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Preface

This is a book on empirical number theory concentrating on the analysis of
number sequences. Its focus is on a small part of a very large number of
integer sequences defined by Florentin Smarandache. The author has,
however, when appropriate included some other of his research results which
organically belongs to this areca. The content is organized into chapters
according to the main considerations to make when programming the
analysis. They are not mutually exclusive.

As in my previous book Surfing on the ocean of numbers - a few
Smarandache Notions and Similar Topics an attempt has been made to
present results so that they are easy to understand and not to burdensome to
read. There are many tables, some of which may be used for reference, but in
general they are there to show the overall results obtained at a glance. In most
cases it is the way in which sequences behave, not the individual figures,
which is of importance. Some graphs have been included to illustrate
important findings.

Some of the results in this book were presented by the author at the First
International Conference on Smarandache Notions in Number Theory,
August 21-23, 1997, Craiova, Romania.

References have been given after some of the chapters. However, constant use
has been made of the following Smarandache source materials:

Only Problems, Not Solutions!, Florentin Smarandache.

Some Notions and Questions in Number Theory, C. Dumitrescu, V. Seleacu.



Ilustrations, graphics, layout and final editing up to camera ready form has
been done by the author. Most tables have been created by direct transfer from
computer files established at the time of computing to the manuscript so as to
avoid typing errors. The results often involve very large numbers which are
difficult to accommodate in pre-designed formats. It has therefore often been
necessary to use several lines to represent a number in tables as well as text.
All calulations have been carried out using UBASIC, ver. 8.87.

I am grateful to Dr. R Muller who has given all possibie help and
encouragement during the work on this book. He and his colleagues at the

American Research Press have at all times facilitated the work through rapid
e-mail communications.

Finally, it is thanks to the patience and understanding of my wife Anne-Marie
that this book has come about. But the winter months have passed, the book is
finished and I am no longer going to be lost among manuscript pages.
Summer is around the corner and the Swedish nature is waiting for us.

Paris, April 1998
Henry Ibstedt
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Chapter 1

Partition Sequences
L1 Introduction

We will study the partition of the sequence of digits
of positive integers into two or more groups of digits whose corresponding
integers may or may not possess a certain property.
Example:
1717|101
is a partition of the 6-digit integer 177101 into three groups of digits (parts)
each of which represents a prime, whereas
11771101
is a partition of the same integer into four parts none of which is a prime.

Obviously there are many ways in which and integer can be partitioned into
groups of digits. The kind of partition described above may also be referred to
as a de-concatenation in order to distinguish it from the classical concept of
partition of an integer as first developed by Euler and later illustrated by
Ferrer [1]. However, the kind of partition we are dealing with will be clear
from the context. We will now use the classical partition of an integer as a
means to help us formulate a strategy for partitioning sequences of integers in
the sense defined above.

The partitions of 4 are: 1+1+1+1=2+1+1=2+2=3+1=4 with the corresponding
Ferrer diagram:

0000 OO0 00 00 O
[ 0o 4

o0

1 2 3 4

Diagram 1.The Ferrer diagram for 4.



The last partition corresponds to 4 itself which is of no interest to us.
Furthermore, we will link the vertical representations to form the pattern
shown in diagram 2:

O0O00 100 I 143

1 2 3 4

Diagram 2. The Ferrer diagram for 4 rearranged and with partition numero 5
excluded.

In our applications we will also need to consider the order in which the
partition clements occur. Diagram 2 shows the seven different ordered
partitions possible for 4 and how they form a partition pattern for the
partition of the 4-digit integer 9164 into groups of integers.

08 GOREN G0 [s1)fee] [526 Ja] [s) 16¢]
1 2 3 4 5 6 7

Diagram 3. The partition pattern for a 4-digit integer.

From this we see that the integer 9164 can be partitioned into perfect squares
in exactly two ways, 9, 16, 4 (partition numero 3) and 9, 1, 64 (partition
numero 4). This is how the mapping of and integer onto a partition pattern
belps us study the properties of each partition element.

Only partitions 2 and 4 in diagram 2 contain partition elements of unequal
sizes. These give rise to an increase of the number partition patterns through
arrangement of the partition elements. It is easily understood that in a
partition of 8 we have 2 parts of the type L1 and 4 parts of the type (J
then the number of arrangements will be ;f!—4'-=15. The integer 8 has 21

partitions of the type shown in diagram 2 giving rise to 127 ordered
partitions. This could be calculated by considering each arrangement as we
did above. However, we will soon arrive at this in a different way.



The above considerations will be useful in order to express the partitions of
integers in explicit form. When we consider the partition of a very large
number of integers to find out how many of them possess a certain property
we will be able to use a different approach.

Let’s represent an n-digit integer t in the form t=a, +a,-10+a;-10%+ ... a,-10™".
We introduce the following definitions and computer analysis related
concepts in UBASIC.

d(t)=1 if t possesses a certain property otherwise 5(t)=0.
\ symbolizes integer division, example 23678\100=23

res symbolizes the remainder of the last performed integer
division, in the example above res=678.

We will now take a look at the question of leading zeros. Is 3 | 07 a partition
of 307 into two primes? Is 8 | 027 a partition of 8027 into two cubes? The
author prefers to have a unique representation of an integer, 7 is a 1-digit
integer written 7 not 07 and 3°=27 is written 27 - not 027. The computer,
however, interprets 07 as 7 and 027 as 27. To avoid integers with leading
zeros the function £(j,r) is defined as follows.

£(,0)=0 if r<10"" otherwise £(j,r)=1, where r and j are context
depending variables.

We will now use these functions to formulate an algorithm for calculation of
the number of n-digit integers which can be partitioned so that the partition
clements have a given property (being primes, squares, cubes, etc)

Lets denote the number of partitions of t by p(t).

1-digit integers: 1<t<9. Obviously there is nothing to partition, p(t)=0.

2-digit integers: 10<t<99. p(t) can only assume the values 0 and 1 and is
given by

P(t)=3(t\10)-3(res)



3-digit integers: 100<t<999. In the algorithm below use is made of the fact
that we know p(t) for 1<100.

P(O=0(1.100)-(1, res)-(5(res)+p(t\100))+5(t\10)-(5(res)+p(1\10)),

where we know that p(1\10)=0. It has been included in order to present a
n-digit integers: 10*'<t<10°-1.

n-1
p(t)= ). 6(t\10" " )e(n - k — 1,resX5(res) + p(res)) m

k=1
We can now use (1) to calculate the number of partition patterns for n-digit
integers. To do this we put S(t\w™*)=1 (the property of being a partition

clement), e(n-k-1,res=1 (a partition clement may begin with a zero) and
p(res)=p(k). This resuits in

mn)=§(l+mk)),wmxxm

Evaluation of the recursion formula gives p(n)=2"'-1 resulting in the
following table of partition patterns.

Table 1. Partition pattems, N = number of pattems.

n-digit integer 1 2 3 4 5 6 7 8
N 0 1 3 7 1§ 31 63 127

The algorithm has been implemented in UBASIC on a Pentium 100 Mhz
portable computer to examine various partition sequences.
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L2 The Smarandache Prime-Partial Digital Sequence

Definition: The prime-partial-digital sequence is the sequence of prime
numbers with the property that each member of the sequence can be
partitioned into groups of digits such that each group is a prime.

Table 2 shows the first one hundred terms of this sequence.

We will see in Chapter I1.4 that the Smarandache Prime-Digital Sub-
Sequence is infinite. The Prime-Partial Digital Sequence is in fact a subset of
the Prime-Partial Digital Sub-Sequence and is therefore a fortiori infinite
which settles affirmatively a conjecture by Sylvester Smith. [2]. We will make
observations on the number of ways in which prime integers can be
partitioned into primes. How close is the maximum number of ways this can
be done to the theoretical maximum given in table 1 and what do these
partitions look like?

Table 2. The first one hundred members of the prime-partial-digit sequence.

23 37 53 73 113 137 173 183 197 211
223 227 229 233 241 257 271 277 283 293
311 313 317 331 337 347 353 359 367 373
379 383 389 397 433 523 541 547 557 571
577 593 613 617 673 €77 719 727 733 743
757 761 773 797 977 1013 1033 1093 1097 1117

1123 1129 1153 1171 1277 1319 1327 1361 1367 1373
1493 1637 1723 1733 1741 1747 1753 1759 1777 1783
1789 1913 1931 1933 1973 1979 1993 1997 2113 2131
2137 2179 2213 2237 2239 2243 2251 2267 2269 2273

The property that we will examine with the function 8(t) is whether t is a
prime or not. In UBASIC this is done in the following program.

B3(1): 10 .D(®) . D(t) is equivalent to 5(t)
20 if =0 then z=0 :goto 40
30 if nxtprm(t-1)=t then z=1 else z=0
40 return(z) ‘z is the value of D(t)

11



The function £(j,r) takes the following form in UBASIC.

£G,1): 10 L(G%.r) ‘L({%r) is equivalent to
(.1

20 if r<10™(j%-1) then y=0 else y=1

30 return(y) ‘y is the value of €(j,r)

These two functions were made work together with the algorithm (1) in a
UBASIC program to produce the results shown in tables 3 and 4.

Table 3. H-;gphom/qwhefemtsthemnbefof n-digit primes which can be
="partoned into primes and q is the number of n-digit primes.

e

n=2 -~ n=3 =4 =5 n=6 n=71 n=8
m, 4 P 51 383 3319 27111 234229 2040170
q 2r ,’/ 143 1061 8363 68906 586081 5096876

m/q 0.190‘(”0.3565 0.3610 0.3969 0.3934 0.3997 0.4003

0.15

Diagram 4. The ratio m/q for n-digit integers (n=2,3,.._8).

12



Table 4. The number of n-digit primes that can be paritioned into primes in p
different ways. (The tail for n=8 is interposed.)

o] n=2 n=3 n=4 n=5 n=6 =7 n=8

0 17 92 678 5044 41795 351852 3054706

1 4 40 251 1986 14789 118379 972095

2 10 83 769 6306 54102 436009

3 1 40 309 2811 25892 228428

4 5 135 1445 14205 139755

5 4 67 758 7676 82245

6 33 424 5012 55793

7 15 250 2922 35326

8 3 131 1877 24401

9 1 78 1258 17131
10 0 456 873 12424
n 0 22 550 8724
12 1 27 481 6671
13 p n=8 12 277 484)
14 38 16 6 212 3573
15 39 17 3 147 2781
16 12 8 0 115 2052
17 4] 13 0 62 1574
18 42 5 3 59 1244
19 43 4 33 992
20 44 8 34 811
21 45 14 18 817
22 46 3 12 500
23 47 14 6 417
24 45 é 10 311
25 49 2 4 264
26 50 2 4 214
27 S7 4 2 154
28 52 ! 3 150
29 53 0 0 94
30 54 4 1 83
31 55 0 2 85
32 56 3 0 65
33 57 0 0 51
34 58 o 0 42
35 59 0 0 51
36 40 ] 0 30
37 1 32

13



Table 5. All possible partitions of 23733737 into primes.

1 2 3 7 3 3 7 3
2 23 7 3 3 7 3 7
3 2 37 3 3 7 3 7
4 2 3 73 3 7 3 7
5 2 3 7 3 37 3 vi
6 2 3 7 3 3 73 7
7 2 3 7 3 3 7 37
8 23 73 3 7 3 7

Y 23 7 3 37 3 7

10 23 7 3 3 73 7

11 23 7 3 3 7 37

12 2 37 3 37 3 7

13 2 37 3 3 73 7

14 2 37 3 3 7 37

15 2 3 73 37 3 7

16 2 3 73 3 73 7

17 2 3 73 3 7 37

18 2 3 7 3 37 37

19 2 373 3 7 3 7

20 2 3 733 7 3 7

21 2 3 7 337 3 7

22 2 3 7 3 373 7

23 23 73 37 3 7

24 23 73 3 23 7

25 23 73 3 7 37

26 23 7 3 37 37

27 2 37 3 37 37

28 2 3 73 37 37

29 2 3733 7 3 7

30 2 3 7 3373 7

31 2 373 37 3 7

32 2 373 3 73 7

33 2 373 3 7 37

34 2 373 3 7 37

s 2 3 733 73 7

36 2 3 733 7 37

37 2 3 7 337 37

38 23 733 7 3 7

39 23 7 337 3 7

40 23 7 3 373 7

41 2 37 337 3 7

14



Table 5. Continued.

42 2 37 3 373 7
43 2 3 73 373 7
44 2 373 373 7

45 2 37337 3 7

46 2 337 37 37

47 23 733 73 7

48 23 733 7 37

49 23 7 337 37

50 2 37 337 37

51 23 73 373 7

52 2 3733 73 7

53 2 3733 7 37

54 23 7 3373 7

55 2 37 3373 7

56 2 37337 37

57 23 73373 7

58 23 7 33737

59 2 37 33737

60 2373373 7

With a slight exception for 6-digit integers the ratio between primes that can
be partitioned into primes and the number of primes is increasing and
indicates strongly that the prime-partial digital sequences is infinite.

To list the actual partitions would be impossible but for each n-digit integer
sequence of primes there are a few primes that are record holders in the
number of ways in which they can be partitioned into primes (p ways). Here
is a list of those primes.

n=3 p=3 373
n=4 p=5 3137, 3373, 3733 and 3797
n=5 p=12 37337

n=6 p=18 237373, 537373 and 733373
n=7 p=37 2373373

n=8 p=60 23733737

We see that of the prime digits 2,3,5 and 7 the primes 3 and 7 play a
dominant role in the composition of those primes that lend themselves to the
maximum number of partitions into primes. All partitions can be displayed in

15



explicit form by executing 2 UBASIC program based on the partition patterns
which were subject to a detailed discussion in the introduction. Table 5
shows the partitions for 23733737.

L3 The Smarandache Square-Partial Digital Sequence

Definition: The square-partial digital sequence is the sequence of perfect
squares which can be partitioned into two or more groups of digits which are
also perfect squares.

The first one hundred terms of this sequence is shown in table 6.

Tabie 4. The first one hundred terms f the square-partfial digital sequence.

49 100 144 169 361 400 441 900 1225 1349
1444 1600 1681 1936 2500 3249 3600 4225 4900 6400
8100 9025 9409 10000 10404 11025 11449 11664 12100 12544
14161 14400 14641 15625 16641 16900 19044 19600 22500 25600
28900 32400 36100 34481 40000 40401 41616 42025 43481 44100
44944 48400 49729 52900 S7600 62500 64009 67600 72900 78400
81225 84100 90000 93025 93636 96100 99225 102400 105625 108900

115600 116964 117649 119025 121104 122500 129600 136161 136900 140625
143641 144400 152100 157609 160000 161604 164025 166464 168100 170569
176400 184900 193600 194481 202500 211600 220900 225625 230400 237169

This sequence is infinite. If all the infinitely many squares of the form s-10%,
where s is a perfect square, are removed the sequence is still infinite. Charles
Ashbacher [3] has proved this in the case where leading zeros are accepted.
In order to continue to use unique representation of integers the proof has to
be changed.

Proof: There are infinitely many squares of the form (10*"'+2)*. In expanded

form these can be written (10%)%10%*"Y+(2:10%-10 +22. From this we see
that (10™*'+2)? can be partitioned into the three squares: 10%, 4-10* and 4.

16



The methods and programs developed in the introduction to this chapter have
been used in the analysis of this sequence with the only change that we study
a different partition property defined though the function &) which now
takes the form:

10 .D(t)
20 if (isqrt(t))*2=t then z=1 else z=0
30 return(z)

Use has been made of the Ubasic function isqrt(x) which gives the integer
part of the square root of x.

The analysis was carried out for 2, 3, ... 8 digit squares. The results are
presented in the form used in the previous section.

Table 7. The rafio m/q. mis the number of squares which can be parfitioned into
squares and q is the number of n-digit squores.

n=2 n=3 n=4 n=>5 n=6 n=7 n=8

m 1 7 15 44 114 316 883

q 6 15 68 217 683 2163 6837
m/q 0.1667 0.4667 0.2206 0.2028 0.1669 0.1461 0.1292

Diagram 5. The ratio m/q for n-digit integers (n = 1,2 ... 8).

17



For squares with more than three digits the graph shows an interesting
decrease as if it were approaching an horizontal asymptote. Is this the case?
For each n-digit integer sequence of squares we list those squares which can

be partitioned into squares in 2 maximum number of ways

n=3
n=4

=5
n=6
n=7
n=8

p=1 100, 144, 169, 361, 400, 441,
p=3 4900

p=5 11448, 14400, 16800, 36100, 44100

p=5 144400, 490000
p=7 1144900
p=8 14440000, 36144144, 49491225

(p ways):

This list is dominated by squares ending on an even number of zeros. The
digit 4 occurs most frequently while the digits 7 and 8 are lacking. This
section is terminated by a table of maximum partitions for n=8.

Table 8a. Al possible partitions of 49491225 info squares.

1 4 9 4 9 1 225
2 4 9 4 9 1225
3 49 4 9 1 225
4 4 9 49 1 225
S 49 49 1 225
6 49 4 9 1225
7 4 9 49 1225
8 49 49 1225
Table 8b. Al possibie parfitions of 36144144 into squares.
1 36 1 4 4 1 4
2 361 4 4 1 4
3 36 144 1 4 4
4 36 1 441 4 4
11 36 1 4 4 144
6 361 441 4 4
7 361 4 4 144
8

36 144 144

i8



Table 8c. All possible partitions of 144440000 into squares.

1 1 4 4 4 0 0 0 0
2 144 4 0 0 0 0

3 1 4 4 400 0 0

4 1444 0 0 0 0

5 144 400 0 0

6 1 4 4 40000

7 144400 0 0

8 144 40000

L4 The Smarandache Cube-Partial Digital Sequence

Definition: The cube-partial digital sequence is the sequence of cubes which
can be partitioned into two or more groups of digits which are also cubes.

It is obvious that all integers of the form n®-10** where n is an integer belong
to the sequence, but if we let n be an integer whose last digit 20, then there
are only two cubes m=n’<10° which can be partitioned into cubes. They are:

22°=10648 with the partition 1, 0, 64, 8,
and
303°=2781812" with the partition 27, 8, 1, 8, 1, 27.

In spite of this the sequence has infinitely many members with the last digit
#0. This is due to the fact that all cubes of the form (3-10°*2+3)* can be
written in the form 27-10%"%+81.10%"*+81.10°2+27 which gives the
partition:

27,0,0 ...(3k zeros), 81, 0,0 ...(3k zeros), 81, 0,0 ... (3kzeros), 27.

The integer 303 can be looked at as the generator of a whole family of
members of the cube-partial digital sequence.

Question: Is 303 the only generator that guaranties that there are infinitely
many members of this sequence with non-zero last digits?

19



LS Partition of {1, 2, 3, ... 2a} iato trigrades using Pythagorean triples.

The relation 25+3%+75=1%+5*+6" holds for k=1,2. It is called a bigrade and is

written 2,3,7 2 1,5,6. To find similar relations which hold for a larger range of
values for k has attracted a lot of interest [4]. Here is an example of a
pentagrade

1,5,10,18.23.27 > 2,3,13,15,25,26

Definition: A relation

"t A=y L by
which holds for m=1, 2, .... k is called a k-grade. In abbreviated form this is
written

21,32,...305 b1.bs,.. by

The purpose of this study is to give an explicit expression for the partition of

S={1,2, .. 2n} into a={ ay, 2s,...,a,} and B={ by, b,,....b,} sothat A2 B '. We
will see that this partition can be obtained through a suitable choice of
Pythagorean numbers. The trigrades gencrated in this way will in general
have a large number of terms. They can, however, be used to produce
trigrades with only eight terms:

21,35,3,24 2 by,by b3 bs

Let A, consist of all odd integers x in the interval 1<x<n-1, where n is
assumed 10 be even, and all even integers in the interval n+2<x<2n. Bo=A,
Consider

2
m=%2 (Half the sum of m™ powers of S)

n/2 n/2
A, =ZTk-D"+ T(n+2k)™
k=1 k=1
Evaluating these sums resuit in

'S=AUBWIthANB=0,b=2a" (a stands for the complement of a).

20



Ar-S, =0 (i.e. Ao= Bo) )
Ay -S;=n*2 Q@)
A; - S3=3n°(2n+1)/4 3)

A solution is attempted by constructing new partitions A and B through
exchange of elements between A, and B, so that (1) is maintained while
satisfying (2) and (3).

Exchange: {x; , x;} € B > Aand {y; , y2} € Ao — B so that

Nn+ty2=x +x; 1.1
0 +y2) - (x + x7) = 02 21
01’ +¥2) - (%° + %) = 3n°2n+1)/4 G.1)

Assume y>>y; and write (1.1) as:

x1 =y +d; X2=y;-d 1.2)
Substituting this and simplifying (2.1) and (3.1) results in:

2d(y; - y; -d) = n’/2 (2.2)

Yi+ty:=2n+1 (3.2
Assume j € {1, 2, ... n/2} and write (3.2) as

y2=n+2j; yi=n+1-2 3.3)
Insert these expressions in (2.2)

n’=4d@j-d-1) 2.3)

21



Integer solutions for d require the discriminant of this equation to be a square
Z.

@j-1) -n*=2 with M4 +15j<n2 @

Let a, b and ¢ be a Pythagorean tripie with 2 |b and let k be an odd integer,
(4) is then satisfied by 4j-1=kc, n=kb and z=ka. It remains to evaluate x;, xa,
y: and y; in terms of a, b, ¢ and k. To begin with we have j=(kc+1)/4. Since j
£ Z, and c=1 (mod 4) we can write k=4e-1 where ¢ ¢ Z,. This gives d=(4¢c-
1)Xc ¢ a) and the final solution:

xi2=((4e-1}2b £ 2)+ 1)2 &)
Yi2=((4e-1)(2b £ )+ )2 ©

The conditions 2b>a and 2b>c restrict the number of Pythagorean triples
which can be used to generate trigrade partitions of the first N positive
integers where N is given by:

N=2b4e-1), ecZ, &)

A further condition is that x; and X, given by (5) must belong to A, i.e. x=0
{mod 2) if 0<x<n and x=1 (mod 2) if n<x<2n. This is met if 2b+a=-1 (mod 4).
The corresponding condition must be met for y; and v,.

From the above conditions and (7) we see that a Pythagorean tripie generates
zero or infintely many trigrades. If it produces infinitely many trigrades then
the number of terms N of these are in arithmetic progression with first term
6b and difference 8b. The first non-trivial Pythagorean triples are listed in
table 9. Those which can be used to produce trigrades are marked in column
N by giving the mumber of terms in the trigrade which has the least number of
terms.

The trigrade with the smallest number of terms generated in this way is (the
exchange terms are underscored);

1,2,7,8,9,11,14,16, 17, 18,22 24 22, 4,5,6,10,12,13,15,19,20,21,23



Table 9. Pythagorean triples and their comesponding smallest N.

a b [} N a b c N a b [+ N
3 4 5 24 55 48 73 288 17 144 145
5 12 i3 77 36 85 51 140 149 840
15 8 17 13 84 85 85 132 157
7 24 25 144 | 39 80 89 4801 119 120 169 720
21 20 29 65 72 97 165 52 173
35 12 37 99 20 101 19 180 181 1080
9 40 41 91 60 109 360| 57 176 185
45 28 53 15 112 113 672 153 104 185
11 60 61 360|117 44 125 95 168 193 1008
33 56 65 10S 88 137 195 28 197
63 16 €5 143 24 145 133 156 205

Since the sets A and B, arc defined from the outset the trigrade partitions can
be unambigously described in terms of these sets and the exchange terms as
shown in table 10. From this table it is seen that the trigrades corresponding
to the last two Pythagorean triples have the same number of terms. This
means that we can obtain trigrades with only eight terms by subtraction. For
example we see from table 10 that

197, 164, 344, 17 2 317, 44, 272, 89 ®

A k-grade a;,a,,...a, 1: b1,bs,...by is invariant under translation. To prove this
consider the sets A={x+a;, x+a,...,x+a,} and B={x+b,, x+b,,...,x+b,}.
Expand each term to the power m where m<k.

2(x+-.) -5¥

i=lj=

)x’-"“ = ZL )x‘z-"" = z Jx’zb" %>

)x’l:o'i'"j = i(x'r b)™
i=1 i=lj= i=1

where the assumed k-grade property has been used in exchanging a; and b,
We can consequently reduce all terms in the above trigrade by 17 (if we
reduced by 16 instead the eight terms would be positive and realively prime
but would prevent further reductions) to obtain

0, 147, 180, 327 227, 72, 255, 300 8.1)
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The k-grade property is evidently invariant under division by a common
factor. Hence

0, 49, 60, 109 2 9, 24, 85, 100 8.2)

The steps shown above carried out for Pythagorean triples ¢<1000 result in
quitc a large number of cight-term trigrades as is shown in table 11. To
reduce the trigrades so that the smallest term is 0 and divided the terms with
their LCM proved essential in order to avoid duplications. When
implementing the algorithms on a computer several solutions were obtained
which after reduction proved to be identical.

Table 10. Description of frigrades

¢ m:‘l‘ amiB

1 3,4,5 &={1,3,.,11}{14,16,..,24}U{8,17}~{5,20}
24 B={2,4,.,12}0{13,15,_,23}u{5,20}-{8, 17}

2 A={1,3,.,27}1{30,32,..,56}u{18,39)~{11, 46}
56 B={2,4,.,28}uw{29,31,_,55}u{11, 46} -{18, 39}

3 a8 A={1,3,..,43}u{46,48,.,88}u{28,61}-{17,72}

B={2,4,..,44)0{45,47,.,87}0{17,72}-{28,61}
4 7,24,25 A={1,3,-,71}u{74,76,.,144}{62,83}-{35,110}

144 B-(2,4,_,72}u{73,75,_,143}u{35,110}-{62, 83}
5 A={1,3,_,167}w{170,172,..,336} {144,193} {81,256}
336 B={2,4,.,168}u{169,171,.,335}u{81,256}-{144,193}
6 <58 A={1,3,.,263}0{266,268,.,528}u{226,303}-{127, 402}

B={2,4,-,264}{265,267,.,527}w{127,402}-{226, 303}
7 55,48,73 A={1,3,.,143}U{146,148,.,288}u{62,227}-{35,254}

288 B={2,4,_,144}U{145,147,_,287} {35,254} -(62, 227}

8 A={1,3,.,335}01{338,340,.,672}{144,529}-{81,592}
672 B={2,4,..,336}u {337,339, _,671}u{81,592}~{144,529}

9 A={1,3,..,527}1u{530,532,.,1056}{226,831}-{127, 930}
1056  B-(2,4,_,528}L{529,531,_,1055}w{127,930}-{226, 831}

Table 10. Descripfion of trigrades, confinued.
# Iriple amiB
]

10 11,60,61 A={1,3,_,179}u{182,184,..,360}{164,197}-{89,272}
360 B={2,4,..,180}u{181,183,..,359}w{89,272}-{164,197}
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11

840

A={1,3,.,419}u{422,424,..,840} {382,459} -{207, 634}
B={2,4,..,420}u{421,423,..,839}U{207,634}-{382, 459}
12 91,60,109 A=(1,3,.,179}v{182,184,..,360}w{44,317}-{17, 344}

360 B=(2,4,.,180}u{181,183,..,35%{17, 344} -{ 44,317}
12 A={1,3,.,419}u{422,424,..,840}{102,739}-{39, 802}
840 B={2,4,..,420}uU(421,423,..,839}U{39,802}-{102,739)
Table 11. Trigrades
a az aj ay by b, bs b,
0 49 60 109 9 24 85 100
0 67 102 169 22 25 144 147
0 85 136 221 25 36 185 196
0 103 122 225 22 45 180 203
0 107 242 349 25 62 287 324
0 125 638 763 50 63 700 713
0 129 244 373 48 49 324 325
0 151 382 533 49 74 459 484
0 155 230 385 34 77 308 351
0 165 184 349 25 84 265 324
0 181 384 565 60 81 484 505
0 185 262 447 10 147 300 437
0 203 554 757 81 86 671 676
0 215 370 585 46 117 468 539
0 229 304 533 49 108 425 484
0 233 278 511 63 86 425 448
0 241 556 797 72 121 676 725
0 271 678 949 102 117 832 847
0 283 542 825 58 165 660 767
0 293 370 663 75 118 545 588
0 301 456 757 81 132 625 676
0 305 458 763 €3 158 605 700
0 331 994 1325 110 169 1156 1215
0 343 1074 1417 117 174 1243 1300
Table 11. Tigrades. contfinued.
a, a a; ay b, b, b; b,
0 349 376 725 49 180 545 676
0 359 506 865 81 170 695 784
0 365 400 765 76 153 612 689
0 379 522 901 54 225 676 847
0 381 640 1021 121 156 865 900
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385 996 1381 96 225 1156 1285
407 1262 166S 122 225 1444 1547
461 1392 1883 153 236 1617 1700
463 1264 1733 108 288 1444 1625
477 764 1241 153 188 1053 1088
501 688 1189 76 289 900 1113
511 1348 1859 148 275 1584 1711
541 736 1277 121 252 1025 1156
551 796 1347 147 236 1111 1200
593 824 1417 121 296 1121 1296
631 1138 1769 163 306 1463 1600
649 964 1613 169 288 1325 1444
787 838 1625 162 325 1300 1463
817 1048 1865 245 292 1573 1620
835 1880 2715 296 363 2352 2419
845 2522 3367 170 567 2800 3197
849 1084 1933 169 408 1528 1764
925 2190 3115 34 847 2268 3081

0000000000000 O0OO0O00O0O

L6 Smarandache Non-Null Squares.

Question: In how many ways can n be written as a sum of non-null squares,
disregarding the order of the terms?
Example: 9=1%+12+1%41%+1%+12+1%+1%+17

=12+12+1%41%41%+27

=1%42%427

=32
Let us denote the number of ways by n(n). The example shows that
1(9)=4.Obviously the non-null squares representation which has the largest
number of terms is a representation by n squares of 1 and the representation
with the smallest number of terms is a representation where we use the largest
possible squares. If n is a perfect square then (\/;)2 is one-term
representation.
Let’s assume that we know n(x) for all integers x<n-1. Furthermore we make
the definition:

1if nis a square
31) =0 otherwise



With these precisions we can write the algorithm for calculation of w(n) in
the following way:

n(n) =1+38(n) + [J_]*S(n)n( —1), with n(1) =1

This algorithm was implemented for n<100. As is shown in table 12 this
sequence, after a slow start, grows very rapidly.

Table 12. The Non-Null Square Representations.

1 1 1 2 2 2 2 3 4 4

4 5 7 7 7 9 12 13 13 16
20 23 23 27 35 41 42 47 61 71
75 82 104 124 134 146 178 217 237 258
307 377 419 456 535 651 739 804 933 1126

1300 1422 1629 1955 2275 2513 2846 3397 3972 4435
4990 5904 6933 7807 8766 10268 12097 13718 15409 17895
21087 24076 27076 31248 36736 42214 47568 54636 64017 73924
83554 95596 111637 129306 146714 167379 194807 226021 257447 293255
340106 394953 451408 514025 594103 630035 790967 901118 1038450 1205451

L7 Smarandache Non-Null Cubes.

In how many ways 7(n) can n be written as a sum of non-null cubes? In this
case there are much fewer representations. For non-null squares we have
n(9)=4 whereas for non-null cubes we have 1(9)=2. Calculation of the first
100 terms follows the same method as for the non-null squares with
corresponding changes in our algorithms.

lif nisa cube
0 otherwise

&)~

(¥n]-5(n)

on)=1+8)+ 3 n(n-i%), withe(1)=1

Table 13. The Non-Null Cube Representations.
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1 1 1 1 1 1 1 2 2 2
2 2 2 2 2 3 3 3 3 3
3 3 3 4 4 4 5 5 5 5
5 6 6 6 8 8 8 8 8 9
9 9 12 12 12 12 12 13 13 13
17 17 17 18 18 19 13 19 24 24
24 27 27 29 29 29 35 35 35 41
41 44 44 44 51 51 51 61 61 65

66 66 74 74 74 89 89 94 98 98
108 109 109 130 130 136 146 146 162 162
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Chapter I

Recursive Integer Sequences

IL 1 The Non-Arithmetic Progression

We consider an ascending sequence of positive integers a,, a,, ... a, such that
each element is as small as possible and no t-term arithmetic progression is in
the sequence. In order to attack the problem of building such sequences we
need a more operational definition.

Definition: The t-term non-arithmetic progression is defined as the set :
{a; ‘a; is the smallest integer such that a;>a;, and such that for k<i there are at
most t-1 equal differences a, — A =aq, —q, =.=aq, —a, }

From this definition we can easily formulate the starting set of a t-term non-
arithmetic progression:

{1,2,3 ... t-1, t+1} or {a; : a;=i for i<t-1 and a=t+1 where t>3}
It may seem clumsy to bother to express these simple definitions in stringent
terms but it is in fact necessary in order to formulate a computer algorithm to

generate the terms of these sequences.

Question: How does the density of a t-term non-arithmetic progression vary
with t, i.e. how does the fraction ay/k behave for 37

Strategy for building a t-term non-arithmetic progression: Given the
terms a,, a,, ... & we will examine in turn the following candidates for the
term ay.y:
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=a+d,d-1,2,3, ..
Our solution is the smallest d for which none of the sets

{a, a3y, ... &, aHd, atd-e, atd-2¢, ... a+d-(t-1)-e :e2d}
contains a t-term arithmetic progression.

We are certain that a,; exists because in the worst case we may have to
continue constructing sets until the term a+d-(t-1)e is less than 1 in which
case all possibilities have been tried with no t terms in arithmetic progression.
The method is illustrated with an example in diagram 1.

In the computer application of the above method the known terms of a no t-
term arithmetic progression were stored in an array. The trial terms were in
each case added to this array. In the example we have for d=1, e=1 the array:
1,2,3,5,6,8,9,10,11,10,9,8. The terms are arranged in ascending order:
1,2,3,5,6,8,8,9.9,10,10,11. Three terms 8,9 and 10 are duplicated and 11
therefore has to be rejected. For d=3, e=3 we have 1,2,3,5,6,8,9,10,13,10,7,4
or in ascending order: 1,2,3,4,5,6,7,8,9,10,10,13 this is acceptable but we
have to check for all values of e that produce terms which may form a 4-term
arithmetic progression and as we can se¢ from diagram 1 this happens for
d=3, e=4, so 13 has to be rejected. However, for d&=5, =5 no 4-term
arithmetic progression is formed and e=6 does not produce terms that need to
be checked, hence a5 = 15.

1 2 3 4 5 6 7 9 10 11 12 13 14 15

Known terms 1 2 3 5 6 8 9 10
Trigis
=1 e=1 8 ¢ 10N reject 11
d=2 =2 é 8 10 12 reject 12
d=3 =3 4 7 10 13 fry next e

o=4 | 1 5 9 13 reject 13
=4 e=3 2 é 10 14 reject 14
=5 =5 5 10 15 joccept 1S

Diogrom 1. 7o find the 97 term of the 4-term non-arithmefic progression.
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Routines for ordering an array in ascending order and checking for
duplication of terms were included in a QBASIC program to implement the
above strategy.

12.00 '] _'&'s"—‘.-‘v—vﬁv\
10.00- I

8.00- T

6.0

- 100
4.00-
2.00- Ly e, o
A ) o
0.0 30
20

i
3 4 5 ! i i
6 7 e o

Diaogram 2. a/k for non-arithmetic progressions with 1=3, 4, 5, ... 15. Bars are shown
for k = muitiples of 10.

Results and observations: Calculations were carried out for 3<t<15 to find
the first 100 terms of each sequence. The first 65 terms and the 100” term are
shown in table 1. In diagram 2 the fractions ay/k has been chosen as a
measure of the density of these sequences. The looser the terms are packed the
larger is a,/k. In fact for t>100 the value of a/k = 1 for the first 100 terms.
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In table 1 there is an interesting leap for t=3 between the 64 and the 65*
terms in that ag = 365 and ags = 730. Looking a littie closer at such leaps we
find that:

Table 1. The 45 first termns of the non-arithmetic progressions for =3 fo 15.

# 13 f=4 =5 t=6 t=7 =8 t=9% t=10 =11 =12 =13 t=14 #=I5
1 1 \ 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 4 3 3 3 3 3 3 3 3 3 3 3 13
4 5 ] 4 4 4 4 4 4 4 4 4 4 4
5 10 6 6 5 5 S 5 S5 5 5§ S§ S5 5
& N 8 7 7 6 6 6 6 & & & & &
7 13 ¢ 8 & & 7 7 7 7 7 7 7 7
&8 14 10 9 9 9 % 8 8 & 8 8 8 8
9 28 15 11 10 10 10 10 9 9 9 9 9 9
0 2 16 12 12 1w w11 1 10 1 10 16 10
"mMoo3 171 1 12 12 12 12 12 o unounonon
12 32 19 14 14 13 13 13 13 13 13 12 12 12
13 37 26 16 15 15 14 14 14 14 14 14 13 13
14 33 Z 17 17 16 16 15 i5 15 5 15 15 14
15 4 29 18 18 17 17 16 16 16 16 16 16 16
16 4 30 19 19 8 8 17 7 7 17 w7 w7 a7
17 82 31 26 20 19 19 19 18 18 i8 18 18 18
18 8 34 27 2 20 220 20 220 ¥ 1% 19 19 19
19 8 37 28 23 2 21 21 21 20 20 20 26 20
0 8 4 2% 24 21 213 = 2 2 2 A 2 2
21 91 S 3 25 24 24 W B B 2 2 2 2
2 92 51 2 26 25 25 24 24 24 24 23 23 23
2 94 53 33 33 26 2 27 25 25 25 24 24 24
24 95 54 34 34 27 ¥ 28 2 2 26 25 25 25
25 109 5 36 35 29 8 ¥ 7 T 2 7 2 2%
26 110 5 37 36 3 30 N 28 28 28 2B 28 27
27 112 s 38 37 31 3 3 31 % 2% 2% 2 28
2 113 & 3 3» 32 32 32 32 B 30 J B B
22 18 65 41 43 3 3 a3 a3 3! 31 31 31 31
B 119 66 42 44 34 34 34 34 32 2 32 332 332
3 121 & 43 45 3% 35 37 35 34 33 33 33 33
32 122 80 44 46 37 37 38 36 35 35 34 34 34
33 244 8 51 47 3 38 33 37 36 36 35 35 35
34 245 88 52 49 3 39 40 38 37 37 36 36 36
a5 247 8 53 S0 40 40 41 39 38 38 37 37 37
3 248 91 S4 51 41 41 43 41 ¥ 39 38 38 3B
37 253 94 56 52 S0 42 44 42 4D 40 40 3 39

Table continued on next page.
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Table Icontinued,

# 13 =4 =5 t=6 t=7 =8 t=9 t=10 t=11 =12 =13 t=14 t=15
3B 254 9 57 59 51 44 45 43 41 41 41 41 40
39 256 102 58 60 52 45 46 44 42 42 42 42 4l
40 257 105 59 62 53 46 47 45 43 43 43 43 42
41 271 106 61 63 54 47 48 49 45 A4 44 44 45
42 272 109 62 64 S5 48 49 SO 46 46 A5 45 46
43 274 110 63 65 57 49 50 51 47 47 46 46 47
4 275 111 64 66 58 50 53 52 48 48 47 47 48
45 280 122 66 68 59 59 55 53 49 49 48 48 49
46 281 126 &7 69 60 60 56 54 50 50 49 49 50
47 283 136 6 71 6 & 57 55 51 S 5 50 S
48 284 145 6 73 62 62 58 S8 52 52 5 51 82
49 325 149 76 77 64 63 S5 59 53 S3 53 52 53
50 326 151 77 85 45 &4 60 60 54 S4& 54 54 54
51 328 152 78 8 6 65 64 & 56 S5 S5 55 55
52 329 160 79 8 6 & 65 6 57 57 56 S& 56
S3 334 163 81 8 68 & 66 63 58 58 S5 57 58
54 335 167 82 90 & 70 &7 64 5 5 58 58 59
S5 337 169 83 91 71 71 68 &5 0 O 5 5 60
56 338 170 84 93 72 72 69 66 61 6 &0 &0 6l
57 352 17t 86 96 73 74 70 68 62 62 61 61 &2
S8 353 174 8 97 74 5 71 & 63 63 62 62 &
59 355 176 88 98 75 76 78 70 64 64 63 63 64
60 356 177 8 99 76 77 79 71 65 65 64 64 65
61 361 183 91 100 78 78 80 72 67 66 66 65 66
62 362 187 92 103 79 79 81 73 &8 &8 & 67 &7
63 364 188 93 104 80 81 82 74 & & 68 68 &8
64 365 194 94 107 8 84 B 75 70 70 & &9 &9
65 730 196 126 111 82 8 84 77 71 71 70 70 70
100 977 360 179 183 130 139 138 126 109 109 108 108 113

Leap starts at Leap finishes at

5 10

14 =3.5-1 28 =2-14
41 =3-14-1 82 =2-41
122 =3-41-1 244 =2-122
365 =3-122-1 730 =2-365

Does this chain of regularity continue indefinitely?
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Sometimes it is easier to look at what is missing than to look at what we have,
Here are some observations on the only excluded integers when forming the
first 100 terms for t=11, 12, 13 and 14.

Fort=11: 11, 22, 33, 44, 55, 66, 77, 88, 99 The nth missing integer
islln

For t=12: 12, 23, 34, 45, 56, 67, 78, 89, 100 The nth missing integer
isilntl

For t=13: 13, 26, 39, 52, 65, 78, 91, 104 The nth missing integer
is 13-n

Fort=14: 14, 27, 40, 53, 66, 79, 92, 105 The nth missing integer
is 13-n+1

Do these regularities of missing integers continue indefinitely? What about
similar observations for other values of t?

IL.2 The Prime-Product Sequence

Definition: The terms of the prime-product sequence are defined through {t, :
G = po#+l, py is the nth prime number}, where p.# denotes the product of all
prime numbers which are less than or equal to p,.

The sequence begins {3, 7, 31, 211, 2311, 30031, ... }. In the initial
definition of this sequence t;, was defined to be equal to 2. However, there
seems to be no reason for this exception.

Question: How many members of this sequence are prime numbers?

The question is in the same category as questions like ‘How many prime twins
are there?, How many Carmichael numbers are there?, etc.’ So we may have
to contend ourselves by finding how frequently we find prime numbers when
examining a fairly large number of terms of this sequence.



From the definition it is clear that the smallest prime number which divides t,
is larger than p,. The terms of this sequence grow rapidly. The prime number
functions prmdiv(n) and nxtprm(n) built into the Ubasic programming
language were used to construct a prime factorization program for n<10'.
This program was used to factorize the 18 first terms of the sequence. An
elliptic curve factorization program, ECM.UB, conceived by Y. Kida was
adapted to generate and factorize further terms up to and including the 49th
term. The result is shown in table 2. All terms analysed were found to be
square free. A scatter diagram, Diagram 3, illustrates how many prime factors
there are in each term .

The 50th term presented a problem. ts;=126173-n, where n has at least two
factors. At this point prime factorization begins to be too time consuming and
after a few more terms the numbers will be too large to handle with the above
mentioned program. To obtain more information the method of factorizing
was given up in favor of using Fermat’s theorem to eliminate terms which are
definitely not prime numbers. We recall Fermat’s little theorem:

If p is a prime number and (a, p)=1 then a?' = 1 (mod P

a™' = 1 (mod n) is therefore a necessary but not sufficient condition for n to be
a prime number. If n fills the congruence without being a prime number then
n is called a pseudo prime to the base a, psp(a). We will proceed to find all
terms in the sequence which fill the congruence

a*"' =1(mod?))
for 50 < n < 200. tzo0 is a 513 digit number so we need to reduce the powers of

a to the modulus t, gradually as we go along. For this purpose we write t,-1 to
the base 2:

t-1= D 8(k)-2" , where 8(k) & {0,1}
k=1
From this we have

d 14
a:,,-l - Has(k)-z
k=1
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Table 2. Prime factorization of prime-product terms

#iP}L N=p#+1 and its factors

1j211 13 Prime number

213|117 Prime number

3js] 23 Prime number

417]3 2 Prime number

S|it] 4 231 Prime number

46 1 13] 5 J30031 = 59- 509

7 1171 6 |510511 =19-97-277

8 | 19] 7 19699691 =347 - 27953

9 123 9 |223092871 =317 - 703763

10| 29 | 10 16469693231 =331 - 571 - 34231

11131 | 12 |200560490131 Prime number

121371 13]7420738134811 =181 - 60611 - 676421

13 41 ] 151304250263527211 =61 - 450451 - 11072701

14| 43| 17 }13082761331670031= 167-78339888213593

15] 47 | 18 |614889782588491411 = 953 - 46727 - 13808181181

16] 53] 20 132589158477190044731 =73 - 139 - 173 - 18564761860301

17| 59§ 22 |192276035015421 2639071 =277 - 3467 - 105229 - 19026377261

18] 61 { 24 {117288381359406970983271 =223 - 525956867082542470777

19 | 67 | 25 {7858321551080267055879091 =54730729297 - 143581524529603

20| 71 | 27 |557940830126698960967 415391 = 1063 - 303049 - 598841 - 2892214489673

21 ] 73| 29 |407296805992490241 50621323471 = 2521 . 141561604915704181 47806951

221 79| 31 {3217644767340672907899084554131 = 22093 - 1503181961 - 96888414202798247

23] 831 33 [267064515689275851355624017992791 = 265739 - 1004988035964897329167431269

24 | 89 | 35 |23768741896345550770650537601358311 = 131 - 1039 - 2719 -
6422589 1884294373371806141

251 97 | 37 |23055679639455184247531021 47331756071 = 2336993 - 13848803 -
71237436024091007 473549

26 | 101} 39 | 232862364358497346090006331 4880507363071 = 960703 -
242387 46455303809907959 4127301057

27 |10} 41 |23984823528925228172706521 638492258394211 = 2297 - 9700398839 -
179365737007 - 6001315443334531

28 |107] 43 [256637611759499941447959781534007 1648394471 = 149 -13203797 -
30501 264491063137 -42767843651083711

29 1109] 45 |27973499681785493617827616187206780967 4997231 = 334507 - 1290433 -
648046444234299714623177554034701

30 {113] 47 {3161005464041 76077881 4520629 154366249327 4686991 = 5122427 -
2025436786007-3046707595069540247 157055819

31 }127] 49 {40144769393330341 89094441 199026045136645885247731 =
1543 - 49999 - 552001 - 57900988201093 -142808052999907 3967231

32{131} 51 |52589647905262774077137179707241 1912900610967 452631 =
1951 . 22993 . 1172323185947301 41 449323454664 1 5143728266617




Tabie 2. Prime factorization of prime-product terms, continued.,

N=p#+1 and its foctors

5 8 8 € 8 & & glw

-~
-—

47

49

& e
&8 & B & 8 & 8-

167]

1734 69

181173
191} 76
193178
197{ 80
199 82
211485

ZA&

227} 89

72047817630210000485677936198920432067383702541010311 =

{881 - 1657 - 32633477 - 160823938621 - 5330099340103 - 1764291759303233

1001 4644650599190067 509233131 649940057 366334653200433091 =

6782799 5900552B882478681 487 - 1475476861 45442451 39224580493
14921823509392793200588757 3661 5841068547 583863326864530411 =
187549524399 - 65018161573521013453 - 2621400746844134219184937113
225319534991831 177328890236228992001 3504851 6336235654409191 1 =
23269086799 180847 - 9683213481319911991636641541802024271084713
35375166993717 4948404357 670879517 4421 2057 570647889977 422429871 =

1381 - 1847 - 8311930927 - 38893867968570583 - 42440201 8754406804851 13304753
5766152219975951 659023630035336 1 3430656538401 5606066319856046881 1 =

1361 - 214114727210560829 - 32267019267 402210517 - 613228865630544238382107
962947 4207 3598392705694621 5901 1344291964191 3060621 3075415963491 271 =
205590139 - 53252429177 - 7064574339566763 -

16458990378732521 9380851 69535089625625098050959 487 4862046961 683989711 =
62614127 - 265058015609361 15803523331 93927566 1 5852809877 2260689062181793
2981959277793121426917245346781042986892551 121 7482600306406 1 41 43415809
1 =601 - 1651781 - 8564177 - 358995947 - 1525310189119 -6405328664096618954809
029861252251

539734629280554978272021 4077 67368780627 5517 53036435065545951 1 599582414
291 =107453 - 5634838141 -8914157280964101 12334489 13965712571 6363297 46284
103174028667

10308931 41925860008499 56088883567 4370998623848299 5909751927 64715520279
329391 =32999 - 175603474757 - 771 48541513247 -2305961466437323959598530415
1862423316227152033

198962376391 690981 640415251 5452851 536027 34402721821056821220397 60954139
10572271 =21639496447 - 7979125905967339495018 877-115230777 1627975804402
0162101777453615909

39195588149163123383161 804554421 175259738677336 198748467804 18329079654
0382737191=521831-50257723 - 1601684368321 -39081 17024326254 1027 - 23875913
95836997715857 2653160969521

7799922041 683461553249199 10632981387 66879967899035509 4509303247 486851 1
536164700811 =447 -10723 - 57622771 - 5876645549 9456145520867 484325954430
626096077 19222040521 4947865503847

164578355079521 038773558101 1435590727981 1 67322665 64924941 4629852197255
934130751870911 =1051 - 2179 - 16333 - 43283699 - 7531 1908487 - 2928127 10684839
4609659667 2B6646929 343033404487 2907384889
3470097318273319164650345655501 3673233980031 2955331782619 4624570399880
73311157667212931=13867889448159 264647142357 16608676791 59845289670356
48881 000340533429306 1946803757 2880509
|83311209124804345037562844379881038241 13467 104086031 465451 797774807729
2641632790457335111 = 3187 - 31223 - 1737142793 - 11463039340315601 97310450
54704469693091 13 - 43206785807567 18923287 5099500379
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Diogram 3. The number of prime foctors in the first 49 terms of the prime-product
sequence.

This product expression for a™'is used in the following Ubasic program to
carry out the reduction of a*' meodulus t, Terms for which 3(k)=0 are
ignored in the expansion were the exponents k are contained in the array
E%(). The residue modulus t, is stored in F. In the program below the
reduction is done to base A=7.

100 dim E%{1000)

110 M=N-11%=0

120 T=14%=0

130 while {M-T)>=0

140 inc JR:T=2"T

150 wend

160 dec JR:M=M-T\2inc IR:EX{IR)=I%

170 it M>0 then goto 120

180 F=1

190 forJ%=11o 1%

20 A=7

210 for K%=1 to ER{I%)

240 A=(AA2)@N

250 next

260 F=F*A:F=F@N

270 next
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This program revealed that there are at most three terms t, of the sequence in
the interval 50<n<200 which could be prime numbers. These are:

Term #73, N=379#+1, Nis g 154 digit number,
N=1719620105458404643348334054831 754301958457 56358957 42560438771 105058321 6

$55238562613083979651479555788009994557822024565226932906 29520826 275682227
5663694111

T 171 N=1019#+) Nisg 4 "

N=2040406897301 6374194542454172774607695659797117423121913227131032339026
16917592990224445375741046872884292986 2271 605567818821 685490676646 19853898
39958622802465986881376 139404 138376153096 1031 408346655636 467401 6027975521
23175013568630036386 12390661 66840623542231 17837 42390510526587257026500302
696834793248526734305801 6341 6594870250636717670123329806 461 66635537169754
290487515755971504173810639342556891 24486029 4929089666447 47931

T 172 N=1021#+1. Nisg 4 it .

N=2083255444186%7180526 2785592040287 4457 248652856889007 47 34049007840181 45
7187286244301915872863150885721 48631 3893793092847 4301 674088598087 18870830
26597753881317772605885038331 62528205231 11213067921 93540483321 70364563007
1776168885357126715023250865563442766366 180331 20098071 1247 645589424056809
0534683239067 457957 262234584834336252590008874119591973239736 134883450319
130587753586846905761460662768750585961002361 1 2260054944 287636531

The last two primes or pscudo primes are remarkable in that they are
generated by the prime twins 1019 and 1021.

Summary of results: The number of primes q among the first 200 terms of
the prime-product sequence is given by 65¢<9. The six confirmed primes are
terms numero 1, 2, 3, 4, 5 and 11. The three terms which are either primes or
pscudo primes are terms pumero 75, 171 and 172. The latter two are the
terms 1019#+1 and 1021#+1.

IL3 The Square-Product Sequence

Definition: The terms of the square-product sequence are defined through {t,
Tt = @)1}
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This sequence has a structure which is similar to the prime-product sequence.
The analysis is therefore carried out almost identically to the one done for the
pmne-prodnctseqnenoc We merely have to state the results and compare

The sequence begins {2, 5, 37, 577, 14401, 518401, ... }.As for the prime-
product sequence the question of how many are prime numbers has been
sequences. There are quite a few primes among the first terms. After that they
become more and more rare. Complete factorization of the 37 first terms of
the square-factorial sequence was obtained and has been used in diagram 4
which should be compared with the corresponding diagram 3 for the prime-
product sequence.

O = N W & O N

Diogram 4. The number of prime factors in the first 40 terms of the square-factorial
sequence.

Diagram 4 is based on table 3 which shows the prime factorization of the 40
first terms in the square-factorial sequence. The number of factors of each
term is denoted f. The factorization is not complete for terms numero 38 and
39. A +-sign in the column for f in table 3 indicates that the last factor is not a
prime. The terms of this sequence are in general much more time consuming
to factorize than those of the prime-product sequence which accounts for the
more limited results in this section. Using the same method as for the prime-



Table 3. Pime foctorization of square-factorial terms.

n|ti}f N={nl)}2+1 and its factorn

Tpiitg2

2111115

3j2]1437

413]11577

515]1 j14401

&1 6| 2|518401=13-39877

7 18] 2}25401601= 101 251501

8 [ 10] 2 }1625702401= 17- 95629553

9112} 1 §131681894401

10] 14} 1 |13168189440001

11]16} 1 |1593350922240001

12118} 2 |229442532802560001=101. 2271708245569901

13{20} 1 |38775788043632640001

14122} 3 ]7600054456551997440001= 29- 109- 240431964357228644)

15§25} 2 }1710012252724199424000001=1344169-1272170577304043929

161271 2 |437763136697395052544000001=149- 2938007628841 577533852349

17130} 2 |12651.3546505547170185216000001:= 9049-1 3980942259 4261 43240713449

18] 32} 2 |40990389067797283140009984000001 = 37-1107848353183710355135404972973

19135] 2 [ 1479753045347 4819213543604224000001 =7 10341 - 20831587 1 581 0409256053586 1261

20]|37] 5 |S719012181389927 685417441 689600000001=41-10657- 86816017-
348046955609-4483247 49841

21{40] 3 [26102843719929581092690917851 13600000001=
61-157-272557 6247251 70524096177 486176631513

221431 4 [126337763604459172488624042399 4982400000001 = 337- 8017- 514049836440277481-
P0P67 4823323537849

23] 45] 3 J668326769467589022464821 184293345689600000001= 509-15448374429-
184994002604532747 687 401741723441

24148} 1 [3849562192133312769397370021 529671 172094600000001

25151 3 | 240597 637008332048087 335626345604 448256000000000001 =
941- 815769831908479758733- 313425331349331290243399417

26} 541 5 |162644002617 632464507038883409 628607021056000000000001=
53 53 418433- 4017159668589- 229858897 1 2B76096222556462301797

27157} 7 | 118567 47790825406662563134600561925451 8349824000000000001 =
113- 42461. 745837 2460281- 7566641 15238649- 116793504008451 126962009

2B] 591 2 9295690268007 118823449 497524840549554238626201 6000000000001 =
212259034657 6634509 4379408529299793930395224147 4982753464389

291621 2 |7817675515393984930521027 4200729021751 1 46846355456000000000001 =
171707860473207 588349837- 455289320701 41406371 6469396531758248773

30| 65| 6 [7035907963854588237 46892467806561 195760321 61719910400000000000001=
61. 1733 15661- 359525849 100636381 1265686901 10069- 1174592249518207759537897

31} 68} 4 |676150755326425929620763661562105309 12566907 41 283389 440000000000000 1=
353- 42204 1- 13400767181- 338676081 80748409085305820793832191570324667821677

32§71} 4 |6923783734542601519316619894395958365446851 319074 1 907865600000000000001=
105914621481 6415450838021 52230329391 4650001 204969-1950882388585355532025429

33}741 5 {75400004869 1 68393I054535799064997 19865997 1 62108647 1 7937 665638400000000000001=

052301

41

37- 3121- 4421 40733328828457346253- 362581351 2324448042738745076 2108578 223148




Tabie 3 confinued.

f

3
-

l N=(nlJ2+] and its factons

34}77] 4

358113

38]9014+

39)93]| 4+

01=193- 3217- 866100731 693-394521 434431 45645231 476894644096901291 197410624286
816576197

10677394689523012254528145055% 4253302238581 2620552707 1 528310538240000000000
000001=317.373-90301965388680848897828545563235536086347 48201 1761 63219890777
16189815715361
13837903517621823881848475992501 52279701 201 31562363084 700690457 559040000000
000000001=73- 57986941373 -3269017431698277804505207428624951781 7882480631366
146754011637734149849

1894406991 562427 68942779 4363373458470 109445010887 5062955 2452363983257 60000
000000000001=127406364297881- 49105571194338128021910109- 302797201 1 452403842
[82924307 6981 427 2052327 643069

273552658381 61 4558353373506071 1274031 9954040039721 5590907374121 359 182397 440
000000000000001=233-757-1 5509 1 90807 491 428121 7009 488590680043725424 1672273179
0323638834 191845062531 6785821 6021

4160735933984357 43255481 1027341 847802665009490041 649137701 1 603858731 6426506
240000000000000001=61-10045457577 41 679001 2826932706654708458821 250934897329
6153689729372855102292431572730336 17801

665717749437 4971892087 697 6437 4695648426401 51840666386203218566 1739706282409
984000000000000000001=89- 701- 187100101949-570306192879869151956315673142222
3621 39349 653954437949 26477 2817 483490202551 1 3441

[871 6240562875928371043383719136761 650927 193975761 39359 4 1 4779904000000000000

product sequence the terms t, in the interval 40<n<200 which may possible be
primes were identified. There are only two of them:

T N={651)2+], N i i R

680237 4028907832895045078197262220379290257695327 13580342793801 0402710045
2464382649659623724446578151 412858994571 534385340563792951822384455180747
80057 6000000000000000000000000000001

T #76 N=(76{)2+1 N it .
3555090270010747854202513135770772648194325666925541647977005250280050084
17722668844213915865890651 64392091 2930369944999452531 0062649507 746782697850
7198658011625298409931764786384381 15061 7600000000000000000000000000000000
0001

IL4 The Smarandache Prime-Digital Sub-Sequence

Definition: The prime-digital sub-sequence is the set
{M=ac+a;-10+a,-10%+...2,10" :M is prime, all digits ao, a;, 3,...3 are primes}
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The first terms of this sequence are {2, 3, 5, 7, 23, 37, 53, 73, ... }. Sylvester
Smith [1] conjectured that this sequence is infinite. In this paper we will
prove that this sequence is in fact infinite. Let’s first calculate some more
terms of the sequence and at the same time find how many terms there is in
the sequence in a given interval, say between 10~ and 10*! The program
below is written in Ubasic. One version of the program has been used to
produce table 4 showing the first 100 terms of the sequence. The output of the
actual version has been used to produce the calculated part of table 5 which
we are going to compare with the theoretically estimated part in the same
table.

Ubasic program

point 2

am A%{6),8%(4)

for 1%=1 to é1ead A%R|I%)next

dala 1.4.689.0 ‘Digits not dlowed stored in A%({)

for 1%=1 to 41e0d BR{I%)next

data 2,3.5.7 'Digits adiowed stored in B%{)

forK%=1t07 'Calc. for 7 separate intervals

ME=0:N=0

for ER=110 4 ‘Only 2.3.5,7 alowed as first digit

100 P=BR{ER)*10AKR:PO=P:S=(BR(ER)+1)*10AK%K:gosub 150

110 next

120 print K%.M%B.NM%/N

130 next

140 end

150 while P<S$

160 P=nxiprm(P):P$=sh{P) ‘Select prime ond convert {o string
iNCN *Count number of pames

180 L%=len{P$):C%=0 ‘C% wil be set to 1 if P not member

190 for 1%=210 LR

200 forJ%=1toé ‘This loop examines each digit of P

210 if valimid{P$.1%.1})=A%{J%) then C%=1

220 nextnext

230 # C%=0then inc M% ‘if criferia filled count member (M%)

240 wend

250 retum

838388858Bo
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Table 4. The first 100 terms in the prime-cigital sub sequence.

233
733

7237

3
257
757
2777 3253
5227 5233

5
277
773

3257
5237

7253 7333
7757 22273 22277
23537 23557 23753
25577 25733 27253
32237 32257 32323

7 23 37 33 73 223 227
337 353 373 523 557 577 727
2237 2273 2333 2357 2377 2557 2753
3323 3373 3527 3533 3557 3727 3733
5273 5323 5333 5527 5557 5573 5737
7523 7537 7573 7577 7723 7727 7783

22573 22727 22777 23227 23327 23333 23357
23773 25237 25253 25357 25373 25523 25537
27277 27337 27527 27733 27737 27773 32233
32327 32353 32377 32533 32537 32573 33223

Tabie 5. Comparison of resuils.

K ] 1 2 3 4 5 3 7
Computer count:
m 4 15 38 128 389 1325 4443
logim} . 0.6021 1.1761 15798 21072 25899 3.1222 3.6648
n 13 64 472 3771 30848 261682 2275350
m/n 0.30769 023438 0.08051 0.03394 0.01261 0.00506 0.00204
Theoretica estimates:
m 4 n 34 109 364 1253 4395
log(m) 05922 1.0430 15278 20365 25615 3.0980 3.643%0
n 7 55 421 3399 28464 244745 2146190
m/n 0.50000 0.20000 0.08000 0.03200 0.01280 0.00512 0.00205
Theorem:

The Smarandache prime-digital sub sequence is infinite.

Proof:

We recall the prime counting function 7t(X). The number of primes p<x is
denoted 7(x). For sufficiently large values of x the order of magnitude of



.. x
n(x) is given by x(x)zmj.waandbbedigitsmmmmm

n{a,bk) the approximate number of primes in the interval (b-10%2-10%).
Applying the prime number counting theorem we then have:

o* a b
k ( loga logb) @

loglO+T log10+—k—

n(a,b,k) =

Potential candidates for members of the prime-digital sub sequence will have
first digits 2,3,5 or 7, i.c. for a given k they will be found in the intervals
(2-105,4-10%), (5-10%,6-10") and (7-10%8-10). The approximate number of
primes n(k) in the interval (105,10*"') which might be members of the
sequence is therefore:

nk)=n(4,2.k)+n(6,5,k)+n(8,7.k) @

The theoretical estimates of n in table 5 are calculated using (2) ignoring the
fact that results may not be all that good for small values of k.

We will now find an estimate for the number of candidates m(k) which
qualify as members of the sequence. The final digit of a prime number >5 can
only be 1,3,7 or 9. Assuming that these will occur with equal probability only
half of the candidates will qualify. The first digit is already fixed by our
selection of intervals. For the remaining k-1 digits we have ten possibilities,
namely 0,1,2,3,4,5,6,7,8 and 9 of which only 2,3,5 and 7 are good. The
probability that all k-1 digits are good is therefore (4/10)". The probability q
that a candidate qualifies as a member of the sequence is

1 4.,
=7 o )
The estimated number of members of the sequence in the interval (105,10°"")

is therefore given by m(k)=q-n(k). The estimated values are given in table 5.
A comparison between the computer count and the theorctically estimated
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values shows a very close fit as can be seen from diagram 5 where log;, m is
plotted against k.

The prime-digital sub sequence

Diogram 5. logie m as g funclion of k. The upper curve comesponds to the
computer count.

. loga logh .
For large values of k we can ignore the terms T and —k— in
comparison with log 10 in (1). For large k we therefore have
(a-b)10* .
n(a,b,k) ~ FToglo @)

and (2) becomes



4.10*
m(k) = oo @)
Combining this with (3) we get
5'22k
m(k) ~ ¥log10 @

From which we see (apply for instance I'Hospital’s rule) that m(k)—>wo as
k—w. A fortiori the prime-digital sub sequence is infinite.
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Chapter II1

Non-Recursive Sequences

IIL1 Smarandache Primitive Numbers

Definition: For a given prime p and positive integer n the Smarandache
primitive number Sy(n) is the smallest positive integer such that Sy(n)! is
divisible by p°.

This sequence is important for the calculation of the Smarandache function
S(n) which is defined as the smallest integer such that S(n)! is divisible by n.
We note that S;(n)=S(p").

It follows immediately from the definition that the sequence Sy(n) for a given
prime p consists of multiples of p. Furthermore the definition implics that the
sequence is non-descending, i.¢. Sy(n)< Sy(n+1).
It is evident from the definition that
Sy(n)=np for n<p ¢))
Upper and lower bounds for Sy(n) have been established by Pal Gronas [1}:
(p-Dn+1< S(n)<pn ¥))
Let’s asssume S,(n-1)<Sy(n) and p'{ Sy(n) then it follows that S(n+k-1y=
Sy (n+k-2= ... = Sy(m+l)= Sy(n). This observation is expressed in the
following way in Some Notions and Questions in Number Theory [2] *

Curious property: this is the sequence of multiples of p, each number being
repeated as many times as its exponent (of power p) is.”



Algorithms for the calculation of S(n) are important as a stepping stone for
the calculation of the Smarandache function. The lack of a closed formula
makes this a very interesting topic. Three methods will be described,
implemented and compared.

Method 1.
Let’s denote Sy(n)j=m. We want to calculate the smallest value of m for which
1-2-3- ... -m=0 (mod p"). This is carried out in the following Ubasic program:

10 input "p.n"P.N

20 if N<=P then M=N*P:goto 80

30 Y=1:Z=PAN

40 while Y>0

50 incM

60 Y=Y*M@Z 'The factorial is reduced mod z each time
70 wend ‘the loop is executed.

80 print P.N.M

90 end

This program is effective for small values of n. As we move on to large
exponents the increasingly large modulus slows down the program. A study of
the compexity of this short and elegant program, which can equally well be
used to calculate S(n), has been carried out by S.and T. Tabirca {3].

Method 2.

When n<p we have S (n)=np. For n>p mxrpotenﬂalsoluhonsaremuﬂhphasof
p. The first multiple we need to examine is p°. For a given multipie m of p we
determine first the largest power of p which is less than m, i.c. we determine
k so that p“<sm<p**'. We then continue by counting the number of factors p in
m!. This is given by S = [m/p}+ [m/p’] + [m/p®] + ... + [m/p*]. If S<n then we
proceed to the next multiple of p and so on until we arrive at S=0 in which
case m=Sy(n).

The following UBASIC program has been used to tabulate S;(n) as well as
the Smarandache function in the Smarandache Function Journal [4].



input "p,n"P.N

if N<=P then M=N*P:goto 130 'Sp(n)}=np in this case

I=P-1 'i =p-1 so that m starts at p?
while S<N 'in line 60

inci

M=I*P ‘The starting point for m=p2

S=0

K=floor{log{M)/log(P)) 'Determine the lorgest k for which
for J=1to K ‘pk<m

100 S=S+floor(M/PAJ) ‘Count and add the number times
110 next ‘pl occurs in mi

120 wend

130 print P.N.M

140 end

S8338E8B85

Method 3.

This method is based on a theorem due to C. Dumitrescu and V.Seleacu [5].
They prove the following:

Theorem. If for a given prime p the integer n is expressed in the number base
=1, b= 14p, bi=l4pip’, ..., b=l+pr .. P, resulting in n=cibr+ obot ..
+ by, where the first non-zero coefficient c<p and ¢;<p for i<j<k, then
Symy=cip +c:p’ + ... "

In the program below the number basc is generated through the recursive
formula by=p-by.,+1.

10 dim C(100),8{100}

input "p.n"P.N

if N<=P then M=P*N:goto 150

B(1)=1:1=1

while N>=B{l)

incl

B{l}=B(I-1)*P+1 ‘Caicuiate b2, bs, etc
wend

K=H-1

100 fori=K to 1 step -1

38388583



110 C{l}=N\B{l} ‘Calculate the coefficients

120 N=res ‘c1, C2, ...

130 M=M+C{l}*PAi ‘Express Sp(n) using these
140 next ‘coefficients

150 print M

160 end

Results.

Which of these three programs is the most effective? Since S (n)~np when
nsp all three programs will be equally efficient for n<p. The programs were
therefore tested by calculating Sy(n) for n=p+l, p+2, ... p+50 for
p=2,3,5,7,...229 (the first 50 primes).The largest number manipulated in the
programs is therefore 2297, which is a 559-digit mumber. The programs
were fitted as routines in the same in- and output program. Short integers
were used whenever possible. To calculate these 2500 values of S (n) method
I took 31 m 26 s, method IT 22 s and method ITI 11 s on a Pentium 100 Mhz
laptop. The time t was measured in milliseconds. In figure 1 In ¢ is plotied
against the number of primes for which the programs have been executed. It
is seen that method III is the most effective. It runs about twice as fast as
method I1. Method I is effective for small primes but slows down considerably
when the modulus p® increases.

nt
15+

S

10 ,ﬁiilil’

S w99 ] Q8 8 % 28
Prime number numero

Figure 1. Comparison of execution times for methods I to I11.
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Table 1. Sp(n) forn=1,2. ... 48 and p<47

n o p

3 2 3 § 7 11 13 17 19 23 29 31 3 41 4& &
2 d &6 10 14 2 26 34 3B 46 S8 &2 T4 82 B 94
3 4 9 15 21 33 39 S5 57 & & 93 1 123 129 14
4 o 9 o 2B 44 52 68 76 92 116 124 148 164 172 188
5 8 121 251 35 55 &5 8 95 115 145 155 185 205 215 23§
6 s 1525l 42 66 7B 102 114 138 174 186 222 246 2585 282
7 8 18 30 77 91 119 133 161 203 217 259 287 301 329
8 10 18 35| _ e 88 104 136 152 184 232 248 296 328 344 I
9 12 21 4 56 99 117 153 171 207 261 279 333 349 387 423}
10 12 26 45 43 110 130 170 190 230 290 310 370 410 430 470f
n 4 27 0 121] 143 187 209 253 319 341 407 451 473 517
12 6] 27 50 770 121] 156 204 228 276 348 372 444 492 516 564
13 16/ 27 S5 84 132 169] 221 247 299 377 403 481 533 559 6H|
14 1] 0 @ 91 143] 169] 238 264 322 406 434 518 574 02 458
13 18] 33 & 98 154 182 255 285 345 435 485 555 615 645 708
16 1 70 98 165 195 272 304 368 464 496 592 656 688 752
¥4 75 105 176 208] 289] 323 391 493 527 69 697 731 799
18] 20 3 75 nz 187 z| 289] 342 414 522 558 666 738 774 844
19 2 42 %0 19 198 234 306l 361 4«7 551 s 703

] 24 45 85 126 209 247 SBJ__Sé_I 40 580 420 740

21 24 45 90 133 220 260 340 380 483 &0 651 777

2| 24 48 95 140 231 273 357 399506 638 682 8l4

23l 2 51 147 242 286 374 usi s29} s67 N3 asi

24| 28 .«@ 147 242 299 391 437 _529] 696 744 888

25| 28 s¢ 105 154 253 312 408 456 552 725 775 925

26 ) 30 sS4 110 161 264 325 425 475 S75 754 BO6 942

7] 3 57 115 168 75 338 442 494 598 783 B3I7 999

2] 32 6 120 175 286 338 459 513 &21 812 868 1036

2 32 & 125 182 297 351 476 532 44| 841] 899 1073

0! 32 63 125 189 208 364 493 S51 &s7| 841} 930 1110

3 32 & »E 319 377 S0 570 690 870] 93] 1147

2| 3¢ e 1 330 390 s 589 713 899] 9s1] vies

3] 36 72 135 203 341 403 544 08 738 928 992 122

M) 36 72 140 210 352 416 561 627 759 957 1023 1258

as | 38 75 145 217 363 429 578 646 782 986 1054 1295

36| 4 78 150 224 363 442 578 45 805 1015 1085 1332

a7 ] 4 81 150 231 374 455 595 684 828 1044 m

3| 40 81 155 238 385 468 612 703 851 1073 mm

39| 42 81 160 245 96 481 629 722 874 1102 1178 1406

O 44 Bl 165 245 407 494 646 T2 897 1131 1209 1443

aQ 44 B4 170 252 418 507 663 741 920 1160 1240 1480

2] 4 8 175 259 429 507 680 760 943 1189 1271 1517

a1 48 90 175 266 440 520 697 779 966 1218 1302 1554

Ml 48 90 180 273 451 533 714 798 989 1247 1333 1591

&S] 48 93 185 280 452 546 731 817 1012 1276 1364 1628

&1 48 96 190 287 473 559 748 836 1035 1305 1395 1665

a1 s 99 195 2 572 765 855 1058 1334 1426 1702

8] s2 99 200 29 585 782 874 1058 1363 1457 1739
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In table 1 consecutive squares have been emphasized by frames. The series in
light frames follow the rule S(p)= S,(p+1)=p° which is obvious from the
definition. The series in bold frames is less obvious and this study will be
concluded by proving the following:
Spdp+a)= S(4p+3)=4p” or ST =S ?)=2py’
Proof: Applying the theorem of Dumitrescu and Seleacu we have:
4p+4=4-(14p), i.e. ;=0 and c=4 from which

SH4p+p)=0-p+4-p*=(2p)’

4p+3=p-1+3.(1+p), i.c. ¢;=p and c;=3 from which

S;4pH3ppt3-p=(2p)

I11.2 The Smarandache Function S(n)

Definition: S(n) is the smallest integer such that S(n)! is divisible by n.

The properties of this function have been subject to detailed studies in many
papers. Some of these properties are listed here. When needed n is
represented in the form n=pj* -p3*-..pp*

1. S(n)xn
2. pisprime iff S(p}p

3. If m-nz0, then S{(mn)<S(n)-S(m)
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4. If (m,n)=1, then S(mn)=max{S(m),S(n)}
5. Smmax{S, (), S, (x2), -..S,, ()}, where Sy(n) are

Smarandache primitive numbers as defined in section I1.1
6. Ifnis square free, i.e. ;=0 ...=0y, then S(n)=max{p, pz, .-}

The purpose of this section, however, is to give an effective computer
algorithm' for the calculation of S(n) and to provide a table for the first 1000
values of this function.

10 ‘A UBASIC program for online caiculation of §(n)
20 dim F{10}.E%{20)

30 input™N "N

40 gosub 70

50 print“${n)="3

60 end

70 Ni=N:gosub 170

N is factorized and the prime facfors stored in Ff) with the
comresponding exponents in EE(}

80 if F{1})=N then S=N:goto 160

If F(1)=1 then n is prime and consequently S{n)=n

90 for J%=1to K%

100 if E%(J%)>1 then P2=F{J%):N2%=E%(J%):.gosub 260:F(i%)=M
110 next

For prime factors of n with exponents larger than 1 F{J%)=F2 s
repkaced by FjE)=M which s calculoted by one of the roufines
described earfer (here method 2}

120 S=0

! The author was inspired to do this after several requests 1o help provide vatues for this function for
iarge values of n.



130 for J%=110 K%
140 if F{J%)>S then S=F(J%)
150 next

The largest valve of F{) s the valve of S{n)

160 retum
170 ‘Factorisation of N1, output f{i)Ae%(i}

A simple roufine fo fachr'ze N1

180 K%=0:for I%=1 to 10:F{I%)=0:next

190 for I%=1 to 20:E%({1%)=0:next

200 while N1>1

210 P=pmmdiv(N1)

220 if P=F(K%) then inc E%(K%) else inc K%:F{K%)=P:inc E%({K%)

230 NI1=NI\P

240 wend

250 retum

260 'Calculation of Sp(n). In: p2.n2%. Out: m. This roufine &
documented in secfion Il.]

270 12=0:52%=0

280 while S2%<N2%

290 inci2

300 M=I2*P2

310 S2%=0

320 K2=ficor{log(M)/iog(P2}}

330 for J2=1to K2

340 S2%=S2%+floor{M/P2AJ2)

350 next

360 wend

370 retumn

This is the bare minimum program. When used in a special problem the
number of instructions tend to increase considerably because of “safety
valves” and data flow from and to other processes.
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Table 2. The Smarandache function

n 0 1 2 3 4 5 L] 7 8 9

[¢} 2 3 4 5 3 7 4 3

1_ 5 11 4 i3 7 5 6 17 6 19
2_ 5 7 11 23 4 10 13 9 7 29
3_ -] 31 8 11 17 7 6 37 19 13
4_ 5 41 7 43 11 € 23 47 6 14
S_ 10 17 13 53 9 11 7 19 29 59
6 _ 5 61 31 7 8 13 11 67 17 23
7_ 7 7 3 73 37 10 19 11 13 79
8_ 6 9 41 83 7 17 43 29 11 83
9 6 13 23 31 47 19 8 97 14 11
10 10 101 17 103 13 7 83 107 9 109
11 11 37 7 113 13 23 23 13 59 17
12_ 5 22 61 41 31 15 7 127 8 43
13 13 131 11 19 67 8 17 137 23 138
14_ 7 47 7 13 € 28 73 1 37 149
15_ 10 151 19 17 11 31 13 157 79 53
16_ 8 23 9 163 41 11 83 167 7 28
17_ 17 19 43 173 29 10 11 59 89 179
18_ 6 181 13 61 23 37 3 17 47 9
18_ 13 191 8 193 97 i3 14 197 11 199
20_ 10 67 101 29 17 41 103 23 13 19
21 _ 7 211 53 71 107 43 S 31 109 73
22 11 17 37 223 8 10 113 227 19 229
23 23 11 29 233 13 47 59 79 17 239
24_ 6 241 22 12 61 14 41 19 31 83
25 15 251 7 23 127 17 10 257 43 37
26 13 29 131 263 11 53 19 89 67 269
27_ 9 271 17 13 137 11 23 27 139 31
28 7 281 47 283 71 19 13 41 8 34
29_ 29 97 13 293 14 59 37 11 149 23
30 10 43 151 101 18 61 7 307 11 103
31_ 31 311 13 313 157 7 79 317 53 23
32_ 8 107 23 19 4 13 163 109 41 47
33_ 11 331 83 37 167 €7 7 337 26 113
34_ 17 31 19 21 43 23 173 347 23 349
35_ 10 13 11 383 59 71 89 17 179 353
36_ 6 38 181 22 i3 73 he 367 23 41
37_ 37 53 31 373 17 i5 47 29 9 379
38 _ 18 127 191 383 8 11 193 43 97 389
39 13 23 14 131 197 79 11 3387 199 19
40_ 10 401 67 31 01 9 29 37 17 409
41_ 41 137 103 59 23 83 b3 139 19 419
42_ 7 421 211 47 S3 17 71 61 107 13
43_ 43 431 9 433 31 29 109 23 73 433
44 11 14 17 443 37 89 223 149 2] 449
45_ 10 41 113 151 227 13 1 457 229 17
46_ 23 461 11 463 23 31 233 467 13 67
47_ 47 157 59 43 79 19 17 33 239 479
a8_ 8 37 241 23 22 97 12 487 61 1€e3
49_ 14 491 41 28 19 11 31 71 83 499



50 15 167 251 503 7 101 23 26 127 509
Table 2 ctd. The Smarandache function

n ) 1 2 3 t s G 7 ) D
51_ 17 73 12 13 257 103 a3 rg] 37 173
52 13 521 29 523 131 10 263 3 11 46
53_ 53 59 19 41 89 107 87 179 269 14
s4_ 9 S41 271 181 17 109 13 547 137 61
ss_ 11 29 23 79 277 37 139 557 31 a3
s6_ 7 17 281 563 47 113 283 9 71 569
57_ 19 571 13 181 41 23 8 5717 34 1983
se_ 29 83 97 53 73 13 293 587 14 31
59_ 58 187 37 593 11 17 149 159 23 599
s0_ 16 601 43 67 151 22 101 €07 19 29
61 61 47 17 613 307 41 11 617 103 619
62_ 31 23 311 89 13 20 313 19 157 37
53_ 7 631 19 211 317 127 53 14 23 71
6e_ 8 641 107 643 23 43 19 647 9 59
6s_ 13 31 163 653 109 131 41 73 47 659
&s_ 11 661 331 17 83 19 37 29 167 223
€7_ 67 61 8 673 337 10 26 677 113 97
s8_ 17 227 31 683 19 137 21 229 a3 53
€9_ 23 691 173 11 347 139 29 41 349 233
70_ 10 701 13 37 11 47 353 101 59 709
71_ 71 73 83 31 17 13 179 239 359 719
72_ 6 103 38 241 181 29 22 127 13 15
73_ 73 43 61 733 367 14 23 67 41 739
74_ 37 18 53 743 31 149 373 83 17 107
7s_ 15 751 47 251 29 151 3 757 379 23
76_. 19 761 127 109 191 17 383 59 10 7698
77_ 11 257 193 773 43 31 97 37 389 41
7 13 71 23 29 14 157 131 787 197 263
79_ 79 113 11 61 397 53 199 797 19 47
so_ 10 85 401 73 67 23 31 269 101 809
s1_ 9 811 29 2m 37 163 17 43 409 13
82_ 41 821 137 823 103 11 59 827 23 829
83_ 83 277 13 17 139 167 1s 31 419 839
8¢ 7 S8 421 281 211 26 47 22 53 283
85 17 37 71 853 61 19 107 857 13 859
8s_ 43 41 431 863 9 173 433 34 31 73
87_ 29 €7 109 97 23 15 73 877 439 293
88__ 11 881 14 883 17 59 443 887 37 127
89_ 89 11 223 47 149 179 8 23 449 31
90_ 10 83 41 43 113 181 151 307 227 101
91_ 13 911 p3-] 83 457 (34 229 131 17 g9i9
92_ 23 307 461 71 11 37 463 103 23 929
93 31 19 233 31 467 17 13 337 €7 313
s4_ 47 941 157 41 59 s 43 947 19 73
ss_ 13 317 17 953 53 191 239 29 479 137
96_ 8 62 37 107 241 193 23 967 22 19
97_ 97  9m 12 139 487 13 61 977 163 89
% 14 109 491 983 41 197 29 47 19 43
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o9 i 11 991 31 331 71 199 83 997 499 37
L3 Smarandache m-Power Residues

Definition: The m-power residue of n is the largest m-power free number
which divides n. Notation M.(n).

Let’s express n in the form n=p{* -p3*-..py* then M, (n)=p™ pdz. p3t
where o; =min{a;,m-1} fori=1, 2, ... k

1t follows directly from the definition that M,(n) is a multiplicative arithmetic
function, which is expressed in (1) below.

If (n,m)=1 then M(nm)=M(n)-M{(m)

We will only make calculations for two special cases: Cubical residues and
Square residues.

ITL3a Cubical Residues.

In the prime factor representation of n a.23 will be replaced by o=2. A
simple Ubasic routine results in table 3.

Tabie 3. The first 100 terms of the cubical residues sequence.

0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 4 9
10 11 12 13 14 15 4 17 i8 19
20 21 22 23 12 25 26 9 28 29
30 31 4 33 34 35 36 37 38 39
20 41 42 43 44 45 46 47 12 49
50 51 52 S3 18 55 28 S$7 58 59
60 61 62 63 4 65 66 67 68 69
70 71 36 73 74 75 76 77 78 79
20 S 82 83 84 85 86 87 44 89
S0 91 92 93 94 95 12 97 98 99

V0NN WN
[ O T I I N |
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HIL3b Square Residues

X2

For n in the form n=p{" -pJ
S{mpr-pz .- P

Apart from the multiplictive property we add two more properties of this
sequence.

-..px* the square residue S(n) is given by

i «>0 and p any prime number then S(p*)=p.
S:(nm)=S{(n)-S{m) /(S(n), S(m)).
The first 100 terms of this sequence are given in table 4.

Table 4. The first 100 terms of the square residues sequence

n 0 i 2 3 4 5 6 7 8 9
1 2 3 2 3 3 7 2 3
1_ 10 11 6 13 14 15 2 17 6 19
2_ 10 21 22 23 6 5 26 3 14 29
3_ 30 31 2 33 34 35 6 37 38 39
. 10 41 42 43 22 15 46 47 6 7
5 10 51 26 53 6 55 14 57 58 59
6_ 30 61 62 21 2 65 66 67 34 69
7_ 70 71 €6 73 74 15 38 77 18 719
8 10 3 82 83 42 85 86 87 22 89
9 30 91 46 93 94 95 6 97 14 33

In chapter VI we will return to the Smarandache function and the square
residues.
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Chapter IV

Periodic Sequences

IV.1 Introduction

In Mathematical Spectrum, vol 29 No 1 [1], is an article on Smarandache’s
periodic sequences which terminates with the statement:

“There will always be a periodic sequence whenever we have a
function f:S—S, where S is a finite set of positive integers and we
repeat the function f.”

However, consider the following trivial function f(x,):S—S, where S is an
ascending set of integers {a), 3, ... &, ... 3}

(XH if x>,
fx)= X if x=a
L X i <8,

As we can see the iteration of the function f in this case converges to an
invariant a,, which we may of course consider as a sequence (or loop) of only
one member. In this study, however, a periodic sequence will be referred to
as such if it has at least two members. If it has only onec member it will be
referred to as invariant

There is one more snag to overcome. In the Smarandache sequences 05 is
considered as a two-digit integer. The consequence of this is that 00056 is
considered as as a five digit integer while 056 is considered as a three-digit
integer. We will abolish this ambiguity, 05 is a one-digit integer and 00200 is
a three-digit integer.



With these two remarks in mind let’s look at these sequences. There are in ail
four different ones reported in the above mentioned article in Mathematical

Spectrum. The study of the first one will be carried out in much detail in view
of the above remarks.

IV.2 The Two-Digit Smarandache Periodic Sequence

It has been assumed that the definition given below leads to a repetition
according to Dirichlet’s box principle (or the statement made above).
However, as we will see, this definition leads to a collapse of the sequence.

Preliminary definition. Let Ny be an integer of at most two digits and let N’
be its digital reverse. We define the element N, of the sequence through

New= NN’ |
where the sequence is initiated by an arbitrary two digit integer N;.
Let’s write N, in the form N;=10a+b where a and b are digits. We then have
N;=| 10a+b-10b-a|=9- |a-b |
The |a-b|can only assume 10 different values 0,1,2, ... ,9. This means that
N; is generated from only 10 different values of N,. Let’s first find out which
two digit integers result in la-b|= 0,1,2, .. and 9 respectively.

labl Comesponding two digit integers
66

I 22 33 44 55 77 88 99
10 12 21 23 32 34 43 45 54 56 65 67 76 78 87 8 98
1320 24 31 35 42 46 53 57 64 68 75 79 86 97
14 25 30 36 41 47 52 58 63 69 74 85 96
15 26 37 40 48 51 59 62 73 84 95
27 38 4 50 61 72 83 94

17 28 39 60 71 82 93
19 29 70 8 92
9 8 91

NVO®NOOAEWN—~O
o~
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It is now mtofollowtheltetmonoﬁbeseqnenoewhlchmvanably
terminates in 0, table 1.

Table 1. terafion of sequence according fo the prefminary definifion

la-bli N2 Ns Ne Ns Ns N¢
0 0
1 9 0
2 18 63 27 45 9 0
3 27 45 9 0
4 36 27 45 9 0
S5 45 9 0
é 54 9 4]
7 63 27 45 9 0
8 72 45 9 0
9 81 63 27 45 9 0

Thetetmnauonofﬂ;esequspreoededbythccmdlgndm9whose
reverse is 9. The following definition is therefore proposed.

Definition of Smarandache’s two-digit periodic sequence. Let N, be an
integer of at most two digits. N’ is defined through

ftherevcrseokafoklsatwod:gnmteger
i {lNylo if Ny is a one digit integer
We define the element N, of the sequence through
Nowr= | NNy |

where the sequence is initiated by an arbitrary two digit integer N; with
unequal digits.

Modifying table 1 according to the above definition results in table 2.
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Conclusion: The iteration always produces a loop of length 5 which starts on
the second or the third term of the sequence. The period is 9, 81, 63, 27, 45 or
a cyclic permutation thereof.

Table 2. teration of the Smarandache two digit sequence

la-bl N2 Ns N Ns Ns Ne N7
] 9 81 63 27 45 9
2 18 63 27 45 9 81 63
3 27 45 9 81 63 27
4 36 27 45 9 81 63 27
5 45 9 81 63 27 45
é 54 9 81 63 27 45 9
7 63 27 45 9 81 63
8 72 45 9 81 63 27 45
9 81 63 27 45 9 81

IV.3 The Smarandache n-digit periodic sequence.

Let’s extend the definition of the two-digit periodic sequence in the following
way.

Definition of the Smarandache n-digit periodic sequence.

Let Ny be an integer of at most n digits and let R, be its reverse. N’ is
defined through

N, = R, -10" s ]
We define the element Ny, of the sequence through
Nin=|NeeN' |
where the sequence is initiated by an arbitrary n-digit integer N; in the

domain 10°sN;<10™, It is obvious from the definition that 0<N,<10"",
which is the range of the iterating function.
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Let’s consider the cases n=3, n=4, =5 and n=6.
n=3.

Domain 100<N,;<999. . The iteration will lead to an invariant or a loop
(periodic sequence)’. There are 90 symmetric integers in the domain, 101,
111, 121, ...202, 212, ..., for which N,=0 (invariant). All other initial
integers iterate into various entry points of the same periodic sequence. The
number of numbers in the domain resulting in each entry of the loop is
denoted s in table 3.

Table 3. Smarandache 3-cigit periodic sequence

s 239 11 200 240 120
Loop 99 891 693 297 495

1t is easy to explain the relation between this loop and the loop found for n=2.
Consider N=a,+10a,+100a;. From this we have [N-N’[=99a--a5j=11-%az-al
which is 11 times the corresponding expression for n=2 and as we can see this
produces a 9 as middle (or first) digit in the sequence for n=3.

=,

Domain 1000<N,<9999. The largest number of iterations carried out in order
to reach the first member of the loop is 18 and it happened for N;,=1019. The
iteration process ended up in the invariant 0 for 182 values of N;, 90 of these
are simply the symmetric integers in the domain like N;=4334, 1881, 7777,
etc., the other 92 are due to symmetric integers obtained after a couple of
iterations. Iterations of the other 8818 integers in the domain result in one of
the following 4 loops or a cyclic permutation of one of these. The number of
numbers in the domain resulting in cach entry of the loops is denoted s in
table 4.

! This is claborated in detail in Swrfing on the Ocean of Numbers by the author, Vail Univ. Press
1997.



Table 4. Smarandache 4-digit periodic sequences

s 378 259
Loop 2178 6534
(3 324 18 288 2430 310
Loop 90 810 630 270 450
s 446 2 449 333 208
Loop 909 8181 6363 2727 4545
s 329 1" 290 2432 311
Loop 999 8991 6993 2997 4995

n=Ss.

Domain 10000<N,;<99999. There are 900 symmetric integers in the domain.
920 integers in the domain iterate into the invariant 0 due to symmetries.

Table 5. Smarandache 5-digit periodic sequences

s 3780 2590
Loop 21978 65934

s 3240 180 2880 24300 3100
Loop 990 8910 6930 2970 4950

s 4469 1 4490 3330 2080
Loop 9009 81081 63063 27027 45045

s 3299 101 2900 24320 3110
Loop 9999 89991 69993 29997 49995

n=6.

Domain 100000<N;<999999. There are 900 symmetric integers in the
domain. 12767 integers in the domain iterate into the invariant 0 due to
symmetries. The longest sequence of iterations before arriving at the first loop
member is 53 for N=100720. The last column in table 6 shows the number of
integers iterating into each loop.
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Tabie 6. Smarandache 6-digit periodic sequences

s | 13667 1366
L1 0
s 13542 12551 26093
12 | 13586 65340
s | 12685 12685 26271
L3 | 219978 659934
s 19107 2711 7127 123320 12446 164711
L4 900 8100 6300 2700 4500
s | 25057 18 12259 20993 4449 62774
L5 9090 81810 43630 27270 45450
s | 47931 14799 42603 222941 29995 358269
L6 ] 9990 89910 69930 29970 49950
s | 25375 11 12375 21266 4409 63434}
t7 | 90009 810081 630063 270027 450045
s 1488 2 1005 1033 237 3765,
18 | 90909 818181 636363 272727 454545
s 1809 11 135 1570 510 3
L9 | 99099 891891 693693 297297 495495 250‘
s 19139 2648 7292 123673 12472 165224]
L10] 99999 899991 699993 299997 499995
s 152 4 1254 972 492 m 826 485  429] 4725
L11] 10989 978021 857142 615384 131848 736263 373626 252747 494505
s 623 o4 15 796 377 36 525 140 194
L12] 43659 912681 726442 461835 74329 847341 703593 308286 374517
cid 596 nz 156 793 327 &5 530 139 179 531:1
cid | 340956 318087 462726 164538 670923 341847 406296 284308 517374

Table 7. The sublraction pefiodic sequence, 10<N:<99
#1 12 20 1 9 89 97 78 86 67 75 56 64 45 53 34 42 23 31
#2 13 30 2 19 90 8 79 96 68 85 57 74 46 63 35 52 24 41
#3 14 40 3 29 91 18 80 7 69 95 S8 84 47 73 35 62 25 51
#4 15 50 4 39 92 28 81 17 70 6 59 94 48 83 37 72 26 61
#5 16 60 5 49 93 38 82 27 71

1V.4 The Smarandache Sabtraction Periodic Sequence

Definition: Let Ny be a positive integer of at most n digits and let R, be its
digital reverse. N’ is defined through
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N, =R, -107 {omere]
We define the element Ny, of the sequence through
Nea= | N

whaccisapodﬁveintcger.mseqmisiniﬁmedbyanaxbiumyposiﬁve
n-digit integer N;. It is obvious from the definition that 0<N,<10™"', which is
the range of the iterating function.

c=1, B=2, 10<N,<99

When N, is of the form 11-k or 11-k-1 then the iteration process results in 0,
see figure la.

Every other member of the interval 10<N,;<99 is a entry point into onc of five
diffaemwclicwiodicmm.FwoﬁhseamdlengthISandoneof
1ength9asshownintabk7andillusuatedinﬁgnm 1b and lc, where
impommfwursofmeitemﬂonchainsmshown

99 37 38

98 72 82

88 - 26 27
«[=) 87 61 N

77 15 16
-> 76 50 60

66 -(-1) - 04 “« - oS -

45 1) 3 o9 (e 49 —{+9)

55 92 93

54 28 38

44 8!

43 17

33 70

32 - 06 «

2 e 59 -39

21 94

N 48

10 83

0 37

fg. la Rg. 1b Ag. 1lc
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1<¢<9, n=2, 100sN,<999

A computer analysis revealed a number of interesting facts concerning the
application of the iterative function.

There are no periodic sequences for ¢=1, ¢=2 and c=5. All iterations result in
the invariant 0 afier, somctimes, a large number of iterations.

Table 8. Loop stdtistics. L=length of loop, f=first term of loop

[« 4/ L» 0 11 2 33 50 100 147 189 200
] Ny 900
2 N 900
3 N 241 59 150
] 240
2 210
4 Ny 494 42
1 364
5 Ny 900
6 N 300 59 84
1 288
2 169
7 Ni 109 535
1 101
2 101
3 14
4 14
5 13
[ 13
8 N 203 43 85
1 252
2 305
3 12
9 Ni 21 79 237 170
4 20
5 10
é 161
7 21
8 81




For the other values of c there are always some values of N, which do not
produce periodic sequences but terminate on 0 instead. Those values of N,
which produce periodic sequences will either have N; as the first term of the
sequence or one of the values f determined by 1<f<c-1 as first term. There are
only eight different possible value for the length of the loops, namely 11, 22,
33, 50, 100, 167, 189, 200. Table 8 shows how many of the 900 initiating
integers in the interval 100<N;<999 result in each type of loop or invariant 0
for each value of c.

A few examples:
For c=2 and N;=202 the sequence ends in the invariant 0 after only 2
iterations:

2022000
For c=9 and N,=208 a loop is closed after only 11 iterations:

208 793 388 874 469 955 550 46 631 127 712 208
For c=7 and N,=109 we have an example of the longest loop obtained. It has
200 elements and the loop is closed after 286 iterations:

109 894 491 187 774 470 67 753 350 46 633 329 916 612 209 895 591 188 874 471
167754 450 47 733330 26 613 309 896 691 189 974 472 267 755 550 48 833 33!
126 614 409 897 791 190 84 473 367 756 650 49 933 332 224 615 509 898 891 191
184 474 467 757 750 50 43 333 326 616 609 899 991 192 284 475 567 758850 51
143334 426 617 709 900 19 476 667 759 950 52 243 335 526 61 1

102194 477 767 7 336 626 619 902 195 584 478 867 761
160 54 443 337 726 620 19 903 302 196 684 479 947 762 260 S5 543 338 826 621
119 904 402 197 784 480 77 763 360 56 643 339 926 622 219 905 502 198 884 48]
177 764 4 7 19 199 984 482 277 76 S8 1

136 624 419 907 702200 5 493 387 776 670 69 953 352 246 635 529 218812211
105 494 487 777 770 70_63 353 346 636 629 919 912 212 205 495 587 778870 71
163354 446 6377299 13 305 496 687 779 970 72 263 355 546 638 829 921
1 14 405 497 787 780 80 73 363 356 646 639 929 922 222 215 505 498 887 781
180 74463 357 746 640 39 923 322 216 605 499 987 782 280 75 543 358 846 641

139 924 422217705500 2

IV.5 The Smarandache Multiplication Periodic Sequence
Definition: Let c>1 be a fixed integer and N, and arbitrary positive integer.

Ny is derived from Ny by multiplying each digit x of N by c retaining only
the last digit of the product cx to become the corresponding digit of Ny,;.
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In this case each digit position goes through a separate development without
interference with the surrounding digits. Let’s as an example consider the
third digit of a 6-digit integer for c=3. The iteration of the third digit follows
the schema:

xx7yyy — the third digit has been arbitrarily chosen to be 7.

xxlyyy

xx3yyy

xx9yyy

xx7yyy — which closes the loop for the third digit.
Let’s now consider all the digits of a six-digit integer 237456:

237456

691258

873654

419852

237456 -—-- which closes the loop.
The digits 5 and O are invariant under this iteration. All other digits have a
period of 4 for c=3.

Conclusion: Integers whose digits are all equal to 5 are invariant under the
given operation. All other integers iterate into a loop of length 4.
We have seen that the iteration process for each digit for a given value of ¢
completely determines the iteration process for amy n-digit integer. It is
therefore of interest to see these single digit iteration sequences:

With the help of table 9 it is now easy to characterize the iteration process for
each value of c.

Integers composed of the digit 5 result in an invariant after one iteration.
Apart form this we have for:

c=2. Four term loops starting on the first or second term.
¢=3. Four term loops starting with the first term.

c=4. Two term loops starting on the first or second term (could be called a
switch or pendulum).



Table 9. One-digit multiplication sequences
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Periodic Sequence

Definition. Let N, be a two-digit integer a,-10+a,. If a;+a,<10 then b= a,+a,

otherwise br—‘ 31+ao+1- bo:hl‘ad . We define N1=b1'10+bo. Ng-..] is derived

from N, in the same way.’
There are no invariants in this case. 36, 90, 93 and 99 produce two-clement

loops. The longest loops have 18 elements. A complete list of these periodic

©=9. Two term loops starting with the first term (pendulum).
sequences is presented below.

¢=7. Four term loop starting with the first term.
¢=8. Four term loop starting with the second term.
1IV.6 The Smarandache Mixed C

¢=5. Invanant afier one iteration.
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Chapter V

Smarandache Concatenated Sequences

V.1 Introduction

Smarandache formulated a series of very artificially conceived sequences
through concatenation. The sequences studied below are special cases of the
Smarandache Concatenated S-sequence.

Definition: Let G={g;, g,, .... &, .... } be an ordered set of positive integers
with a given property G. The corresponding concatenated S.G sequence is
defined through

S$.G={a;:a =g,,a, =qa, 10" Lo [>]}

In table 1 the first 20 terms are listed for three cases, which we will deal with
in some detail below.

V.2 The Smarandache Odd Sequence

The Smarandache Odd Sequence is generated by choosing
G={1,3,5,7,9,11,.....}. Smarandache asks how many terms in this sequence
are primes and as is often the case we have no answer. But for this and the
other concatenated sequences we can take a look at a fairly large number of
terms and see how frequently we find primes or potential primes. As in the
case of prime-product sequence we will resort to Fermat’s little theorem to
find all primes/pscudo-primes among the first 200 terms. If they are not too
big we can then proceed to test if they are primes. For the Smarandache Odd
Sequence there are only five cases which all were confirmed to be primes
using the elliptic curve prime factorization program. In table 2 # is the term
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number, L is the number of digits of N and N is a prime number member of
the Smarandache Odd Sequence :
Table 1a. The first 20 terms of the Smarandache Odd Sequence

1
13
138
1357
13579
1357911
135791113
13579111315
1357911131517
135791113151719
13579111315171921
1357911131517192123
135791113151719212325
13579111315171921232527
1357911131517192123252729
135791113151719212325272931
13579111315171921232527293133
1357911131517192123252729313335
135791113151719212325272931333537
1357911131517192123252729313335373%
1357911131517192123252729313335373941

Tabie 2. Prime numbers in the Smarondache Odd Sequence

# L N

2 2 13

10 15 135791113151719

16 27 135791113151719212325272931

34 63  1357911131517192123252729313335373941434547495153555
75961636567

49 93  1357911131517192123252729313335373941434547495153555
75961636567697173757779818385878991939597
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Term #201 is a 548 digit number.
V.3 The Smarandache Evea Sequence

The Smarandache Even Sequence is generated by choosing G={2,4,6,8,10,
....}. The question here is : How many terms are nth powers of a positive
integer?

A term which is a nsh power must be of the form 2"-a where a is an odd nzh
power. The first step is therefore to find the highest power of 2 which divides
a given member of the sequence, ic. to determine n and at the same time we
will find 2 We then have to test if a is a nth power. The Ubasic program
below has been implemented for the first 200 terms of the sequence. No nth
powers were found.

Table 1b. The first 20 terms of the Smarandache Even Sequence

2
24
246
2468
246810
24681012
2468101214
244810121416
24681012141618
2468101214161820
246810121416182022
24681012141618202224
2468101214161820222426
246810121416182022242628
24681012141618202224262830
2468101214161820222426283032
246810121416182022242628303234
24681012141618202224262830323436
24681012141618202224262830323434638




246810121416182022242628303234363840
24681012141618202224262830323436384042

Ubasic program: {only the essenfial part of the program is isted)

60 N=2

70 for U%=4 10 400 step 2

80 D%R=intlog{U%)/log(10}}+1 ‘Determine length of UX
90 N=N*10AD%+U% ‘Add on U%

100 A=NE%=0

110 repect

120 Al=AA=A\Zinc ER% ‘Determine EX (=n)

130 uniil res<>0

132 dec EX:A=Al ‘Determine A (=q)

140 B=round{AA(1/EX))

150 if BAER=A then print EX.N ‘Check if ais anfpower
160 next

170 end

So there is not even a perfect square among the first 200 terms of the
Smarandache Even Sequence. Are there terms in this sequence which are 2-p
where p is a prime (or pseudo prime). With a small change in the program
used for the Smarandache Odd Sequence we can easily find out. Strangely
enough not a single term was found to be of the form 2-p.

V.4 The Smarandache Prime Sequence

The Smarandache Prime Sequence is generated by {2,3,5,7,11, ...}. Again
we ask: - How many are primes? - and again we apply the method of finding
the number of primes/pseudo primes among the first 200 terms.

There are only 4 cases to consider: Terms #2 and #4 are primes, namely 23
and 2357. The other two cases are: term #128 which is a 355 digit mumber
and term #174 which is a 499 digit number.

L V.

2357111317192329313741434753596167717379838997101103107109113127131137139
1491511571631671731791811911931971992112232272292332392412512572632692712
77281283293307311313317331337347349353359367373379383389397401 409419421 43



1433439443449457461463467479487491 499503509521 523541 547557563569571577587
S93599601607613617619631641643647653659661673677683691701709719

Table 1¢. The first 20 temms of the Smarandache Prime Sequence

2
23
235
2357
235711
23571113
2357111317
235711131719
23571113171923
2357111317192329
235711131719232931
23571113171923293137
2357111317192329313741
235711131719232931374143
23571113171923293137414347
2357111317192329313741434753
235711131719232931374143475359
23571113171923293137414347535961
2357111317192329313741434753596167
235711131719232931374143475359616771
23571113171923293137414347535961677173

#174
2357111317192329313741434753596167717379838997101103107109113127131137139
1491511571631671731791811911931971992112232272292332392412512572632692712
77281283293307311313317331337347349353359367373379383389397401 409419421 43
1433439443449457461 463467479487 491499503509521523541547557563569571577587
5935996016076136176196316418436476536596616736776836917017097197277337397
4375175776176977378779780981182182382782983985385785986387788188388790751
19199299379419479539679719779839919971009101310191021 10311033

Are these two numbers prime numbers?
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Chapter VI

On the Harmonic Series

VL1 Comparisoa of s few sequences

Thcharmmcscna1+;+% i—+ is so important and so intensely

studied that nothing more can be said about it - or can there? We may always

pose a few questions.

We know that the series is divergent. Furthermore the series ZF is
k=1

convergent for o>1 and divergent for a<]. Since it is the “borderline” it may

be interesting to examine the following questions:

Qnutionl.Whatisthesmall&numberoftcrmsmwemdinordcrto
makethemmglmterthanagivenpodﬁveimegetw?lnothcrmﬂsthe

smallest m for which Z 2w
k1K

Question 2. What is the smallest m for which Z——zw‘7
Usmgthemtanonsfortthmarandachcﬁmcuonandthcsquammdlm
mtmdxmdmchaptcx]]23weposetheconspondmgquesums

Question 3. What is the smallest m for which ¥ —5— 2()
x=18

Questioa 4. What is the smallest m for which ZS W) 2w?
k=19¢

Table 1 shows the values of m required in each case for w=1, 2, 3, ...12. In
diagram 1 In(m) is plotted against w. Asimpliﬁedmsionofthisdiagmmis

shown on the cover. We see that the series ZF is very “sensitive” to
k=1



changes in the value of a. Z is on the convergent side of the graph for

k=18, (k)
1/k and Z S on the divergent side.
( )
Table 1. Comparison of sequences.

Series 1: Series 2: Serles 3: Series 4:
w 1/k 1/s%(k) 1/sr (k) 1/k%2

Values of m Values of m Values of m Values of m
1 2 24 2 2
2 4 144 9 4
3 11 462 54 12
4 31 1045 243 35
5 83 1944 729 102
6 227 3200 2048 311
7 616 4862 6561 966
8 1674 €912 16384 3082
9 4550 9477 37746 10115
10 12367 12480 93312 34167
11 33617 16008 209952 118971
12 91380 20020 497664 427698

Diagram 1. The behaviour of some sequences: Infm) plotted against w.
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VL2 Integers represented as sums of terms of the harmonic series

Given a positive integer w. Can we represent w as a sum of a finite number of
different terms chosen from the harmonic series? For w=1 we have the simple

answer 1=—;-+%+%,btnwhatdnnw=2, w=3 etc.

Method 1: k-perfect sumbers. By definition a k-perfect number is 2 number
n which satisfies the equation o(n)=k-n, where o(n) is the sum of divisors of

(1 and n included). k:@ therefore gives the desired rcpresentation of the

integer k. The result of a computer search for k-perfect numbers is given in
table 2. A column is included for the number of divisors m since this is equal
to the number of terms required for the representation. The numbers are given
in factor form as this is more interesting than the decimal representation. A 2-
perfect number is in the literature simply referred to 2 perfect number. They
have attracted a lot of interest - The problem of perfect numbers, a favorite
with ancient Greeks, owes its origin to the number mysticism of the
Pythagoreans (quote from Elementary Number Theory, Uspensky Heaslet).

Table 2. k-perfect numbers n, m = the number of divisors.

} 4 = n

2 4 2-3=6

2 6 22.7=28

2 10 2%.31=496

2 14 26.127=8128

2 26 2'2.8191=33550336

2 34 216.131071=8589869056

2 38 2°%.524287=137438691328

2 62 2%%.2147483647=2305843008139952128
3 16 2°.3.5=120

3 24 25.3.7=672

3 288 28.5.7.19-37-73=459818240

3 80 2%.3-11-31=523776

3 224 213.3.11-43-127=1476304896

3 480 2%%.5.7.19-31-151=51001180160




Table 2. continued.

»n n
216 22.325.7%.13.19=2178540
96 2%.32.5.7.13=32760

96 253%5.7=30240
384 27.3%.5%.17.31=45532800
320 2%.3%5.11.31=23569920
480 2%.3%2.7.11.13-31=142990848

1056 21%.3%52.23.31.89=43861478400
9984 2%%.3%.5219.31.683-2731-8191

1920 27.3%.5.7.11%17-19=14182439040

2304 27.3%.5.72.13-17-19=31998395520

5280 21%.3%.5.7.11219.23.89

6336 21%.3%.5.72.13.19.23-89

3456 211.3%52.72.13.19.31

9216 211.3%.53.73.133.17

43008 220.33.5%.7%.13%17.127-337
709632  221.36.52.7.19.232.31.79-89.137-547-683-1093
94208 272.37.5.7.11-19-41-47-151.197-178481

[ S R S R BT I T T T, BT, T T3 Y S St e . k.

1658880  217.3%.5°.9°.112132.19%31-37-61-73-181

For w=3 we have a representation by 16 terms:

111 111 1 1 1 1 1 1 1 1 1
3=l4+-+—t—F—t—Ft—t—F—t—Ft—t—F— b — F— +——

2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
The smallest number of terms required for w=>5 is 1920 and for 6 a staggering
1,658,880 terms. For w=7 we have no representation at all. We would first

have to find 7-perfect number.

No great results. It’s like having used a sledge hammer to kill a mosquito and
missed the target. But k-perfect number are interesting in themselves.

Method 2: Trivial Expansions. A term %in the harmonic series can always

be replaced by two other different terms from the harmonic series:
1 k+1 1

1
—= = + .
k k(k+1) k+1 k(k+D

Given an expansion of an integer w into terms
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of the harmonic series it is possible to construct infinitely many such trivial
expansions of w. If however, in a given expansion of w, each term is replaced
by two other terms as above and furthermore the replacement process is
carried out until all terms in the new representation are different from one
another and also from the terms in the original represcatation then a new
representation has been obtained Obviously such representations for w; and
w, with no common terms can be added together to form a representation of
W=WHWa.

Example:
1,11
2 3
Expand: k - k+1 k(k+1)
2 - 3 6 Not to be used (repeated)
3 - 4 12
6 - 7 42
3 and 6 are repeated and since their expansion gives 4, 12 and 7, 42 we have
to continue the expansion:
4 - 5 20
12 - 13 156
7 - g 56

42 - 43 1806
From this we can write the following representation of 2:
1111 1 1 1 1 1 1 1 1

2zl4+—4—4—4—t—+—+—+—F—t—F—+——
4 5 7 8 12 13 20 42 43 56 15 1806
Adding our original representation of 1 we get the following representation 3:
1 111111 1 1 1 1 1 1 1 1
3=l+—4—+—F—Ft=Ft—F—F+—+—F—Ft—F—+— ot
2 3 4 5 6 7 8 12 13 20 42 43 56 156 1806
As in the case of 3-perfect numbers we have a representation of 3 with 16
terms. The minimum number of terms for which a representation is possible
is 11 as can be seen from table 1. Let’s try to get closer to this.

Method 3. Maximum density. For a given value of w table 1 gives the
minimum number of terms from the harmonic series required to form a
repxmcntaﬁonForagivenvalmothhismnmberism.Wemﬂmtfom
try to choose the first m-1 terms as close together as possible, i.e. we form



S=wW-— J —
k1K

where s is a small fraction which we have to expand in harmonic terms. As
before we apply the idea to w=3. We get

11111111 1 1 1 1

3=l+—+-+—F+—F+—F-+—t+—+—+—t——t——

2 34 5 6 7 8 9 10 15 230 5790
Bravo! Only 13 terms. We had 16 with the other two methods. But no
pleasure lasts forever. The nasty little fraction s will give no end to problem
when we try large values for w. Although small s will have large numerators
and denominators as we shall soon see. Maybe better get the sledge hammer
out again and go in search for the 7-perfect number.

VL3 Partial sums of the harmonic series as rational numbers.

We consider consecutive partial sums S, = f‘,% expressed as rational
k=1

numbers reduced to lowest terms.

Question 1. Can there be a repetition of numerators?
Assume S, _, =% and S, =f— where (a,b)=1 and (a,b;)=1. We then have
1
bi=%+% which is equivalent to an(b-b;), but (a,bb;)=1 and the latter
1

equation is therefore impossible and the assumption is wrong. We conclude:

Two consecutive sums S,; and S, cannot have equal numerators when
reduced to lowest terms.

A necessary condition for fidig two sums S = :—" and S_ = :—“‘ , m>n+1 with
n m

equal numerators a,=a,, when in lowest terms is therefore that n; exists so that
n<m<mand a, <a, _;. Such numerators exist. Examples:

ag=49

a7=137

a18=14274301

a17=4214223
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;9-9=360968703235711654233892612988250163157207
a100=14466636279520351160221518043104131447711
etc

Now, let p be a prime then a>a;; because S, is a monotonously increasing
function of n and

.'p-l +l= lp_lp+bp_l
bp—) p bp—lp
cannot be reduced to lower terms.

Sp=

Conjecture: Let p; and p;., denote consecutive primes. The numerators in the
interval p;<n<p;.;, after reducing to lowest terms, are all greater than -1,

i.c.whcnatermofﬂ:etype%isaddedtlxnumamtahsalaptoahigha

value from which, although it may decrease, it will never drop to a value
below the value before the leap.

Question 2. What is the most frequently occurring denominator in the
sequence Sn=1+%+%+ +-:; when reduced to lowest terms?

Let 5,,=5 where (ab)=1. Then s,=%+%; s,=“‘b:". Consider the

greatest common divisor of b and n, d=(b,n). Then it is seen immediately that
the fraction can be reduced by d. Put b=b,d and n=md and consequently
_any +by
S = bnd
If a further reduction is possible then it must be by a factor in d or by d itself
because (n;,b; =1 and (b;,3)=1.

If n=p is a prime number then (b,n)=1 and the denominator os S, will have p

as a factor. The denominator of S, is therefore unequal to all previous

denominators and is at most the first in a series of equal denominators. Sums
with equal denominators must therefore be contained between

11 1 11 1

Sy, -1+5+§+... +—p—j— and S -I+E+§+... +P;’*1




where p; and p;., are consecutive primes. In table 3 the number of equal
denominators is denoted q and the corresponding number of digits of the
denominator L.

Table 3. Equal denominators for n<1000.

Py pPi+1-1 q L

89 96 8 39
139 148 10 62
317 330 14 140
891 906 16 389

1 hope this book has been more meaningful than reading the number below
which is the 389-digit denominator which occurs 16 times in consecutive
partial sums of the harmonic series for n<1000.

4179982336319706196962068134998944512773598562712
1827499073959690180767635682039557104883261454628
9717289725066739371544332075631263681868936793360
4957159732797690125645682733080622438318699474351
6944805893417522011858358480060385932366764886574
4940462245050719348300672374671465097882430105554
5638386382683543980298959618721940328647837326571
6039813081070459435310984219943740583597120000



