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1. Introduction

Visual Tracking (VT) consists in locating one or more objects throughout a video using visual information processing.
Existing approaches can be improved in two main ways: by designing more precise models using machine learning tech-
niques and/or by introducing a data fusion step that makes the observation/model matching more robust. In this article,
we follow the latter path. VT raises a challenging data fusion problem as sources involved in the process can, from time
to time, be highly imprecise or unreliable.

In terms of data fusion, the Dempster-Shafer theory (DST) [33] has gained popularity because it can process data that are
not only uncertain but also imprecise. Using this framework, one usually aggregates different sources of information using a
combination rule. The fusion process underlying a combination rule is regulated by properties. VT specific fusion require-
ments are mainly related to imprecision and unreliability. These requirements can be expressed in terms of combination rule
properties. A rule possessing all the required properties can thus be expected to lead to better VT performances.

Unfortunately, this constraint satisfaction problem appears to have no ideal solution. Some rules can adapt their behav-
iours to either highly imprecise sources [44,21] or to unreliability [3,11] but the conjunction of these two kinds of sources is
much more difficult to deal with. To overcome this difficulty, broader fusion schemes can be designed. In [39], Smets ad-
dresses conflict management using a conditional scheme that makes use of particular rules depending on assumption rejec-
tions or validations. Ha-Duong [12] presented a hierarchical scheme for the fusion of expert groups’ opinions. Denoeux’s
cautious rule [6] is used for fusion within each group and the outputs are then fused using the disjunctive rule. Quost
et al. [29,30] also introduced a similar two-level fusion scheme for classifier combination. Sources are clustered according
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to their pairwise dependencies. A within-cluster rule is then designed and a second between-cluster rule is applied to the
outputs of the first one.

In this article, a hierarchical and conditional combination scheme (HCCS) is presented so as to address a VT-related fusion
challenge: highly imprecise and unreliable source combination. First, a source analysis step identifies highly imprecise
sources and unreliable sources, yielding groups of sources. Within each group, the fusion problem is less constrained and
is solved using a single rule. Our approach is also hierarchical because a second fusion level is needed to aggregate the outputs
of each group. These outputs are analysed as well, allowing a final rule selection whose application yields the fusion result.

The first section of this paper presents general facts about belief functions. The second section reviews combination
rules and their properties, and discusses the interest of more refined fusion schemes. The third section focuses on the anal-
ysis of the VT problem and its implications on the HCCS proposed. The scheme is then presented in detail. Finally, the con-
tribution of the scheme is demonstrated in the fourth part through a VT algorithm: evidential particle filtering. The
experiments show that our method outperforms classical combination rules, and allows for more robust multiple-source
object tracking.

2. Dempster-Shafer theory: fundamental concepts

DST provides a formal framework for dealing with both imprecise and uncertain data. The finite set of mutually exclusive
solutions is denoted by Q = {;, ..., wx} and is called the frame of discernment. The set of all subsets of Q is denoted by 2°.
A source S collects pieces of evidence leading to the assignment of belief masses to some elements of 2°. The mass of belief
assigned to A by S is denoted m|S](A). For the sake of simplicity, the notation m[S;] is replaced by m; hereafter. The function
m : 2% — [0,1] is called basic belief assignment (bba) and is such that 3", ,m(A) = 1. The set of all bbas is denoted 8. A set A
such that m(A) > 0 is called a focal element. Two elements of 2° represents hypotheses with noteworthy interpretations:

e (): The solution of the problem may not lie within Q.
e Q: The problem'’s solution lies in Q but is undetermined.

The open-world assumption states that m(f) > 0 is possible. The closed-world assumption bans ¢ from any belief assign-
ments. Under the closed-world assumption, the standard way of combining distinct' pieces of evidence m; and m, is Demp-
ster’s combination rule ¢:

VAZ0, m ) =1 S m(B)m(C), 1)
B.C|BNC=A
with k= Y~ my(B)my(C). (2)
B,CIBC=0

The mass « is also called the degree of conflict. The open-world counterpart of Dempster’s rule is the conjunctive rule @ The
rule equation is the same as Dempster’s without normalization factor and mg (@) = x (see Table 1).
A bba is denoted A" if it has two focal elements: A # Q and €, and if:

A"(A) =1-w and A"(Q) = w. (3)

Such bbas are called simple bbas (sbbas). By extension of this notation, the bba denoted Q° stands for total ignorance
(Q°(Q) = 1); it is called the vacuous bba. The one for total conflict is §°. A bba such that m(Q) = 0 is said to be dogmatic.
It is said to be normalized if m(@) = 0.

There are other ways of representing beliefs, including the belief bel, implicability b, plausibility pl and commonality q
functions. In view of some further developments in this article, a brief presentation of the conjunctive weight function w
is also needed. Smets [40] has shown that a non-dogmatic bba can be decomposed into a conjunctive combination of gen-
eralized simple bbas (gsbbas). A gsbba p : 2% — R is a shba whose focal element A c Q is assigned 1 — w with w € [0, +0).
Depending on the value of w, two cases can be distinguished:

e If w< 1 : These gsbbas are sbbas.
e If w> 1 : These gsbbas are not bbas and are called inverse sbbas (isbbas).

An isbba with focal element A is interpreted as a representation of the belief that there exists some reason not to believe in A.
In other words, it constitutes a “debt” of belief, hence the notation A'" for an isbba. Smets shows that any non-dogmatic bba
m can be expressed as a conjunctive combination: m = (), ,A"" with w: 2% — [0, +o0) a function such that:

_1B-A1

VAcQ wA) =[] <Z m(C)) . (4)

B2>A \C2B

! Pieces of evidence are distinct if the construction of beliefs according to one piece of evidence does not restrict the construction of beliefs using another
piece of evidence.
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Table 1

Several combination rule equations for two sources of information. A, B,C C Q. Z is a normalization factor. A, is a bba such that A,(#) = v and A,(A) =1 — ».
2 2 . . . . . . o . . . ..

Z(A,B) = Ml ma®) | m@ miB) "¢ g 3 discounting coefficient. R; is the reliability coefficient of function m;. A is the minimum operator. (*): closed-world

~ mi(A)+my(B) T my(A)+my (B)*
assumption.

& (%) mj(A):ﬁm©(A),K:m@(Q))

DPR (*) Mapr (A) = M) (A) + 3 prc_p puc—am1 (B)m2(C)

@ Mg (A) = 2pnc=ami (B)my(C)

RCR () Mier(A) = 1557 M)(A) + Tt M) (A)

© m@<A) = 2puc-am (B)m>(C€)

WG My (A) = g (1 = Boem1 (BYm3 (C) + Yo lpoe M1 (B)ma (C)

(©) MoA) = Laacami (B)ma (C)

PCR6 Mpers (A) = M@)(A) + Xgray (A, B)

@ m®(A) — @ACQAM (A)Aw3 (A)

DPCR Mgper (A> = m@ <A> + ZBM:@ EE(Av B) + ZBUC:ABHC:V)(‘I —e)m; (B)mz <C>

@ me(A) = @Ach”‘ (A)nvs(A)

MDEFCR Midper (A) = 3-pc—apnc = o(1 = %)m1 (B)m2(C) + 3pu—€E(A, B)
+2Brc=ABC = 0 %ml (B)m3(C) + > puc—apnc=o(1 — €)m1 (B)my (C)

AR () M (A) =} S grcon ey M1 (B)ma (C)

DAR (%) Mgqr(A) = Rymy (A) + Ryma (A)

YR (%) my(A) = me)(A), my(Q) = K + (@)

DMR Mamr (A) = 7[Ry R2m©(A) + [RiRz — Ry — Ro](1 — RiRa)mz (A)]

The function w can be obtained from m and conversely. Detailed definitions of belief representation functions can be found in
[6]. Besides, if a source S of information is known to be unreliable, then it is possible to reduce its impact using an operation
called discounting [33]. Discounting with discount rate o € [0, 1] is defined as:

(1 —oym[S](X) if X = Q,
(1 —o)ym[S](X) + o if X = Q.

The higher o is, the stronger the discounting. Thanks to discounting, an unreliable source’s bba is transformed into a function
closer to the vacuous bba. Mercier et al. [23] presented a refined discounting, in which discount rates are computed for each
subset and each source. The discounting is consequently more precise and efficient. It is, however, necessary to have enough
information allowing subset-specific computation.

Partial ordering relationships can be defined on 8¢ according to bba information content. Two examples of partial order-
ings are:

Mo, S|(X) = { (5)

e pl-ordering: m;Cpym, iff pl; (A) < ply(A), for all AC Q;
e g-ordering: m;C,m; iff q;(A) < q,(A), forall AC Q.

If miCym,, then m, is said to be x-more committed than m,, meaning that m; is more informative than m; in solving the
problem. Formal definitions of other partial orderings as well as their dependencies can be found in [6].

3. Information fusion in DST

This section is a short review of information fusion techniques in DST. Several combination rules, their properties and
more complex fusion schemes are presented.

3.1. Combination rules

For rules without pre-defined symbols, the notation ©,, refers to the combination rule named xx, and m, is understood as
the bba resulting from the combination using ¢, Combination rule equations are gathered in Table 1.
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Both Dempster’s rule and the conjunctive rule transfer beliefs to intersections of subsets. In contrast, the disjunctive rule,
introduced by Dubois and Prade [8] and denoted @ transfers beliefs to unions of subsets. This rule is based on a different
assumption on the reliability of sources®. Concerning this aspect, the conjunctive and disjunctive combinations are two ex-
treme cases, and consequently some authors have proposed rules in between these two cases. Dubois and Prade [9] introduced
another rule, denoted DPR, that combines sources conjunctively but reallocates x disjunctively.

Smets [38] generalized conjunctive and disjunctive rules by introducing the family of a-junction rules. The coefficient
o € [0,1] can be seen as a degree of conjunction or disjunction. The exclusive disjunctive rule, denoted ©, belongs to this
family of rules and transfers beliefs using the symmetric difference of subsets. The interest of this rule is mainly theoretical
because it can be interpreted as a solution to a specific data fusion problem (see Section 3.2.2).

More recently, Florea et al. [11] introduced robust combination rules (RCRs). These rules average the conjunctive and dis-
junctive rules using conflict-dependent weights. In the rest of the paper, RCR refers to the robust rule with the weight func-
tions recommended by the authors (see Table 1). This family of rules was extended by Martin et al. [21] resulting in the so-
called mix rules. In this extension, the weights are functions of pairs of subsets and do not depend mandatorily on . In the
rest of the paper, Martin’s mix rule (MMR) refers to the mix rule with the weight functions recommended by the authors (see
Table 1).

Note that MMR weights take subset cardinalities into account. The larger a cardinality, the more imprecise the hypoth-
esis. Consequently, imprecision influences the result of MMR computation. Using cardinalities for weighting belief transfers
was first suggested by Zhang [44] and applied to Dempster’s rule. However, Zhang’s rule (ZR) output bba must be renormal-
ized after combination.

Many authors have tried to work on Dempster’s rule basis by reallocating « in different manners. Yager’s rule (YR) [42]
transfers it directly to the ignorance. Inagaki [13] designed a family of rules dealing with conflict reallocation. This family
was extended by Lefevre et al. [19]. The main idea behind these rules is to distribute k¥ to some subsets according to an
appropriate scheme.

Using non-linear functions, Dezert and Smarandache’s PCR5 [35] redistributes conflict to the subsets from which it was
generated. Martin et al. [36] generalized it for more than two sources. This generalization is known as PCR6. The same
authors [21] also integrated a discounting mechanism in PCR6 resulting in the so-called discounted PCR (DPCR). They further
proposed to combine the DPCR and the mix rule into the mix DPCR (MDPCR).

Delmotte et al. [3] investigated the integration of reliability coefficients {R,-}f-‘i1 in two combination rules. The first rule,
referred to as Delmotte’s averaging rule (DAR), averages input bbas using {Ri}?i , as weights. Note that averaging was also
proposed by Murphy [25] and Jesang [31]. The second rule, referred to as Delmotte’s mix rule (DMR), is a mix rule with
weight functions depending on {R;}!, (see [4] for a detailed definition of these functions).

Another family of rules was recently introduced by Denoeux [6]. Only the two most significant ones are examined in this
paper: the cautious rule @ and the bold rule @ They are based, respectively, on a conjunctive combination of conjunctive
weight functions w and a disjunctive combination of disjunctive weight functions ».> Note that @ can only be applied to non-
dogmatic bbas and, similarly, @ can only be applied to non-normalized bbas. This problem can be solved by allocating a min-
imal residual belief { to ¢ and @, respectively. Other rules are listed in [32,39,34]. It is not intended in this article to review all
existing rules, but only the most popular or relevant ones for our study.

3.2. Properties of combination rules

The way rules manipulate sources of information is described by several properties. These properties and their relevan-
cies are briefly reviewed in this section. Formal definitions are not included but can be found in [39,34,32].

3.2.1. Algebraic properties
In these paragraphs, some of the most usual algebraic properties are listed:

o Commutativity and associativity: Combined with commutativity, associativity allows a source-order-independent combi-
nation. The same goal can be reached by substituting quasi-associativity introduced by Yager [43] for associativity. If
pieces of evidence are all available at the time of the combination (batch mode), then an n-ary version of the rule suffices.
If pieces of evidence are collected sequentially, then an updating scheme is often needed to avoid high computational
cost.

e Idempotence: Using an idempotent rule, no elementary piece of evidence is counted twice which is helpful in the case of
non-distinct evidences. In practice, most pieces of evidences coming from sources relying on the same observation are not
distinct but overlapping.

e Existence of a neutral or absorbing element: Some rules are designed so that the vacuous bba Q° has no impact on the fusion
result, i.e. the vacuous bba is a neutral element of the rule.

2 The terms conjunctive and disjunctive and the underlying assumptions are presented in Section 3.2.2.
3 The function v is the disjunctive counterpart of function w, see [6] for a detailed definition of function .
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Table 2
Several combination rules and their properties - part 1. x: the rule has the corresponding property. COM = commutativity, ASSO = associativity, Q-
ASSO = quasi-associativity and IDEM = idempotence.

Algebraic properties Algebraic properties
COM ASSO Q-ASSO IDEM CoOM ASSO Q-ASSO IDEM
() X X DPR X X
@ X X RCR X X
@ X X MMR X
@ X X PCR6 X X
@ X X X DPCR X X
@ X X X MDPCR X
ZR X DAR X X X
YR X X DMR X X

Table 2 lists the combination rules examined and their algebraic properties.

3.2.2. Conjunctive vs. disjunctive behaviours

The nature of a combination is closely related to informational ordering. Using a conjunctive rule, the result of the com-
bination is more committed than each aggregated bba. Thus, conjunctive combinations and the underlying commitments are
appropriate when sources tell the truth, i.e. are reliable.

Conversely, a disjunctive rule produces a bba that is less committed than the ones from which it originated. However,
disjunctive combinations are appropriate when some of the sources tell the truth but we do not know which ones. Under
such circumstances, it is too risky to commit oneself to one of the pieces of evidence. Further comments on conjunction
and disjunction can be found in [8,38,39].

There is a third category of combination nature, if it is thought that only one source is true, but it is not known which one.
This view corresponds to the exclusive disjunctive rule. Generally speaking, «-junction rules, whose behaviours are in be-
tween conjunctive and disjunctive, are not easy to interpret (see [38,28]). The exclusive disjunctive rule assumption does
not suit VT context and therefore is no longer discussed in this article.

Table 3 shows which class of behaviour a rule belongs to. A majority of rules are partially conjunctive and disjunctive.
Some of them use @ only as part of the conflict redistribution (denoted x-CON]J in Table 3). The others use @ in a broader
way (denoted CON]J/DIS] in Table 3). T

3.2.3. Subsets related properties

In this section, we introduce two properties arising from VT application. Using a conjunctive rule, the mass allocated to
increases and that of Q decreases. Similarly, using a disjunctive rule the mass allocated to Q increases and that of () decreases.
We denote, respectively, these phenomena by: ( >~ {@,@}, Q> {@,@}, 0 {@,@} and Q {@,@}. These phenomena
are a consequence of the nature of the combination and cannot be avoided but, in practice, they may yield bbas assigning
excessive masses to () or Q. In the end, the result of the fusion may be unexploitable (see a remark of Smets in the very last
paragraph of [39]).

A generalization of these phenomena can be formalized for any subset and any rule but, in this article, our practical needs
are limited to monitoring rule behaviours toward ¢ and Q.

Table 3
Several combination rules and their properties — part 2. x: the rule has the corresponding property. CONJ = conjunctive, x-CON] = purely conjunctive if x = 0
and partially conjunctive and disjunctive if x > 0, CONJ/DIS] = partially conjunctive and disjunctive, DIS] = disjunctive and OTHER = other kind.

Combination nature related properties Combination nature related properties
CONJ K-CONJ CONJ/DIS] DIS] OTHER CONJ K-CONJ CONJ/DIS] DIS] OTHER
® x DPR X
@ X RCR X
@ X MMR X
) x PCR6 x
@ X DPCR X
@ X MDPCR X
ZR X DAR X
YR

X DMR X
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3.3. Multiple-rule combination schemes

Clearly, the more properties needed, the more difficult it is to design an appropriate rule as in any constraint satisfaction
problem. If a property is needed in a situation A whereas in a situation B an antagonistic property is needed, then a condi-
tioning step can be used to identify the present situation and then select a rule. Even after conditioning, and, therefore,
reducing the number of constraints, some incompatibilities may remain. It is then necessary to define priorities among these
properties, i.e., a hierarchy.

As explained in the introduction, more complex fusion schemes can be designed in order to overcome single rule limita-
tions. A discounting conditioned by contextual data can be applied to bbas before combination. This process can tune bbas,
alleviating inconvenient evidences that would prevent bbas from being efficiently processed by a single rule. The conditions
under which a bba must be discounted are context-dependent. Generally speaking, discounting should not be opposed to
other methods because it is a complementary tool that can help to solve simply some unreliability related problems.

Some rules such as DAR or DMR enclose a conditioning step because the output bba depends on external data. Kallel and
Le Hégarat-Mascle [15] worked on partial distinctness. The proposed rule, called the cautious-adaptative rule, varies from
the conjunctive rule to the cautious rule depending on a parameter Q € [0, 1]. The value of Q is obtained using a priori knowl-
edge on evidence distinctness.

In [39], Smets proposes a conditional scheme. A large number of conditions are examined leading to some rule selection
and discounting. This scheme is limited to conflict management issues. Furthermore, only one rule is selected and applied to
all bbas. The assumption that one rule meets all requirements is not verified in our VT application even if it is carefully se-
lected (see Section 4.2.2).

Ha-Duong [12] proposes a hierarchical approach based on two combination rules. This approach is designed for the fusion
of groups of experts’ opinions. Within each group of experts the cautious rule is used, and the bbas resulting from these com-
binations are then aggregated using the disjunctive rule. The process is not conditioned by input bbas and therefore the
choice of rules is static. It does not fit VT application in which sources evolve and necessitate dynamic rule selections.

Quost et al. [30,29] designed an approach both hierarchical and conditional. Bbas are clustered regarding bba dependency
criteria. An appropriate rule is then applied within each bba cluster. Following a dendrogram hierarchy, other levels of fusion
are then needed to aggregate newly generated bbas. The method is dedicated to non-distinct source combination issues. A
priori information is needed for combination rule learning.

In this article, we intend to develop a hierarchical and conditional combination scheme (HCCS) allowing VT requirements
to be met.

4. Evidential fusion scheme induced by visual tracking

In this section, the VT problem is formalized and an evidential particle filter (EPF) is proposed as a solution. Then, the data
fusion constraints induced by VT are examined and translated into combination rule property requirements. A hierarchical
and conditional combination scheme is introduced so as to deal with these requirements.

4.1. Visual tracking using EPFs

The VT problem can be expressed as follows: the position of a target object must be identified in each image of a video. In
this article, a bounding box is used to represent an object position within an image. This representation has the advantage of
being coded by only four time-dependent parameters: (xi¢,X2¢, W¢, H) with (x1¢,X>) the box centre coordinates, W, the box
width and H, the box height at time t. Finding out the actual values of these parameters for each t is equivalent to solving the
VT problem.

There are many ways to estimate these parameters. Particle filters (PFs) [14,26] have gained popularity among the
computer vision community because of the compromise they offer in terms of both precision and computation time. They
are notably preferred to Kalman filters which are restricted to linear models and Gaussian noises. PFs estimate a state
vector X; whose value is the answer to the problem at stake, hence X; = (x;,x2¢, W, H). In each image of the sequence,
the filter samples several sub-images, i.e., several values of X, also called particles and denoted Xf). It is then necessary to
evaluate to what degree each sub-image is likely to actually contain the target object. This evaluation is a crucial step of
the filter and is performed using an observation model. The efficiency of the filter relies on the relevance of the model
chosen.

Data fusion is frequently used to design more robust models. Some authors initially proposed Bayesian fusion solutions
since PFs rely on probability theory [2,27]. The efficiency of Bayesian fusion depends on the precision of density models and
information delivered by the sources. Some sources in VT applications happen to be highly imprecise whenever a situation
causes a source to be out of its observation capacity bounds.

As in many other applications, DST is an alternative to the Bayesian approach. Partial knowledge of the problem can be
modelled and a large number of fusion tools are available as shown in the previous section. Thus, several authors have de-
signed evidential particle filters (EPFs). Initially, extensions of the Kalman filter to the DST were proposed in [20,22,37]. In
[10], a DST step produces features that can be used as in a classical PF. In [2], a PF is used for tracking along with DST for
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target classification into several object categories. In [41], a particle filter using a DSmT fusion step is presented for multiple
target tracking. Each particle observation is compared to each target model. Two cues (location and colour) are combined
using a worked out combination rule, yielding a new bba whose belief or plausibility function updates particle weights.
In [17], three features are used and combined using the conjunctive rule. The pignistic transform is applied to the combina-
tion result so as to update particle weights. In [24], a similar approach is extended to multi-target multi-sensor tracking lead-
ing to further model developments.

In this article, we are not interested in how an EPF should be designed, but in determining a bba combination scheme
adapted to visual tracking EPFs. We also limit the problem to monocular single object tracking. The EPF employed in our
experiments is further presented in Appendix A.

4.2. Information source disruptions in a VT context

To understand the relevance of adapting combination techniques to VT, we need to investigate what events disrupt VT
algorithms. Occlusion is one of these events. PFs have shown better robustness to occlusions than other VT algorithms thanks
to the fact that particles spread out during the course of an occlusion, giving PFs a better chance to detect the object after the
occlusion. An occlusion bans access to visual information; image-based sources become ignorant, which is a case of major
imprecision. Two other events generate imprecision: illumination changes and particular movements to which feature
extraction methods may be sensitive. Fig. 1 shows an example of an illumination change causing disruption to a colour-tex-
ture feature based source.

Clutter also causes severe disruptions. As opposed to other events, clutter induces unreliability of sources because they
may identify two distinct locations for the target object whereas the tracking problem has only one solution. One of the pro-
posed locations is thus wrong and the source delivers wrong information. Fig. 2 illustrates a clutter situation causing a shape
feature based source to turn unreliable. If the objects are perfectly identical, then one cannot expect to distinguish them. In
this extreme case, other tracking techniques, such as multi-target tracking or trajectory analysis, should be applied. In this
article, it is assumed that the objects can be distinguished using at least one source. However, this capacity may not be con-
stant over time.

In conclusion to the above remarks, VT makes it necessary to design a combination technique taking high imprecision and
unreliability into account. In the rest of this document, highly imprecise sources are referred to as weak sources. Normal
sources comprise all sources that are neither weak nor unreliable. Thus, a normal source may contain some imprecision
or unreliability which is considered as negligible. We now present our HCCS that is composed of two main steps: bba anal-
ysis and hierarchical fusion.

4.2.1. BBA analysis

This step consists in detecting weak and unreliable sources. It relies on the possibility to collect contextual information
and therefore, it is application dependent. We present here a simple method based on particle filtering.

Only two tests are needed to identify sources as weak and unreliable. The first one is the “weakness test”, which separates
weak sources from others. The weakness of the bba provided by S; is determined by thresholding the ignorance m;(2). To

Fig. 1. A source turning from normal to weak. Red squares are locations to which the source assigns low weights. Green ones are heavily weighted. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Two distinct
locations are heavily
weighted by the

source

1

Fig. 2. A Source turning unreliable.
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take a safer decision, the contextual information brought by a particle filter can be used. EPFs evaluate m;() for each par-
ticle. Let us denote mS;, X\"] the bba of source S; at the location coded by particle X!". The condition for detection as weak is
thus:

1- min m [s,xg”] (Q) < tweaks (6)
with N the number of particles and t.q a threshold defined a priori. S; is labelled as weak if there is no particle yielding
m[S;](2) < 1 — tyea- TO set tyear, ONe must identify up to what value labelling a rather imprecise source as weak is risk-free.
Under this condition, highly imprecise bbas do not impact inappropriately on the fusion result.

The second test to perform is the “unreliability test” that separates non-weak sources into unreliable sources and normal
sources. In this article, unreliability is detected if S; identifies disjoint parts of the image as containing the tracked object. One
of them actually contains the object, whereas the others contain something else that is similar to the object. PFs assign heavy
weights to particles located near image regions resembling the target. Thus, it is possible to use these weights as part of a
dispersion measure, disp. The unreliability condition for source S; is then:

N . 2 . 2
disp > tyqp with disp = 47 ((xﬁ’?r - >’<u) + <x§‘?[ - )22_[) >, (7)
i=1

taisp a threshold, and ) the weight generated by the source S;j at time ¢ for particle X, The weights are computed as if a one-
source PF was used. X; = (%1, X2., W;, H;) is the weighted mean of particles: X, = > , 2%X. The mean values of height and
width are not used because the size dispersion is not relevant for clutter detection. The value of the threshold is easily ob-
tained because the dispersion value varies significantly when an outlier occurs. In our experiments, the threshold value was
fixed dynamically: tg, = amin(H;_1,W;_1), witha € R.

In the experiments, parameters of the bba analysis step are set by the user with an error/correction procedure. Typical
values of ty.q and a are shown in the experiments, see Table 8.

4.2.2. First fusion level
Since the appropriate combination behaviour depends on labels, each possible pair of source types must be examined:

e Case 1: A weak source S; combined with any type of source S,: the result should be a bba close the one provided by S,. A
weak source assigns a large mass to Q; therefore, the chosen rule should lower the ignorance. In some sense, this is a gen-
eralization of the neutral impact of the vacuous bba property.

e Case 2: A normal source S; combined with another normal source S,: both bbas represent reliable pieces of evidence. A
conjunctive combination is typically useful in this case so as to extract as much common reliable information as possible.
Normal sources are not always fully reliable, so a partially conjunctive rule also fits.

e Case 3: An unreliable source S; combined with a normal or unreliable source S,: at least one bba contains some erroneous
evidence. A fully disjunctive combination is typically useful so as not to discard any possibly relevant evidence. Given that
Q- @ it would be unwise to aggregate weak sources using this rule. Consequently, if a source is both weak and unre-
liable, then the weak aspect prevails over the unreliable aspect.

These three interlocking cases cover all possible pairwise source combinations provided that the rule is commutative,
which is implicitly assumed. The fact that the cases are interlocked implies a hierarchy.

Cases 1 and 2 match pretty well, since Q + {@,@}. However, a strong incompatibility is raised by case 3, since a source
cannot be fully disjunctive and partially conjunctive at the same time, hence the need for a fusion scheme instead of a single
rule. Weaker requirements can be added: quasi-associativity (to limit the computational cost of the combination) and the
ability to process non-distinct sources (the process should be as generic as possible). The order with which rules are applied
and bbas combined is obviously important. As a consequence, HCCS is not associative but if the chosen rules are quasi-asso-
ciative, so is HCCS.

The combination of requirements from cases 1 and 2 indicates that bbas detected as normal or weak can be jointly fused
using a conjunctive rule; @ and @ are potential candidates. Case 3 requires a fully disjunctive rule, therefore @ and @ are
potential candidates. Following the secondary requirement concerning non-distinct sources, bold and cautious rules should
be preferred. However, because of the bba model used in our experiments, most of the bbas produced are normalized, which
impairs the use of the bold rule. The experiments will show that the bold rule’s performances are pretty poor c.f. Section 5.4.
The proposed assignment is the following:

e Weak and normal bbas, as well as bbas that are both unreliable and weak, are jointly aggregated with rule @;
e Non-weak unreliable bbas are aggregated with rule @

Fig. 3 summarizes the first fusion level.
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Fig. 3. First fusion level of HCCS.

4.2.3. Second fusion level

The first combination step yields two bbas: mg, and m . To fuse these two bbas, the first fusion step can be applied to
them if they are identified as normal, weak or unreliable. g@ormality is a dominant character compared to weakness when
using @ so m~ is weak only if all the bbas combined with @ are weak. me is normal otherwise. As a combination of unre-
liable sources m, is also unreliable. As a consequence of Q > @ mg can be imprecise too. This imprecision is considered to
be artificial and is not taken into account. T

Following requirements expressed in Section 4.2.2: if meg is weak, Mpyes = m®®m© (case 3) and if mg) is normal,
Mhpees = M @m (case 1).

Note that, compared to related works, HCCS is not more computationally costly than a single rule in a batch mode, since
the same number of aggregations is needed. In a sequential mode, a incoming bba is integrated to mg, or m~ by associa-
tivity, and the final fusion result is obtained by repeating the second fusion substep, which is just one combination of
two bbas.

5. Experiments

In this section, HCCS is evaluated in terms of VT performances. We use the EPF proposed in [17]. Sources are limited to
visual information extractors. These extractors work on the same experiment (the image sequence), and consequently
sources are not necessarily distinct. So as to respond differently to disrupting events, some of the following sources are used
in the experiments:

e Colour-texture source S._;. The colour-texture extraction method is based on cooccurrence matrices [16]. Pairs of colours
of neighbour pixels are counted and stored in these matrices.

e Colour source S,. As in [26], a colour density is used for this source. A colour density is a 3D colour histogram in which
colour occurrences are weighted by the distance from the centre pixel of the image region.

e Shape source S;. The shape feature is a symmetry card [1]. Each image region column is considered as a potential axis of
symmetry and equally distant pixels are compared using a colour distance.

e Motion source S,,. The motion is treated by detecting movement significantly different from the global motion of the scene
[18]. A histogram of movement is built from pixel movement intensities.

By cleverly combining these extractors’ assets, tracking can be maintained even if all kinds of previously cited events oc-
cur. When HCCS performances are compared with another fusion technique, it is important to stress that the same sources
and the same EPF are used. We present below some implementation details before showing experimental results.

5.1. Implementation

This subsection describes the frame of discernment on which bbas are defined and how visual information is processed to
construct bbas. These bbas feed the fusion technique which itself feeds the EPF.

5.1.1. Frame of discernment
The frame of discernment is defined as Q = {w1, W, w3}, with

e w;: The sub-image contains the targeted object.
e ;: The sub-image contains a piece of the scene background.
e ms: The sub-image contains any other object independent from background.

Q can be reasonably thought to cover all possibilities and to be composed of exclusive hypotheses. In this frame of dis-
cernment, our goal is now to estimate each source bba and then to combine them using HCCS.

5.1.2. BBA construction )
For any source S; and particle X", features are extracted from the analysed sub-image and compared to reference features
known a priori. The set of reference features constitute the object model (or models if other elements of the scene are ana-
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Table 4
Focal elements of implemented sources and their semantics.

Source Focal element Semantics

Set {m1} The sub-image contains the object

{wy} The sub-image contains a piece of the scene background

Se {w1} The sub-image contains the object

Ss {w1} The sub-image contains the object

Sm {w1, w3} The sub-image contains an object independent from the background
Table 5
Tennis ball sequence characteristics.

Sources used Conflict Disrupting event

Se_t Mye,1[Sc] is not used, no conflict is A brutal illumination change occurs, turning the colour-texture source from “normal”

generated to “weak”
Ss No conflict
Sm No conflict The source varies from “normal” to “weak” as the target moves or not

Fig. 4. “Tennis ball” sequence. Top: successful tracking in presence of an illumination change with HCCS. Bottom: tracking failure with a PF relying on S._,.

lysed). Model learning is rudimentarily performed on the first image of the processed sequence, since at t = 0 the object loca-
tion is known. By matching a model with the observations drawn in the sub-image a distance d,;* can be computed, with ACQ
a hypothesis in accordance with the model semantics. Indeed, model/observation matching is not possible for any subset A4, it
depends on the information source and its interpretation regarding the VT problem. Focal element selection is summarized in
Table 4.

The Bhattacharyya distance is an efficient metric for histograms [26] and it can be directly applied to all outputs of feature
extraction techniques presented above. 2D or 3D feature arrays are processed as 1D arrays so as to obtain ds. A Gaussian
model is used to define simple bbas:

1-exp (—%’;)
ma[S] = A v/, (8)

with o, the standard deviation of the Gaussian function. These parameters are supposed to be fixed a priori; in our exper-
iments they were set using an error/correction procedure.

The global bba for the colour-texture source is obtained by fusing the two colour-texture sbbas: m[S._] = Myq,}[Sc—¢]
@m{mz) [Sc—¢]- Other source bbas are obtained straightforwardly since they are composed of only one sbba. For practical rea-
sons, it was not possible to design more sbbas; for example, the shape of the background is generally impossible to model.
The movement source is much more imprecise than others; therefore, the choice of focal elements for this source reflects its

4 The dependency on indexes j,i and t is omitted to simplify notations.
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Fig. 5. Tennis ball sequence. Top: bba analyses 1: “normal”, 2: “weak”, 3: “unreliable”. Bottom: tracking rates several combination techniques.

Table 6
Two cars sequence characteristics.
Sources Conflict Disrupting event
used
Sc_t My0,1[Sc] is not used, no A clutter situation occurs: two objects (a grey car and a white car) have similar colour-texture
conflict is generated properties depending on the sun reflection on their bodies
Ss No conflict A clutter situation occurs: two objects (a grey car and a white car) have similar shape properties

imprecision. Note that this bba construction model can be regarded as a 1-ppv version of Denoeux’s model [4]. Further infor-
mation on more refined bba models can be found in [5,7].
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5.2. Results and discussion

VT results were ground-truth-validated using a tracking rate measure r € [0, 1], more widely known as the dice coeffi-
cient. This measure evaluates a tracking algorithm performance by comparing its estimation of vector X; to a ground-truth

2xS(ANB)
S@A)+S(B)

is the ground-truth object bounding box. The closer r is to 1, the more precise the algorithm. The smaller the variations of r,

estimation of the same vector:

r=

the more robust the algorithm.

Fig. 6. “Two cars” sequence: successful tracking in presence of unreliable sources.

. Sis the surface area of a set in pixels, A is the estimated object bounding box, and B
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Table 7
Dog and ball sequence characteristics.
Sources Conflict Disrupting event
used
Se_t My0,1[Sc] is used, conflictis  Target occlusion: another object hides the target (the source becomes weak) noise: the colour-texture
generated model efficiency is damaged, (the source becomes unreliable)
Ss No conflict Target rotational motion: the symmetry features are useless
Sm No conflict Target occlusion both the dog and the ball are moving causing unreliability
Se No conflict Target occlusion noise: the colour model efficiency is damaged

Fig. 8. “Dog and ball” sequence: successful tracking in the presence of an occlusion.

In the following paragraphs, tracking efficiency is tested on videos containing the disrupting events mentioned in Sec-
tion 4.2. HCCS is first tested on three different sequences corresponding to different data fusion challenges. In each case,
HCCS is compared to @ and @ using the measure r. For the sake of clarity, comparisons to other rules are gathered in Sec-
tion 5.4, where more general conclusions on the experiments are also proposed.

5.2.1. Impact of imprecise sources

This experiment focuses on weak source combination therefore the unreliability test is disabled. The experiment is car-
ried out on a sequence named “tennis ball”. Its characteristics are summarized in Table 5.

This experiment is a typical case for which one-source approaches relying on colour information fail.> With the help of
other types of sources, the tracking can be maintained provided that the fusion technique is not sensitive to imprecision. In
Fig. 4, tracking results obtained thanks to HCCS are compared with those of a PF relying only on S._;.

These bba analysis results are consistent with the scene description. An illumination change occurs around image 52.
Since no source is identified as unreliable in this example, HCCS is equivalent to the cautious rule.

In Fig. 5, the tracking rate evolution is represented for @ @ and HCCS. Unlike the disjunctive rule, HCCS is clearly insen-
sitive to imprecise sources. Using the conjunctive behaviour of the cautious rule, HCCS exploits informative pieces of evi-
dence. As the HCCS tracking rate shows, the tracking is maintained throughout the 149-frame sequence. There is no
background model defined on that sequence, so no conflict is generated. Consequently, most of the other rules give very sim-
ilar results compared to @ see Section 5.4.

5.2.2. Impact of unreliable sources
As this experiment focuses on unreliable source combination, the weakness test is disabled. The experiment was carried
out on a sequence named “two cars”. Its characteristics are summarized in Table 6. The target is a grey car. The presence of a

5 Illumination invariant colour features cannot usually overcome massive and sudden illumination changes.
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white car generates a clutter situation and consequently unreliability. When the discriminative powers of the sources are
damaged by an outlier, data fusion helps to accumulate relevant information from each source so as to make a safer decision.
Successful tracking on this sequence using HCCS is presented in Fig. 6.
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Fig. 7 presents HCCS’s bba analysis step results. After frame 30, the white car is shadowed therefore the frequency of
detection as unreliable increases for S._;. After frame 67, the white car leaves the scene and the clutter stops. S; is less sen-
sitive to the clutter situation which means that the shape model of the grey car is more relevant than the colour-texture one.

In Fig. 7, the tracking rate evolution is represented for @ @ and HCCS. During the clutter, tracking algorithms using @
or @ “hesitate” between the two cars. This accounts for their rates dropping under 0.5. @ does not produce satisfactory
results because if a single source gives credit to ; on two distinct regions of the image, a conjunctive fusion will most likely
maintain this credit for each of these regions. Under such circumstances, HCCS selects the disjunctive rule and outperforms
the conjunctive rule. Nonetheless, the disjunctive rule may favour one of the two image regions even if the sources are very
imprecise. Fortunately, on this experiment, sources are not imprecise and unreliable at the same time. To ensure a safer fu-
sion process, the weakness test must be used as well.

5.3. Dealing with multiple failures

This experiment contains unreliable, weak as well as conflicting sources. It covers a wide range of data fusion issues,
thereby helping to validate HCCS in a broader context. The experiment is carried out on a sequence named “dog and ball”.
Its characteristics are summarized in Table 7.

The target is a ball. A dog playing with the ball causes an occlusion and blinds all sources. Fig. 8 presents HCCS's
results on this video. HCCS’s bba analysis step results are given in Fig. 9. The bba analysis results are consistent with
the explanations given in Table 7. During the occlusion, S, ; remains “normal” because it also gives credit to {w,} on
image regions corresponding to the background (the lawn). S, is also active during the occlusion because the dog keeps
moving.

The tracking rates are presented in Fig. 9. The tracking rate of @ is damaged by S in the same way as S._; causes damage
in the “tennis ball” sequence. Compared to @ HCCS takes better advantage of unreliable sources in the same way as in the
“two cars” sequence. Although S._; produces some conflict mass, rules relying on conflict reallocation are not adapted to the
present experiment, see Table 9. During the major occlusion period, tracking rates are forced to 0 because, if the object can-
not be seen, the meaning of a positive rate is questionable. As can be seen on Fig. 9, the EPF recovers from the occlusion a lot
faster thanks to HCCS.

5.4. Comparison between HCCS and single combination rules

In this section, rules’ and HCCS’s performances are compared through the three sequences presented in the previous para-
graphs using several measures: two quantitative measures y and ¢ corresponding to the average tracking rate and its stan-
dard deviation, and a qualitative measure MTF/ST. MTF means Major Tracking Failure and ST means Satisfactory Tracking.
The MFT/ST measure is evaluated by an expert.

5.4.1. Protocol

To compare HCCS with other approaches on an equal footing, the same amount of information must be available for all of
them. Indeed, HCCS can outperform combination rules thanks to the contextual information that allows bba analysis. Con-
sequently, analysis results were integrated to classical rules too. Each rule is thus tested in three different situations:

e The rule is applied without the help of bba analysis results.

e The rule is applied on weak sources and on discounted unreliable sources. A relevant value for the discounting coefficient
o must be determined. If « is too small, the impact of unreliable sources is nearly unchanged. If « is too high, the pieces of
evidence brought by the source are suppressed. We chose o = 0.7 which is a good compromise in our experiments.

e The rule is applied on discounted unreliable sources and weak sources are evicted. As explained in the previous sections,
weak sources damage the fusion result of several rules. Unlike unreliable sources, they can be discarded as they carry little
information.

Table 8

Parameters of several rules giving highest value of p. x: test not relevant.
Sequence name Tennis ball Two cars Dog and ball Sequence name Tennis ball Two cars Dog and ball
@ (=01 (=01 (=01 DAR X R=01 R=09
@+ X (=01 (=01 DAR+ X R=0.1 R=038
®+* (=01 X (=01 DAR+* X X R=04
DPCR X X e=07 DMR X R=02 R=04
DPCR+ X X €=038 DMR+ X R=01 R=02
DPCR+* X X €e=038 DMR+* X X R=09
MDPCR x x €=06 HCCS tweak = 0.0001 Eeak = X tweak = 0.05
MDPCR+ X X €e=0.38 a=x a=7 a=2
MDPCR+* X X e=04
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In addition, some rules require a parameter tuning; test values are:

o For parameter ¢ of (V):{ € {107',107%,10°,107%,107°,10 °}. { gives a minimal mass to . Given the implemented bba
model, a source never produces a dogmatic bba, therefore, { is never used for @

o For parameter € of DPCR and MDPCR: € € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. € redirects the conflict mass on different
terms of the rule’s equation.

Table 9
Global performances for all implemented rules and HCCS. The most remarkable results for each rule are in bold font. +: conditional discounting was used. *:
weak sources evicted. x: test not relevant. ST = satisfactory tracking, MTF = major tracking failure.

Sequence name Tennis ball Two cars Dog and ball

Sequence characteristics Imprecision (illumination change, Unreliability (clutter) Imprecision and unreliability (occlusion,
periodic motion) inaccurate object models)

Sources Sc_t,Ss and Sy Sc_¢ and S; Sc_t,S¢,Ss and S,

n o MTEF/ST u o MTF/ST pu o MTF/ST
® 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5217 0.3124 MTF
o+ X X X 0.6409 0.1318 MTF 0.5164 0.3120 MTF
e+ 0.6773 0.2649 ST X X X 0.3568 0.3358 MTF
@ 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5217 0.3124 MTF
@+ X X X 0.6409 0.1318 MTF 0.5152 0.3122 MTE
®+* 0.6773 0.2649 ST X X X 0.3568 0.3358 MTF
@ 0.3376 0.4060 MTF 0.6052 0.1554 MTF 0.2697 0.2991 MTEF
©+ x x x 0.6052 0.1554 MTF 02918 03043 MTE
©+* 0.6501 03248 ST x x x 0.4848 0.3296 MTF
@ 0.7756 0.1546 ST 06390 0.1348 MTF  0.5087 03168 MTF
®+ X X X 0.6398 0.1327 MTF 0.5053 0.3163 MTF
®+* 0.6773 0.3006 ST X X X 0.3568 0.3358 MTF
@ 0.7570 0.1438 ST 0.5212 0.1722 MTF 0.4677 0.3177 MTF
®+ X X X 0.5864 0.1463 MTF 0.4942 0.3154 MTF
®+* 0.7669 0.1473 ST X X X 0.4101 0.3376 MTF
ZR 0.7685 0.1506 ST 0.6422 0.1300 MTF 0.5356 0.3164 MTF
ZR+ X X X 0.6545 0.1195 MTF 0.5306 0.3138 MTE
ZR+* 0.5726 0.3645 ST X X X 0.4188 0.3417 MTF
YR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5209 0.3136 MTF
YR+ X X X 0.6409 0.1318 MTF 0.5164 0.3120 MTF
YR+* 0.6773 0.2649 ST X X X 0.3568 0.3358 MTF
DPR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5216 0.3131 MTF
DPR+ X X X 0.6409 0.1318 MTF 0.5135 0.3127 MTF
DPR+* 0.6773 0.2649 ST X X X 0.3564 0.3354 MTF
RCR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5205 0.3134 MTF
RCR+ X X X 0.6409 0.1318 MTF 0.5130 0.3128 MTF
RCR+* 0.6773 0.2649 ST X X X 0.4059 0.3353 MTF
MMR 0.7779 0.1483 ST 0.6424 0.1303 MTF 0.5153 0.3106 MTEF
MMR+ X X X 0.6529 0.1225 MTF 0.5126 0.3109 MTF
MMR+* 0.7771 0.1491 ST X X X 0.4035 0.3341 MTF
PCR6 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5204 0.3138 MTF
PCR6+ X X X 0.6409 0.1318 MTF 0.5164 0.3120 MTF
PCR6+* 0.6773 0.2649 ST X X X 0.3566 0.3357 MTF
DPCR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5215 0.3132 MTF
DPCR+ X X X 0.6409 0.1318 MTF 0.5150 0.3138 MTF
DPCR+* 0.6773 0.2649 ST X X X 0.3568 0.3358 MTF
MDPCR 0.7779 0.1483 ST 0.6424 0.1303 MTF 0.5160 0.3108 MTF
MDPCR+ X X X 0.6529 0.1225 MTF 0.5129 0.3109 MTF
MDPCR+* 0.7771 0.1491 ST X X X 4064 0.3326 MTF
DAR 0.7075 0.2347 ST 0.6742 0.1023 MTF 0.5203 0.3133 MTE
DAR+ X X X 0.7116 0.0767 ST 0.5140 3138 MTF
DAR+* 0.7758% 0.1567 ST X X X 0.4223 0.3371 MTF
DMR 0.3376 0.4060 MTF 0.6286 0.1417 MTF 0.5216 0.3125 MTF
DMR+ X X X 0.6235 0.1343 MTF 0.5168 0.3125 MTE
DMR+* 0.7976 0.1499 ST X X X 0.3708 0.3422 MTF

HCCS 0.7756 0.1546 ST 0.7388 0.0713 ST 0.6705 0.2122 ST
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e For reliability coefficients R; of DAR and DMR: R; € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} if source S; is unreliable and
R; = 1 otherwise.

Among all these parameter values, the ones giving the highest values of i were retained and are presented in Table 8.
Note that there is no unreliability test in the first experiment and no weakness test in the second one, so some cells of
the table are marked with the symbol x.

5.4.2. Results and discussion
Table 9 summarizes the performances of HCCS and the various rules investigated in the VT application.
Several remarks can be made on examination of Tables 8 and 9:

o The nature of the combination is the only combination rule property clearly producing different results depending on the
situation. As HCCS analyses these situations for each bba and selects the adequate rule nature, it is therefore, the only
combination technique achieving a satisfying tracking on the three test sequences.

o Conflict redistribution rules are not adapted to the type of unreliability arising in the experiments. As demonstrated by
several authors, conflict management can be of major importance in many applications [11]. If so, @ can be replaced with
a conflict redistribution rule in HCCS.

e Weak source eviction improves the performances of @ proving that Q > @ must be taken into account inside the fusion
process. T T

¢ In the second experiment, which focuses on unreliability, conditional discounting slightly improves the performances of
most rules, but is not sufficient to prevent a partial loss of tracking.

o the bba models used in the experiments are inadequate for the bold rule, whose best performance is always met for
{=0.1.

Note that, if parameters a and t,,q are not set correctly, the bba analysis results are erroneous and the VT performances of
HCCS are then no better than those of single rules. This proves that the contextual information brought by the bba analysis is
meaningful and adequately exploited by HCCS.

Furthermore, it is important to stress that these results depend on the bba models and the tracking problem definition.
Better bba models [4,5,7] or other problem representations [22] should significantly improve the VT performances.

6. Conclusion

In this article, we have presented a novel evidential fusion scheme adapted to visual tracking challenges. Visual tracking
induces specific data fusion issues regarding notably highly imprecise or unreliable sources. The constraints imposed by
these abnormal sources made it necessary to design a broader fusion technique named the hierarchical and conditional com-
bination scheme (HCCS). We propose to analyse bbas so as to detect and identify unreliable or highly imprecise sources. The
fusion problem can then be separated in sub-problems, thereby reducing the number of constraints. We justify that two
groups of bba can be processed by the cautious and disjunctive rules, respectively. The two output bbas are analysed as well
and aggregated using one of these two rules depending on the analysis results.

The bba analysis step is performed using contextual information brought by an evidential particle filter. This filter is used
as the tracking algorithm for our visual tracking application. The experiments show that HCCS produces satisfactory visual
tracking performances in spite of the presence of unreliable or highly imprecise sources. As compared to single combination
rules, HCCS responds adequately to all the tracking scenarios examined. HCCS is a novel tool in the sense that it adapts itself
individually to each source whenever a new image arrives. In addition, HCCS computation cost is equivalent to that of a com-
bination rule.

The flexibility and robustness of combination schemes open new perspectives for other information fusion applications.
Indeed, HCCS can be extended to other types of bbas provided that some contextual information allows an ad hoc bba anal-
ysis step. In future works, it is also intended to use HCCS in a multiple object tracking context. The frame of discernment and
bba construction presented in [22] can be used to achieve multiple object tracking. It comprises a data association process
between previous tracks and newly obtained observations. HCCS can be used directly on each track for source combination.
It may also be possible to select a set of relevant particles for each object so that the bba analysis step can be run more
locally.

Appendix A. EPF used in our experiments

In this appendix, some details concerning the EPF used in our tests are presented. This EPF relies on a sampling-
importance-resampling with a multinomial resampling. Its evidential part is the one proposed in [17]. The procedure
is summarized in Algorithm 1. i is the weight of particle X". ¥y, is the random variable representating observations.
01,...,04 are the standard deviation of the sampling density. These parameters as well as the initial position of the ob-
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ject X, are known a priori. The sampling density is sub-optimal but allows a simplification of the particle weight update
step.

Algorithm 1. EPF used in our experiments

for t =1 to end of sequence do
fori=1toNdo
Sample particles X\ using p(X\"|X\",) = (4°(0,61), 4°(0, 33), (0, 03), 4(0, G4))
forj=1to Mdo
Evaluate m(S;]
end for
Use a DST combination method to aggregate the sources and calculate the pignistic transform BetP
Obtain the likelihood p(Y;|X\") = BetP(w)
Update weights using Aﬁ” o Agi_)l p(Yt|X§i>)
29

Zj'i Wi

Normalize weights i’ =
end for
Estimate the filtering density p(X;|Y1:) = Z{-‘; Zg”&xm (X¢t)

Re-sample N new particles )N(?) among XE” with probability )Vﬁi) and assign them the weights ;,@ =4
end for
End

Note that HCCS can be used with any EPF. The one described in this appendix was chosen for its simplicity, therefore, the
influence of a combination method on the VT performances is easier to interpret.
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