Raising the polynomial to the 

power 2 we get F
[1]

(z) = 0

0 0

[N 1][1] [0] [1] [1] [1]

N 1 0 N 2f z f z ... f z
−

− −+ + +  which 

is equivalent to raising all its coefficients to the power 2 and 

then performing a cyclical shift. This operation will be called as 

a 2-cyclical shift. 
 

 The ideals in 
0NR  are principal ideals and are generated by 

polynomials G(z) that are right divisors of 0[N ]
z  – z i.e., the 

polynomial G(z) is such that 0[N ]
z  – z = H(z) * G(z). The ideal 

{G(z)} is invariant under 2-cyclical shift. 
 

 The codes with generator matrix of the form (5.2.7) can be 

described in terms of the linearlized polynomials. Assume that 
g1, g2, …, gn are specified elements that are linearly independent 

over Z2. Then all vectors of the form  

g = (F(g1), F(g2), …, F(gn)), where F(z) extends over all 
linearlized polynomials of degree less than or equal to [k–1] = 

2
k–1

 with coefficients from Z2m are codewords. 

 

 Code C is called 2-cyclical if a 2-cyclical shift of any 

codeword is also a codeword i.e., if (g0, g1, …, gn–1) ∈ C then its 

2-cyclic shift [1] [1] [1]

n 1 0 n 2
g ,g ,...,g− −  ∈ C. This is analogous to the 

usual cyclic codes over the integer ring.  

 

Let us consider, for simplicity, codes with length n = No. 
 

 Assume that G(z) = 
r

[i]

i

i 0

G z
=

∑  is a right zero divisor of 

0[N ]
z – z. Then, its 2-cyclical code consists of all polynomials of 

the form c(z) * G(z), where c(z) is an arbitrary linearlized 

polynomial of degree ≤ (N0 – r – 1). The dimension of the code 
is k = N0 – r. Its generator matrix has the form 
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G = 

0 1 r

[1] [1] [1]

0 r 1 r

[k 1] [k 1] [k 1] [k 1]

0 1 2 r

G G ... G 0 0 ... 0

0 G ... G G 0 ... 0

0 0 ... G G G ... G

−

− − − −

 
 
 
 
 
 

� � � � � �

 
 (5.2.13) 

 

If 0[N ]
z  – z = G(z) * H(z), where G(z) is the generator 

polynomial then H(z) can be taken as the corresponding check 

polynomial. 

 
We note that an element in V is a code vector if and only if 

the corresponding linearlized polynomial can be divided without 

remainder by the generating polynomial G(z). 
 

In otherwords, an element g is a code vector if and only if 

the corresponding polynomial g(z) is such that  

 

g(z) * H(z) ≡ 0 mod ( 0[N ]
z  – z). 

 

If H(z) = 
k

[i]

i

i 0

H z
=

∑  is a check polynomial, then the check 

matrix has the form  

 

 H = 

0

[1] [k]

k k 1 0

[1] [k] [k 1]

k 1 0

[N 1][r 1] [r ]

k k 1 0

H H ... H 0 0 ... 0

0 H ... H H 0 ... 0

0 0 ... 0 H H ... H

−

−

−−

−

 
 
 
 
  
 

� � � � � �
 

            (5.2.14) 

 

= 

0 1 k

[1] [1] [1]

0 k 1 k

[r 1] [r 1] [r 1] [r 1]

0 1 2 k

h h ... h 0 0 ... 0

0 h ... h h 0 ... 0

0 0 ... h h h ... h

−

− − − −

 
 
 
 
 
 

� � � � � �
 

where [k 1]

i k i
H h−

−= . 
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 Now we proceed onto give the coding and decoding 

techniques of MIRD codes. 
 

 As in the case of cyclic codes over the integer ring, 

systematic coding can be effected either by means of a check 

polynomial or by means of a generating polynomial. 
 

 If H(z) = 
k

[i]

i

i 0

H z
=

∑  is a check polynomial, then each  

 

g(z) = 
0N 1

[i]

i

i 0

g z
−

=

∑  satisfies g(z) * H(z) = 0, which gives 

 

 0

0

k
[N i j 1]

N i j 1 j

j 0

g H
− − +

− − +
=

∑  = 0, i = 0, 1, …, N0 – 1. (5.2.15) 

 

 If we assume that 
0 0N 1 N k

g ,...,g− −  are information symbols 

then we can determine the check symbols 
0N k 1 0

g ,...,g− − . 

 

 Assume that we are given the generating polynomial  

 

G(z) = 
0N 1

[i]

i

i 0

G z
−

=

∑ . We divide the polynomial  

 

G0(z) = 0 0

0 0

N 1 N k

N 1 N k
g z ... g z

− −

− −+ +  on the right by G(z) to get 

G0(z) = Q(z) * G(z) + R(z), deg. R(z) < [N0 – k]  (5.2.16)  
 

The coefficients 
0N 1

g −  for degrees [N0 – i], i = 1, …, N0 of 

the remainder are the check symbols. 

 
 MIRD codes with check matrix (5.2.5) can be decoded 

using an algorithm that is similar to the algorithm for maximum 

rank codes over fields [32] with appropriate modifications due 
to the presence of zero divisors. Let g = (g1, g2, …, gn) be the 

code vector. e = (e1, e2, …, en) be the error vector and y = g + e 

be the received vector. We first calculate the syndrome 
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 s = (s0, s1, …, sd–2) = yH
T
 = eH

T
.     (5.2.17) 

 
The decoders problem is to determine the error vector e on the 

basis of the known syndrome vector s. Assume that the rank 

norm of the error vector is m. Thus we have 

 
 e = EN = (E0, E1, …, Em)N     (5.2.18) 

 

where E0, E1, …, Em are linearly independent over Z2 and  

N = (Nij) is a m × n matrix of rank m with elements from Z2. 
Thus (5.2.17) can be written as 

 

 s = ENH
T
 = EX        (5.2.19) 

 
where the matrix X = NH

T
 has the form, 

 

 X = 

[1] [d 2]

1 1 1

[1] [d 2]

2 2 2

[1] [d 2]

m m m

x x ... x

x x ... x

x x ... x

−

−

−

 
 
 
 
 
  

� � � �
 

 

where xp = 
n

pj j

j 1

N h
=

∑ , p = 1, 2, …, m    (5.2.20) 

are linearly independent over Z2. (5.2.19) is equivalent to the 

system of equations in the unknowns E0, E1, …, Em, x1, x2, …, 
xm. 

 

  
m

[p]

i i

i 1

E x
=

∑  = sp, p = 1, 2, …, d–2.   (5.2.21) 

 

 Assuming that the solution of this system has been found, 
we can determine the matrix N and the error vector e from 

(5.2.20) and (5.2.18). For m ≤ (d – 1) / 2 all the solutions lead to 
the error vector e. Thus, the decoding problem reduces to the 

solution of system (5.2.20) for the smallest possible value of m. 

The solution to the system (5.2.21) is unique if and only if all 
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the error magnitudes E0, E1, …, Em are units analogous to the 

case of the maximum distance codes over the integer rings [32]. 
 

 We introduce the polynomial s(z) = 
d 2

[ j]

j

j 0

s z
−

=

∑ , corresponding 

to the syndrome s. Assume that Λ(z) = 
m

[p]

p

p 0

z
=

Λ∑ , Λm = 1, 

denotes a polynomial whose roots are all possible linear 

combinations of E0, E1, …, Em with coefficients from Z2. Let  

F(z) = 
m 1

[i]

i

i 0

Fz
−

=

∑ , where Fi = 
i

[p]

p i p

p 0

s −
=

Λ∑ , i = 0, 1, …, m–1.  

 

We have the equality  

 

 F(z) = Λ (z) * s (z) mod z
[d–1]

    (5.2.22) 
 

Indeed, 

Λ (z) * s (z) = 
m

[p]

p

p 0

(s(z))
=

Λ∑  

 

= 
m d 1

[i] [p]

p j

i 0 p j i

z s
+ −

= + −

Λ∑ ∑ . 

 

But for m ≤ i ≤ d – 2, we have  
m

[p] [p]

p j p i p

p j i p 0

s s −
+ − =

Λ = Λ∑ ∑  

 

= 

[p]
m m

[ j p]

p j j

p 0 j 1

E x
−

= =

 
Λ  

 
∑ ∑  

 

= ( )
m

[i]

j j

j 1

x E 0
=

Λ =∑ , 

 

since Λ (Ej) = 0, j = 1, 2, …, m. 



 125

 If the coefficients of polynomial F(z) are known, then the 

coefficients of polynomial Λ (z). 
 

 Λ0  = 
j

j

F

s
 

  Λp  = 

p 1
[i]

j p i p j i

i 0

[p]

j

F s

s

−

+ − −
=

− Λ∑
, p = 1, 2, …   (5.2.23) 

 

where for j + p ≥ m we set Fj+p = 0. 
 

 Now we assume that E0, E1, …, Em as well as the 

coefficients of Λ(z), are known. We consider the following 
truncated system in the unknows: 

 

 
m

[p]

j j

j 1

E x
=

∑  = sp, p = 1, 2, …, m–1.    (5.2.24) 

 

 We will solve (5.2.23) using the method of successive 

elimination of variables. We set Aij = Ej, Q1p = sp; we multiply 
the (p+1)-th equation of the system by A11, we extract the root 

of degree 2, and we subtract the p-th equation. As a result we 

obtain a system that does not contain x1 :  

 

 
p

[p]

1j j

j 1

A x
=

∑  = Q1p, p = 0, 1, 2, …, m–2   (5.2.25) 

 
where 

 A1j = A1j = 

[ 1]

1j

11

A

A

−
 
 
 

 A11, j = 2, …, m.    

 

 Q1p = A1p – 

[ 1]

1p 1

11

Q

A

−

+ 
 
 

 A11, p = 0, 1, …, m – 2. (5.2.26) 
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 Repeating this process m – 1 times, and retaining the first 

equations obtained from the systems at each step, we arrive at a 
system of linear equations with a upper triangular coefficient 

matrix: 

 

 
m

1j j

j 1

A x
=

∑  = Qi0, p = 0, 1, 2, …, m.   (5.2.27) 

 
where 

 

 A1j  = Ej, j = 1, 2, …, m 
 

 A1j = 
[ 1]

(i 1) j

(i 1) j

(i 1)(i 1)

0 if j i

A
A

A

−

−

−

− −

<


 
−    

  

A(i–1)(i–1) if j ≥ i; i = 2, 3, …, m

   

(5.2.28) 
 

 Q1p = sp, p = 0, 1 , …, m – 1 

 

 Q1j = Q(i–1)p 

[ 1]

( 1)( 1)

( 1)( 1)

i p

i i

Q

Q

−

− +

− −

 
  
 

 A(i–1)(i–1) p = 0, 1, …, m – i;  

 

i = 2, …, m         (5.2.29) 

 

The solution of (5.2.25) can be found by back substitution i.e., 
 

 xm = m0

mm

Q

A
 

 xm–i = 

m

(m i)i (m i) j j

j m i 1

(m i)(m i)

Q A x

A

− −
= − +

− −

− ∑
, i = 1, 2, …, m – 1. (5.2.30) 

 

We now state the above in the form of a decoding algorithm. 
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Step 1: We calculate the syndrome s = (s0, s1, …, sd–2) and the 

corresponding polynomial s (z) = 
d 2

[ j]

j

j 0

s z
−

=

∑ . 

 
Step 2: We set F0(z) = z

[d–1]
, F1(z) = s(z) and employ 

generalized Euclidean algorithm until we reach a F1+1(z) such 

that deg F1(z) ≥ 2
(d–1)/2

 , deg F1+1(z) < 2
(d–1)/2

. Then  
 

 ∆(z)  = γ Am(z)  

 

 F(z)  = γ (–1)
m
 Fm+1(z)    (5.2.31) 

 

where, γ is chosen such that the coefficient of Λ m is equal to 1. 
 

 Polynomial Λ(z) can be determined either on the basis of 
the first formula in (5.2.22), if polynomials Ai(z), i = 1, 2, …, 

are calculated in parallel in the course of Euclidean algorithm, 

or using (5.2.23), which employ the coefficients of the 
remainder Fm+1(z) calculated in the course of the algorithm. 

Then roots E0, E1, …, Em of Λ(z) that are linearly independent 
over Z2 are determined. 

  

Step 3: Using 5.2.27 to 5.2.30 the known E0, E1, …, Em are used 
as a basis for determining x1, x2, …, xm. Representing these 

quantities in the form (5.2.20), we can obtain matrix N. Finally, 

we calculate the error vector using (5.2.29). 
 

Example 5.2.1: The code with the following parity check matrix 

H = 
1 4 2

1 2 4

 
 
 

has length n = 3 and the designed distance d = 3. 

Let y = (3, 2, 1) be the received codeword. Then, the syndrome 

is s = (s0, s1) = yH
T
 = (5, 5). Hence, by modified inversionless 

Euclid’s algorithm,  
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Λ(z) = – ( [1]

0s  / s1) + z
[1]

 = –5z + z
2
. The nonzero root of  

Λ(z) is 5. Hence, E = 5. From the single equation of the system 
(5.2.26) we determine  

 

x = (s1 / s0) = 1 = (1 × 1) + (0 × 4) + (0 × 2) = y1 h1 + y2 h2 + 

y2 h2) which gives (y1, y2, y3) = (1, 0, 0). The error vector is  
e = (y1 E, y2E, y3E) = (5, 0, 0)  

 

 We have constructed a new class of effective erasure codes 
over the ring of integers using the rank distance metric. This 

class of codes can be suited in different applications like reliable 

computer communication protocols, ARQ protocols in satellites 
communications and in amateur radios.  
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Chapter Six 
 
 

 
 
CONCATENATION OF ALGEBRAIC CODES 
 
 
In this chapter we study concatenation of linear block code with 

another linear block code or concatenation of three or more 

linear block codes. We describe this in section one. This chapter 
has two sections. In section two we describe concatenation of 

RD codes with CR-matric. We give the probable ways of 

building concatenated bicodes, biconcatination of codes and 
quasi concatenated bicodes. 

 

6.1 Concatenation of Linear Block Codes 

 

The construction and the encoding procedure of the 

concatenated codes is described in this section which is as 

follows: 
 Let S = ((n1, n2, …, nt), (k1, …, kt)) be the special supercode 

defined over the Galois field Z2 = GF(2) and the inner codes C1 

= C1(n1, k1), C2 = C2(n2, k2), … and Ct = Ct(nt, kt) be codes with 
Hamming metric defined over the Galois field GF(2).  

Suppose m = (x1 | x2 | … | xt) be the message to be encoded 

where each xi is a ki tuple of the form 
i

i i i

1 2 k(a ,a ,...,a ) ;  

1 ≤ i ≤ t, thus we get x = (b1 | b2 | … | bt) where bi = 

i

i i i

1 2 n(a ,a ,...,a ) ; 1 ≤ i ≤ t where 
i

ja  ∈ GF(2); 1 ≤ j ≤ ni; 1 ≤ i ≤ t. 
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 Thus we have a k1 + k2 + … + kt dimensional super vector 

space associated with this concatenated code or the super code 
is a k1 + k2 + … + kt dimensional vector subspace of a  

n1 + n2 + … + nt dimensional vector space over Z2. Infact S has 
1 2 tk k ... k

2
+ + +

 elements.  

 
We can consider a map; 

 

g : S → (C1 × C2 × … × Ct) = {(x1, x2, …, xt) | xi ∈ Ci,  

1 ≤ i ≤ t} given by g ((x1 | … | xt)) = (x1, x2, …, xt) where  

xi ∈ Ci; 1 ≤ i ≤ t. This map g is one to one linear transformation 

of S to C1 × C2 × … × Ct.  
 

 So S ≅ (C1 × C2 × … × Ct) just ‘|’ replaced by ×. 
 

 The concatenated code is comprised of the outer code and t 
number of inner codes. The outer code is a super code and the t-

inner codes are the row submatrices of the outer code. That is 

the outer code which is the super code has its sub row vectors 

from these t inner codes. The t inner codes can be distinct or 
otherwise. The following is the concatenated coding system.  

 

Thus we see the concatenated code word which is a super 
code takes the form of a super row matrix  

x = 
1

1 1 1

1 2 n(x ,x ,..., x  
2

2 2 2

1 2 nx ,x ,..., x  … 
t

t t t

1 2 nx ,x ,..., x )  with 
j

px  ∈ 

Z2; 1 ≤ j, p ≤ t and the concatenated code  
 

S = {x = 
1

1 1 1

1 2 n(x ,x ,..., x  
2

2 2 2

1 2 nx ,x ,..., x  … 
t

t t t

1 2 nx ,x ,..., x  | 

j

j j j

1 2 n
x ,x ,..., x )  ∈ Cj = Cj (nj, kj); 1 ≤ j ≤ t; 

j

p
x ∈ Z2; 1 ≤ j, p ≤ t}. 
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For any two x, y ∈ S we can define dS (x, y) =
t

j j j

j 1

d (x , y )
=

∑  

where xj, yj ∈ Cj (nj, kj); 1 ≤ j ≤ t. It is easily verified dS(x, y) = 
dS(x+y) denotes the super Hamming metric on S over  

GF(2) or t-concatenated Hamming metric on S. All properties of 

Hamming metric can be derived in case of t-concatenated 
Hamming metric for the concatenated code S.  

 

Message 

Outer encoder 

First inner 

encoder 
t
th
  

inner encoder 

t
th
  

inner decoder 

Outer decoder 

Decoded 

message 

… 

First inner 

decoder 
… 

Channel 

… 
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We illustrate this by an example. 

 

Example 6.1.1: Let S = {(x1 | x2 | x3 | x4) | x1 ∈ C (2, 3), x2 ∈ 

C(5, 2), x3 ∈ C (7, 4) and x4 ∈ C (4, 2)} be a concatenated code 
with the codes C1 = C (8, 3), C2 = (5, 2), C3 = C (7, 4) and C4 = 

C (4, 2). 

 
 We see error detection can be done using the parity check 

matrices of C1, C2, C3 and C4.  

 
 Error correction can be carried out using coset leader 

method [16]. This type of concatenated super codes has the 

following advantages. 
 

 

(i) The rate of transmission is increased. 

 
(ii) This concatenated codes saves time during 

transmission as insteaded of sending t-vectors of 

each nt tuples we send a lengthened code. 
 

(iii) We can retrieve the messages. 

 

 Further 
t

min min

i 0 ti

d 1 d 1

2 2=

− −  
≤   

   
∑ ∑ . 

 

 So in a Super code which is the concatenated code using 

linear codes with Hamming metric we can detect and correct 
errors, with in the limits of compatibility. 

 

 Now we describe another type of concatenated code of a 
linear codes with Hamming metric.  
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 The message x = 
1

1 1 1

1 2 n(x ,x ,..., x ,  
2

2 2 2

1 2 nx ,x ,..., x ,  

…
t

t t t

1 2 nx ,x ,..., x ) is sent to the divider unit which devides them 

Source 

Divider unit 

Message 1 Message t 

Super Channel 

Encoder 

decoder 1 Decoder t 

Consolidator 

unit 

Destination 

… 

… 

Message 1 Message t … 

… 

… 
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into t messages and the messages are sent to t encoder and they 

pass the super channel and reach as t decoders, from the decoder 
units reaches the consolidation unit and then the destination. 

These codes will be useful when the bulk work is distributed to 

different units and the result is consolidated to get the final 

message. 
 

Let C1, C2, …, Ct be t number of linear codes distinct or 

otherwise of length n1, n2, …, nt and messages k1, k2, …, kt 

respectively. We denote by P = 
1

1 1 1

1 2 n(x ,x ,..., x ,  
2

2 2 2

1 2 nx ,x ,..., x ,  

…
t

t t t

1 2 nx ,x ,..., x ) | j

ix  ∈ Z2; 1 ≤ j ≤ t and 1 ≤ i ≤ n1, n2, …, nt}. 

We say P is concatenated using t inner codes, however P is not a 
super code, just a code. By using usual transmission the rate of 

transmission is certainly less or equal to the sum of the rates of 

transmissions.  
 

The diagram is self explanatory. 

We can use error connection technique or erasure correction 
technique. 

 

 Finally we give yet another type of concatenated linear 
codes which we will define in the following. These will also be 

known as special blank concatenated codes. 

 

Suppose C1 = C(n, k) code and C2 = C(n, k′) or C(n–1, k1) 
code. Then we form the concatenated code C = C1 C2 = {(x1y1 

x2y2 … xn yn) | (x1, x2, …, xn) is in C (n, k) and (y1, y2, …, yn) ∈ 

C(n, k′)} ((x1 y1 x2 y2 … xn-1 yn-1 xn) where  

(x1, …, xn) ∈ C(n, k) and (y1, …, yn–1) ∈ C (n–1, k1)) will be 
defined as the alternate concatenated two code or special blank 

concatenated code and the transmission is done using the 
‘special blank’; however ‘special blanks’ are not erasures. 

  

We will describes how the transmission takes place.  
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†
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* converter converts this concatenated code into two codes with 

special blanks.  
† the special blanks are omitted and the message are sent by 

converter I and converter II.  

 

This sort of coding will be used in networking where some 
secrecy is to be maintained so that processed as two units by 

two separate systems and the consolidated result is availed by 

the receiver. Likewise we can define m-concatenated codes. 
Deconverter converts the code words with special blanks into 

the concatenated code.  

 Suppose we have 3 codes say C1 = C(5, 2), C2 = C(6, 3) and 
C3 = C (5, 3); the 3-concatinated code C = {x1y1z1 x2y2z2 x3y3z3 

x4y4z4 x5y5z5 y6) | (x1 x2 … x5) ∈ C1, (y1 y2 y3 y4 y5 y6) ∈  

C2 and (z1, z2, …, z5) ∈ C3}. 
 Now this code C of length 16 is sent and converter divides 

this into 3 codes of length 16 with special blanks codes writer I, 

writer II and writer III, they convert them into messages of 

length 5, 6 and 5 respectively and coded and sent via three 
channels. We can have m number of codes of lengths n1, n2, …, 

nm with message symbols k1, k2, …, km respectively. That is Ci 

= (ni, ki), 1 ≤ i ≤ m. 
 

  Hence C the concatenated m code C1, …, Cm is given by  

C = { 1 2 mp p p1 2 m 1 2 m 1 2 m

1 1 1 2 2 2 3 3 3 1 2 mx x ...x x x ...x x x ...x ...x x ...x } where some 

pi’s may be zero and some pj’s are nj’s; 1 ≤ i, j ≤ m. 
 Now when any x from C is transmitted x is decomposed 

into m units say 1, 2, …, m where the first unit the code words 

will be of the form y = ( 1

1x  … 2

1x … 1n

1x …), the second unit  

y2 = (– 1

2x  … – 2

2x  … 2n

1x …) and so on. The blanks are special 

blanks. From the m-units the m-converters will convert these y1, 

y2, …, ym code words into z1 = ( 1n1 2

1 1 1x x ...x ), z2 = ( 2n1 2

2 2 2x x ...x ), 

…, zm = ( mn1 2

m m mx x ...x ) by removing the special blanks. Now z1, 

z2, …, zm are sent and as in case of usual transmission we get 
the received message say as P1, P2, …, Pm then they are passed 

through the reconverter where they get the special blanks and 

then they pass through the consolidation channel. Then the 
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receiver receives the message which is a concatenated m-linear 

code. 
 We just describe the transmission by the following diagram: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Message 

Converter* 

Writer 1 Writer m 

Unit 1 Unit m 

Encoder 1 Encoder m 

Modulator 1 Modulator m 

Channel 1 Channel 

message message 

(concatenated message 
of m codes say of 

length
m

i

i 1

n
−

∑ ) 

… 

… 

… 

… 

… 

Demodulator 1 Demodulator m 

Decoder 1 Decoder m 

Receiver 1 Receiver m 

… 

… 

… 
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* Converter converts them into m codes with special blanks. 

 

When the concatenated code of the length 
m

i

i 1

n
=

∑  with 

concatenated message symbols 
m

i

i 1

k
=

∑  is sent, then the converter 

divides them into m codes of each length 
m

i

i 1

n
=

∑  = n1+n2 + … + 

nm with special blanks.  
 

Now these are sent to m writers writer 1, writer 2, … writer 

m. These writers write the codes by deleating the special blanks 
spaces.  

 

 These units acts as the sender of the message, these 

messages are encoded by encoder 1, encoder 2, …, encoder m. 
From the encoder it passes thro’ the modulator, and from the 

modulators to the channels from channels to decoders and from 

the decoders to the m receiver if the purpose of the concatenated 
coding is to send the message to m receivers from one sender.  

 

But on the other hand if the purpose is to send to receiver 
but each channel or system does a different type of m-jobs and 

should reach the single receiver then we have the decoded m-

messages would be sent to m-reversing units and then m of 

these reversing units to m-rewriters who include the blanks and 
from it reaches a single reconverter and from the reconverter the 

receiver receives the message then in that case of extended 

diagram would be as follows. 



 139

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1 decorder Dm decorder 

Message 

Converter* 

Writer 1 Writer m 

Unit 1 Unit m 

Encoder 1 Encoder m 

Modulator 1 Modulator m 

Channel 

message 

… 

… 

… 

… 

Channel 

Rewriter 1 Rewriter m 

Reversing unit m 

 
Reversing unit 1 

Rewriter 1 

message 

… 

… 

… 

… 

Destination 
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Thus it is a 12 step process. 

6.2 Concatenation of RD Codes with CR-metric 

 

 The concatenated code consists of an outer and an inner 
code. The outer code is a RD code and the inner code is a binary 

code and the outer code is a code over the inner code. The 

concatenated code consists of the codewords of the outer code 

expressed in terms of the alphabets of the inner code. This 
concatenated coding system is depicted in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From the above figure we see that the encoder of a 

concatenated code consists of an outer encoder and an inner 

encoder corresponding to the outer and inner codes respectively. 

Message 

Outer Encoder 

Inner Encoder 

Channel 

Inner Decoder 

Outer Decoder 

Decoder 

Message 

Super Channel 
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Similarly the decoder of a concatenated code consists of an 

outer decoder and an inner decoder corresponding to the outer 
and inner codes respectively. Here the combination of the inner 

encoder, channel and the inner decoder can be thought of as 

forming a new channel called a super-channel. The super-

channel transmits the codewords of the outer code. 
 

 The encoding procedure of concatenated codes is given in 

the following section. 
 

 Let the outer code A be a linear kba a a 2
(n ,k ,d )  RD code 

defined over, the Galois field GF( bk
2 ) and the inner code B be a 

linear (nb, kb, db)2 code defined over the Galois field GF (2) of 
order 2. Throughout this section, we consider the inner code 

with Hamming metric. Let m = (a1, a2, …,
aka ) ∈  

[GF( bk
2 ) ak

] be the message to be encoded, where each ai ∈  

GF bk
(2 ) . The procedure of concatenation of the outer code A 

and the inner code B is given in the following three steps: 

 

Step 1: The message m = (a1, a2, …,
aka ) ∈ GF ( bk

2 ) ak
] where 

each ai ∈ GF( bk
2 ) is encoded with the outer code A into a 

codeword. Thus we get a na-tuple a = (a1, a2, …,
ana )

T
 where 

each ai ∈ GF( bk
2 ). 

  

 Now a is the codeword of MRD code which is to be 

transmitted after applying the following steps: 
 

Step 2: GF( bk
2 ) is a kb - dimensional vector space over the 

field GF(2). Let g : GF( bk
2 ) → [GF(2) bk

]  be the mapping of 

GF( bk
2 ) onto [GF(2) bk

] such that for each symbol ai ∈  

GF( bk
2 ), i = 1, 2, …, na is mapped into a kb-dimensional vector 

with symbols in GF(2); that is g(ai) = (bli, b2i, …,
bk ib ) where bji 

∈ GF(2), j = 1, 2, …, kb and i = 1, 2, …, na.  
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 Clearly the map g is a one-one linear transformation of the 

vector space GF( bk
2 ) onto [GF(2) bk

] .  

Hence, GF( bk
2 ) = [GF(2) bk

] . 

 

 After applying steps 1 and 2 to the message m we denote 

the result in the form of a matrix; 
 

a

1

2

n

g(a )

g(a )

...

g(a )

 
 
 
 
 
  

=

b

b

a a b a

11 21 k 1

12 22 k 2

1n 2n k n

b b ... b

b b ... b

... ... ... ...

b b ... b

 
 
 
 
 
 
 

,   (6.2.1) 

 

where bij ∈ GF (2), i = 1, 2, …, kb and j = 1, 2, …, na. 
 

Step 3: Each g (ai) = (b1i, b2i, …,
bn ib ) is encoded with the inner 

code resulting in a codeword from the inner code given by  

(b1i, b2i, …,
bn ib ), where bji ∈ GF(2), j = 1, 2, …, nb and i = 1, 2, 

…, na. 

 
 After applying steps 1, 2, and 3 of the encoding procedure 

described above to the message m and encoding each row of the 

matrix (6.2.1) by using the inner code we get the codeword of 
the concatenated code represented by the following matrix. 

 

b

b

a a b a

11 21 n 1

12 22 n 2

1n 2n n n

b b ... b

b b ... b

... ... ...

b b ... b

 
 
 
 
 
 
 

�
   (6.2.2) 

 

where bij ∈ GF(2), i = 1, 2, …, nb and j = 1, 2, …, na. 
 

 From here onwards the matrix (6.2.2) will be known as the 
Concatenated Code Matrix (CC matrix) and will be denoted by 
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CCM (m), that is, it is the related concatenated code matrix of 

the message m. 
 

DEFINITION 6.2.1: The concatenated code obtained by 

concatenating the outer RD code, a defined over GF( bk
2 ) and 

the inner binary code B is the set of all concatenated code 

matrices. Let CCM = {CCM(m) / m ∈ [GF( bk
2 ) ak

] } denote the 

collection of all (na × nb) CC matrices or equivalently. 

 

 CCM = {(bij): bij ∈ GF(2), i = 1, 2, …, na, j = 1, 2, …, nb 

and (bij)} is a CC matrix. 

 
DEFINITION 6.2.2: Let CCM be the concatenated code obtained 

by concatenating the outer RD code A and the inner binary code 

B. For two concatenated code matrices X, Y ∈ CCM define 

dc(X, Y) = r (X + Y), where r (X+Y) denotes the rank of the 

matrix X + Y over GF (2) obtained by adding the CC matrices X 

and Y, using the usual matrix addition modulo 2. That is, if X = 

(aij) and Y = (bij) then X + Y = (aij + bij) mod 2. 

 

 By the usual properties of the rank of the matrix, for every 

X, Y, Z ∈ CCM. 
 

(i) dc (X,Y) ≥ 0 
(ii) dc (X, Y) = 0 if and only if X = Y, 

(iii) dc (X, Y) = dc (Y, X) 

(iv) dc (X, Y) ≤ dc (X, Z) + dc (Z, Y). 
 

Thus dc is a metric on the set of all concatenated code 
matrices on CCM and we define dc as the concatenated rank 

metric (CR-metric). 

 
DEFINITION 6.2.3: The set of all concatenated code matrices 

(CCM) equipped with the concatenated rank metric (CR-metric) 

dc is called the concatenated Rank Metric code (CRM code). 
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 Throughout we denote a CRM code by (CCM, dc). It is 

clear from the very construction that the CRM code is not a RD 
code or a binary code. 

 

DEFINITION 6.2.4: Let (CCM, dc) be a CRM code. The 

minimum distance of the concatenated rank metric code (CCM, 

dc) is defined as 

 

 d = min {r (X+Y) / X, Y ∈ CCM, X ≠ Y}. 

 

For X, Y ∈ CCM we have X + Y ∈ CCM we can restate the 

above definition as follows: 
 

DEFINITION 6.2.5: Let (CCM, dc) be a CRM code with dc the 

concatenated rank metric. The minimum distance of the 

concatenated rank metric code (CCM, dc) is defined as  

d = min {r (X) : X ∈ CCM – {0}}. 

 

DEFINITION 6.2.6: Let (CCM, dc) be a CRM code with dc the 

concatenated rank metric. Let X ∈ CCM. We say r (X) = 0 if 

and ony if X = 0. 

 

DEFINITION 6.2.7: Let (CCM, dc) be a CRM code with dc the 

concatenated rank metric. Let m be the transmitted message 

with the corresponding CC matrix viz., X = CCM (m). Let Y be 

the received matrix. If r (X+Y) = 0, that is, X+Y = 0 which 

implies X = Y, then Y is the correct message since addition of X 

and Y is under addition modulo 2. 

 

 If r (X+Y) > s, s > 0, then Y has an error of rank s. 

 

 A relation between the minimum distance of the 
concatenated rank metric code and the minimum distance of the 

outer RD code is given by the following theorem. 

  

THEOREM 6.2.1: Let the outer code A be a linear kba a a 2
(n ,k ,d )  

RD code defined over GF( bk
2 ) and the inner code B be a 

binary linear (nb, kb, db)2 code defined over GF(2). Let (CCM, 

dc) be the concatenated rank metric code with the CR-metric dc 
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obtained by using the outer code A and the inner code B. Then 

the minimum distance of the concatenated rank metric code 

(CCM, dc) is da : da is just the minimum distance of the outer RD 

code. 

 

Proof : Let the outer RD code A be a kba a a 2
(n ,k ,d )  code with 

minimum distance da and let the inner code B be a binary linear 
(nb, kb, db)2 code defined over GF(2). Let (CCM, dc) be the 

concatenated rank metric code obtained by using the outer code 

A and the inner code B. Let the message m = (a1, a2, …,
aka ) ∈ 

[GF( bk
2 ) bk

] where each ai ∈ GF( bk
2 ) be encoded with the outer 

code A into a codeword a = (a1, a2, …,
ana )

T
 ∈ A. Since the 

minimum distance of the outer RD code is da, so r(a) ≥ da. This 
implies atleast da columns of the matrix a

T
 are linearly 

independent over GF(2). Without loss of generality let us 

assume that the first da columns of the matrix a
T
 are linearly 

independent over GF(2). That is, a1, a2, …, 
ada  are linearly 

independent over GF(2). By the method of concatenating the 

codes A and B given earlier and after applying the mapping g 

we get the matrix  
 

B = 

b

b

a a b a

a a b a

11 21 k 1

12 22 k 2

1d 2d k d

1n 2n k n

b b ... b

b b ... b

... ... ... ...

b b ... b

... ... ... ...

b b ... b

 
 
 
 
 
 
 
 
 
 

 

 

where bij ∈ GF(2), i = 1, 2, …, kb and j = 1, 2, …, na. 
 

 Since r(a) ≥ da, we get r(b) ≥ da. We have, after applying the 
inner encoder to the matrix B, let the concatenated code matrix 
corresponding to the message m be CCM(m) = b1, that is, 
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b1 = 

b

b

a a b a

a a b a

11 21 n 1

12 22 n 2

1d 2d n d

1n 2n nfc n

b b ... b

b b ... b

... ... ... ...

b b ... b

... ... ... ...

b b ... b

 
 
 
 
 
 
 
 
 
 

 

where bij ∈ GF (2), i = 1, 2, …, nb and j = 1, 2, …, na. 
 

 Then, r(b1) ≥ da since the addition of parity bits by the inner 
code B to the matrix b does not change the rank of the matrix b. 

Hence the minimum distance of the concatenated rank metric 
code of da. 

 

 The above theorem is illustrated by the following example. 

 
Example 6.2.1: Let the outer code A be a (2, 1, 1) RD code with 

minimum distance 1 defined over GF(2
2
) = {0, 1, α, α2

} where 

α is the root of the primitive polynomial x
2
 + x + 1 of GF(2

2
). 

Let the generator matrix of the outer code A be G = (1 0) where 

0, 1 ∈ GF(2
2
). Let the inner code B be a binary (4, 2, 3) code 

with minimum distance 3 be defined over GF(2) having the 

parity check matrix  
 

H =
1 0 1 0

1 1 0 1

 
 
 

. 

 

 The mapping g : GF(2
2
) → [GF(2)]

2
 is the mapping given 

by the primitive polynomial of GF(2
2
), defined as 0 → 00, 1 → 

01, α →10, α2
 →11. 
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 The concatenated rank metric code  

 

CCM = 
0 0 0 0 0 1 0 1

, ,
0 0 0 0 0 0 0 0

   
   
   

  

 

 
1 0 1 1 1 1 1 0

,
0 0 0 0 0 0 0 0

   
   
   

. 

 

The CCM has minimum distance d = 1, (since rank of reach of 
the CC matrices in CCM is either zero or one). 

 

 In general, in the case of concatenated codes with Hamming 
matrix the true minimum distance of the code cannot be 

obtained but only a lower bound can be obtained. Whereas for 

the CRM code constructed by us the minimum distance 

calculated in the above theorem is the true minimum distance 
and not a lower bound. We prove this in the following corollary. 
 

Corollary 6.2.1: Let the outer code A be a linear kba a a 2
(n ,k ,d )  

RD code with minimum distance da defined over GF ( bk
2 ) and 

the inner code B be a binary linear (nb, kb, db)2 code with 

minimum distance db defined GF (2). Let (CCM, dc) be the 

CRM code obtained by using the codes A and B. The minimum 
distance of the CRM code is the true minimum distance and it is 

just the minimum distance of the outer code. 

 

Proof: Let the outer code A be a linear kba a a 2
(n ,k ,d )  RD code 

with minimum distance da defined over GF( bk
2 ) and the inner 

code B be a binary linear (nb, kb, db)2 code defined over GF(2). 

Let(CCM, dc) be the concatenated rank metric code obtained by 

using the outer code A and the inner code B. From theorem 
6.2.1 we know that the minimum distance of the concatenated 

rank metric code (CCM, dc) is da. Hence the minimum distance 

of the concatenated rank metric code is the true minimum 

distance and not a lower bound for the minimum distance.  
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 It is interesting to note that, in the case of (CCM, dc) code or 

CRM codes if we want to have a desired minimum distance we 
can without hesitation take the outer RD code with the desired 

minimum distance and use any convenient binary inner code, 

for the minimum distance is independent of he choice of the 

inner code. Thus this concatenation technique helps one to 
construct any CRM code of desired minimum distance which is 

not enjoyed by any other class of codes.  

 
THEOREM 6.2.2: (Error detection theorem for CRM codes) Let 

(CCM, dc) be the concatenated rank metric code with CR-metric 

dc obtained by using the codes A and B where the outer code A 

is a linear kba a a 2
( n ,k ,d )  RD code defined over GF( bk

2 ) and the 

inner code B is a binary linear (nb, kb, db)2 code defined over 

GF(2). Let X be the transmitted CC matrix and Y be the 

received matrix. If r(Y) < da then an error has occurred in the 

matrix Y during transmission. 

 

Proof : Let m be the message transmitted. Let X be the 

associated concatenated code matrix of m, that is X = CCM(m). 
Let Y be the received concatenated code matrix which contains 

errors occurred during transmission. Suppose r(Y) < da. From 

corollary 6.2.1 the minimum distance of the concatenated rank 

metric code is the true minimum distance and hence r(X) ≥ da 

for every X ∈ CCM. So, r(Y) < da indicates that an error has 
occurred during transmission. 
 

 It is very important to note that from the above theorem we 

can just by computing the rank of the received matrix, we can 

immediately conclude that an error has occurred during 
transmission.  

 

 We give the decoding procedure for CRM codes. 
 

 Our decoding procedure for CRM codes is nothing but to 

obtain a decoding method for the received concatenated code 
matrix which is done by first decoding with the inner code and 

then decoding with the outer code. The reason for doing so is 

due to the systematic construction of CRM codes explained 



 149

earlier. We know by the very construction of the CRM codes 

that the received concatenated code matrix has its entries from 
the alphabets of the inner code. Hence the received 

concatenated code matrix is first decoded by using the inner 

code and then it is decoded with the decoding algorithm of the 

outer code. Hence the decoder of a concatenated code consists 
of an inner decoder and an outer decoder. Now we explain the 

decoding procedure for concatenated rank metric codes (CCM, 

dc) with CR-matrix dc. 
 

 Let Y be the received message. Clearly Y is the matrix 

given by 
 

Y =

b

b

a a b a

11 21 n 1

12 22 n 2

1n 2n n n

y y ... y

y y ... y

... ... ...

y y ... y

 
 
 
 
 
 
 

�
   (6.2.3) 

where yij ∈ GF (2), i = 1, 2, …, nb and j = 1, 2, …, na.  
 

We describe the decoding procedure of a received 

concatenated code matrix Y in the following three steps. 

 

Step 1: For each i = 1, 2, …, nb decode (y1i, y2i, …,
bn iy ) using 

the inner code decoder and obtain a kb - tuple (y1i, y2i, …,
bk iy ) 

where bji ∈ GF (2), j = 1, 2, …, nb and obtain the matrix. 
 

 

y = 

b

b

a a b a

11 21 k 1

12 22 k 2

1n 2n k n

y y ... y

y y ... y

... ... ...

y y ... y

 
 
 
 
 
 
 

�
 

where yij ∈ GF(2), I = 1, 2, …, kb and j = 1, 2, …, na. Here when 
decoding with the inner code the number of columns in the 

received concatenated matrix Y is reduced and the number of 

row remains unaltered. 
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Step 2: Applying the mapping g
-1
: [GF(2) bk

] → GF( bk
2 ) on 

each row of the matrix y we get zi ∈ GF( bk
2 ). Hence 

corresponding to the matrix y we obtain a na tuple  

(z1, z2, …,
anz ) ∈ [GF( bk

2 ) an
] . 

  
Step 3: Now decode the na-tuple  

(z1, z2, …,
anz ) ∈ [GF( bk

2 ) an
] using the outer decoder. Thus the 

transmitted message corresponding to the received concatenated 

code matrix is given by  

(z1, z2, …,
akz ) ∈ [GF( bk

2 ) ak
] which gives only the message 

symbols. 
 The following examples illustrates the decoding procedure 

described above. 

 

Example 6.2.2: Let the outer code A be a (2, 1,1) RD code 

defiend over GF(2
2
) = {0, 1, α, α2

} where α is the root of the 
primitive polynomial x

2
 + 2 + 1 of GF(2

2
). Let the generator 

matrix of the outer code A be G = (1 0) where 0, 1 ∈ GF(2
2
). 

Let the inner code B be a binary (4,2,3) code defined over 

GF(2) having the parity check matrix  

 

H =
1 0 1 0

1 1 0 1

 
 
 

. 

 

 The mapping g : GF(2
2
) → [GF(2)]

2
 is the mapping given 

by the primitive polynomial of GF(2
2
), defined as 0 → 00, 1 → 

01, α →10, α2
 →11. 

 

 The concatenated rank metric code  

 

CCM = 
0 0 0 0 0 1 0 1

, ,
0 0 0 0 0 0 0 0

   
   
   

 

 

 
1 0 1 1 1 1 1 0

,
0 0 0 0 0 0 0 0

   
   
   

. 
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Suppose the matrix Y = 
1 1 1 0

1 0 0 0

 
 
 

 is received. The 

received matrix Y is decoded using the decoding procedure of 

CRM codes described above. 

 
 By step 1, we first use the inner decoder to decode the 

received matrix Y. The inner decoder decodes (1 1 1 0) to (1 1) 

and (1 0 0 0) to ( 0 0) to obtain the matrix y =
1 1

0 0

 
 
 

.  

 
Then by step 2, on applying the map  

g
–1

 : [GF(2)]
2
 → GF(2

2
) to each row of matrix y, we get y2 

=
2

0

 α
 
 

. By step 3, the outer decodes this column vector y2 to α2
 

the transmitted message symbol (since in this example the RD 

code has only one message symbol). 

 
  Now from these concatenated MRD codes we can define 

biconcatenated MRD codes or concatenated MRD bicodes, C = 

C1 ∪ C2 where each Ci is a concatenated CRM codes. We can 
also extend this to n-concatenated CRM codes or concatenated 

n-CRM codes as C = C1 ∪ C2 ∪ … ∪ Cn where each Ci is a 

CRM code; 1 ≤ i ≤ n. This form of n-codes will help in the 
simultaneous processing using n-units which will be time 
saving. 

 

 We can also define quasi n-concatenated CRM codes, when 

some t of them are concatenated CRM codes and the rest are 
MRD codes. Further the n-concatenated special super codes; C 

= C1 ∪ C2 ∪ … ∪ Cn if each Ci is a special super code; i = 1, 2, 
…, n. If n = 2 we get the biconcatenated special super code. 

 

 We can also have biconcatenated CRM code with a special 
super codes defined as mixed biconcatenated code. That is C = 

C1 ∪ C2 where C1 is a super special code and C2 is a CRM code. 
We can extend this to mixed n-concatenated codes where t of 
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them are super special codes (t < n) and rest are just CRM 

codes. We can also have the notion of quasi mixed n-
concatenated codes where t1 of them are CRM codes, t2 of them 

are just MRD codes, t3 of them special super codes and the rest 

of them are just linear codes. Thus we can have quasi mixed n-

concatenated codes. These codes will help when bulk messages 
are sent and this will save time and economy. 
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