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PREFACE 
 
 
In this book authors bring out the innovative applications of 
matrices defined, described and developed by them. Here they 
do not include the natural product on matrices newly described 
and defined by them in the book on ‘natural product ×n on 
matrices’.  

This book is organized into seven chapters. The first one is 
introductory in nature. In the second chapter authors give the 
unique and new way of analyzing the data which is time 
dependent. We construct three types of matrices called Average 
Time Dependent data matrix (ATD matrix), Refined Time 
Dependent Data matrix (RTD matrix) and Combined Effective 
Time Dependent Data matrix (CETD matrix). The authors 
describe the working of this new type of matrix model by 
working with the real world transportation problem. It is proved 
this new model is effective and elegant. At this juncture the 
authors deeply acknowledge the unostentatious help rendered by 
Dr. Mandalam. 

In chapter three the authors for the first time define the new 
concept of matrices with linguistic variables. These linguistic 
matrices are used in the place of fuzzy matrices which serve as 
the dynamical system for FCM and FRM models. By this 
method the solution themselves are linguistic terms so 
mathematical interpretation is not needed.  
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In chapter four authors have used super matrices in the 
following ways. They are used in super fuzzy models like super 
FCMs, super FRMs super FAMs etc. Super linear algebra using 
these super matrices pave way to super eigen values and super 
eigen vectors, infact in almost all applications of matrices in 
linear algebra. The special mention is made to the Leontief  
open production super model and closed super model. By this 
method easy comparison and bulk working is possible. 

We have also used super matrices with entries from finite 
fields in the construction of several types of super codes. 

In chapter five we define interval matrix and matrix interval 
using the natural class of intervals, that is intervals of the form 
[a, b] where a < b or a > b or a and b not comparable. Using 
these interval matrices we have built interval linear algebra and 
these interval matrices when used as stiffness matrices of any 
mechanical problem easily yield a solution. 

Suggestions and literature how we have used and 
constructed DSm matrices and DSm super matrices is given. 
However the authors have constructed DSm vector spaces and 
DSm super vector spaces. The eigen values and eigen vectors of 
these spaces will be refined labels and refined label vectors, 
which comprises chapter six of this book. 

In the final chapter we have defined the new notion of 
bimatrices and n-matrices. Using these new concepts we have 
constructed linear algebra of type I and linear algebra of type II. 
Using these matrices we can build n-eigen values and n-eigen 
vectors. 

Further these n-matrices are used in the construction of 
multi expert fuzzy models like n-FCMs, n-FRMs, n-FAMs etc. 
Finally we have built several types of n-codes using these n-
matrices whose entries are from finite fields. 

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 

 
W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

INDRA VENKATBABU 
  



Chapter One 

INTRODUCTION 

This book gives the contributions of the authors in the 
innovative applications of matrices to various fields.   

The authors were first to use matrix theory in the analysis 
of raw data.  This is described in chapter two of this book.  The 
method of applying matrices in this way makes one know the 
results and conclusions by just looking at it.  Thus the final data 
is given a graph representation.   

Secondly the authors have constructed matrices where 
entries are just linguistic terms which are orderable.  For more 
about this refer [53].  Using these linguistic values we construct 
matrices.  Infact these linguistic matrices are used in studying 
fuzzy linguistic models [53].  Thus we have in the first place 
constructed linguistic matrices and used them in mathematical 
models to study socio economic problems. 

The authors have used super matrices in the first place to 
build super linear algebras.  Almost all classical results of linear 
algebras are derived for the super linear algebras [45].  Using 
these super matrices we have built several types of super fuzzy 
models and these super fuzzy models can yield the result in a 
shorter time and comparision of the results are ready made [48].  
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 Further these matrices are used in the construction of 
algebraic super codes of different types.  For more about 
supercodes please refer [50]. 

We build matrix of refined labels and using these matrices 
we construct DSm vector spaces of refined labels.  Several 
properties about DSm vector spaces build using matrix of 
refined labels in elaborately discussed.  This is yet another 
means of applying matrix theory to DSm vector spaces of 
refined labels [46]. 

We also construct DSm super vector space of refined labels.  
For these new structures the notion of supermatrices is used.  In 
the supermatrix if we replace the real entries or any other entries 
by refined labels L we call them as supermatrix of refined labels 
and also they form vector spaces.  This is carried out in chapter 
six of this book [52]. 

Finally we build a natural class of intervals {[a, b] | a > b  
a < b or a = b, a, b  Q or C or Z or C(Zn), Zn or R}.  Using 
these natural classes of intervals we build interval matrices.  
These interval matrices behave like ordinary matrices as the 
entries are from this special natural class of intervals. Further 
study of stiffness matrix, load vector, mass matrix and damping 
matrix using interval for in this case lower and upper bound 
matrices is based on interval algebra. Also we find for square 
interval matrices, interval eigen values and interval eigen 
vectors [55]. 

Finally we define the notion of bimatrices and n-matrices.  
This is yet another innovative method of applying matrices.  
These n-matrices (n  2) can be used in the construction of 
fuzzy n-models like n-FCMs, n-FRMs, n-BAMs etc., and their 
mixed structures [54, 56]. Finally we use these n-matrices in the 
construction of different types of n-codes [49]. 



 
 

 

Chapter Two 

 

 

 

 

 

AVERAGE TIME DEPENDENT (ATD) 
DATA MATRIX 
 

 
 
 
 The raw data under investigation is classified under four 
broad heads viz; total number of passengers, total collection, 
number of trips, and hourly occupancy.  These four broad heads 
form the columns of the matrices.  The time periods of the day 
are represented by the rows of the matrices. Estimating the 
utility rate of a route is a five-stage process.  In the first stage, 
we give a matrix representation of the raw data.  Entries 
corresponding to the intersection of rows and columns are 
values corresponding to a live network.  The initial M  N 
matrix is not uniform i.e., the number of individual hours in 
each time period may not be the same.  So, in the second stage, 
we in order to obtain an unbiased uniform effect on each and 
every data so collected, transform this initial matrix into an 
Average Time Dependent Data matrix (ATD matrix).  To make 
the calculations easier and simpler, we in the third stage, using 
the simple average techniques, convert the above time 
dependent data matrix into a matrix with entries eij where, eij  
{–1, 0, 1}.   
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We name this matrix as the Refined Time Dependent Data 

matrix (RTD matrix).  The value of the eij corresponding to each 
entry is determined in a special way.  At the fourth stage, using 
the refined time dependent data matrices, we get the Combined 
Effect Time Dependent Data matrix (CETD matrix) which gives 
the cumulative effect of all these entries.  In the final stage, we 
obtain the row sums of the combined effect time dependent data 
matrix.  We have written a Java program, which estimates all 
these five stages. [41] 
 
 Using the raw data available for any transport corporation, 
we analyze the raw data via matrices and (i) predict the 
maximum utilization time period (peak hours) of a day; and (ii) 
estimate the overall utility rate of the routes.  Thus, to be more 
precise our chief problem here is prediction of the peak hours 
and estimation of the most utilized routes using the raw data 
available from any transport organization.  We have established 
that the results which we have predicted using the raw data on 
the route 18R which ply from Parrys to Dharmaraja koil 
coincides with the peak hours and the utilization rate of the 
route which can be obtained from the estimation of the observed 
data. Thus, our analysis not only predicts the peak hours and the 
maximum utility routes but also estimates for each route, time 
periods where buses need not be operated as operation of buses 
in those time periods will result in total loss.   
 

By total loss, we mean that the money collected from the 
passengers at that specified time period may not be even 20% of 
the cost of petrol and service charges spent on plying that 
service.  So, even if the concern using the predictions on peak 
hours gets a profit of say 70%, if they do not comply with 
stopping of buses at the non-utilized hours, the transport 
corporation will still result only in loss.  Hence, our approach 
via matrices not only suggests the peak hours and the maximum 
utilized routes but also predicts time periods and the routes in 
which the services should be totally avoided or reduced from 
their usual schedule in order to save themselves from loss.  
Thus, by adhering to our predictions the corporation might 
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 curtail the loss incurred by the operation of services in the non-
utilized time periods. 
 
 The predictions can be explicitly seen even by a layman just 
by the observation of the combined effect time dependent data 
matrix mentioned earlier, which will be described and discussed 
in detail in the following.   
 

Hence, using these results the Transport Corporation can 
operate more number of buses at the peak hours and on the 
routes that are highly utilized and also stop operating buses at 
odd hours or reduce the frequency at the odd hours of the day.  
Thus, the Transport Corporation can achieve a meager gain or 
curtail the loss by using these predictions. 
 
 We have considered the city of Madras, where the Pallavan 
Transport Corporation (PTC) is one of the transport 
organizations that caters to the demands of the community. The 
Pallavan Transport Corporation is a service oriented 
organization run by the state government for the people of the 
city and the neighbouring panchayats in the immediate vicinity 
of the city.  It has a fleet of 1343 buses, and covers an overall of 
283 routes and satisfies the needs of more than 75% of the 
urban transit commuters.  Apart from the regular services, it has 
the partial services, the night services and the special services.   
 

The regular services are of four types:  normal, limited stop 
service, point-to-point service and the express service. Although 
the source, the destination and the path of travel is common to 
all the regular services, these services considerably differ in the 
travel time, the travel fare, the comfort and the convenience of a 
passenger.  The basic difference observed in the above types of 
services is primarily due to the number of intermediate stops the 
vehicles halt in their course of travel. 
 
 The city transport corporation connects a vast network inter-
linking various routes.  The network has a set of nodes and a set 
of links connecting these nodes.  Buses connect these nodes and 
ply over the links and help in passenger and freight 
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transportation. In the city network, we observe that some routes 
have a high patronage almost throughout the day, while other 
routes are busy only at particular hours of a day and there are 
still some routes, which have only very meager passenger 
support throughout the day.  Here, we not only predict the high 
utility and peak hours but also suggest the stoppage of meager 
passenger supported services.   
 

To test the efficiency of the program, we have applied the 
algorithm to a few and established that the observed peak hours 
coincide well with the estimated peak hours for each route 
individually.   

 
In the first stage of the problem, we split the total hours of a 

day into various time-periods viz. morning, morning peak, 
evening.  Each of these time periods consists of individual hours 
of the day viz. {H1, H2, H3, …, H22, H23, H24}, where Hi refers to 
the hour ending of the day.  The working hours of the transport 
corporation under consideration is from {H5, H6, H7, …, H21, 
H22}.  The data obtained from the transport corporation is for 
each hour ending.  Hence, the time interval between Hi and Hi+1 
is 60 minutes.  If we have all the related data viz. the total 
collection, the total number of passengers, the occupancy rate 
and the number of trips etc., for say every 30 minutes or for 
every 15 minutes, then the accuracy in the identification of the 
peak hours will further increase.   

 
The finer the intervals are divided the better is the 

prediction.  This is also established in this chapter.  Each time 
period consists of a set of Hi individual hours, for example:  the 
morning peak time period consists of {H8, H9, H10}.  These 
time-periods can vary from one analyst to another and from one 
route to another.  Even, if we have each individual hour as a 
time period, still the total number of time periods must not 
exceed to total working hours of a day. 
 

Let M represent the total number of time periods under 
consideration.  The utility rate of a time period is influenced by 
the various attributes acting on them.  Let N represent the 
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 number of attributes considered for the analysis.  The various 
time periods are treated as rows and the various attributes are 
treated as columns of a matrix.  The raw data corresponding to 
the intersection of each time period and attributes are treated as 
the entries of a matrix.  Thus, from the raw data, we obtain the 
initial M  N matrix.   
 

The number of individual hours in each time period might 
not be the same.  Hence, in the second stage, in order to obtain 
consistency in the initial matrix we use the “hourly concept”.  
The entries corresponding to the intersection of each of the time 
periods and the attributes of the initial matrix are transformed so 
that each new entry corresponds to the hourly rate viz. total 
passengers per hour, total collection per hour, total number of 
trips per hour, total occupancy per hour etc.   

 
Thus, we convert the above initial matrix into the Average 

Time Dependent Data matrix (ATD matrix) i.e., [aij]MN. 
 

 In the third stage, we use the average and the standard 
deviation to convert to above average time dependent data 
matrix into a matrix with entries eij, eij  {–1, 0, 1}, where i 
represents the ith row and j represents the jth column.  We call 
this newly formed matrix as the Refined Time Dependent Data 
matrix (RTD matrix) i.e., [eij]MN.   
 

The value of the entry eij corresponding to each intersection 
is determined from an interval.  This interval is obtained strictly 
by using the average and the standard deviation calculated from 
the raw data.  The choice of the interval made by us might not 
be able to identify the accurate peak hour of the route; hence, 
we introduce and define a parameter ,  which enables us to get 
a better solution. 
 

We calculate the mean j and the standard deviation j for 
each attribute j, j = 1, 2, …. N using the data given in the 
average time dependent data matrix.  For varying values of the 
parameter , where   [0, 1].  We follow a rule and determine 
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the value of the entry eij in the refined time dependent data 
matrix. 
 
 For each of the attributes j (j = 1, 2, …, N) we have the rule: 
 
 If aij  (j –  * j)  then eij = –1; 
 else, 
  if aij  (j –  * j, j +  * j)  then eij = 0; 
 else 
  if aij  (j +  * j)  then eij = 1; 
 
 here ‘*’ denotes the usual multiplication. 
 

Thus, for different values of , we obtain different refined 
time dependent data matrices.  The main purpose of introducing 
the refined time dependent data matrix is only to minimize the 
time involved in performing the simple arithmetic calculations 
and operations on the matrix. 
  
 In the fourth stage, we bring in the notion of the Combined 
Effect Time Dependent Data matrix (CETD matrix) i.e., [cij]MN, 
which gives the combined effect of all the refined time 
dependent data matrices obtained by varying the parameter .  
In the final stage, we add up the rows of the combined effect 
time-dependent data matrix.  The overall time period utility of a 
route is obtained by inferring the row sums of a combined effect 
time-dependent data matrix.  The highest positive value is taken 
as the highly utilized time period of a route and next lower 
value is taken as the next peak hour for the same route.  Thus, 
for a particular route, we grade the utilization rate of the 
different time periods. 
 

The computation starts by computing the ATD matrix from 
the initial M  N matrix.  Then mean and standard deviations 
are computed for the ATD vector.  Based on mean, standard 
deviation and ATD vector, the RTD and CETD matrices are 
computed either physically or using a programme in Java or 
C++.   
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  It is pertinent to mention here this technique of analysing 
raw data can be used in case of any problem which is time 
dependent.  This is a very new way of applying matrix theory to 
find solution for a collected raw data. 

  
Parameters play a vital role in estimating the peak hours of 

a route.  This is clearly illustrated for the route 18JJ  and the 
route 17D by varying the parameter .  First, consider the route 
18JJ.  We have the following: 
 

The initial M  N matrix obtained from the raw data is as 
below: 

 
81.00 63.00 3.00 147.20
925.00 157.00 16.00 1394.55

1040.00 181.00 15.00 1585.50
1159.00 271.00 13.00 1916.05
1596.00 400.00 18.00 2615.30
1673.00 451.00 16.00 2889.60
322.00 160.00 6.00 522.50

 
 
 
 
 
 
 
 
 
  

. 

 
The corresponding average time dependent data matrix is 
 

 
40.50 31.50 1.50 73.60

308.33 52.33 5.33 464.85
346.67 60.33 5.00 528.50
386.33 90.33 4.33 638.68
532.00 133.33 6.00 871.77
557.67 150.33 5.33 963.20
161.00 80.00 3.00 261.25

 
 
 
 
 
 
 
 
 
  

. 
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The refined time dependent data matrix corresponding to a 

single value of  = 0.1 is 
 
 

1 1 1 1
1 1 1 1

0 1 1 0
1 1 0 1
1 1 1 1
1 1 1 1
1 1 1 1

    
    
 
 
 
 
 
 
     

 

 
  

The corresponding row sum of the above refined time 
dependent data matrix is given by 
 
 Row sum for the first row is –4 
 Row sum for the second row is –2 
 Row sum for the third row is 0 
 Row sum for the fourth row is 3 
 Row sum for the fifth row is 4 
 Row sum for the sixth row is 4 
 Row sum for the seventh row is –4. 
 
 
 From the row sums of the above refined time dependent 
data matrix, we observe that time period corresponding to the 
fifth row i.e., time period {H16, H17, H18} and the sixth row i.e., 
time period {H19, H20, H21} are the peak hours of the route 
followed by the fourth row viz. time period {H13, H14, H15}.  
Thus, graphically, we have this as below: 
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 Graph depicting the peak periods of the  

Route 18JJ  for  = 0.1 
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 The refined time dependent data matrix corresponding to 
the value of  = 0.4 follows: 

 
1 1 1 1

0 1 1 0
0 1 1 0
0 0 0 0
1 1 1 1
1 1 1 1
1 0 1 1

    
  
 
 
 
 
 
 
    

 

 
From the above, we have the row sums as given below: 
 

 Row sum for the first row is –4 
 Row sum for the second row is 0 
 Row sum for the third row is 0 
 Row sum for the fourth row is 0 
 Row sum for the fifth row is 4 
 Row sum for the sixth row is 4 
 Row sum for the seventh row is –3. 
 
 From the row sums of the above refined time dependent 
data matrix, we observe that time period corresponding to the 
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fifth row i.e., time period {H16, H17, H18} and the sixth row i.e., 
time period {H19, H20, H21} are the peak hours of a day.  Time 
periods {H7, H8, H9}, {H10, H11, H12} and {H13, H14, H15} have a 
row sum of zero indicating that these time periods are neither 
the peak hours of a day nor the non-peak hours of a day.  Hence, 
the number of trips made in these time periods should be kept 
unaltered for the concern to maintain the profit.   

 
Thus, graphically, we have this as below: 

 
 

Graph depicting the peak hour for the  
Route 18JJ  for  = 0.4 
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The refined time dependent data matrix corresponding to 
the value of  = 0.7 follows: 

 
1 1 1 1

0 1 0 0
0 0 0 0
0 0 0 0
1 1 1 1
1 1 0 1
1 0 1 1

    
  
 
 
 
 
 
 
    
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 From the above, we have the row sums as given below: 
 
 Row sum for the first row is –4 
 Row sum for the second row is –1 
 Row sum for the third row is 0 
 Row sum for the fourth row is 0 
 Row sum for the fifth row is 4 
 Row sum for the sixth row is 3 
 Row sum for the seventh row is –3. 
 

From the row sums of the above refined time dependent 
data matrix, we observe that time period corresponding to the 
fifth row i.e., time period {H16, H17, H18} is the first peak hour 
of the day followed by the sixth row i.e., time period {H19, H20, 
H21}.  Time periods {H7, H8, H9}, {H10, H11, H12} and {H13, H14, 
H15} have a row sum of zero indicating that these time periods 
are neither the peak hours of a day nor the non-peak hours of a 
day.  Thus, graphically, we have this as below: 
 
 

Graph depicting the peak hour for the route  
18 JJ for  = 0.7 
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The refined time dependent data matrix corresponding to 

the value of  = 0.9 follows: 
 

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1
1 1 0 1
1 0 1 1

    
 
 
 
 
 
 
 
 
    

 

 
 

From the above, we have the row sums as given below: 
 
 Row sum for the first row is –4 
 Row sum for the second row is 0 
 Row sum for the third row is 0 
 Row sum for the fourth row is 0 
 
 Row sum for the fifth row is 4 
 Row sum for the sixth row is 3 
 Row sum for the seventh row is –3. 
 
 

The row sums of the above matrix indicates time periods 
corresponding to the fifth row i.e., {H16, H17, H18} is the first 
peak hour of the day followed by the sixth row i.e., {H19, H20, 
H21}.  Time periods {H7, H8, H9}, {H10, H11, H12} and {H13, H14, 
H15} have a row sum of zero indicating that these time periods 
are neither the peak hours of a day nor the non-peak hours of a 
day.  Thus, graphically, we have this as below: 
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 Graph depicting the peak hour for the  

route 18 JJ for  = 0.9 
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 From the above analysis, we observe that the peak hours of 
a route vary from one time period to another with the change in 
the value of the parameter from 0 to 1.  The row sums matrix 
obtained in the above cases were specific to only one value of 
the parameter.  But the combined effect time dependent matrix 
for all the values of   [0, 1] is given below: 
 

The combined time dependent data matrix for all   [0, 1] 
is 

10 10 10 10
1 8 6 2

0 6 4 0
3 1 0 3

10 10 10 10
10 10 6 10

9 1 9 9

    
    
 
 
 
 
 
 
     

. 

 
 The row sum of the above combined time dependent data 
matrix is 
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 Row = 1, row sum = –40 
 Row = 2, row sum = –5 
 Row = 3, row sum = –2 
 Row = 4, row sum = 7 
 Row = 5, row sum = 40 
 Row = 6, row sum = 36 
 Row = 7, row sum = –28. 
 
 From the row sums of the above matrix, we observe that the 
time period corresponding to the fifth row i.e., time period {H16, 
H17, H18} is the first peak hours of the day followed by the sixth 
row i.e., time period {H19, H20, H21} and the fourth row 
corresponding to the time period {H13, H14, H15}.  All the other 
time periods have a row sum of negative value indicating that 
these time periods are the non-peak hours of a day.  The first 
time period has the least negative value indicating that services 
can be curtailed to the greatest extent in this time period. 
 
 Thus, graphically, we have the peak hour as depicted below:  
From the graph below, we observe that the peak hours as 
obtained from the combined time dependent data matrix, given 
by the cumulative effect of all the values of   [0, 1], gives the 
true peak hours of a day.  These results coincide well with the 
observed hours of the route 18JJ. 
 
 

Graph depicting the peak hour for the  
Route 18 JJ for   [0, 1] 
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  We give a grading of the peak hours since they are essential 
and helpful to the transportation sector in a number of ways: 
 

1. It is efficient in identifying the highly utilized time 
periods along each route and enables the transport 
sector to operate more number of buses during these 
hours. 

 
2. The transport sector identifies the poorly utilized time 

periods and makes necessary arrangements to overcome 
the loss incurred due to the services scheduled in these 
time periods.  They might either discard all the trips 
made during these hours or operate minimum number 
of services. 

 
3. The row sum of the combined time dependent data 

matrix of each route helps in identifying the overall 
utility rate of each route.  In other words, if all the row 
sums of the combined time dependent data matrix are 
positive, then we conclude that the particular route is 
highly utilized throughout the day. 

 
4. A positive value of the row sum of the combined time 

dependent data matrix indicates the maximum 
utilization of that specific time period. 

 
5. A negative value of the row sums of the combined time 

dependent data matrix indicates that the passenger 
patronage and the collection in those time periods are 
very less.  Hence, the transport sector can curtail the 
number of services totally, partially or operate mini 
buses to overcome the loss. 

 
6. A zero value of the row sum of the combined time 

dependent data matrix indicates that the corresponding 
time periods are neither the peak hours of a day nor the 
non-peak hours of a day. 
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It is to be noted here that as the total number of time periods 
(M) increases, the accuracy in identifying the utilization rate of 
the different time-periods also increases.  We substantiate our 
claim by taking two different values for the total number of time 
periods and this is carried out in the illustration I. 
 
Illustration I (Route 18R) 
The number of time periods is five (M = 5). 
 

Here, we take five time periods viz. early morning C1:{H6, 
H7}; morning C2:{H8, H9, H10, H11}; noon C3: {H12, H13, H14, 
H15}; evening C4:{H16, H17, H18, H19}; and night C5:{H20, H21, 
H22}.  We obtain the row sum of the combined time dependent 
data matrix as follows: 
 

The combined time dependent data matrix corresponding to 
M = 5 is given below: 

 
10 8 10 10
6 2 6 5
2 1 6 1

10 10 6 10
4 6 0 3

    
  
 
 
 
    

. 

 
The row sums of the corresponding combined time 

dependent data matrices is given by: 
 

Row sum for the time period early morning = –38 
Row sum for the time period morning = 15 
Row sum for the time period noon = 8 
Row sum for the time period evening = 36 
Row sum for the time period night = –13 
 
The number of time periods is seventeen (M = 17). 
 

Here, we take 17 time periods viz. early morning C1 : {H6}; 
morning C2: {H7}; C3 : {H8}, C4 : {H9}; early noon C5: {H10}; 
C6: {H11}, C7: {H12}; noon C8: {H13};  C9: {H14}, C10: {H15}; 
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 evening C11;{H16}; C12: {H17}, C13 : {H18}; late evening C14: 
{H19}, C15:{H20}, C16:{H21}; and night C17: {H22}.  The row 
sums of the combined time dependent data matrices are 
obtained as follows: 

 
The combined time dependent data matrix corresponding to 

M = 17 is as follows: 
 

10 2 10 10
10 7 0 10
0 5 0 5
4 2 0 2
7 1 0 5
0 2 0 0
1 3 10 2
3 0 0 2
2 1 0 0
10 2 10 10

10 1 10 10
6 1 0 6

10 3 0 10
4 10 10 4

10 0 10 10
4 2 0 3

10 7 0 10

    
    
  
 

 
 
 

 
  
 
  
    
 
 
 
 
 
    
 
    
      

 
The corresponding row sum of the above combined time 
dependent data matrix is given as below: 
 
 Row sum for the time period C1:{H6} = –32 
 Row sum for the time period C2: {H7} = –27 
 Row sum for the time period C3: {H8} = –10 
 Row sum for the time period C4: {H9} = 4 
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 Row sum for the time period C5:{H10} = 11 
 Row sum for the time period C6: {H11} = –2 
 Row sum for the time period C7: {H12} = 10 
 Row sum for the time period C8: {H13} = 5 
 

Row sum for the time period C9:{H14} = 1 
 Row sum for the time period C10: {H15} = –32 
 Row sum for the time period C11: {H16} = 31 
 Row sum for the time period C12: {H17} = 11 
 

Row sum for the time period C13:{H18} = 23 
 Row sum for the time period C14: {H19} = –8 
 Row sum for the time period C15: {H20} = 30 
 Row sum for the time period C16: {H21} = –9 
 Row sum for the time period C17: {H22} = –27. 
 
 From the above Illustration I, on the analysis of the row 
sums of the combined time dependent data matrices of M = 5, 
we notice that the time period corresponding to row = 4 namely 
the evening hours {H16, H17, H18, H19} are the busy hours 
followed by row = 2 namely the morning hours {H8, H9, H10, 
H11}.   
 

On analyzing the row sums of the combined time dependent 
data matrices of M = 17, we observe that row = 11 viz. evening 
{H16} corresponds to the busiest hour of the route followed by 
row = 15 viz. late evening {H20}, row = 13 viz. evening {H18}.  

 
Thus, we observe that as the number of time periods 

increases, the accuracy in identifying the busier hours of a route 
also increases.  Also, we can observe the added effects of one or 
more attributes on the various time periods.   
 

Thus, for   [0, 1] with a step function of  = 0.1, the 
peak hours of the route are H16, H20 and H18.  Time period 
corresponding to H6 is poorly utilized and hence can be 
discarded.   
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The same problem is analyzed and the combined time 

dependent data matrix for varying values of   [0, 1] with a 
step function of  = 0.05 is given below:   

 
The combined time dependent data matrix, the row sum and 

the corresponding graph is given as below: 
 
The combined time dependent data matrix 
 
 

10 4 10 10
10 10 0 10
1 10 0 10

8 4 0 5
10 3 0 10

1 5 0 1
2 7 10 5
7 1 0 4

.4 3 0 1
10 4 10 10

10 2 10 10
10 2 0 10
10 7 0 10

8 10 10 9
10 1 10 10

9 5 0 7
10 10 0 10

    
    
   
 

 
 
 
  

  
 

  
    
 
 
 
 
 
    

 
    
      
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The row sums of the above combined time dependent data 
matrix is 
 
 Row = 1, row sum = –34 
 Row = 2, row sum = –30 
 Row = 3, row sum = –21 
 Row = 4, row sum = 9 
 
 Row = 5, row sum = 17 
 Row = 6, row sum = –5 
 Row = 7, row sum = 10 
 Row = 8, row sum = 10 
 
 Row = 9, row sum = 2 
 Row = 10, row sum = –34 
 Row = 11, row sum = 32 
 Row = 12, row sum = 18 
 
 Row = 13, row sum = 27 
 Row = 14, row sum = –17 
 Row = 15, row sum = 29 
 Row = 16, row sum = –21 
 Row = 17, row sum = –30. 
 

We illustrate and describe the problem using 18R service. 
 
We have applied our algorithm to a single route and 

obtained a comparison of the observed and the calculated data.  
We have taken the route 18R plying from Parrys to Dharmaraja 
Koil and the data was obtained from the Pallavan Transport 
Corporation Limited, Madras, India.   

 
Here, we take 17 time periods viz. early morning C1:{H6}; 

morning C2 : {H7}; C3:{H8}, C4 : {H9}; early noon C5 : {H10}; C6 
: {H11}, C7 : {H12}; noon C8 : {H13}; C9:{H14}, C10 : {H15}; 
evening C11 : {H16}; C12 : {H17}, C13 : {H18}; late evening C14 : 
{H19}, C15 : {H20}, C16 : {H21}; and night C17 : {H22} and also 
four attributes viz. A1 : total population; A2 : hourly occupancy; 
A3 : number of trips and A4 :  total collection.   
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We view this problem from the aspect of both the operators 

as well as the users.   
 
The initial M  N Matrix is as follows: 
 
 

96.00 64.00 1.00 156.95
71.00 21.00 2.00 103.55
222.00 39.00 2.00 244.90
269.00 63.00 2.00 353.50
300.00 70.00 2.00 392.80
220.00 60.00 2.00 328.30
241.00 53.00 3.00 353.65
265.00 78.00 2.00 348.65
249.00 70.00 2.00 327.85
114.00 63.00 1.00 151.60
381.00 91.00 3.00 526.40
288.00 73.00 2.00 407.05
356.00 112.00 2.00 515.15
189.00 389.00 1.00 252.75
376.00 78.00 3.00 569.40
182.00 59.00 2.00 261.90
67.00 20.00 2.00 81.35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 








 

.









  
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The average time dependent data matrix is as follows: 
 
 

96.00 64.00 1.00 156.95
71.00 21.00 2.00 103.55
222.00 39.00 2.00 244.90
269.00 63.00 2.00 353.50
300.00 70.00 2.00 392.80
220.00 60.00 2.00 328.30
241.00 53.00 3.00 353.65
265.00 78.00 2.00 348.65
249.00 70.00 2.00 327.85
114.00 63.00 1.00 151.60
381.00 91.00 3.00 526.40
288.00 73.00 2.00 407.05
356.00 112.00 2.00 515.15
189.00 389.00 1.00 252.75
376.00 78.00 3.00 569.40
182.00 59.00 2.00 261.90
67.00 20.00 2.00 81.35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 








 

.









  

 
 
The refined time dependent data matrices corresponding to 

different values of alpha are calculated and from them we obtain 
the combined time dependent data matrix.   

 
 
Since, the refined time dependent data matrices are obtained 

from the average time dependent data matrices they have a size 
equivalent to that of the average time dependent data matrices 
but, they have entries only in {–1, 0, 1}.  For different values of 
the parameter we have different refined time dependent data 
matrices. 
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 The refined time dependent data matrix corresponding to 
the value of  = 0.1 is 
 

1 1 1 1
1 1 0 1

0 1 0 1
1 1 0 1
1 1 0 1
0 1 0 0
1 1 1 1
1 0 0 1
1 1 0 0
1 1 1 1

1 1 1 1
1 1 0 1
1 1 0 1
1 1 1 1

1 0 1 1
1 1 0 1
1 1 0 1

   
  

 






   



  

  
  

 

 
 
The refined time dependent data matrix corresponding to the 
value of  = 0.2 is 

 
1 1 1 1
1 1 0 1

0 1 0 1
1 1 0 1
1 0 0 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 0 0
1 1 1 1

   
  

 





   
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1 0 1 1
1 0 0 1
1 1 0 1
1 1 1 1

1 0 1 1
1 1 0 1
1 1 0 1

  

  
  

 

 
 
The refined time dependent data matrix corresponding to the 
value of  = 0.3 is 
 

1 0 1 1
1 1 0 1

0 1 0 1
1 0 0 0
1 0 0 1
0 0 0 0
0 1 1 0
1 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
1 0 0 1
1 1 0 1
1 1 1 1

1 0 1 1
1 0 0 1
1 1 0 1

  
  

 



  

  

 
    
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 The refined time dependent data matrix corresponding to the 
value  = 0.4 is 

 
1 0 1 1
1 1 0 1

0 1 0 1
1 0 0 0
1 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
1 0 0 1
1 0 0 1
1 1 1 1

1 0 1 1
1 0 0 0
1 1 0 1

  
  

 

  

  


  

 

 
The refined time dependent data matrix corresponding to the 
value  = 0.5 is 
 

1 0 1 1
1 1 0 1

0 1 0 1
0 0 0 0
1 0 0 1
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

  
  

 

  
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1 0 1 1
1 0 0 1
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 1 0 1



  

 

 
 
The refined time dependent data matrix corresponding to the 
value of  = 0.6 is 

 
 

1 0 1 1
1 1 0 1

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
1 0 0 1
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 1 0 1

  
  

  



    
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 The refined time dependent data matrix corresponding to the 
value of  = 0.7 is 
 

1 0 1 1
1 1 0 1

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
0 0 0 0
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 1 0 1

  
  

  



  

 

 
The refined time dependent data matrix corresponding to the 
value of  = 0.8 is 
 

1 0 1 1
1 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

  
 

  
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1 0 1 1
0 0 0 0
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 0 0 1



 

 

 
 
The refined time dependent data matrix corresponding to the 
value of  = 0.9 is 

 
1 0 1 1
1 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
0 0 0 0
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 0 0 1

  
 

  



   
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The refined time dependent data matrix corresponding to the 
value of  = 1.00 is 
 
 
 

1 0 1 1
1 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 1 1

1 0 1 1
0 0 0 0
1 0 0 1
0 1 1 0
1 0 1 1
0 0 0 0
1 0 0 1

  
 

  



   
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The combined time dependent data matrix 

 
 

10 2 10 10
10 7 0 10
0 5 0 5
4 2 0 2
7 1 0 5
0 2 0 0
1 3 10 2
3 0 0 2

.2 1 0 0
10 2 10 10

10 1 10 10
6 1 0 6

10 3 0 10
4 10 10 4

10 0 10 10
4 2 0 3

10 7 0 10

    
    
  
 

 
 
 

 
  
 
  
    
 
 
 
 
 
    
 
    
      

 
 
The row sums corresponding to the above combined time 
dependent data matrix are: 
 
 Row sum for the time period C1:{H6} = –32 
 Row sum for the time period C2:{H7} = –27 
 Row sum for the time period C3:{H8} = –10 
 Row sum for the time period C4:{H9} = 4 
 Row sum for the time period C5:{H10} = 11 
 
 Row sum for the time period C6:{H11} = –2 
 Row sum for the time period C7:{H12} = 10 
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  Row sum for the time period C8:{H13} = 5 
 Row sum for the time period C9:{H14} = 1 
 
 
 Row sum for the time period C10:{H15} = –32 
 Row sum for the time period C11:{H16} = 31 
 
 Row sum for the time period C12:{H17} = 11 
 Row sum for the time period C13:{H18} = 23 
 Row sum for the time period C14:{H19} = –8 
 Row sum for the time period C15:{H20} = 30 
 Row sum for the time period C16:{H21} = –9 
 Row sum for the time period C17:{H22} = –27 
 
 

We observe that peak hours of a route differ for varying 
values of alpha.  Hence, we form the combined effect time 
dependent data matrix which gives the combined effect of all 
the values of alpha in the interval [0, 1].  Thus, the highest value 
of the row for the corresponding time period identified from the 
row sums of the combined time dependent data matrix is 
observed as the best peak period of the particular route.  The 
next value of the row sum in the small matrix is observed to be 
the next peak period of the same route. In this manner, we rank 
the different time periods of a route.  

 
In the above estimated method, we notice that the time-

period corresponding to row = 11 viz. evening {H16} 
corresponds to the busiest hour of the route followed by row = 
15 viz. late evening {H20}, and row = 13 viz. evening {H18}.  
Thus, we rank the peak periods for the route 18R to be as 
evening C11:{H16}; late evening C15: {H20} and evening C13 : 
{H18} in the order of first, second, third respectively. 

 
We now compare the predictions with the ridership method.  

 
 To establish the efficiency of our method, we compare our 
results with the ridership, approach followed by Dr. J. 
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Vasudevan in his research on the rationalization of city bus 
routes.   
 

He had taken Madras as a case study where, he had 
discussed about  the rationalization of the routes and had studied 
for a total of 90 routes.  A small section of it deals with the 
average hourly bus passenger load for the city.  For each hour 
ending, say 5 a.m., 6 a.m., …, 21 p.m., 22 p.m., he had 
calculated the total number of passengers who had traveled 
during that particular hour.   
 

He had also calculated the percentage of the passenger load 
at any hour against the total strength of passengers who had 
traveled that day. This is clearly depicted by the following table. 
 
 

Determination of the peak hour based on the  
Passenger load per hour 

 
Hour ending Passengers / hour Percent to total 

6 96 2.47 
7 71 1.83 
8 222 5.71 
9 269 6.92 
10 300 7.72 
11 220 5.66 
12 241 6.20 
13 265 6.82 
14 249 6.41 
15 114 2.93 
16 381 9.80 
17 288 7.41 
18 356 9.16 
19 189 4.86 
20 376 9.68 
21 182 4.68 
22 67 1.72 

Total 3886 100 
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 We have applied the matrix method to this data in order to 
obtain a comparison and establish that our method is better than 
the ridership method.  From the last column of the above table, 
we identify the first peak period as the row corresponding to the 
greatest percent to the total, i.e., 9.80 corresponding to the hour 
ending 16, i.e., evening 4 p.m., followed by 9.68 corresponding 
to the hour ending 20 i.e., night 8 p.m.   
 

The third peak period is the percent 9.16 corresponding to 
the hour ending 18 i.e., evening 6 p.m.  In this fashion, we rank 
the peak periods of the route based on the passenger load.   
 

Thus, we have established that our matrix method gives us a 
better result that the ridership method of Vasudevan.   
 
 

Comparison Table depicting the peak hours  
as estimated by the three methods 

 
Data as 

obtained 
from the 
transport 

corporation 

Identification of the peak and non-peak 
periods from the ridership method, the 

revenueship method and comparison of the 
two methods with the matrix method 

Hour 
ending 

Observed 
Method I: 
Passengers 

/hour 

Observed 
Method II: 
Revenue/hour

Matrix 
Method:  

row sum of 
the CETD 

Matrix 
6 96 156.95 –32 
7 71 103.55 –27 
8 222 244.9 –10 
9 269 353.5 4 

10 300 392.8 11 
11 220 328.3 –2 
12 241 353.65 10 
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13 265 348.65 5 
14 249 327.85 1 
15 114 151.6 –32 
16 381(I)* 526.4 (II)* 31 (I)* 
17 288 407.05 11 
18 356 (III)* 515.15 (III)* 23 (III)* 
19 189 252.75 –8 
20 376 (II)* 569.4 (I)* 30 (II)* 
21 182 261.9 –9 
22 67 81.35 –27 

 
*denotes the ranking of the time periods as given within parenthesis 
 
 
 From the above table, we obtain a comparative study of the 
observed methods and the estimated method.  From the last 
column of the above table, we observe that there are rows that 
have a negative value.   

These negative values indicate that the corresponding time 
periods are comparatively poor in performance i.e., in the 
passenger usage and in the collection.  Hence, the services in 
these time periods can be discarded or the frequency of the 
services can be reduced.   
 This is one of the innovative means of applying matrices in 
analysis problems which has only raw data.  Thus we have not 
given the graphs of them. 
 



 
 
 
 
 
Chapter Three 
 
 

 
 
FUZZY LINGUISTIC MATRICES AND THEIR 
APPLICATIONS 
 
 

In this chapter we introduce the new notion of fuzzy 
linguistic matrices and use them in fuzzy linguistic models and 
apply them to social problems.  We need for this the operations 
on the fuzzy linguistic matrices.  We briefly describe the 
operations on them.  Let M be any matrix if the entries of M are 
taken from the fuzzy linguistic set we call such matrix M to be a 
fuzzy linguistic matrix for more refer [53].  We describe 
operations on them.  Let L denote the collection of fuzzy 
linguistic terms. 

 
Let x = (a1, a2, a3, a4, a5) be a fuzzy linguistic row matrix 

(vector) with entries from L.  

xt = (a1, a2, a3, a4, a5)t = 

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 

 
is the fuzzy linguistic column matrix (vector).   
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That is if x = (0, bad, good, fair, very bad) be the fuzzy 
linguistic row matrix, then transpose of x is denoted by  
 

xt = (0, bad, good, fair, very bad)t = 

0
bad

good
fair

very bad

 
 
 
 
 
 
  

 

 
which is a fuzzy linguistic column matrix.  Suppose we have 
product of a fuzzy linguistic row matrix x; it can be operated 
with min or max operation with a fuzzy linguistic column 
matrix y if and only if x is a 1  t row matrix then y must be a  
t  1 column matrix.   
 

We show how the ‘min’ operation looks like. 
 

Suppose  
 

y = 

1

2

t

a
a

a

 
 
 
 
 
 


 and x = (b1, b2, …, bt) 

 
then min {min {x, y}} = min {min {a1, b1}, min {a2, b2}, …, 
min {at, bt}}. 
 

Likewise we can have {max; max} operation; {max; min} 
operation and {min; max} operation.  All these will be 
illustrated by examples. 

 
Let x = (x1, x2, …, x20) and y = (y1, y2, …, y20) with xi, yi  

L; 1  i  20.  L be a fuzzy linguistic matrix.  
 
max {max (x, y)} = max {max (x1, y1), max {x2, y2}, …, 

max {x20, y20}}. 
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Let x = (x1, x2, … x15) and y = (y1, y2, …, y15)  

max (min {x, y}) = max {min {x1, y1}, min {x2, y2}, …, min 
{x15, y15}}. 

 
Likewise min (max {x, y}) = min {max {x1, y1},  

max {x2, y2}, …, max {x15, y15}}. 
 
We will see how for a typical problem the four operations 

give different sets of answers.  
 

Let  
 

x = 

good
bad
fair
0

best
bad
0

good

 
 
 
 
 
 
 
 
 
 
 
  

 and 

 
 

y = (bad, 0, good, very bad, best, fair, best, better) 
 

be two fuzzy linguistic matrices. 
 

min {min (y, x)}  
 

= min {bad, 0, fair, 0, best, bad, 0, better} = 0 
 

max {min (y, x)}  
 

= max {bad, 0, fair, 0, best, bad, 0, better} = best, 
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min {max (y, z)}  
 

=  min {good, bad, good, very bad, best, fair,  
    best, good}  
 
= very bad and 

 
max (max {y, x})  
 

= max {good, bad, good, very bad, best, fair, best, good} 
 
= best. 

 
Suppose we are interested in finding min {x, y} then we 

have   
 
min {x, y} =   
 
 

bad 0 good very bad good fair good better
bad 0 bad very bad bad bad bad bad
bad 0 fair very bad fair fair fair fair
0 0 0 0 0 0 0 0

bad 0 good very bad best fair best better
bad 0 bad very bad bad bad bad bad
0 0 0 0 0 0 0 0

bad 0 good very bad good fair good better






 
 
 
 
 
 
 
 
 
 
 

. 

 
  

This is the way a fuzzy linguistic column matrix of order  
8  1 is multipliced with a 1  8 fuzzy linguistic row matrix 
with min operation gives a 8  8 fuzzy linguistic matrix.  
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We can also find max {x, y} = 
 

good good good good best good good good
bad bad fair bad best bad bad better
fair fair fair fair best fair fair better
bad 0 fair 0 best bad 0 better
best best best best best best best best
bad bad fair bad best bad bad better
bad 0 fair 0 best bad 0 bett

.

er
good good good good best good good good

 
 
 
 
 
 
 
 
 
 
 
  

 

 
 We see clearly max {x, y}  min {x, y}.  
 
 Further 0 dominates in min and best dominates in max.  
When an expert wants to boost the results on the positive side 
he can use the max operation.  If min operation is used it gives 
the worst state of affairs. 

 
Thus we see we get different results for these four types of 

operations.  According to need one can use any one of the 
operations.  

 
Now we find the transpose of a 6  5 fuzzy linguistic matrix 

M. 
 

Let M = 

good best bad fair best
0 bad worst 0 very bad

bad fair very fair bad better
worst 0 good better 0

0 fair 0 worst best
good fair best worst 0

 
 
 
 
 
 
 
 
  

. 

 
 

Now the transpose of this fuzzy linguistic 6  5 matrix M 
denoted  
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Mt = 

good 0 bad worst 0 good
best bad fair 0 fair fair
bad worst very fair good 0 best
fair 0 bad better worst worst
best very bad better 0 best 0

 
 
 
 
 
 
  

. 

 
Likewise if  
 

N = 

best 0 bad
fair bad 0
0 very fair good

good 0 best
best worst 0

0 best good
good better best

 
 
 
 
 
 
 
 
 
  

 

 
is any fuzzy linguistic 7  3 matrix, to find NT.   
 

NT = 
best fair 0 good best 0 good

0 bad very fair 0 worst best better
bad 0 good best 0 good best

 
 
 
  

. 

 
 We see NT is a 3  7 fuzzy linguistic matrix. 
 
 Now we can find the product of two rectangular linguistic 
matrices M and N if M is a  n  t matrix then N must be a t  m 
matrix then only MN is defined how ever NM is not defined in 
this case and MN is a n  m fuzzy linguistic matrix. 
 
 However product of any n  n matrix with itself is always 
defined.   
 

We will illustrate these two situations by some examples.  
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 Let  
 

M = 

good bad 0 worst
bad 0 good best
0 good bad 0

good bad good bad

 
 
 
 
 
 

 

 
 

= min (min (M, M)) = 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 

. 

 
We see if ‘0’ occurs atleast once in every row and atleast 

once in every column then min (min (M, M)) = (0). 
 

Now we find  
 

max (min (M, M)) =

good bad bad bad
good good good bad
bad bad good good

good good good good

 
 
 
 
 
 

. 

 
 

We now find the value of  
 

 

max (max (M, M)) =

good good good best
best best best best
good good good best
good good good best

 
 
 
 
 
 

. 
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min (max (M, M) = 

0 bad bad 0
bad 0 bad bad
bad bad 0 bad
bad bad bad bad

 
 
 
 
 
 

. 

 
We see max {max (M, M)} gives an extreme or better 

values and min {min {M, M}} gives an extreme low values, 
where as min max non negative values and max min more 
positive values. 

 
Such four types of operations can be used as per need of the 

problem. 
 
Now if M is a n  m matrix and N is a m  t matrix we can 

find min (min {M, N}), min (max {M, N}), max {max (M, N)} 
and max (min {M, N}).   

 
We will illustrate these four types of operations. 
 
Let  
 

M = 

low 0 high 0 very low
0 high 0 low high

high 0 medium 0 low
low low 0 medium 0

 
 
 
 
 
 

 

 
 and  
 

N = 

low 0 medium 0
high low 0 high

0 very high low 0
medium 0 high low
very low medium 0 high

 
 
 
 
 
 
  
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be two fuzzy linguistic matrices associated with temperature of 
an experiment. 
 
 

Clearly min (min {M, N}) =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 

. 

 

max {min (M, N)} = 

low high low v.low
high medium low high
low medium medium low

medium low medium low

 
 
 
 
 
 

 

 
 

max{max (M, N)}=

high very high high high
high very high high high

.
high very high high high
high very high high high

 
 
 
 
 
 

 

 
 

Now min {max (M, N)} = 

v.low 0 0 low
0 0 low 0

low 0 0 low
0 low 0 0

 
 
 
 
 
 

. 

 
We see this four types of operations gives four types of  

4  4 fuzzy linguistic matrices.   
 
Now we can also find linguistic row matrix with a square or 

a rectangular fuzzy linguistic matrix which is compatible. 
 

Consider X = (fast, slow, very slow, just fast, very fast) to 
be the fuzzy linguistic row matrix. 
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Take  
 

M = 

slow medium fast
very slow slow medium

fast slow fast
fast medium slow

just fast slow very slow

 
 
 
 
 
 
  

 

 
be a 5  3 fuzzy linguistic matrix.  Consider min {min {X, M}} 
= (very slow, very slow, very slow). 
 
 Consider max (min {X, M}) = (just fast, medium, fast). 
 
 Consider min (max {X, M}) = (slow, slow, medium). 
 
To find max (max {X, M}) = (very fast, very fast, very fast).  
 
  
 Here we describe the notion of Fuzzy Linguistic Cognitive 
Models (FLCM). 
  
 For Fuzzy Linguistic Cognitive maps please refer [53]. 
  
Example 3.1:  Suppose we are interested in studying the child 
labour problem.  Let (C1, C2, …, C6) be six attributes / concepts 
associated with it. 
 
 C1  - Child Labour 
 C2  - Good Teacher 
 C3  - School Drop out 
 C4 - Poverty 
 C5 - Public encouraging child labour 
 
 Let L = {0, often, + often, –often, very much, much, not that 
much, little, very little, more etc.}. 
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 So the state vectors as well as the related fuzzy linguistic 
matrices take their values from the set L.  Also the vertices of 
the fuzzy linguistic graph take their values from L.  
 
 Now using the experts opinion we have the following fuzzy 
linguistic graph. 
 
 

 

 

 

 

 

 

 Now using this linguistic graph we have the following fuzzy 
linguistic matrix M.  
 
 

M = 

1 2 3 4 5

1

2

3

4

5

C C C C C
C 0 0 0 often very much
C 0 0 often 0 0
C .often much 0 0 0
C 0 0 often 0 0
C very much 0 0 0 0

  
  
  
 

 
  

 

 
 Now our state vector takes values from L.  The min and 
max operations on L are defined as follows:   

 
 
 

C1 C2 

C5 

C3 

C4 

+ very much

+ often 

– often 
+ often 

+ much 
– much 
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Let min {0, ai} = 0 and max {0, ai} = ai for all ai  L. 
ai  L min {ai, ai} = ai and max {ai, ai} = ai . 

min {ai – ai} = – ai and max {ai, –ai} = ai for all ai  L. 
For instance min {often, very often} = often 

max {often, very often} = very often 
min {much, often} = often, 
max {much, often} = much 

min {–much, often} = – much 
and max {–much, often} = often. 

Like this operations on L are performed. 
 
 Now we find x1M using as before min {min (ai, mij)} where 
x1 = (a1, a2, …, a6) and M = (mij); mij, ai  L, 1  i, j  6. 
 

Thus x1M = (+ often, 0, + often, + often, 0)  
 
 

0 0 0 often very much
0 0 often 0 0

often much 0 0 0
0 0 often 0 0

very much 0 0 0 0

  
  
  
 

 
  

 

 
 
  =  (+ often, 0, + often, + often, + often)  
leading to a fixed point. 
 
Example 3.2:  Consider the problem of finding the seven transit 
system which includes the level of service and the convenience 
factors.  We have the following eight attributes. 
 
 C1 - Frequency of the service along a route 
 C2 - In-vehicle travel time along the route 
 C3 - Travel fare along the route 
 C4 - Speed of the vehicles along the route 
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 C5 - Number of intermediate points in the route.  
 C6 - Waiting time 
 C7 - Number of transfers in the route 
  
 The fuzzy linguistic terms associated with C1, C2, …, C7 as 
well as the problem are L = {0, often, always, a little, much, 
very much, usually, some times}.   
 

We now give the fuzzy linguistic graph whose vertices are 
C1, C2, …, C7 and the edges take values from L are as follows.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

C C C C C C C
C 0 often 0 0 0 often 0
C 0 0 0 very much often 0 0
C 0 0 0 very much much 0 some
C .0 0 much 0 0 0 0
C 0 0 often 0 0 0 much
C 0 0 0 0 0 0 0
C 0 0 0 0 much 0 0

 
 
 
 
 
 
 
 
 
  

 

 
 
 

  C5

  C4 

  C1   C2
often 

  C6

  C7 

  C3

some

much

much 

muchmuch

very much

 often

often

very much 

often
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 Let X = (often, 0, some, 0, often, some, 0) is the fuzzy 
linguistic state vector.   
 

To study the effect of X on M using max {max {X, M}} 
after updating max {max {X, M}} is (often, often, some, very 
much, often, some, much) = X1. 
 
 Now max {max {X1, M}} after updating is say X2; 
 
 X2 = (often, very much, some, very much, often, some, very 
much). 
 
 Now we find max {max (X2, M)} after updating we get say 
X3;  
 
 X3 = (often, very much, some, very much, often, some, very 
much). 
 

Now suppose another expert wants to use for the same 
fuzzy linguistic state vector X and the same dynamical system,  
to study the effect using the ‘max min’ operation. 

 
Now max {min (X, M)} after updating we get say X1, 

 
X1  =(often, often, some, 0, often, some, often). 

 
We find max {min (X, M)} after updating we get say X2.  

This is the way the operations are performed on the fuzzy 
linguistic matrix. 
 

X2 = (often, often, some, 0, often, some often). 
 

For about Fuzzy linguistic relational map-model refer [53]. 
 
We can use any of the four types of operations {max, max} 

or {min, max} or {max, min} or {min, min} in these fuzzy 
linguistic matrices [53]. 
 
 We will illustrate this situation by an example. 
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Example 3.3: Let us study the employee - employer fuzzy 
linguistic relational model.  Suppose we have the following 
fuzzy linguistic concepts / attributes associated with the 
employee taken as the domain space  
 

D1  - Pay with allowances and bonus 
 
D2 - Only pay to employee 
 
D3 - Pay with allowance to employee 
 
D4 - Best performance by the employee 
 
D5 - Average performance by the employee 
 
D6 - Employee works for more number for hours. 
 

Suppose the following nodes / concepts are taken as the 
range space of the employer. 

 
 
R1 - maximum profit to the employer 
 
R2 - Only profit to the employer 
 
R3 - Neither profit nor less to the employer. 
 
 

The fuzzy linguistic terms associated with the fuzzy 
linguistic domain and range spaces be taken as L. 

 
L = {0, gain, loss, no loss no gain, just gain, just loss, gain, 

heavy loss, good gain}. 
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We give the associated fuzzy linguistic matrix N of the 
fuzzy linguistic graph. 
 

 

N = 

1 2 3

1

2

3

4

5

6

R R R
D good gain 0 just loss
D gain 0 0
D no loss no gain 0 0

.
D gain 0 0
D 0 no loss no gain 0
D just loss 0 0

 
 
 
 
 
 
 
 
  

 

  D1 good gain 

  D2 

  D3 

  D4 

  D5 

  D6 

  R1

  R2

  R3

gain

no loss no gain 

just loss 

just loss

no loss no gain

gain
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 Now we find the resultant of any fuzzy linguistic vector on 
N, the dynamical system associated with the problem. 
 
 Let X = (gain, 0, loss, 0, gain, loss) be the given fuzzy 
linguistic state vector.  The effect of X on the fuzzy linguistic 
dynamical system N is as follows: 
 

Max {max (X, N)} = ((good gain, gain, gain)} =  Y 
 
 We find max (max {Y, NT}) = (gain, gain, loss, gain, gain, 
loss) = X1 (say) after updating. 
 
 We find max (max {X1, N}) 
 
 = (good gain, gain, gain) = Y1 = Y. 
 
 This is the way the operations using linguistic matrices are 
performed on these models. 
 
 Finally for the first time we introduce the notion of fuzzy 
linguistic relation equations and describe some of the properties 
related with them. 
 
 Let L1 and L2 be any two fuzzy linguistic sets that is both L1 
and L2 contain fuzzy linguistic terms or L1 = L2 otherwise.  Let 
R be a fuzzy linguistic relation that is to each fuzzy linguistic 
term of L1 two or more fuzzy linguistic terms in L2  are 
assigned, that is to each x1  L1 to the domain space (L1 is the 
domain linguistic space) we associate a y2  L2 and here the 
degree of membership is not a value between [0, 1] but a fuzzy 
linguistic value from L.   
 

This we will first illustrate by some example.  
 

Let L1 = {x1, x2, x3, x4, x5, x6, x7} be seven fuzzy linguistic 
terms and L2 = {y1, y2, y3, y4, y5} be some five fuzzy linguistic 
terms with the following relation.   
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We have fuzzy linguistic membership matrix R associated 
with the above map. 
 

R = 

1 2 3 4 5

1

2

3

4

5

6

7

y y y y y
x good fair 0 0 0
x 0 0 worst 0 0
x 0 fair 0 0 0
x 0 0 0 bad good
x best good 0 0 0
x 0 0 v.bad 0 best
x 0 0 0 fair 0

 
 
 
 
 
 
 
 
 
  

 

 
 
 Thus for fuzzy linguistic sets L1 and L2 we can have a fuzzy 
linguistic membership function R.  The representation by the 
diagram will be known as the fuzzy linguistic sagittal diagram 
and the fuzzy linguistic matrix will be known as the fuzzy 

y1 

good 

best 
fair 

good good 

bad 

fair 

best 
worst 

fair 

very bad 

y2 

y3 

y4 

y5 

x1 

x2 

x3 

x4 

x5 

x6 

x7 
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linguistic membership matrix where the membership values are 
also fuzzy linguistic terms. 
 
 We can compose two fuzzy linguistic binary relation 
provided both of them take their fuzzy linguistic membership 
values from the same fuzzy linguistic set L. 
 
 We will just illustrate how such compositions are made. 
 
Suppose  
 

P = 

good bad fair best
bad fair good good
0 good fair good

good bad good fair

 
 
 
 
 
 

 

 
 

and  
 
 

Q = 

good bad good fair 0 best
bad good best good bad 0
best fair best 0 good bad

0 fair good bad good good

 
 
 
 
 
 

 

 
be two fuzzy linguistic membership matrices of a fuzzy 
linguistic binary relation with the values taken from the same 
fuzzy linguistic space L.   
 
 Thus we have used the innovative methods of applying 
matrices by constructing in the first place fuzzy linguistic 
matrices and secondly using them in fuzzy models like Fuzzy 
Cognitive Maps, Fuzzy Relational Maps and Fuzzy Relational 
Equations. 
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Now  
 

P o Q = 

good bad fair best
bad fair good good
0 good fair good

good bad good fair

 
 
 
 
 
 

 o 

 
 

 

good bad good fair 0 best
bad good best good bad 0
best fair best 0 good bad

0 fair good bad good good

 
 
 
 
 
 

 = R  

 
where R is found in the following way. 

 

If R = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

r r r r r r
r r r r r r
r r r r r r
r r r r r r

 
 
 
 
 
 

 then 

 
 
 

r1  = max [min (good, good), min (bad, bad),  
   min (fair, best), min (best, 0)] 

  = max [good, bad, fair, 0] = good 
 
 r2  = max [min (good, bad), min (bad, good),  

   min (fair, fair), min (best, fair)} 
  = max {bad, bad, fair, fair} = fair 
 
 r3 = max {min {good, good}, min {bad, best},  

   min {fair, best}, min {best, good}}  
  = max {good, bad, fair, good} = good 
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 r4 = max {min {good, fair}, min {bad, good},  

   min {fair, 0},  min {best, bad}}  
  = max {fair, bad, 0, bad } = fair. 
 
and so on. 
 
 

We have the following fuzzy linguistic binary relation 
which is described by the fuzzy linguistic sagittal diagram and 
the related fuzzy linguistic membership matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x1 medium 

Just slow 

just fast 

fast 

slow fast 

very slow 

fast 
slow 

fast 
fast 

slow 

slow fast 

   X  X 

x2 

x3 

x4 

x5 

x6 

x7 

x1 

x2 

x3 

x4 

x5 

x6 

x7 
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The fuzzy linguistic membership matrix associated with X is  
 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x x x x x x x
x medium fast slow 0 0 0 0
x 0 0 fast just fast 0 0 0
x 0 slow 0 0 0 fast 0
x .0 0 0 0 very slow 0 fast
x 0 0 slow 0 0 0 0
x 0 0 0 0 fast 0 0
x 0 0 0 0 0 slow fast

 
 
 
 
 
 
 
 
 
  

 

 
 
 Operations can be performed on these matrices. 



 
 

 

Chapter Four 

 

 

 

 

 

SUPERMATRICES AND THEIR 
APPLICATIONS  
 
 

 
 
The concept of super matrices was first introduced by [17].  
Later the authors developed a new algebra using these matrices 
called super linear algebras [45].  Thus for the first time we use 
only super matrices to build super linear algebras.  This 
application of super  matrices is not only innovative and has lot 
of applications.  Further one can find bulk eigen values using 
super square diagonal matrices.  This method helps in easy 
comparison of eigen values and also bulk performances takes 
lesser time [45]. 
 
 Apart from this super fuzzy matrices are used in the 
construction of super fuzzy models like New Super Fuzzy 
Relational model, New Super Fuzzy Cognitive Maps model, 
New Super Fuzzy Associative Maps model, we make use of 
them in the construction of super codes [50].   
 

In this section for the first time we introduce the new notion 
of Super Fuzzy Relational Maps (SFRMs) models and they are 
applied to real world problems, which is suited for multi expert 
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problems. When we in the place of fuzzy relational matrix of 
the FRM (using single expert) use fuzzy supermatrix with multi 
experts we call the model as Super Fuzzy Relational Maps 
(SFRMs) model.  

 
We just recall the definition of Domain Super Fuzzy 

Relational Maps (DSFRMs) model. 
 
DEFINITION 4.1: Suppose we have some n experts working on a 
real world model and give their opinion. They all agree upon to 
work with the same domain space elements / attributes / 
concepts; using FRM model but do not concur on the attributes 
from the range space then we can use the special super fuzzy 
row vector to model the problem using Domain Super Fuzzy 
Relational Maps (DSFRMs) Model. 
 

The DSFRM matrix associated with this model will be given 
by SM 

 
 
 

 
 
 
 
 
 

  



1 2 n

1 1 2 2 n n n
1 r 1 r 1 2 r

1

2
M

m

t t t t t t t

D
D

S

D

 

 
 

= 1 2 n
M M MS S S    

 
 
where each i

MS  is a m × 
i

i
rt  matrix associated with a FRM 

given by the ith expert  having D1, …, Dm to be the domain 
attributes and ( i

1t
i
2t  … 

i

i
rt  ) to be the range attributes of the ith 

expert, i = 1, 2, …, n and SM the DSFRM matrix will be a 
special super row vector / matrix (1  i  n).  
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However if n is even a very large value using the mode of 
programming one can easily obtain the resultant vector or the 
super hidden pattern for any input supervector which is under 
investigation.  

 
These DSFRMs will be known as Domain constant 

DSFRMs for all the experts choose to work with the same 
domain space attributes only the range space attributes are 
varying denoted by DSFRM models.   

 
We see these super row vectors (super row matrices) find 

their applications in the DSFRMs model. 
 

Next we proceed on to recall the notion of super FRMs with 
constant range space attributes and varying domain space 
attributes. 
 
 
DEFINITION 4.2: Let some m experts give opinion on a real 
world problem who agree upon to make use of the same space 
of attributes / concepts from the range space using FRMs but 
want to use different concepts for the domain space then we 
make use of the newly constructed special super column vector 
as the matrix to construct this new model.  
 

The column attributes i.e. the range space remain constant 
as R1, …, Rs for all m experts only the row attributes for any ith 
expert is 1 2, , ,

i

i i i
tD D D ; i = 1, 2, …, m; vary from expert to 

expert. This system will be known as the Range constant fuzzy 
super FRM or shortly denoted as RSFRM model.  
 

Thus the associated special super column matrix SM is  
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SM = 

1

2

1 2
1
1
1
2

1

2
1

2

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  











m

s

t

t

m

m
t

R R R
D
D

D

D

D

D

D

 

 
 

These super row vectors (super row matrices) find 
applications in the RSFRM models. 

 
DEFINITION 4.3: Suppose we have m experts who wish to work 
with different sets of both row and column attributes i.e. domain 
and range space using FRMs, then to accommodate or form a 
integrated matrix model to cater to this need. We make use of 
the super diagonal fuzzy matrix, to model such a problem. 
Suppose the first expert works with the domain attributes 

1

1 1
1 , , tD D  and range attributes 

1

1 1
1 , , nR R , The second expert 

works with domain attributes 
2

2 2
1 , , tD D  and with range 

attributes 
2

2 2
1 , , nR R  and so on. Thus the mth expert works with 

1 , ,
m

m m
tD D  domain attributes and 1 , ,

m

m m
nR R  range 

attributes. We have the following diagonal fuzzy supermatrix to 
model the situation. We are under the assumption that all the 
attributes both from the domain space as well as the range 
space of the m experts are different.  
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The super fuzzy matrix S associated with this new model is 
given by  
 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1
1

2
1

2
2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   









m

m

m m m
n n t

t

t

m

n
m
t

R R R R R R R R R
D

M
D

D
M

D

D
M

D

 

 
 
where each Mi is a ti × ni matrix associated with the FRM, we 
see except, the diagonal strip all other entries are zero.  
 

We call this matrix as a special diagonal super fuzzy matrix 
and this model will be known as the Special Diagonal Super 
FRM Model which will be denoted briefly as (SDSFRM).  
 

The super diagonal matrices are used in the SDSFRM 
models. 
 
DEFINITION 4.4: Suppose one is interested in finding a model 
where some mn number of experts work on the problem and 
some have both domain and range attributes to be not 
coinciding with any other expert and a set of experts have only 
the domain attributes to be in common and all the range 
attributes are different.  
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Another set of experts are such that only the range 
attributes to be in common and all the domain attributes are 
different, and all of them wish to work with the FRM model 
only; then we model this problem using a super fuzzy matrix. 
We have mn experts working with the problem.  
 

Let the t1 expert wish to work with domain attributes 1
1P , 

1
2P , …, 

1

1
( )m tP  and range attributes 1

1q , 1
2q , …, 

1

1
( )n tq .  

 
 The t2 expert works with 1

1P , 1
2P , …, 

1

1
( )m tP  as domain 

attributes and the range attributes  2
1q , 2

2q , …, 
2

2
( )n tq  and so on. 

Thus for the ti expert works with 1
iP , 2

iP , …, ( )i

i
m tP  as domain 

space attributes and 1
iq , 2

iq , …, ( )i

i
n tq , as range attributes (1  i 

 m(ti) and i  n (ti)). 
 

So with these mn experts we have an associated super FRM 
matrix. Thus the supermatrix associated with the Super FRM 
(SFRM) model is a supermatrix of the form  

 
 

S(m) = 

11 12 1
( 1) ( 1) ( 1) ( 2) ( 1) ( )

21 22 2
( 2) ( 1) ( 2) ( 2) ( 2) ( )

1 2
( ) ( 1) ( ) ( 2) ( ) ( )

 
 
 
 
 
 
 
  

n
m t n t m t n t m t n tn

n
m t n t m t n t m t n tn

m m mn
m tm n t m tm n t m tm n tn

A A A

A A A

A A A

 

 
 
where  
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1 2 ( )

1

2
( ) ( )

( ) ( )

( )

( )

 
 
   
 
  





j

i j
i j

i

j j j
n t

i

i
ij

ijm t n t
m t n t

i
m t

q q q

P
P

A a
P

 

 
 
1  i  m and 1  j  n. S(m) is called the super dynamical FRM 
or a super dynamical system.  
 

This matrix ( ) ( )i j

ij
m t n tA  corresponds to the FRM matrix of the 

(ij)th expert with domain space attributes 1
iP , 2

iP , …, ( )i

i
m tP   and 

range space attributes 1
jq , 2

jq , …, ( )j

j
n tq  , 1  i  m and  

1  j  n.  
 

Super matrices are used as the dynamical system of SFRM 
models.  

 
Next we proceed onto show how super row vectors (super 

row matrices) are used in the construction of SDBAM models.  
We recall the definition of SDBAM model. 
  
DEFINITION 4.5: Suppose a set of n experts choose to work with 
a problem using a BAM model in which they all agree upon the 
same number of attributes from the space Fx which will form the 
rows of the dynamical system formed by this multi expert BAM. 
Now n distinct sets of attributes are given from the space Fy 
which forms a super row vector and they form the columns of 
the BAM model. 
 
 Suppose all the n experts agree to work with the same set of 
t-attributes say (x1 x2 … xt) which forms the rows of the synaptic 
connection matrix M. Suppose the first expert works with the p1 
set of attributes given by (

1

1 1 1
1 2  py y y ), the second expert with 
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p2 set of attributes given by (
1

1 1 1
1 2  py y y )  and so on. Let the ith 

expert with pi set of attributes given by ( 1 2  i

i i i
py y y ) for i = 1, 

2, …, n. Thus the new BAM model will have its elements from Fy 
where any element in Fy will be a super row vector, T = 
(

1

1 1 1
1 2 py y y  | 

2

2 2 2
1 2  py y y | … |  1 2  n

n n n
py y y ). Now the synaptic 

projection matrix associated with this new BAM model is a 
special row supervector Mr given by 

 
 

Mr= 

1 2

1 1 1 2 2 2
1 2 1 2 1 2

1

2

 
 
 
 
 
 

   



n

n n n
p p p

t

y y y y y y y y y

x
x

x

 

 
 
Here the elements /attributes from Fx is a simple row rector 

where as the elements from Fy is a super row vector.  
 
We call this model to be a multi expert Special Domain 

Supervector BAM (SDBAM) model and the associated matrix is 
a special row vector matrix denoted by Mr. Let X = (x1 x2 … xt) 
 Fx. Y = [

1

1 1 1
1 2 py y y  | 

2

2 2 2
1 2  py y y | … | 1 2  n

n n n
py y y ]   Fy. 

If X = (x1 x2 … xt)  Fx is the state vector given by the expert we 
find 

  
XMr = Y1 Fy  

YMr
T =  X1 Fx …  

 
and so on. This procedure is continued until an equilibrium is 
arrived. Similarly if the expert chooses to work with Y = 
[

1

1 1 1
1 2  py y y  | 

2

2 2 2
1 2  py y y | … | 1 2  n

n n n
py y y ]  Fy then we 

find the resultant by finding 
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YMr

T X, then find XMr and proceed on till the system 
arrives at an equilibrium state. This model will serve the 
purpose when row vectors from Fx are a simple row vectors and 
row vectors from Fy are super row vectors.  
 
 In the following we describe how the super column vectors 
(super column matrices) we used in the construction of synaptic 
matrix of the SRBAM models. 
 
DEFINITION 4.6: Suppose we have a problem in which all m 
experts want to work using a BAM model. If they agree to work 
having the simple vectors from Fy i.e., for the columns of the 
synaptic connection matrix i.e. there is no perpendicular 
partition of their related models matrix.   
 
 The rows are partitioned horizontally in this synaptic 
connection matrix i.e., the m experts have distinct sets of 
attributes taken from the space Fx i.e. elements of Fx are super 
row vectors. The resulting synaptic connection matrix Mc is a 
special super column matrix.  
 

Let the 1st expert have the set of row attributes to be 
(

1

1 1 1
1 2  qx x x ), the 2nd expert have the set of row attributes given 

by (
2

2 2 2
1 2  qx x x ) and so on. Let the ith expert have the related 

row attributes as ( 1 2  i

i i i
qx x x );  i = 1, 2, …, m.  

 
Let the column vector given by all them is [y1 … yn]. The 

related super synaptic connection matrix  
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1

2

1 2
1
1
1
2

1

2
1
2
2

2

1

2

.

m

n

q

qC

m

m

m
q

y y y
x
x

x

x
x

xM

x
x

x

 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
  











 
 
Mc is a special super column vector / matrix. 
 

Suppose an expert wishes to work with a super row vector X 
from Fx then X = [

1

1 1 1
1 2  qx x x  | 

2

2 2 2
1 2  qx x x  | …| 1 2  m

m m m
qx x x ]  

we find X o Mc  Y  Fy , YMc
T= X1  Fx, we repeat the 

same procedure till the system attains its equilibrium i.e., a 
fixed point or a limit cycle.  
 

This model which performs using the dynamical system Mc 
is defined as the Special Super Range BAM (SRBAM) model. 
 
 We now proceed onto describe the SDSBAM model which 
makes use of the super diagonal matrices.  We describe mainly 
these models to show how these models makes use of the super 
matrices.  This SDSBAM model synaptic connection matrix is a 
diagonal super matrix. 
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DEFINITION 4.7: Suppose we have n experts to work on a 
specific problem and each expert wishes to work with a set of 
row and column attributes distinct from others using a BAM 
model. Then how to obtain a suitable integrated dynamical 
system using them. Let the first expert work with (

1

1 1 1
1 2  nx x x ) 

attributes along the row of the related synaptic connection 
matrix of the related BAM and (

1

1 1 1
1 2  py y y ) the attributes 

related to the column, let the second expert give the row 
attributes of the synaptic connection matrix of the BAM to be 
(

2

2 2 2
1 2  nx x x ) and that of the column be (

2

2 2 2
1 2  py y y ) and so 

on. Let the ith expert give the row attributes of the synaptic 
connection matrix of the BAM to be ( 1 2 i

i i i
nx x x )  and that of 

the column to be ( 1 2  i

i i i
py y y ) for i = 1, 2, …, n, the 

supermatrix described by  
 

MD = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1
1

1

2
1

2
2

2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

n

n

n n n
p p p

n

n

n

n
n

n
n

y y y y y y y y y

x

A
x

x
A

x

x
A

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   








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where i
iA  is the synaptic connection matrix using the BAM 

model of the ith expert, i = 1, 2, …, n where 
 

Ai
1 = 

1 2

1

2

i

i

i i i
p

i

i

i
n

y y y

x
x

x

 
 
 
 
 
 




 

 
(0) denotes the zero matrix.  
 

Thus this model has only non zero BAM synaptic connection 
matrices along the main diagonal described by MD. The rest are 
zero.  

 
The dynamical system associated with this matrix MD is 

defined to be the Special Diagonal Super BAM (SDSBAM) 
model. 

 
Yet another application (or use) of super matrices is in the 

super BAM models which is described below. 
 

DEFINITION 4.8: Suppose we have mn number of experts who 
are interested in working with a specific problem using a BAM 
model; a multi expert model which will work as a single 
dynamical system is given by the Super BAM (SBAM)  
model.  Here a few experts have both the row and columns of 
the synaptic connection matrix of the BAM to be distinct. Some 
accept for same row attributes or vectors of the synaptic 
connection matrix but with different column attributes. Some 
accept for same column attributes of the synaptic connection 
matrix of the BAM model but with different row attributes to 
find the related supermatrix associated with the super BAM 
model. The supermatrix related with this new model will be 
denoted by Ms which is described in the following: 
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1 1 1 2 2 2
1 2 1 2 1 2
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 
 
 
 
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


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where i

jA  is the synaptic connection matrix of an expert who 

chooses to work with ( 1 2 i

i i i
px x x ) along the row of the BAM 

model and with ( 1 2 j

j j j
qy y y ) along the column of the BAM 

model i.e., 
 

Ai
j = 

1 2

1

2

 
 
 
 
 
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


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i

i
p

y y y

x
x

x

 

 
1  i  m and 1  j  n. Thus for this model both the attributes 
from the spaces Fx and Fy are super row vectors given by  
 

X= [
1

1 1 1
1 2  px x x | 

2

2 2 2
1 2  px x x | … | 1 2  m

m m m
px x x ] 
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in Fx and  
 

Y = [
1

1 1 1
1 2  qy y y  | 

2

2 2 2
1 2  qy y y | … |  1 2  n

n n n
qy y y ] 

 
from the space or the neuronal field Fy. 
 

The supermatrix Ms is called the synaptic connection 
supermatrix associated with the multi expert super BAM model 
(SBAM model). Now having defined the multi expert super BAM 
model we proceed on to describe the functioning of the super 
dynamical system. 

 
Let X = [

1

1 1 1
1 2  px x x | 

2

2 2 2
1 2  px x x  | … | 1 2  m

m m m
px x x ]  Fx 

be the super row vector given by the expert, its effect on the 
multi super dynamical system Ms. 
 
X o Ms    Y  

 
=  [

1

1 1 1
1 2 qy y y  | 

2

2 2 2
1 2 qy y y | …| 

n

n n n
1 2 qy y y ]  Fy 

 
Y o T

sM  X1   Fx. 
X1 o Ms  Y1   Fy; 

 
and so on and this procedure is repeated until the system attains 
a equilibrium.  
 
 Finally we just indicate how the super matrices are used in 
super fuzzy associative memories.  For more about this refer  
[48]. 
 

A fuzzy set is a map µ : X  [0, 1] where X is any set 
called the domain and [0, 1] the range i.e., µ is thought of as a 
membership function i.e., to every element x  X, µ assigns a 
membership value in the interval [0, 1]. But very few try to 
visualize the geometry of fuzzy sets. It is not only of interest but 
is meaningful to see the geometry of fuzzy sets when we discuss 
fuzziness. Till date researchers over looked such visualization 
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[24], instead they have interpreted fuzzy sets as generalized 
indicator or membership functions; i.e., mappings µ from 
domain X to range [0, 1]. But functions are hard to visualize. 
Fuzzy theorist often picture membership functions as two-
dimensional graphs with the domain X represented as a one-
dimensional axis.  

 
The geometry of fuzzy sets involves both domain X = 

(x1,…, xn) and the range [0, 1] of mappings µ : X  [0, 1]. The 
geometry of fuzzy sets aids us when we describe fuzziness, 
define fuzzy concepts and prove fuzzy theorems. Visualizing 
this geometry may by itself provide the most powerful argument 
for fuzziness. 

 
An odd question reveals the geometry of fuzzy sets. What 

does the fuzzy power set F(2X), the set of all fuzzy subsets of X, 
look like? It looks like a cube, What does a fuzzy set look like? 
A fuzzy subsets equals the unit hyper cube In = [0, 1]n. The 
fuzzy set is a point in the cube In. Vertices of the cube In define 
a non-fuzzy set. Now with in the unit hyper cube In = [0, 1]n we 
are interested in a distance between points, which led to 
measures of size and fuzziness of a fuzzy set and more 
fundamentally to a measure. Thus within cube theory directly 
extends to the continuous case when the space X is a subset of 
Rn.  

 
The next step is to consider mappings between fuzzy cubes. 

This level of abstraction provides a surprising and fruitful 
alternative to the prepositional and predicate calculus reasoning 
techniques used in artificial intelligence (AI) expert systems. It 
allows us to reason with sets instead of propositions. The fuzzy 
set framework is numerical and multidimensional. The AI 
framework is symbolic and is one dimensional with usually 
only bivalent expert rules or propositions allowed. Both 
frameworks can encode structured knowledge in linguistic form. 
But the fuzzy approach translates the structured knowledge into 
a flexible numerical framework and processes it in a manner 
that resembles neural network processing. The numerical 
framework also allows us to adaptively infer and modify fuzzy 
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systems perhaps with neural or statistical techniques directly 
from problem domain sample data.  

 
Between cube theory is fuzzy-systems theory. A fuzzy set 

defines a point in a cube. A fuzzy system defines a mapping 
between cubes. A fuzzy system S maps fuzzy sets to fuzzy sets. 
Thus a fuzzy system S is a transformation S: In  IP. The n-
dimensional unit hyper cube In houses all the fuzzy subsets of 
the domain space or input universe of discourse X = {x1, …, 
xn}. Ip houses all the fuzzy subsets of the range space or output 
universe of discourse, Y = {y1, …, yp}. X and Y can also denote 
subsets of Rn and Rp. Then the fuzzy power sets F (2X) and F 
(2Y) replace In and Ip.  

 
In general a fuzzy system S maps families of fuzzy sets to 

families of fuzzy sets thus S: s1 r 1 pn n pI I I I       Here 
too we can extend the definition of a fuzzy system to allow 
arbitrary products or arbitrary mathematical spaces to serve as 
the domain or range spaces of the fuzzy sets. We shall focus on 
fuzzy systems S: In  IP that map balls of fuzzy sets in In to 
balls of fuzzy set in Ip. These continuous fuzzy systems behave 
as associative memories. The map close inputs to close outputs. 
We shall refer to them as Fuzzy Associative Maps or FAMs. 

 
The simplest FAM encodes the FAM rule or association (Ai, 

Bi), which associates the p-dimensional fuzzy set Bi with the n-
dimensional fuzzy set Ai. These minimal FAMs essentially map 
one ball in In to one ball in Ip. They are comparable to simple 
neural networks. But we need not adaptively train the minimal 
FAMs. As discussed below, we can directly encode structured 
knowledge of the form, “If traffic is heavy in this direction then 
keep the stop light green longer” is a Hebbian-style FAM 
correlation matrix. In practice we sidestep this large numerical 
matrix with a virtual representation scheme. In the place of the 
matrix the user encodes the fuzzy set association (Heavy, 
longer) as a single linguistic entry in a FAM bank linguistic 
matrix. In general a FAM system F: In  Ib encodes the 
processes in parallel a FAM bank of m FAM rules (A1, B1), …, 
(Am Bm). Each input A to the FAM system activates each stored 
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FAM rule to different degree. The minimal FAM that stores (Ai, 
Bi) maps input A to Bi’ a partly activated version of Bi. The 
more A resembles Ai, the more Bi’ resembles Bi. The 
corresponding output fuzzy set B combines these partially 
activated fuzzy sets 1 1 1

1 2 mB , B , , B . B equals a weighted 
average of the partially activated sets B = 1 1

1 1 m mw B ... w B   
where wi reflects the credibility frequency or strength of fuzzy 
association (Ai, Bi). In practice we usually defuzzify the output 
waveform B to a single numerical value yj in Y by computing 
the fuzzy centroid of B with respect to the output universe of 
discourse Y.  

 
More generally a FAM system encodes a bank of compound 

FAM rules that associate multiple output or consequent fuzzy 
sets B1

i, …, Bi
s with multiple input or antecedent fuzzy sets Ai

1, 
…, Ai

r. We can treat compound FAM rules as compound 
linguistic conditionals. This allows us to naturally and in many 
cases easily to obtain structural knowledge. We combine 
antecedent and consequent sets with logical conjunction, 
disjunction or negation. For instance, we could interpret the 
compound association (A1, A2, B), linguistically as the 
compound conditional “IF X1 is A1 AND X2 is A2, THEN Y is 
B” if the comma is the fuzzy association (A1, A2, B) denotes 
conjunction instead of say disjunction. 

 
We specify in advance the numerical universe of discourse 

for fuzzy variables X1, X2 and Y. For each universe of discourse 
or fuzzy variable X, we specify an appropriate library of fuzzy 
set values A1

r, …, Ak
2

 Contiguous fuzzy sets in a library 
overlap. In principle a neural network can estimate these 
libraries of fuzzy sets. In practice this is usually unnecessary. 
The library sets represent a weighted though overlapping 
quantization of the input space X. They represent the fuzzy set 
values assumed by a fuzzy variable. A different library of fuzzy 
sets similarly quantizes the output space Y. Once we define the 
library of fuzzy sets we construct the FAM by choosing 
appropriate combinations of input and output fuzzy sets 
Adaptive techniques can make, assist or modify these choices. 
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An Adaptive FAM (AFAM) is a time varying FAM system. 

System parameters gradually change as the FAM system 
samples and processes data. Here we discuss how natural 
network algorithms can adaptively infer FAM rules from 
training data. In principle, learning can modify other FAM 
system components, such as the libraries of fuzzy sets or the 
FAM-rule weights wi. 

 
We now define the notion of super fuzzy associative 

memories of different types. 
 
DEFINITION 4.9: We have a problem P on which n experts 
wishes to work using a FAM model which can work as a single 
unit multi expert system. Suppose all the n-experts agree to 
work with the same set of attributes from the domain space and 
they want to work with different and distinct sets of attributes 
from the range space. Suppose all the n experts wish to work 
with the domain attributes (x1 x2 … xt) from the cube 

[ , ] [ , ]


  
t

t times

I 0 1 0 1 . Let the first expert work with the range 

attributes (
1

1 1 1
1 2  py y y ) and the second expert works with the 

range attributes (
2

2 2 2
1 2  py y y ) and so on. Thus the ith expert 

works with the range attributes ( 1 2  i

i i i
py y y ), i = 1, 2, …, n. 

 
Thus the range attributes 
 

Y = ( 1

1 1 1
1 2  py y y  | 

2

2 2 2
1 2  py y y  | … | 1 2  n

n n n
py y y ) 

 
are taken from the cube 1 2 np +p + +pI [ , ] [ , ] [ , ]

  

   




1 2 np p p times

0 1 0 1 0 1 . 

This we see the range attributes are super row fuzzy vectors. 
 

Now the matrix which can serve as the dynamical systems 
for this FAM model is given by FR. 
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1 2

1 1 1 2 2 2
1 2 1 2 1 2

1
1 1 1
1 2

 
 
 
  

   



n

n n n
p p p

n

t

y y y y y y y y y

x
A A A

x

 

 
Clearly FR is a special super row fuzzy vector. Thus F: I 

t   
1 2 np p pI    . Suppose using an experts opinion we have a fit 

vector, A = (a1, a2, …, at) ; ai {0,1}, then A o FR = max min 
(ai, fij); ai  A and fij  FR. Let A o FR = B = (bj), then FR  o B = 
max min (fij, bi

j) and so on, till we arrive at a fixed point or a 
limit cycle. The resultant fit vectors give the solution. This FR 
gives the dynamical system of the new model which we call as 
the Fuzzy Special Super Row vector FAM model (SRFAM 
model).  
 
DEFINITION 4.10: Suppose we have n experts working on a 
problem and they agree upon to work with the same range 
attributes and wish to work with distinct domain attributes 
using a FAM model. We built a new FAM model called the 
special super column fuzzy vector FRM model (SCFAM) and its 
related matrix is denoted by Fc. The fit vectors of the domain 
space are simple fit vectors where as the fit vectors of the range 
space are super row fit vectors.  
 

Now we describe the special column fuzzy vector FAM, Fc 
by the following matrix. The column attributes of the super fuzzy 
dynamical system Fc are given by  

 
(y1 y2 … ys)  [ , ] [ , ]



  
s

s times

I 0 1 0 1 . 

 
The row attributes of the first expert is given by 

(
1

1 1 1
1 2, , , px x x ), the row attributes of the second expert is given 

by (
2

2 2 2
1 2, , , px x x ). Thus the row attributes of the ith expert is 

given by ( 1 2  i

i i i
px x x ),  i = 1, 2, …, n.  
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We have 

 

Fc = 

1

2

1 2
1
1

1
1

2
1

2
2

1

n

s

p

p

n

n
n
p

y y y
x

A
x

x
A

x

x
A

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  











 

 
to be a special super column fuzzy vector / matrix, where  
 

Ai = 

1 2

1

2

 
 
 
 
 
 





i

s
i

i

i
p

y y y
x
x

x

 

 
i = 1, 2, …, n is a fuzzy pi × s matrix. Suppose the expert wishes 
to work with a fit vector (say) [

1

1 1 1
1 2  px x x  |  

2

2 2 2
1 2  px x x  | … | 

1 2  n

n n n
px x x ]. Then X o Fc= B where B is a simple row vector 

we find cF [ , ] [ , ]  

  

    



 1 n

1 2 n

p p

p p p times

o B 0 1 0 1 I  ; we proceed on 

to work till we arrive at an equilibrium state of the system.  
  



Supermatrices and their Applications 85 
 
 
 
 

Next we proceed on to define FAM when n expert give 
opinion having distinct set of domain attributes and distinct set 
of range attributes. 
 
DEFINITION 4.11: Let n experts give opinion on a problem P 
and wish to use a FAM model, to put this data as an integrated 
multi expert system.  
 

Let the first expert give his/her attributes along the column 
as (

1

1 1 1
1 2  qy y y ) and those attributes along the row as 

(
1

1 1 1
1 2  px x x ).  

 
Let (

2

2 2 2
1 2  qy y y ) and (

2

2 2 2
1 2  px x x ) be the column and 

row attributes respectively given by the second expert and so 
on.  

 
Thus any ith expert gives the row and column attributes as 

( 1 2  i

i i i
px x x ) and ( 1 2  i

i i i
qy y y ) respectively, i =1, 2, 3, …, n.  

 
So for any ith expert the associated matrix of the FAM would 

be denoted by Ai where  
 

Ai = 

1 2

1

2

 
 
 
 
 
 





i

i

i i i
q

i

i

i
p

y y y

x
x

x

 

 
 
Now form the multi expert FAM model using these n FAM 

matrices A1, A2, …, An and get the multi expert system which is 
denoted by  
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FD = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1

1

2
1

2

2

1

(0) (0)

(0) (0)

(0) (0) (0)

(0) (0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   









n

n

n n n
q q q

p

p

n

n

n
p

y y y y y y y y y

x

A
x

x
A

x

x
A

x

. 

 
 

 This fuzzy supermatrix FD will be known as the diagonal 
fuzzy supermatrix of the FAM and the multi expert system which 
makes use of this diagonal fuzzy supermatrix FD will be known 
as the Fuzzy Super Diagonal FAM (SDFAM) model. Now the 
related fit fuzzy supervectors of this model Fx and Fy are fuzzy 
super row vectors given by X= (

1

1 1 1
1 2  px x x |

2

2 2 2
1 2  px x x | … | 

1 2 n

n n n
px x x )  Fx and Y =  (

1

1 1 1
1 2  qy y y  | 

2

2 2 2
1 2  qy y y | … | 

1 2 n

n n n
qy y y )  Fy.  

 
 Now this new FAM model functions in the following way. 
 
 Suppose the expert wishes to work with the fuzzy super state 
fit vector X = (

1

1 1 1
1 2  px x x |

2

2 2 2
1 2  px x x | … | 1 2  n

n n n
px x x )  

then Y= (
1

1 1 1
1 2  qy y y  | 

2

2 2 2
1 2  qy y y | … | 1 2 n

n n n
qy y y )   Fy. 
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Now FD o Y = X1  Fx and Xi o FD = Y1 Fy and so on.  
 
This procedure is repeated until the system equilibrium is 

reached. 
 
DEFINITION 4.12: Let us suppose we have a problem for which 
mn experts want to give their opinion. Here some experts give 
distinct opinion both for the row attributes and column 
attributes. Some experts concur on the row attributes but give 
different column attributes and a few others have the same set 
of row attributes but have a different set of column attributes. 
All of them concur to work using the FAM model. To find a 
multi expert FAM model which can tackle and give solution to 
the problem simultaneously.  

 
To this end we make use of a super fuzzy matrix Fs which is 

described in the following. Let the mn experts give their domain 
and column attributes as follows.  

 
The first expert works with the domain attributes as 

(
1

1 1 1
1 2  px x x ) and column attributes as (

1

1 1 1
1 2  qy y y ). The 

second expert works with the same domain attributes viz 
(

1

1 1 1
1 2  px x x ) and but column attributes as (

2

2 2 2
1 2  qy y y ).  The 

ith expert, 1 i  n works with (
1

1 1 1
1 2  px x x ) as the domain 

attributes and ( 1 2  i

i i i
qy y y ) as the column attributes.  

 
The (n + 1)th experts works with the new set of domain 

attributes  (
2

2 2 2
1 2  px x x ) but with the same set of column 

attributes viz. (
1

1 1 1
1 2  qy y y ).  

 
Now the n + jth expert works with using (

2

2 2 2
1 2  px x x ) as 

the domain attribute and ( 1 2  i

i i i
qy y y ) as the column attribute 

1  j  n. The (2n + 1)th expert works with (
3

3 3 3
1 2  px x x ) as the 

row attribute and (
1

1 1 1
1 2  qy y y ) as the column attribute.  



88 Innovative Uses of Matrices 
 
 
 
 
 
 

 
Thus any (2n + k)th expert uses (

2

2 2 2
1 2  px x x ) to be the row 

attribute and ( 1 2  k

k k k
qy y y )  to be the column attribute 1 k  

n. Thus any (tn + r)th expert works with ( 1 2  t

t t t
px x x ) as the row 

attribute (1  t  m) and ( 1 2  r

r r r
qy y y ) as the column attribute 

1  r  n. 
 
Now as 1  t  m and 1  r  n we get the FAM matrices of 

all the mn experts which is given by the supermatrix Fs. 
 

 

Fs = 

1 2

1

2

1 1 1 2 2 2
1 2 1 2 1 2

1
1

1 1 1
1 2

1

2
1

2 2 2
1 2

2

1

1 2

n

m

n n n
q q q

n

p

n

p

m

m m m
n

m
p

y y y y y y y y y

x

A A A
x

x
A A A

x

x
A A A

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   









 

 
where i

jA  is a fuzzy matrix associated with ijth expert  
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Ai
j = 

1 2

1

2

 
 
 
 
  





j

i

j j j
q

i

i

i
p

y y y

x
x

x

 

 
1  i  m and 1 j  n. This model is known as the multi expert 
fuzzy Super FAM (SFAM) model. The fit vectors associated with 
them are super row vectors from Fx and Fy. 
 

The fit super row vector X from Fx is  
 

X = [
1

1 1 1
1 2  px x x  | 

2

2 2 2
1 2  px x x  | … | 1 2  m

m m m
px x x ] 

 
and the  

 
 
X Fx = 1 2 mp p pI     [ , ] [ , ] [ , ]

  

   



1 2 mp p p times

0 1 0 1 0 1 .   

 
The fit super row vector Y from Fy is  
 

Y = (
1

1 1 1
1 2  qy y y | 

2

2 2 2
1 2  qy y y | … | 1 2  n

n n n
qy y y ); 

 
Y  Fy = 1 2 nq q qI     [ , ] [ , ] [ , ]

  

   



1 2 mq q q times

0 1 0 1 0 1 . 

 
Thus if  
 

X = [
1

1 1 1
1 2  px x x  | 

2

2 2 2
1 2  px x x  | … | 1 2  m

m m m
px x x ] 

 
is the fit vector given by an expert; its effect on Fs is given 

by X o Fs = Y  Fy; now Fs o Y = X1  Fx then find the effect of 
X1 on Fs ; X1 o Fs = Y1  Fy and so on.  
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 We repeat this procedure until we arrive at a equilibrium 
state of the system.  

 
For exact use of the super matrices please refer [17].  We 

have shown how the abstract model is associated with a super 
matrix.  

 
We have used super matrices to construct super linear 

algebra [45].  We have developed super linear algebras using 
super matrices is an analogous way like linear algebra and 
derived several classical theorems.  Here we recall a few of 
them for more about the innovative use of super matrices refer  
[45].  
 
DEFINITION 4.13: Let V = (V1| … |Vn) be a super vector space 
and Ts = (T1 | … | Tn) be a linear operator in V. If W = (W1 | … | 
Wn) be a super subspace of V; we say that W = (W1 | … | Wn) is 
super invariant under T if for each super vector  = (1 | … 
|n) in W = (W1 | … | Wn) the super vector Ts(α) is in W = (W1 | 
… | Wn) i.e. if Ts(W) is contained in W. When the super subspace 
W = (W1 | … | Wn) is super invariant under the operator Ts = 
(T1 | … | Tn) then Ts induces a linear operator (Ts)W on the super 
subspace W = (W1 | … | Wn).  
 

The linear operator (Ts)W is defined by (Ts)W (α) = Ts(α) for 
α in W = (W1 | … | Wn) but (Ts)W is a different object from Ts = 
(T1 | … | Tn) since its domain is W not V. 
 

When V = (V1 | … | Vn) is finite (n1, …, nn) dimensional, the 
invariance of W = (W1 | … | Wn) under Ts = (T1 | … | Tn) has a 
simple super matrix interpretation and perhaps we should 
mention it at this point. Suppose we choose an ordered basis B 
= (B1 | … | Bn) 1 n

1 1 n n
1 n 1 n( | | )        for V = (V1 | … | 

Vn) such that 
1 n

1 1 n n
1 r 1 rB ( | | )         is an ordered basis 

for W = (W1 | … | Wn); super dim W = (r1, …, rn). Let 
s BA [T ]  so that  
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1 n

1 1 1 n n n

1 n

n n
1 1 n n

s j i j i i j i
i 1 i 1

T A A
 

 
    

 
  . 

 
Since W = (W1 | … | Wn) is super invariant under Ts = (T1 | 

… | Tn) and the vector 
1 n

1 n
s j 1 j n jT (T | | T )     belongs to W = 

(W1 | … | Wn) for jt  rt. This means that 
 

1 n

1 1 1 n n n

1 n

r r
1 1 n n

s j i j i i j i
i 1 i 1

T A A
 

 
    

 
    

 
jt  rt; t = 1, 2, …, n. In other words 

t t 1 1 n n

t 1 n
i j i j i jA (A | | A )  = (0 

| … | 0) if jt  rt and it > rt. 
 

1

2

n

A 0 0
0 A 0 0

A 0 0
0 0 0 A

 
 
   
  
 



  

 

=  

1 1

1

2 2

2

n n

n

B C
0 0 0

0 D
B C

0 0
0 D

0 0
B C

0 0 0
0 D

 
 
 
 
 
 
 
 
 
 
 

 

 
where Bt is an rt × rt matrix, Ct is a rt × (nt – rt) matrix and Dt is 
an (nt – rt) × (nt – rt) matrix t = 1, 2, …, n. 

 
In view of this we prove the following interesting lemma. 
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LEMMA 4.1: Let W = (W1 | … | Wn) be an invariant super 
subspace for Ts = (T1 | … | Tn). The characteristic super 
polynomial for the restriction operator 

11( ) (( ) | |( ) ) 
ns W W n WT T T  divides the characteristic super 

polynomial for Ts. The minimal super polynomial for 
11( ) (( ) | |( ) ) 

ns w W n wT T T divides the minimal super polynomial 
for Ts. 
 
Proof: We have [Ts]B = A where B = {B1 … Bn} is a super basis 
for V = (V1 | … | Vn); with Bi =  ii i

1 n   a basis for Vi, this 
is true for each i, i = 1, 2, …, n. A is a super diagonal square 
matrix of the form  
 

1

2

n

A 0 0
0 A 0 0

A 0
0 0 0 A

 
 
   
  
 



  

 
where each  

 

Ai = i i

i

B C
0 D

 
 
 

 

 
for i = 1, 2, …, n; i.e.  
 
 

1 1

1

2 2

2

n n

n

B C
0 0 0

0 D
B C

0 0 0
0 DA

0 0
B C

0 0 0
0 D

 
 
 
 
 

  
 
 
 
 
 
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and  s w B

B (T )


  where B is a basis for the super vector 
subspace W = (W1 | … | Wn) and B is a super diagonal square 
matrix; i.e.  

 
1

2

n

B 0 0
0 B 0

B 0
0 0 0 B

 
 
   
  
 



 . 

 
Now using the block form of the super diagonal square matrix 
we have super det (xI – A) = super det (xI – B) × super  
det (xI – D) 
 
i.e. (det (xI1 – A1) n n| | det (xI A ) )  

= (det 1 1 1 1(xI B )det (xI D ) | |          
  n n n ndet (xI B ) det (xI D ))   . 
 

This proves the restriction operator (Ts)W super divides the 
characteristic super polynomial for Ts. The minimal super 
polynomial for (Ts)W super divides the minimal super 
polynomial for Ts. 

 
It is pertinent to observe that 1 1 1 nI , I , I , , I   represents 

different identities i.e. of different order. 
The Kth row of A has the form  
 

1 1

1

2 2

2

n n

n

K K
1 1

K
1

K K
2 2

KK
2

K K
n n

K
n

B C
0 0

0 D
B C

0 0
0 DA

B C
0 0

0 D

 
 
 
 
 
 
 
 
 
 
 
 




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where tK

tC  is some rt × (nt – rt) matrix; true for t = 1, 2, …, n. 
Thus any super polynomial which super annihilates A also 
super annihilates D.  
 

Thus our claim made earlier that, the minimal super 
polynomial for B super divides the minimal super polynomial 
for A is established. 
 

 
Thus we say a super subspace W = (W1 | … | Wn) of the 

super vector space V = (V1 | … | Vn) is super invariant under  
Ts = (T1 | … | Tn) if Ts(W)  W i.e. each Ti(Wi)  Wi; for i = 1, 
2, …, n  i.e., if  = (1| … | n)  W 

 
 
 then Ts = (T11 | … | Tnn) where  

1 = 
1 1

1 1 1 1
1 1 r rx x     ; 

2 
2 2

2 2 2 1
1 1 r rx x      

 
 
and so on  
 
 

n n

n n n n
n 1 1 r rx x      . 

1 1 1 n n n

1 1 1 1 1 1 n n n n n n
s 1 1 1 r r r 1 1 1 r r rT (t x t x | | t x t x )            . 

 
 
Now B described in the above theorem is a super diagonal 
matrix given by 



Supermatrices and their Applications 95 
 
 
 
 
 

1

2

n

1
1

1
2

1
r

2
1

2
2

2
r

n
1

n
2

n
r

t 0 0
0 t 0

0 0

0 0 t

t 0 0
0 t 0

0 0
B

0 0 t

t 0 0
0 t 0

0 0

0 0 t

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
  
 





  






  





  


 

 
Thus the characteristic super polynomial of B i.e. (Ts)W) is  
 

g = (g1 | … | gn)  = 
1 n1 n
K K1 1 1 n

1 n

e ee e1 1 n n
1 K 1 K((x c ) (x c ) | |(x c ) (x c ) )       

where t t
i ie dim W  for i = 1, 2, …, Kt and t = 1, 2, …, n.  

 
Now we proceed onto define Ts super conductor of any α 

into W = (W1 | … | Wn). 
 
DEFINITION 4.14: Let V = (V1 | … | Vn) be a super vector space 
over the field F. W = (W1 | … | Wn) be an invariant super 
subspace of V for the linear operator Ts = (T1 | … | Tn) of V. Let 
 = (1 | … | n)  be a super vector in V. The T-super conductor 
of α into W is the set 

1 1 1( ; ) ( ( ; ) | | ( ; )) 
s nT T T n nS W S W S W    

which consist of all super polynomials g = (g1 | … | gn)  (over 
the scalar field F) such that g(Ts) is in W, i.e. (g1(T1)1 | … | 
gn(Tn)n)  W = (W1 | … | Wn). i.e. gi(Ti)i)  Wi for every i. Or 
we can equivalently define the Ts – super conductor of α in W is 
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a Ti conductor of αi in Wi for every i = 1, 2, …, n. Without loss 
in meaning we can for convenience drop Ts and write the super 
conductor of α into W as 1 1( ; ) ( ( ; ) | | ( ; ))  n nS W S W S W   . 
 
 The collection of polynomials will be defined as super 
stuffer this implies that the super conductor, the simple super 
operator g(Ts) = (g1(T1) | … | gn(Tn))  leads the super vector α 
into W. In the special case W = (0 | … | 0), the super conductor 
is called the Ts super annihilator of α.  
 

The following important and interesting theorem is proved. 
 
THEOREM 4.1: Let V = (V1 | … | Vn) be a finite dimensional 
super vector space over the field F and let Ts be a linear 
operator on V. Then Ts is super diagonalizable if and only if the 
minimal super polynomial for Ts has the form  
 

p = (p1 | … | pn) 1

1 1
1 1(( ) ( )| |( ) ( )]      

n

n n
K Kx c x c x c x c  

 
where 

1

1 1
1 1( | | )  

n

n n
K Kc c c c  are such that each set 

1 , ,
t

t t
Kc c are distinct elements of F for t = 1, 2, …, n. 

 
Proof: We have noted that if Ts is super diagonalizable, its 
minimal super polynomial is a product of distinct linear factors. 
To prove the converse let W = (W1 | … | Wn) be the super 
subspace spanned by all of the characteristic super vectors of Ts 
and suppose W = (W1 | … | Wn)  (V1 | … | Vn) i.e. each Wi  
Vi. By the earlier results proved there is a super vector α not in  
W = (W1 | … | Wn) and a characteristic super value 

1 n

1 n
j j jc (c , c )   of Ts such that the super vector j(T c I)     

i.e. 
1 n

1 n
1 n 1 j 1 1 n j n n( | | ) ((T c I ) | |(T c I ) )         lies in W = 

(W1 | … | Wn). Since (1 | … | n) is in W,  
 

1 2 n

1 1 2 2 n n
1 K 1 K 1 K( | | | )                
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where 

t

t t
t 1 K      for t = 1, 2, …, n with Tsi = cii; 1  i  

K i.e. 
1 n 1 1 n n

1 n 1 1 n n
1 i n i i i i i(T | |T ) (c | |c )      ; (1  it  Kt) and 

therefore the super vector  
 

1 1

1 1 1 1
s 1 1 1 1 K Kh(T ) (h (c ) h (c ) | |             

   
n n

n n n n
n 1 1 n K Kh (c ) h (c ) )     

1 1 1 n n n(h (T ) | |h (T ) )     
 
is in W = (W1 | … | Wn) for every super polynomial h = (h1 | … | 
hn).  
 
 Now (x – cj) q for some super polynomial q, where p = (p1 | 
… | pn) and q = (q1 | … | qn). 
 
Thus p = (x – cj) q implies  
p  =  (p1 | … | pn)  

= 
1 n

1 n
j 1 j n((x c )q | |(x c )q )    

 
i.e. 

1 n

1 n
1 1 j n n j(q q (c )| |q q (c ))    (

1 n

1 n
j 1 j n(x c )h | |(x c )h )  .  

We have   
 

1

1
s j 1 1 1 1 j 1q(T ) q(c ) (q (T ) q (c ) | |       

 
n

n
n n n n j nq (T ) q (c ) )    

= s s j sh(T )(T c I) h(T )    

=  
1 n

1 n
1 1 1 j 1 1 n n n j n n(h (T )(T c I ) | |h (T )(T c I ) )     

  1 1 1 n n n(h (T ) | |h (T ) )   . 
But sh(T )  is in W = (W1 | … | Wn) and since  
 

s 1 1 1 n n n0 p(T ) (p (T ) | |p (T ) )       

s j s(T c I)q (T )    

1 n

1 n
1 j 1 1 1 1 n j n n n n((T c I ) q (T ) | |(T c I )q (T ) )     ; 
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the vector q(Ts)α is in W. Therefore q(cj)α is in W. Since α is 
not in W we have 

1 n

1 n
j 1 j n jq(c ) (q (c )| |q (c )) (0| |0)   . Thus 

contradicts the fact that p = (p1 | … | pn)   has distinct roots. 
 

If Ts is represented by a super diagonal square matrix A in 
some super basis and we wish to know if Ts is super 
diagonalizable. We compute the characteristic super polynomial 
f = (f1 | … | fn). If we can factor  
 

f =  (f1 | … | fn)  
=  

1 n1 n
K K1 1 1 n

1 n

d dd d1 1 n n
1 K 1 K((x c ) (x c ) | |(x c ) (x c ) )        

 
we have two different methods for determining whether or not T 
is super diagonalizable. One method is to see whether for each i 
= 1, 2, …, n we can find 

t

t
id  independent characteristic super 

vectors associated with the characteristic super values 
ti

c . The 
other method is to check whether or not  
 

1

1 1
s 1 s k 1 1 1 1 K 1(T c I) (T c I) i.e. ((T c I ) (T c I )      

n

n n
n 1 n n K n| |(T c )I (T c I ))    

 
is the super zero operator. 
 
 Several other interesting results in this direction can be 
derived. Now we proceed onto define the new notion of super 
independent subsuper spaces of a super vector space V. 
 
DEFINITION 4.15: Let V = (V1 | … | Vn) be a super vector space 
over F. Let 1

1 1 1 2 2 2( | | ), ( | | )   n n nW W W W W W  
1( | | )  n

K K KW W W  be K super subspaces of V. We say W1, …, 
WK  are super independent if1 + … + K = 0; i  Wi implies 
each i = 0.  
 

1
1( | | ) ( | | )   i i n

i n i i iW W W   ; 
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true for i = 1, 2, …, K. If W1 and W2 are any two super vector 
subspaces of V = (V1 | … | Vn), we say 1

1 1 1( | | )  nW W W  and 
1

2 2 2( | | )  nW W W  are super independent if and only if 
1 1

1 2 1 2 1 2( | | )    n nW W W W W W  = (0 | 0 | … |0). If W1, W2, 
…, WK are K super subspaces of V we say W1, W2, …, WK are 
independent if W1  W2  …  WK = 1 1 1

1 2( | |  KW W W  

1 2 )  n n n
KW W W  = (0 | … | 0) . The importance of super 

independence in super subspaces is mentioned below. Let  
 

W'  =  W'1 + … + W'k  
  = 1 1

1 1( | | )     n n
K KW W W W  

  = 1( | | )  nW W  
 
iW  is a subspace Vi and 1 '   i KW W W  true for i = 1, 2, …, 

n. Each super vector α in W can be expressed as a sum 
1 1

1 1 1( | | ) (( )| | ))         n n
n K K        i.e. each 

1  t t t
K   ; t  Wt. If W1, W2, …, WK are super 

independent, then that expression for α is unique; for if 
 
 1( )   K   = 1 1

1 1( | | )     n n
K K     

;i iW  i = 1, 2, …, K. 1  i i
i n    then  

 
1 1 1 1
1 1(0| |0) (( ) ( )| |        K K       

1 1( ) ( ))   n n n n
K K     

 
hence each t t

i i   = 0 ; 1  i  K; t = 1, 2, …, n. Thus W1, W2, 
…, WK are super independent so we can operate with super 
vectors in W as K-tuples 1 1

1 1(( , , ); , ( , , );   n n t
K K i tW     ; 1 

 i  K; t = 1, 2, …, n. in the same way we operate with RK as 
K-tuples of real numbers. 
 
LEMMA 4.2: Let V = (V1 | … | Vn) be a finite (n1, …, nn) 
dimensional super vector space. Let W1, …, WK  be super 
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subspaces of V and let 1 1
1 1( | | )     n n

K KW W W W W . The 
following are equivalent  
  

(a)  W1, …, WK are super independent.  
(b) For each j; 2  j  K, we have Wj  (W1 + … + Wj–1) = 

{( 0 | … | 0)}   
(c)  If Bi is a super basis of Wi , 1  i  K, then the sequence 

B = (B1 … BK) is a super basis for W.  
 
The proof is left as an exercise for the reader. In any or all of the 
conditions of the above stated lemma is true then the supersum 
W = W1 + … + WK = 1 1 n n

1 K 1 K(W W | |W W )       where 
1 n

t t tW (W | |W )   is super direct or that W is a super direct 
sum of W1, …, WK i.e. W = W1  …  WK i.e. 

1 1 n n
1 K 1 K(W W | | W W )      . If each of the Wi is (1, …, 

1) dimensional then W = W1  …  Wn  
1 1 n n
1 n 1 n(W W | |W W )       . 

 
DEFINITION 4.16: Let V = (V1 | … | Vn) be a super vector space 
over the field F; a super projection of V is a linear operator Es 
on V such that 2 s sE E  i.e. Es = (E1 | … | En) then 

2 2 2
1( | | ) s nE E E  = (E1 | … | En)  i.e. each Ei is a projection on 

Vi; i = 1, 2, …, n.. Suppose Es is a projection on V and R = (R1 | 
… | Rn) is the super range of Es and N = (N1 | … | Nn) the super 
null space or null super space of Es. The super vector  = (1 | 
… | n) is in the super range R = (R1 | … | Rn) if and only if Es 
=   i.e. if and only if (E11 | … |  Enn ) = (1 | … | n)  i.e. each 
Eiβi = βi for i = 1, 2, …, n.. If  = Es  i.e.  = (1 | … | n)  = 
(E11 | … | Enn) where the super vector  = (1 | … | n)  then 

2  s s sE E E    . Conversely if  = (1 | … | n)  = Es 
= (E11 | … |  Enn )  then  = (1 | … | n)  is in the super 
range of Es. Thus V = R  N  i.e. V = (V1 | … | Vn) = (R1  N1 | 
… | Rn  Nn).  
 

Further the unique expression for  = (1 | … | n) as a sum 
of super vectors in R and N is  = Es + ( – Es) i.e. i  = 
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Eii + (i – Eii) for i = 1, 2, …, n. From what we have stated it 
easily follows that if R and N are super subspace of V such that 
V = R  N  i.e. V = (V1 | … | Vn) =  (R1  N1 | … | Rn  Nn) then 
there is one and only one super projection operator Es which 
has super range R = (R1 | … | Rn) and null super space N = (N1 
| … | Nn). That operator is called the super projection on R 
along N.  
 

Any super projection Es is super diagonalizable. If 

1

1 1
1 1{( | | )  

n

n n
r r     is a super basis for R = (R1 | … | Rn) 

and 
1 1

1 1
1 1( | | )   

n n

n n
r n r n     is a super basis for N = (N1 | … 

| Nn) then the basis B = 
1

1 1
1 1( )| | )  

n

n n
n n    = (B1 | … | Bn) 

super diagonalizes Es .  
 
 

1

2

0
0 0

0 0
0

0 0
0 0( )

0 0 0
0

0 0
0 0

 
 
 
 
 

  
 
 
 
 
 




s B

n

I

I
E

I

 

 
1([ ]| |[ ] ) 

nn BE E  
 

where It is a rt × rt identity matrix; t = 1, 2, …, n. Thus super 
projections can be used to describe super direct sum 
decompositions of the super vector space V = (V1 | … | Vn).  
 
THEOREM 4.2: Let F be the field of real numbers or the field of 
complex numbers. Let A be a super diagonal matrix of the form 
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1

2

0 0
0 0

0 0

 
 
   
  
 n

A
A

A

A

 

 
be a (n1  n1, …, nn  nn) matrix over F.  The super function g = 
(g1 | … | gn) defined by g(X, Y) = Y*AX  is a positive superform 
on the super space 1 11( )  nnnF F  if and only if there exists 
an invertible super diagonal matrix  
 

1

2

0 0
0 0

0 0

 
 
   
  
 n

P
P

P

P

. 

 
Each Pi is a ni  ni  matrix i = 1, 2, …, n with entries from F 
such that A = P* P ; i.e.,  

1

2

0 0
0 0

0 0

 
 
   
  
 n

A
A

A

A

 

 
 

= 

*
1 1

*
2 2

*

0 0
0 0

0 0

 
 
 
 
 
 
 




 n n

P P
P P

P P

. 
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DEFINITION 4.17: Let  
 

1

2

0 0
0 0

0 0

 
 
   
  
 n

A
A

A

A

 

 
be a superdiagonal matrix with each Ai a ni × ni matrix over the 
field F; i =1, 2, …, n. The principal super minor of A or super 
principal minors of A (both mean the same) are scalars 
 

1 1( ) ( ( ) ( ))   
nk k k nA A A  

 
defined by  

1

1 1 1

2

2 2 2

1 1
11 1

1 1
1

2 2
11 1

2 2
1

2
11 1

1

0 0

0 0( )

0 0

  
  
  
  
  
  
  
                     



 



 





 


n

n n n

k

k k k

k

k

k k k

n
k

n n
k k k

A A

A A

A A

A superdet
A A

A A

A A

  

 

1

1 1 1

1 1
11 1

1 1
1

det ,

  
  

   
     


  



k

k k k

A A

A A
, 

1

11 1

det

 
 
 
   



 


n

n n n

n n
k

n n
k k k

A A

A A
 

 
for 1  kt  nt and t = 1, 2, …, n.   
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Several other interesting properties can also be derived for 
these superdiagonal matrices.  

We give the following interesting theorem and the proof is 
left for the reader. 

 
THEOREM 4.3: Let f = (f1 | … | fn) be a superform on a finite 
(n1, …, nn) dimensional supervector space V = (V1 | … | Vn) and 
let A be a super diagonal matrix of f in an ordered superbasis B 
= (B1 | … | Bn). Then f is a positive superform if and only if A = 
A* and the principal super minor of A are all positive. 
i.e.,  
 

1

2

0 0
0 0

0 0

 
 
   
  
 n

A
A

A

A

 

 

= 

*
1

*
2

*

0 0
0 0

0 0

 
 
 
 
 
 
 n

A
A

A

. 

 
Note: The principal minor of  (A1 | … | An) is called as the 
principal superminors of A or with default of notation the 
principal minors of {A1, …, An} is called the principal super 
minors of A. 
 

Ts = (T1 | … | Tn) a linear operator on a finite (n1, …, nn) 
dimensional super inner product space V = (V1 | … | Vn) is said 
to be super non-negative if *

s sT T  
 

i.e.,  
(T1 | … | Tn) = * *

1 n(T T )  
 
i.e. *

i iT T for i = 1, 2, …, n and 
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(Ts  | ) = ((T1 1 | 1) | … | (Tn n | n))  (0 | … |0) 
 
for all  = (1 | … | n) in V.   
 
A super positive linear operator is one such that *

s sT T  and  
 

(T  | ) = ((T1 1 | 1) | … | (Tn n | n)) > (0 | … |0) 
 
for all  = (1 | … | n)  (0 | … |0). 
 

Several properties enjoyed by positive operators and non 
negative operators will also be enjoyed by the super positive 
operators and super non negative operators on super vector 
spaces, with pertinent and appropriate modification.  
Throughout the related matrix for these super operators Ts will 
always be a super diagonal matrix A of the form  

 
1

n

n

A 0 0
0 A 0

A

0 0 A

 
 
   
  
 

 

 
where each Ai is a ni × ni square matrix, 1  i  n, A = A* and 
the principal minors of each Ai are positive; 1  i  n.   
 

Now we just mention one more property about the super 
forms. 
 
THEOREM 4.4: Let f = (f1 | … | fn) be a super form on a real or 
complex super vector space V = (V1 | … | Vn)  and 
 1

1 1
1 1  

n

n n
r r     a super basis for the finite dimensional 

super subvector space W = (W1 | … | Wn) of V = (V1 | … | Vn).  
Let M be the super square diagonal matrix where each Mi in M; 
is a ri × ri super matrix with entries (1 < i < n). 

( , )i i i
jk i k jM f   , i.e. 
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1

2

0 0
0 0

0 0

 
 
   
  
 n

M
M

M

M

 

 

1 1

2 2

1 1 1

2 2 2

( , ) 0 0

0 ( , ) 0

0 0 ( , )

 
 
 

  
 
 
 n n

k j

k j

n n n
k j

f

f

f

 

 

 

 

 
and W' = 1( | | )  nW W  be the set of all super vectors  = (1 | 
…. | n) of V and  1 1( | | )     n nW W W W W W  = (0 | … | 
0) if and only if  
 

1

2

0 0
0 0

0 0

 
 
   
  
 n

M
M

M

M

 

 
is invertible. When this is the case, V = W + W' i.e. V = (V1 | … 
| Vn) = 1 1( )n nW W W W   . 
 

The proof can be obtained as a matter of routine. 
 

The projection Es = (E1 | … | En) constructed in the proof 
may be characterized as follows: 

 
Es = ; 

(E11 | … | Enn) = (1 | … | n) 
 
is in W and β – α belongs 1 nW (W W )    . Thus Es is 
independent of the super basis of W = (W1 | … | Wn) that was 
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used in this construction. Hence we may refer to Es as the super 
projection of V on W that is determined by the direct sum 
decomposition. 
 

V = W  W'; 
(V1 | … | Vn) =  1 1 n n(W W W W )   . 

 
Note that Es is a super orthogonal projection if and only if 

W' = 1 nW (W W )    . Now we proceed onto develop the 
analogous of spectral theorem which we call as super spectral 
theorem. 
 
 Finally these super matrices are used to develop the notion 
of Leontief economic super models. 
 

Matrix theory has been very successful in describing the 
interrelations between prices, outputs and demands in an 
economic model. Here we just discuss some simple models 
based on the ideals of the Nobel-laureate Massily Leontief. Two 
types of models discussed are the closed or input-output model 
and the open or production model each of which assumes some 
economic parameter which describe the inter relations between 
the industries in the economy under considerations. Using 
matrix theory we evaluate certain parameters. 

 
The basic equations of the input-output model are the 

following: 
 

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

a a a

 
 
 
 
 
 




  


 

1

2

n

p
p

p

 
 
 
 
 
 


= 

1

2

n

p
p

p

 
 
 
 
 
 


 

 
each column sum of the coefficient matrix is one  
 

i. pi  0, i = 1, 2, …, n.  
ii. aij  0, i , j = 1, 2, …, n. 
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iii. aij + a2j +…+ anj = 1  
 
for j = 1, 2 , …, n. 

p = 

1

2

n

p
p

p

 
 
 
 
 
 


 

 
are the price vector. A = (aij) is called the input-output matrix  
 

Ap = p that is, (I – A) p = 0. 
 

Thus A is an exchange matrix, then Ap = p always has a 
nontrivial solution p whose entries are nonnegative. Let A be an 
exchange matrix such that for some positive integer m, all of the 
entries of Am are positive. Then there is exactly only one 
linearly independent solution of (I – A) p = 0 and it may be 
chosen such that all of its entries are positive in Leontief open 
production model.  

 
In contrast with the closed model in which the outputs of k 

industries are distributed only among themselves, the open 
model attempts to satisfy an outside demand for the outputs. 
Portions of these outputs may still be distributed among the 
industries themselves to keep them operating, but there is to be 
some excess some net production with which to satisfy the 
outside demand. In some closed model, the outputs of the 
industries were fixed and our objective was to determine the 
prices for these outputs so that the equilibrium condition that 
expenditures equal incomes was satisfied. 
 
xi = monetary value of the total output of the ith industry. 
 
di = monetary value of the output of the ith industry needed to 
satisfy the outside demand. 
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ij = monetary value of the output of the ith industry needed by 
the jth industry to produce one unit of monetary value of its own 
output.  
 
With these qualities we define the production vector. 
 

x = 

1

2

k

x
x

x

 
 
 
 
 
 


 

 
the demand vector 

 

d = 

1

2

k

d
d

d

 
 
 
 
 
 


 

 
and the consumption matrix, 

 

C = 

11 12 1k

21 22 2k

k1 k2 kk

   
    
 
 
   




  


. 

 
By their nature we have  
 

x  0, d  0 and C  0. 
 

From the definition of ij and xj it can be seen that the quantity  
i1 x1 + i2 x2 +…+ ik xk 

 
is the value of the output of the ith industry needed by all k 
industries to produce a total output specified by the production 
vector x.  
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Since this quantity is simply the ith entry of the column 

vector Cx, we can further say that the ith entry of the column 
vector x – Cx is the value of the excess output of the ith industry 
available to satisfy the outside demand. The value of the outside 
demand for the output of the ith industry is the ith entry of the 
demand vector d; consequently; we are led to the following 
equation: 
 

x – Cx = d or 
(I – C) x = d 

 
for the demand to be exactly met without any surpluses or 
shortages. Thus, given C and d, our objective is to find a 
production vector x  0 which satisfies the equation (I – C)x = 
d. 

A consumption matrix C is said to be productive if (1 – C)–1 
exists and (1 – C)–1  0.  

 
A consumption matrix C is productive if and only if there is 

some production vector x  0 such that x  Cx. 
 
A consumption matrix is productive if each of its row sums 

is less than one. A consumption matrix is productive if each of 
its column sums is less than one.  

 
Now we will formulate the Smarandache analogue for this, 

at the outset we will justify why we need an analogue for those 
two models.  

 
Clearly, in the Leontief closed Input - Output model,  
 

pi = price charged by the ith industry for its total output in reality 
need not be always a positive quantity for due to competition to 
capture the market the price may be fixed at a loss or the 
demand for that product might have fallen down so badly so 
that the industry may try to charge very less than its real value 
just to market it. 
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Similarly aij  0 may not be always be true. Thus in the 
Smarandache Leontief closed (Input-Output) model (S-Leontief 
closed (Input-Output) model) we do not demand pi  0, pi can 
be negative; also in the matrix A = (aij),  

 
a1j + a2j +…+akj  1 

 
so that we permit aij's to be both positive and negative, the only 
adjustment will be we may not have (I – A) p = 0, to have only 
one linearly independent solution, we may have more than one 
and we will have to choose only the best solution.  
 

As in this complicated real world problems we may not 
have in practicality such nice situation. So we work only for the 
best solution. 

 
Here we introduce a input-output model which has some p 

number of input-output matrix each of same order say n × n 
functioning simultaneously.  

 
We shall call such models as input – output super row 

matrix models and describe how it functions. Suppose we have 
p number of n × n input output matrix given by the super row 
matrix A = [A1 | … | An] where each Ai is a  
n × n input output matrix which are distinct. 
 

A = [A1 | … | An] 
 

= 

1 1 p p
11 1n 11 1n
1 1 p p
21 2n 21 2n

1 1 p 1
n1 nn n1 nn

a a a a
a a a a

a a a a

    
    
    
    
            

 
 


   

 

 

 
where t t t

ij 2 j nja a a 1;    t = 1, 2, …, p and j = 1, 2, …, n. 
Suppose  
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1 2 P
1 1 1

1 p
1 2 P
n n n

p p p
P [P P ]

p p p

 
 

  
 
 


   


 

 
be the super column price vector then 
 
A * P = P, the (product) * is defined as A * P = P that is  
 

1 1 p p 1 p[A P A P ] [P P ]   
A * P = P 

that is 
 
(I – A) P = (0 | … | 0) 
i.e., ((I – A1) P1 | … | (I – Ap) Pp) = (0 | … | 0). 
  

Thus A is an super-row square exchange matrix, then AP = 
P always has a row column vector solution P whose entries are 
non negative. 

 
 Let A = [A1 | … | An] be an exchange super row square 
matrix such that for some positive integer m all the entries of 
Am i.e. entries of each m

tA are positive for m; m = 1, 2, …, p. 
Then there is exactly only one linearly independent solution of  
 
(I – A) P = (0 | … | 0) 
i.e., ((I – A1) P1 | … | (I – Ap) Pp) = (0 | … | 0)  
 
and it may be choosen such that all of its entries are positive in 
Leontief open production super model. 
 
 Note this super model yields easy comparison as well as this 
super model can with different set of price super column vectors 
and exchange super row matrix find the best solution from the p 
solutions got from the relation 
 
(I – A) P = (0 | … | 0) 
i.e., ((I – A1) P1 | … | (I – Ap) Pp) = (0 | … | 0) . 
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Thus this is also an added advantage of the model. It can 
study simultaneously p different exchange matrix with p set of 
price vectors for different industries to study the super 
interrelations between prices, outputs and demands 
simultaneously. 

 
 Suppose one wants to make a study of interrelation between 
prices, outputs and demands in an industry with different types 
of products with different exchange matrix and hence different 
set of price vectors or of many different industries with same 
type of products its interrelation between prices, outputs and 
demands in different locations of the country were the economic 
status and the education status vary in different locations, how 
to make a single model to study the situation. In both the cases 
one can make use of the super input-output model the relation 
matrix which is a input-output super diagonal mixed square 
matrix, which will be described presently. 
 
 The exchange matrix with p distinct economic models is 
used to describe the interrelations between prices, outputs and 
demands. Then the related matrix A will be a super diagonal 
mixed square matrix 
 

1

2

p

A 0 0
0 A 0

A

0 0 A

 
 
   
  
 

 

 
A1, …, Ap are the exchange matrices describing the p-economic 
models. Now A acts as integrated models in which all the p 
entities function simultaneously. Now any price vector P will be 
a super mixed column matrix  

1

p

P
P

P

 
 

  
 
 

  
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where each  

t

t
l

t
t
n

p
P ;

p

 
 

 
  
 

   

for t = 1, 2, …, p. 
 

Here each At is a nt × nt exchange matrix; t = 1, 2, …, p. AP 
= P is given by 

 
1

2

p

A 0 0
0 A 0

A

0 0 A

 
 
  
  
 

,  

 

1

p

P
P

P

 
 

 
 
 

  

 

AP = 

1 1

2 2

p p

A P 0 0
0 A P 0

0 0 A P

 
 
 
 
  
 

 
1

p

P

P

 
 

  
 
 

   

 
i.e. AtPt = Pt for every t = 1, 2, …, p. i.e.  
 

1 1 1

2 2 2

n n n

(I A )P 0 0
0 (I A )P 0

0 0 (I A )P

 
  
 
   

 

 



Supermatrices and their Applications 115 
 
 
 
 

0 0 0
0 0 0

0 0 0

 
 
   
  
 

. 

 
Thus AP = P has a nontrivial solution  
 

1

p

P
P

P

 
 

  
 
 

  

 
whose entries in each Pt are non negative; 1 < t < p. 
 

Let A be the super exchange diagonal mixed square matrix 
such that for some p-tuple of positive integers m = (m1, …, mp), 

tm
tA  is positive; 1  t  p. Then there is exactly only one 

linearly independent solution; 
 

 

(I – A)P 

0 0 0
0 0 0

0 0 0

 
 
   
  
 

 

 
and it may be choosen such that all of its entries are positive in 
Leontief open production super model. 
 
 Next we proceed on the describe super closed row model 
(or row closed super model) as the super closed model (or 
closed super model). 
 
 Here we have p sets of K industries which are distributed 
among themselves i.e. the first set with K industries distributed 
among themselves, the second set with some K industries 
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distributed among themselves and so on and the p set with some 
K industries distributed among themselves. It may be that some 
industries are found in more than one set and some industries in 
one and only one set and some industries in all the p sets. This 
open super row model which we choose to call as, when p sets 
of K industries get distributed among themselves attempts to 
satisfy an outside demand for outputs.  
 

Portions of these outputs may still be distributed among the 
industries themselves to keep them operating, but there is to be 
some excess some net production with which they satisfy the 
outside demand. In some super closed row models the outputs 
of the industries in those sets which they belong to were fixed 
and our objective was to determine sets of prices for these 
outputs so that the equilibrium condition that expenditure equal 
income was satisfied for each of the p sets individually. 
 
 Thus we will have  
 

t
ix   =  monetary value of the total output of the ith 

industry in the tth set 1  i  K and 1  t  p. 
 

t
id  = monetary value of the output of the ith 

industry of the tth set needed to satisfy the 
outside demand, 1  t  p, I = 1, 2, …, K.  

 
t
ij  = monetary value of the output of the ith 

industry needed by the jth industry of the tth 
set to produce one unit of monetary value of 
its own output, 1  i  K; 1  t  p. 

 
With these qualities we define the production super column 
vector 
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1
1

1

1
K

t

p
1

p

p
K

x
X

x
XX

x
X

x

 
                        
 
 









. 

 
The demand column super vector 
 

1
1

1

1
K

t

P
1

p

P
K

d
d

d
dd

d
d

d

 
                        
 
 









 

 
and the consumption super row matrix 1 pC (C C )   
 

1 1 1 p p p
11 12 1K 11 12 1K
1 1 1 p p p
21 22 2K 21 22 2K

1 1 1 p p p
K1 K 2 KK K1 K2 KK

         
    
                               

 
 


     

 

. 

 
By their nature we have 
 

X  
0

0

 
 
 
 
 

  ; d > 
0

0

 
 
 
 
 

  and C > (0 | … | 0). 
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For the tth set from the definition of t
ij and t

jx  it can be seen 
that the quantity 
 

t t t t t t
i1 1 i2 2 iK Kx x x     

 
is the value of the ith industry needed by all the K industries (of 
the set t) to produce a total output specified by the production 
vector Xt. Since this quantity is simply the ith entry of the 
column vector CtXt we can further say that the ith entry of the 
column vector Xt – XtCt is the value of the excess output of the 
ith industry (from the tth set) available to satisfy the outside 
demand.  
 

The value of the outside demand for the output of the ith 
industry (from the tth set) is the ith entry of the demand vector dt; 
consequently we are lead to the following equation for the tth set 
Xt – CtXt = dt or (I – Ct)Xt = dt for the demand to be exactly met 
without any surpluses or shortages. Thus given Ct and dt our 
objective is to find a production vector Xt  0 which satisfies the 
equation 

 
(I – Ct)Xt = dt, 

 
so for the all p sets we have the integrated equation to be 

 
(I – C)X = d 

i.e., [(I – C1)X1 | … | (I – Cp)Xp] 
= (d1 | … | dp) . 

 
The consumption super row matrix C = (C1 | … | Cp) is said to 
be super productive if  
 

1 1 1
1 p(I C) [(I C ) (I C ) ]       

 
exists and  

 
1 1 1

1 p(I C) [(I C ) (I C ) ] [0 0]        . 
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A consumption super row matrix is super productive if and 

only if for some production super vector  
 

X = 
1

n

X 0

X 0

   
   

   
   
   

   

 
such that X > CX i.e. [X1 | … | Xp] > [C1X1 | … | CpXp]. 
 

A consumption super row matrix is productive if each of its 
row sums is less than one. A consumption super row matrix is 
productive if each of its column super sums is less than one. 
The main advantage of this super model is that one can work 
with p sets of industries simultaneously provided all the p sets 
have same number of industries (here K). This super row model 
will help one to monitor and study the performance of an 
industry which is present in more than one set and see its 
functioning in each of the sets. Such a thing may not be possible 
simultaneously in any other model. 

 
 Suppose we have p sets of industries and each set has 
different number of industries say in the first set output of K1 
industries are distributed among themselves. In the second set 
output of K2 industries are distributed among themselves so on 
in the pth set output of Kp-industries are distributed among 
themselves the super open model is constructed to satisfy an 
outside demand for the outputs. Here one industry may find its 
place in one and only one set or group. Some industries may 
find its place in several groups. Some industries may find its 
place in every group. To construct a closed super model to 
analyze the situation. 
 
 Portions of these outputs may still be distributed among the 
industries themselves to keep them operating, but there is to be 
some excess some net production with which to satisfy the 
outside demand. 
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Let  
 

t
iX  =  monetary value of the total output of the ith 

industry in the tth set (or group). 
t
id  = monetary value of the output of the ith industry 

of the group t needed to satisfy the outside 
demand. 

t
ij  = monetary value of the output of the ith industry 

needed by the jth industry to produce one unit 
monetary value of its own output in the tth set or 
group, 1 < t < p. 

 
With these qualities we define the production super mixed 
column vector 

1

p

1
1

1
1
K

t

p
1

p

p
K

x
X

x
XX

x
X

x

 
 

   
   
   
    
   
   
      

 
 









 

 
and the demand super mixed column vector  
 

1

p

1
1

1
K1

p
p 1

p
K

d

dd
d

d d

d

 
 
 
  
  
   
  
  
 
 
 
 






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and the consumption super diagonal mixed square matrix 

 
1

2

p

C 0 0
0 C 0

C

0 0 C

 
 
   
  
 

 

where  
 

t

t

t t t t

t t t
11 12 1K

t t t
21 22 2K

t

t t 1
K 1 K 2 K K

C

   
 
   

  
 
    





  


; 

 
true for t = 1, 2, …, p.  
 

By the nature of the closed model we have 
 

1

p

X 0
X ,

X 0

   
   

    
   
   

 
1

p

d 0
d

d 0

   
   

    
   
   

   

 
 and  
 

1

2

p

C 0 0 0 0 0
0 C 0 0 0 0

C

0 0 C 0 0 0

   
   
       
      
   

. 

 
From the definition of t

ij and t
jx  for every group (set t) it can 

be seen the quantity 
Kt t

t t t
ij 1 i KX X    is the value of the 

output of the ith industry needed by all Kt industries (in the tth 
group) to produce a total output specified by the production 
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vector Xt (1 t  p). Since this quantity is simply the ith entry of 
the super column vector in  
 

1
1

2

p p 1p p p

C 0 0
X0 C 0

CX
X0 0 C 



 
  
     
     

 

  

 
= [C1X1 | … | CpXp]t  

 
 we can further say that the ith entry of the super column vector 
Xt – CXt in  

1 1 p

p p p

X C X
X CX

X C X

 
 

   
  

   

 
is the value of the excess output of the ith industry available to 
satisfy the output demand. 
 

The value of the outside demand for the output of the ith 
industry (in tth set / group) is the ith entry of the demand vector 
dt; consequently we are led to the following equation 
 

Xt – CtXt = dt or (It – Ct) Xt = dt , (1  t   p), 
 
for the demand to be exactly met without any surpluses or 
shortages.  
 

Thus given Ct and dt our objective is to find a production 
vector Xt  0 which satisfy the equation (It – Ct)Xt

 = d.  
 
The integrated super model for all the p-sets (or groups) is 

given by X – CX = d i.e.,  
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1 1 1 1

2 2 2 2

p p p p

X C X d
X C X d

X C X d

   
         
         

   

or  
 

1 1

2 2

p p

(I C ) 0 0
0 I C

0 0 I C

 
  
 
   

 
1 1

p p

X d

X d

   
   

   
   
   

   

i.e.,  
 

1 1 1 1

p p p p

(I C )X d

(I C )X d

   
   

   
      

   

 
where I is a Kt × Kt square identity matrix t = 1, 2, …, p.  
 

Thus given C and d our objective is to find a production 
super column mixed vector  

1

p

X 0
X

X 0

   
   

    
   
   

   

 
which satisfies equation (I – C) X = d 
 

i.e. 
1 1 1 1

p p p p

(I C )X d

(I C )X d

   
   

   
      

   . 

 
A consumption super diagonal matrix C is productive if  
(I – C)–1 exists and i.e., 
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1

1 1
1

2 2

1
p p

(I C ) 0 0
0 (I C ) 0

0 (I C )







 
 

 
 
 
  

 

 
exists and  
 

1
1 1

1
2 2

1
p p

(I C ) 0 0
0 (I C ) 0

0 (I C )







 
 

 
 
 
  

  

 
0 0 0
0 0 0

0 0

 
 
 
 
  
 

. 

 
A consumption super diagonal matrix C is super productive if 
and only if there is some production super vector  
 

1

p

X 0
X

X 0

   
   

    
   
   

   

such that  

X > CX i.e. 
1 1 1

p p p

X C X

X C X

   
   

   
   
   

  . 

 
A consumption super diagonal mixed square matrix is 

productive if each row sum in each of the component matrices is 
less than one. A consumption super diagonal mixed square 
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matrix is productive if each of its component matrices column 
sums is less than one. 

 
 The main advantage of this system is this model can study 
different sets of industries with varying strength simultaneously. 
Further the performance of any industry which is present in one 
or more group can be studied and also analysed. Such 
comprehensive and comparative study can be made using these 
super models.  
 
 Finally we develop the notion of super special codes. 
 

Here we define two new classes of super special row codes 
using super row matrix and super mixed row matrix.  
  
 
DEFINITION 4.18: Suppose we have to transform some n set of 
k1, …, kn message symbols  

1 2

1 1 1 2 2 2
1 2 k 1 2 ka a ...a , a a ...a ,...,

n

n n n
1 2 ka a ...a ,  

t
i qa F ; 1  t  n and 1  i  ki (q a power of a prime) as a set 

of code words simultaneously into n-code words such that each 
code word is of length ni, i = 1, 2, …, n and n1 – k1 = n2 – k2 = 
… = nn – kn = m say i.e., the number check symbols of every 
code word is the same i.e., the number of message symbols and 
the length of the code word may not be the same. That is the 
code word consisting of n code words can be represented as a 
super row vector;  
 

      
1 2 n

1 1 1 2 2 2 n n n
s 1 2 n 1 2 n 1 2 nx x x x x x x x x x  

 
ni > ki, 1  i  n. In this super row vector i i

j jx a , 1  j  ki; i = 

1, 2, …, n and the remaining ni – ki elements    i i i

i i i
k 1 k 2 nx x ... x  

are check symbols or control symbols; i = 1, 2, …, n. 
 

These n code words denoted collectively by xs will be 
known as the super special row code word. 
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As in case of usual code, the check symbols can be obtained 
in such a way that the super special code words xs satisfy a 
super system of linear equations;  T

s sH x 0  where Hs is a 
super mixed row matrix given by Hs = [H1 | H2 | … | Hn] where 
each Hi is a m × ni matrix with elements from Fq, i = 1, 2, …, n, 
i.e.,  

 
T

s sH x  = [H1 | H2 | … | Hn] 
T1 2 n

s s sx x x    

=      T T T1 2 n
1 s 2 s 2 sH x H x H x 

  
  

= [|(0) | (0) | … | (0)] 
 
i.e., each Hi is the partity check matrix of the code words i

sx ; i 
= 1, 2, …, n. Hs = [H1 | H2 | … | Hs] will be known as the super 
special parity check super special matrix of the super special 
row code Cs. Cs will also be known as the linear [(n1 n2 … nn), 
(k1 k2 … kn)] or [(n1, k1), (n2, k2), …, (nn, kn)] super special row 
code. 
 

If each of the parity check matrix Hi is of the form 
 i ii n kA , I   i = 1, 2, …, n.  

 
Hs = [H1 | H2 | … | Hn] 

=      1 1 2 2 n n1 n k 2 n k n n kA , I A , I A , I  
 
      ----        (I) 

 
Cs is then also called a systematic linear ((n1 n2 … nn), (k1 k2 … 
kn)) super special code.  
 

If q = 2 then Cs is a super special binary row code; (k1 + … 
+ kn) | (n1 + n2 + … + nn) is called the super transmission(or 
super information) rate. 
 
 It is important and interesting to note the set Cs of solutions 
xs of T

s sH x  = (0) i.e., known as the super solution space of the 
super system of equations. Clearly this will form the super 
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special subspace of the super special vector space over Fq of 
super special dimension (k1 k2 … kn).  
 

Cs being a super special subspace can be realized to be a 
group under addition known as the super special group code, 
where Hs is represented in the form given in equation I will be 
known as the standard form.  
 

Now we will illustrate this super special row codes by some 
examples. 
 
Example 4.1: Suppose we have a super special binary row code 
given by the super special parity check matrix HS = [H1 | H2 | H3] 
where  

1

0 1 1 1 0 0
H 1 0 0 0 1 0 ,

0 1 0 0 0 1

 
   
  

 

 

2

0 0 0 1 1 0 0
H 0 1 0 0 0 1 0

1 0 0 0 0 0 1

 
   
  

 

and  

3

1 0 0 0 0 1 0 0
H 0 0 0 1 0 0 1 0

0 0 1 0 1 0 0 1

 
   
  

 

 
i.e., the super row matrix associated with the super special code 
is given by  

s

0 1 1 1 0 0 0 0 0 1 1 0 0
H 1 0 0 0 1 0 0 1 0 0 0 1 0

0 1 0 0 0 1 1 0 0 0 0 0 1


 


 

1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1





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= [(A1, I3) | (A2, I3) | (A3, I3)] ; 

 
i.e., we have given the super special code which is a binary row 
code. The super special code words are given by 
  

1 1 1 1 1 1 2 2 2 2 2 2 2
s 1 2 3 4 5 6 1 2 3 4 5 6 7x a  a  a  x  x  x |  a  a  a  a  x  x  x |   

 3 3 3 3 3 3 3 3
1 2 3 4 5 6 7 8a  a  a  a  a  x  x  x  = 1 2 3

s s sx x x   . 
 

T
s sH x  = (0) gives 3 sets of super linear equations i.e., T

s sH x  = 
(0) is read as  
 

[H1 | H2 | H3]      T T TT1 2 3 1 2 3
s s s 1 s 2 s 3 sx | x | x H x H x H x       

 

= [(0) | (0) | (0)]; 
 

i.e.,  

 T1
1 sH x  = (0) 

  
results in linear equations solving which we can get the code 
words.   
  

Thus the number of super special row code words in this 
example of the super special code Cs is 8  16  32.  
 

The super transmission rate is 12/21. Thus this code has 
several advantages which will be enumerated in the last chapter 
of this book. We give yet another example of super special code 
in which every super special code word is a super row vector 
and not a super mixed row vector. 
 

Now we proceed on to define the notion of super special 
row repetition code. 
 
DEFINITION 4.19: Let    1 2 n

s s s sC C C C  be a super 

special row code in which each of the i
sC  is a repetition code, i 
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= 1, 2, …, n, then we define Cs to be a super special repetition 
row code. Here if Hs = [H1|H2| …|Hn] is the super special parity 
check matrix of Cs, then each Hi is a t – 1  t matrix that is we 
have 
  

H1 = H2 = … = Hn 

 t 

 
 
 
 
 
 




   
 t 1

1 1 0 0
1 0 1 0

1 0 0 1

 

 
is the parity check matrix. The super special code words 
associated with Cs are just super row vectors only and not super 
mixed row vectors. The number of super special code words in 
Cs is 2n.  
 

We illustrate a super special row repetition code by the 
following example. 
 
Example 4.2: Let 1 2 3 4

s s s s sC C C C C     be a super row 
repetition code with associated super special row matrix Hs = 
[H1 | H2 | H3 | H4]  
 

1 1 0 0 0 1 1 0 0 0
1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0 1 0
1 0 0 0 1 1 0 0 0 1








 

 
1 1 0 0 0 1 1 0 0 0
1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0 1 0
1 0 0 0 1 1 0 0 0 1








. 

 
DEFINITION 4.20: Let Cs be a super special parity check mixed 
row code i.e.,    1 2 n

s s s sC C C C  where Cs is obtained 
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using the super special mixed row matrix Hs = [H1 | H2 | … | Hn] 
where each Hi is a unit row vector having ti number of elements 
i.e., 
  

 times  times  times

    
     

1 2 n
s

t t t

1 1 1 1 1 1 1 1 1H  

 
where at least one ti  tj for i  j. Any super special code word in 
Cs would be of the form  
 

          1 2 n

1 1 1 2 2 2 n n n 1 2 n
s 1 2 t 1 2 t 1 2 t s s sx x x ... x x x ... x ... x x ...x x x ... x  

 
with T

s sH x  = (0); i.e., each i
sx  would contain only even number 

of ones and the rest are zeros. 
  

Cs = [C1 | C2 | … | Cn] is defined to be super special parity 
check row code. Cs is obtained from the parity check row matrix 
/ vector Hs = [H1 | H2 | … | Hn ] where H1 = H2 = … = Hn 

m times

1 1 1
 

  
  

 . Here a super special codeword in Cs would be 

a super row vector of the form 1 2 n
s s sx x x    with each 

i i i i
s 1 2 mx x  x  ... x     where only even number of i

jx  are ones and 

the rest zero, 1  j  m and i = 1, 2, …, n.  
 

Now we will illustrate the two types of super special parity 
check (mixed) row codes. 
 
Example 4.3: Let 1 2 3

s s s sC C C C     be a super special parity 

check code having Hs = [H1 | H2 | H3] = [1 1 1 1 1 | 1 1 1 | 1 1 1 1 
1] to be the super special parity check matrix associated with it.  
 
DEFINITION 4.21: Let    1 2 n

s s s sC C C C  be a super 

special row code. Suppose 1 2    n
s s s sx x x x is a 
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transmitted super code word and 1 2    n

s s s sy y y y  is 
the received supercode word then es = ys – xs = 

1 1 2 2 n n 1 2 n
s s s s s s s s sy x y x y x e e e           is called 

the super error word or the super error vector. 
 
 We first illustrate how the super error is determined. 
 
Example 4.4: Let 1 2 3 4

s s s s sC C C C C     be a super special 
code with associated super parity check row matrix Hs = [H1 | H2 
| H3 | H4] 
 

1 0 0 1 0 0 1 0 1 0 1 0 0
1 1 0 0 1 0 0 1 0 1 0 1 0
0 1 0 0 0 1 1 1 0 0 0 0 1


 



 

 
1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 
1 0 1 0 0 1 0 0
1 1 0 1 0 0 1 0
0 1 1 0 1 0 0 1






. 

 
Clearly ys + es = xs. 
 
DEFINITION 4.22: The super Hamming distance   s s sd x , y  
between two super row vectors of the super special vector space 
Vs, where xs = 1 2 n

s s sx x x   and ys = 1 2 n
s s sy y y    

is the number of coordinates in which i
sx  and i

sy  differ for i = 
1, 2, …, n. The super Hamming weight ws(xs) of the super vector 
xs = 1 2 n

s s sx x x    in Vs is the number of non zero 

coordinates in each i
sx ; i = 1, 2, …, n. In short ws(xs) = d(xs, 

(0)).  
 

As in case of usual linear codes we define super minimum 
distance s

mind  of a super special linear row code Cs as  
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 
s s s

s s

s
min s s su , C

u

d min  d u ,
 


  , 

ds (us, s) = ds (us – s , (0)) = ws (us – s). 
 

Thus the super minimum distance of Cs is equal to the least 
super weights of all non zero super special code words. 

 
 Now the value of  
 

s
mind  = 

s s s
s s

u , C
u

min
 


ds (us, s) 

 
s s s

s s

1 2 n 1 2 n
s s s s s s su , C

u

min d ,u u u v v v
 


          

     1 1 2 2 n n
s s s s s smin  d u ,  d u ,  ... d u ,           . 

 
Now s

mind  of the super special row code given in example 
3.1.2 is 7 verified using the fact in 1 2 3

s s s sC C C C    ; s 1
min sd C  

= 3,  s 2 s 3
min s min sd C 2 and d C 2  . Hence  s

min sd C  = 3 + 2 + 2 = 
7. So we will denote  s

min s s sd min  d u ,   by  s
min sd C , us, s 

 Cs, us  s.  
 

S 1 2 n
min s s sd C C C        S 1 2 n

min s s sd C C ... C       

     1 1 1 2 2 2 n n n
s s s s s ss s s

1 1 2 2 n n
s s s s s s

1 1 2 2 n n
s s s s s s

x ,y C x ,y C x ,y C
x y x y x y

min d x ,  y min d x ,  y ... min d x ,  y
  
  

    . 

 
Now we proceed on to define the dual of a super special 

row code. 
 
DEFINITION 4.23: Let    1 2 n

s s s sC C C C  be a super 
special row [(n1, …, nn), (k1, …, kn)] binary code. The super 
special dual row code of Cs denoted by  
 

           1 2 n
s s s s

C C C C  
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where  i

sC = { i
su  |  i i

s su 0  for all i i
s sC }, i = 1, 2, …, n.  

Since in Cs we have n1 – k1 = n2 – k2 = …= nn – kn i.e., the 
number of check symbols of each and every code in i

sC  is the 
same for i = 1, 2, …, n. Thus we see n = 2ki alone can give us a 
dual, in all other cases we will have problem with the 
compatibility for the simple reason the dual code of i

sC  being 
the orthogonal complement will have ni – ki to be the dimension, 
where as i

sC  will be of dimension ki, i = 1, 2, …, n. Hence we 
can say the super special dual code would be defined if and only 
if ni = 2ki and such that n1 = n2 = … = nn. 
  

We can define the new notion of super special syndrome to 
super code words of a super special row code which is 
analogous to syndrome of the usual codes. 
 
DEFINITION 4.24: Let Cs be a super special row code. Let Hs be 
the associated super special parity check matrix of Cs the super 
special syndrome of any element ys  Vs where Cs is a super 
special subspace of the super special vector space Vs is given by 
S(ys) = T

s sH y . S(ys) = (0) if and only if ys  Cs. 
 
 Thus this gives us a condition to find out whether the 
received super code word is a right message or not. Suppose ys 
is the received super special code word, we find S(ys) = T

s sH y ; 
if S(ys) = (0) then we accept ys as the correct message if S(ys) = 

T
s sH y   (0) then we can declare the received word has error.  

 
We can find the correct word by the following method. 

Before we give this method we illustrate how the super special 
syndrome is calculated. 
  
Example 4.5: Let 1 2 3 4

s s s s sC C C C C     be a super special 
row code. Let Hs = [H1 | H2 | H3 | H4] be the super special parity 
check matrix of Cs. 
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 Let  

s

1 0 0 1 0 0 0 1 0 1 0 0
H 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 0 0 1 0 1 1 0 0 1


 


 

 
0 1 1 0 0 0 1 1 0 1 0 0
1 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 0 0 0 0 1






. 

 
Now we have to shown how to find whether the received 

super special code word is correct or otherwise. It is important 
to note that what ever be the super special code word xs  Cs 
(i.e., it may be a super special mixed row vector or not) but the 
syndrome S(xs) = T

s sH x  is always a super special row vector 
which is not mixed and each row vector is of length equal to the 
number of rows of Hs.  

 
 Now we know that every super special row code Cs is a 
subgroup of the super special vector space Vs over Z2 = {0, 1}. 
Now we can for any xs  Vs define super special cosets as  
 

xs + Cs = {xs + cs | cs  Cs}. 
 

 Thus  
 

Vs = {Z2  Z2 … Z2 | Z2  …  Z2 | … | Z2  Z2  …  Z2} 
= Cs  [ 1

sx  + Cs]  …  [ t
sx  + Cs] 

 
where     1 2 n

s s s sC C C C     
 
and  

xs  =  
1 2 n

1 1 2 2 n n
1 n 1 n 1 nx x x x x x 

     

=  1 2 n
s s sx x x     

and  
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xs + Cs =  1 1 2 2 n n
s s s s s sx C x C x C     . 

 
Now we can find the coset leader of every i i

s sx C  as in 
case of usual codes described in chapter one of this book. Now 
if  

 
ys = 1 2 n

s s sy y y    
 
is the received message and 1 2 n

s s se (0) e (0) e (0)      is a 
special super coset leaders then using the relation ys – es we get 
ys – es to be super special corrected code word. It is interesting 
to note that each i

se  + (0) has a stipulated number of coset 
leaders depending on ni, i = 1, 2, …, n.  
 

We will illustrate this by the following example. 
 
Example 4.6: Let 1 2

s s sC C C     be a super special row code. 

Suppose Hs = [H1 | H2] be the super special row matrix 
associated with Cs. Let  

Hs = [H1 | H2] = 
1 0 1 0 1 0 1 1 0
1 1 0 1 0 1 1 0 1
 
 
 

. 

Now 1 2
s s sC C C     with 1

sC  = {(0 0 0 0), (1 0 1 1), (0 1 0 1),  

(1 1 1 0)}and 2
sC  = {( 0 0 0 0 0), (1 0 0 1 0), (0 1 0 0 1), (0 0 1 1 

1), (1 1 0 1 1), (0 1 1 1 0), (1 0 1 0 1), (1 1 1 0 0)}. 
 

Cs = {[0 0 0 0 | 0 0 0 0 0], [1 0 1 1 | 0 0 0 0 0], 
[0 1 0 1 | 0 0 0 0 0], [1 1 1 0 | 0 0 0 0 0], [0 0 0 0 | 1 0 0 1 0], 
[0 0 0 0 | 0 1 0 0 1], [1 1 1 0 | 0 1 0 0 1], [0 1 0 1 | 0 1 0 0 1], 
[1 0 1 1 | 1 0 0 0 1], [0 0 0 0 | 0 0 1 1 1], [1 1 1 0 | 0 0 1 1 1], 
[0 1 0 1 | 0 0 1 1 1], [1 0 1 1 | 0 0 1 1 1], [0 0 0 0 | 1 1 0 1 1], 
[1 1 1 0 | 1 1 0 1 1], [1 0 1 1 | 1 1 0 1 1], [0 1 0 1 | 1 1 0 1 1], 
[0 0 0 0 | 0 1 1 1 0], [1 0 1 1 | 0 1 1 1 0], [0 1 0 1 | 0 1 1 1 0], 
[0 0 0 0 | 1 0 1 0 1], [1 0 1 1 | 1 0 1 0 1], [0 1 0 1 | 1 0 1 0 1], 
[0 0 0 0 | 1 1 1 0 0], [1 1 1 0 | 1 1 1 0 0], [1 0 1 1 | 1 1 1 0 0], 
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[0 1 0 1 | 1 1 1 0 0] and so on}. 
 
Clearly |Cs| = 32 . Now the coset table of 1

sC  is given by  
 
Message       code      words  
 
0 0                       1 0                     0 1                       1 1
0 0 0 0            1 0 1 1          0 1 0 1          1 1 1 0
 
Other cosets 
1 0 0 0        0 0 1 1       1 1 0 1       0 1 1 0
0 1 0 0         1 1 1 1       0 0 0 1       1 0 1 0
0 0 1 0       1 0 0 1       0 1 1 1        1 1 0 0

coset leaders


. 

 
Now the coset table of 2

sC  is given by  
 
 

message 0 0 0
codewords 0 0 0 0 0

1 0 0 0 0
other cosets 0 1 0 0 0

0 0 1 0 0





  

1 0 0
1 0 0 1 0
0 0 0 1 0
1 1 0 1 0
1 0 1 1 0   

 
message 0 1 0

codewords 0 1 0 0 1
1 1 0 0 1

other cosets 1 0 0 0 1
0 1 1 0 1







0 0 1
0 0 1 1 1
1 0 1 1 1
0 1 1 1 1
0 0 0 1 1  
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message 1 1 0
codewords 1 1 0 1 1

0 1 0 1 1
other cosets 1 0 0 1 1

1 1 1 1 1







0 1 1
0 1 1 1 0
1 1 1 1 0
0 0 1 1 0
0 1 0 1 0  

 
message 1 0 1

codewords 1 0 1 0 1
0 0 1 0 1

other cosets 1 1 1 0 1
1 0 0 0 1







1 1 1
1 1 1 0 0
0 1 1 0 0
1 0 1 0 0
1 1 0 0 0 . 

 
Suppose ys = [1 1 1 1 | 1 1 1 1 1] is the received word then 

S(ys) = T
s sH y   [(0) | (0)]. es = [0 1 0 0 | 0 0 1 0 0] is the super 

set coset leader. Thus xs = ys + es = [1 0 1 1 | 1 1 0 1 1]  Cs.  
 

With the advent of computers calculating the super special 
coset leaders is not a very tedious job. Appropriate programs 
will yield the result in no time.  

 
Now we proceed on to describe/define the super special row 

cyclic code.  
 
DEFINITION 4.25: Let Cs = [C1 | C2 | … | Cn] be a super special 
row code. If every i

sC  is a cyclic code in Cs we call Cs to be a 
super special cyclic row code. Hs = [H1 | H2 | …|Hn] denotes the 
super special parity check row matrix of the super special cyclic 
code. 
 

We illustrate this by the following example. 
 
Example 4.7: Let 1 2 3

s s s sC C C C     be a super special cyclic 
code with an associated super special parity check matrix  

 
Hs = [H1 | H2 | H3] 
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1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1


 


 

 
0 0 1 1 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0 0 1 0 0






. 

 
We see each of 1 2

s sC ,  C  and 3
sC  are cyclic codes. 

 
 Now we see in general for any super special mixed row 
code with an associated super special parity check matrix Hs 
which happens to be a super mixed row matrix we cannot define 
the super special generator row matrix Gs. The simple reason 
being if the code words in each of the i

sC  in Cs where 
1 2 n

s s s sC C C C    , i = 1, 2, …, n happens to be of 
different length then it would be impossible to define a super 
generator matrix. So we shall first define the notion of super 
special generator row matrix of a super special row code(mixed 
row code). 
 
DEFINITION 4.26: Let    1 2 n

s s s sC C C C  be a super 
special row code. A super special row matrix which generates 
Cs exists if and only if in each i

sC  the codes in Cs have the same 
number of message symbols, that is if Cs has a super special 
parity check row matrix Hs = [H1 | H2 | … | Hn] then we 
demanded each i

sC  must have the same number of check 
symbols. Likewise for the super special generator row matrix to 
exist we must have Gs = [G1 | G2 | … | Gn] where i

sC  have the 
same number of message symbols which forms the number of 
rows of the super row generator matrix Gs.  
 

We shall first illustrate this by an example. 
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Example 4.8: Cs = 1 2

s sC C    be a super special row code.  
 
Let       1 2

s s sG G G     
 

1 1 0 1 0 0 1 0 0 0 1 0
0 1 1 0 1 0 0 1 0 0 1 1
0 0 1 1 0 1 0 0 1 0 1 1

 
   
  

 

 
One can easily find the super code words using GS [50]. 
 
DEFINITION 4.27: Let 1 2    n

s s s sC C C C  be a super 

special mixed row code. If each of the codes i
sC  have the same 

number of message symbols then we have the super special 
generator mixed row matrix 1 2    n

s s s sG G G G   
associated with Cs. Number of message symbols in each of the 

i
sG  are equal and is the super special mixed row matrix Gs; 1  

i  n.  
 
 We illustrate this by the following example. 
 
Example 4.9: Let 1 2 3 4

s s s s sC C C C C     be a super special 

mixed row code. Let 1 2 3
s s s sG G G G     be the associated 

super special mixed row generator matrix given by  
 

1 2 3
s s s sG G G G     

 
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1


 

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1 0 0 0 0 1 0
0 1 0 1 0 0 0
0 0 1 0 1 0 1

1 0 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0






. 

 
THEOREM 4.4: Let 1 2    n

s s s sC C C C be a super special 
row code with Hs = [H1 | H2 | …| Hn] , the super special parity 
check matrix. If each Hi = (Ai, In–k), i = 1, 2, …, n then Gs = [G1 
| G2 | …| Gn] with Gi = (Ik, – AT); 1  i  n if and only if the 
length of each code word in i

sC  is the same for i = 1, 2, …, n. 
 

For proof refer [50]. 
  
 For any super special row code we can HS the parity check 
matrix and the super special generator matrix GS such that 
GS

T
SH = (zero super vector). 

 
Now having defined the new class of super special row 

(mixed row) codes we will now define new classes of mixed 
super classes of mixed super special row codes Cs i.e., we may 
have the super special row code to contain classical subcodes as 
Hamming code or cyclic code or code and its orthogonal 
complement and so on [50]. 
 
DEFINITION 4.28: Let Cs = [C1 | C2 | …| Cn] be a super special 
row code. If some of the Ci’s are Hamming codes, some Cj’s are 
cyclic codes i  j, some Ck’s are repetition codes and some Ct’s 
are codes and Cp’s are dual codes of Ct’s ; 1  j, k, t, i, p < n 
then we call Cs to be a mixed super special row code.  
 

It is important to mention here that even if two types of 
classical codes are present still we call Cs as a mixed super 
special row code.  
 

We will illustrate them by the following examples. 
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Example 4.10: Let Cs = [C1 | C2 | C3 | C4] be a mixed super 
special row code. Here C1 is a Hamming code, C2 the repetition 
code, C3 a code of no specific type and C4 a cyclic code.  
 
 Let the mixed super special parity check matrix Hs 
associated with Cs be given by  
 

Hs = [H1 | H2 | H3 | H4] 
 

0 0 0 1 1 1 1 1 1 0 0
0 1 1 0 0 1 1 1 0 1 0
1 0 1 0 1 0 1 1 0 0 1


 


 

 
0 1 1 1 0 0 1 1 1 0 1 0 0
1 0 1 0 1 0 0 1 1 1 0 1 0
1 1 0 0 0 1 0 0 1 1 0 0 1






. 

 
Example 4.11: Let Cs = [C1 | C2 | C3] be a mixed super special 
row code. Let Hs = [H1 | H2 | H3] be the associated super special 
parity check mixed row matrix. C1 is the Hamming code, C2 any 
code and C3 a repetition code.  
 

s

1 1 1 1 1 1 1 1 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 1 1 1 0 1 0 0

H
0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
1 0 1 0 1 0 1 0 0 1 1 0 0 0 1








 

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1








 

 
is the mixed super special parity check mixed row matrix for 
which Gs does not exist. 
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We define the new notion of super special Hamming row 
code. 

 
DEFINITION 4.29: Let CS =   1 2 n

S S SC C C  where each 
i
sC  is a (2m – 1, 2m – 1 – m) Hamming code for i = 1, 2, …, n. 

Then we call Cs to be a super special Hamming row code. If 
Hs= [H1 | H2 | … | Hn] be the super special parity check matrix 
associated with Cs we see Hs is a super special row matrix 
having m rows and each parity check matrix Hi has m rows and 
2m – 1 columns, i =1, 2, …, n. 
 

Further the transmission rate can never be equal to ½. If  
m > 2 then will the transmission rate be always greater than ½ ?  
 
 For more examples refer [50]. 
 
 We define using super column matrices the notion of super 
column codes which is an innovative means of using super 
column matrices. 
 
DEFINITION 4.30: Suppose we have to describe n codes each of 
same length say m but with varying sets of check symbols by a 
single matrix. Then we define it using super column matrix as 
the super code parity check matrix. Let 
 

Cs = 

 
 
 
 
 
  



1

2

m

C
C

C

 

 
be a set of m codes, C1, C2, ..., Cm where all of them have the 
same length n but have n – k1, n – k2, ..., n – km to be the number 
of check symbols and k1, k2, ..., km are the number of message 
symbols associated with each of the codes C1, C2, ..., Cm 
respectively. 
 
Let us consider  
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Hs =

1

2

m

H
H

H

 
 
 
 
 
  


 

 
where each Hi is the n – ki  n parity check matrix of the code 
Ci; i = 1, 2, ..., m. We call Hs to be the super special parity check 
mixed column matrix of Cs and Cs is defined as the super 
special mixed column code.  
 

The main difference between the super special row code 
and the super special column code is that in super special row 
codes always the number of check symbols in every code in Cs 
is the same as the number of message symbols in Ci and the 
length of the code Ci can vary where as in the super special 
column code, we will always have the same length for every 
code Ci in Cs but the number of message symbols and the 
number check symbols for each and every code Ci in Cs need 
not be the same. In case if the number of check symbols in each 
and every code Ci is the same. Then we call Cs to be a super 
special column code.  

 
In case when we have varying number of check symbols 

then we call the code Cs to be a super special mixed column 
code.  

 
In the case of super special column code Cs = [C1 | C2 | … | 

Cm]t we see every code Ci in Cs have the same number of 
message symbols. Thus every code is a (n, k) code. It may so 
happen that some of the Ci and Cj are identical codes.  

 
For examples refer [50]. 

 
 

DEFINITION 4.31: Let Cs = [C1| C2 | ... |Cn]t where Ci’s are 
codes of same length m. Suppose each Ci is generated by a 
matrix Gi, i = 1, 2, …, n, then  
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Gs = 
 
 
 
 
 


1

n

G

G
 

 
generates the super special column code Cs. We call Gs the 
super special generator column matrix which generates Cs. If in 
each of the codes Ci in Cs, we have same number of message 
symbols then we call Gs to be a super special generator column 
matrix; i = 1, 2, …, n. If each of the codes Ci’s in Cs have 
different number of message symbols then we call Gs to be a 
super special generator mixed column matrix.  
 

We say Gs is in the standard form only if each Gi is in the 
standard form. Further only when Gs is in the standard form and 
Gs is a super special column matrix which is not a mixed matrix 
we have Hs the super special parity check column matrix of the 
same Cs with  

 

Gs
T
sH = 

0
0

0

 
 
 
 
 
  

 . 

 
 
For examples refer [50]. 

 
We proceed onto define classical super special column 

codes. 
 

DEFINITION 4.32: Let Cs = [C1 | C2 | …| Cn]t be a super special 
column code if each of the code Ci is a repetition code of length 
n then Cs is a super special repetition column code with C1 =  
C2 =…= Cn.  
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The super special column parity check matrix  
 

Hs =
 
 
 
 
 


H

H
 

 
 

= 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    



    

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

 

 
where  
 

H = 

1 1 0 0 ... 0
1 0 1 0 ... 0

1 0 0 0 ... 1

 
 
 
 
 
 

    
. 

 
 It is important to note that unlike the super special 
repetition row code which can have different lengths the super 
special repetition column code can have only a fixed length and 
any super special code word 
 

xs = 1 2 n
s s sx x x    

 
where j

sx  = (1 1 … 1), n-times or (0 0 … 0) n-times only;  
1  j  n. 
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DEFINITION 4.33: Let Cs = [C1 | C2 | …| Cn]t be a super special 
parity check column code . Let the super special parity check 
column matrix associated with Cs be given by  

 

Hs = 

 
 
 
 
 
  



1

2

n

H
H

H

 

Where 
  

H1 = H2 = … = Hn =  



m times

1 1 ... 1 . 

 
Thus we see we cannot get different lengths of parity check 

codes using the super special column code. However using 
super special row code we can get super special parity check 
codes of different lengths. 

 
DEFINITION 4.34: Let Cs = [C1 | C2 | … | Cn]t be a super 
special column code if each of the codes Ci in Cs is a (2m – 1, 2m 
– 1 – m) Hamming code for i = 1, 2, … , n then we call Cs to be 
a super special column Hamming code . It is pertinent to 
mention that each code Ci is a Hamming code of same length; i 
= 1, 2, … , n. 
 
DEFINITION 4.35: Cs = [C1 | C2 | …| Cn]t is a mixed super 
special column code if some Ci’s are repetition codes of length 
n some Cj’s are Hamming codes of length n, some Ck’s parity 
check codes of length n and others are arbitrary codes, 1 i, j,  
k  n.   
 
We illustrate this by the following example. 
 
DEFINITION 4.36: Let Cs = [C1 | C2 | … | Cm]t be a super 
special column code if each of the codes Ci is a cyclic code then 
we call Cs to be a super special cyclic column code. However 
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the length of each code Ci; i = 1, 2, …, n will only be a cyclic 
code of length n, but the number of message symbols and check 
symbols can be anything. 
 
Now we illustrate this by an example. 

 
DEFINITION 4.37: Let  
 

C(S) = 

 
 
 
 
 
  




   


1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

C C C
C C C

C C C

 

 
where i

jC  are codes 1  i  m and 1  j  n. Further all codes 

1 2 m
1 1 1C ,C , ,C  are of same length 1 2 m

2 2 2C ,C , , C  are of same 
length and  1 2 m

n n 2C ,C , , C  are of same length. 1 1 1
1 2 nC ,C , ,C  

have same number of check symbols, 2 2 2
1 2 nC ,C , ,C  have same 

number of check symbols and m m m
1 2 nC ,C ,...,C have same number 

of check symbols. 
 
 We call C(S) to be a super special code. We can have the 
super parity check matrix  
 

H(S) = 

 
 
 
 
 
  




   


1 1 1
1 2 n
2 2 2
1 2 n

m m m
1 2 n

H H H
H H H

H H H

 

where i
jH ’s are parity check matrices 1  i  m and 1  j  n.  

Further  1 1 1
1 2 nH ,H , ,H  have the same number of rows, 

2 2 2
1 2 nH ,H , ,H  have same number of rows and so on. 

m m m
1 2 nH ,H , ,H  have the same number of rows. Likewise 

1 2 m
1 1 1H ,H , ,H  have the same number of columns, 



148 Innovative Uses of Matrices 
 
 
 
 
 
 

1 2 m
2 2 2H ,H ,...,H  have the same number of columns and so on. 
1 2 m
n n nH ,H ,...,H  have same number of columns.  

 
 The notion of super matrices are ingeneously applied to 
super fuzzy models, super linear algebra and super special 
codes.  Such type of applications is not only innovative but can 
lead to easy comparison and save the working time. 



 
 

 

Chapter Five 

 

 

 

 

 

INTERVAL MATRICES AND NATURAL 
CLASS OF INTERVALS  
 
 

 
 
In this chapter first we recall properties of intervals and then 
define the notion of matrix interval using matrices with entries 
from R. Also we define the matrix of natural class of intervals 
and illustrate them with examples we however get the relation 
between the interval matrix and matrix interval and the relation 
between the natural class of matrix intervals and the matrix of 
natural class of intervals.  We will call [A, B] an interval where 
A > B or A < B or A = B or A and B are not even comparable 
but are bound by some common features.  When A and B are 
integers or modulo integers we get intervals which we call them 
as natural class of intervals.  For if [15, 20] where 15 and 20  
Z25 is the situation when we cannot in any way compare them.  
So if we replace A and B by matrices of same order we call that 
interval as matrix interval.   
 

With this rough idea now we proceed onto define the row 
matrix interval. 
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By an interval [a, b] we mean all elements x such that a  x 
 b are in [a  b].  [a  a] is nothing but a.  So when in an interval  
a = b it collapses to a single point. 

 
 Let QI =   {[a, b] | a, b  Q}. 
 
 Let IQ = {[a, b] | a, b  Q+  {0}, Q+ denotes the set of 
positive rationals}. 
 
 ZI = {[a, b] | a, b  Z}; denotes the set of all intervals on Z, 
i.e., the set of positive and negative integers. 
 
 IZ = {[a, b] | a, b  Z+  {0}; Z+ the set of positive 
integers}. 
 
 RI = {[a, b] | a, b  R} i.e., the collection of all intervals in 
the set of reals. 
 
 IR = {[a, b] | a, b  R+  {0}, R+ the set of positive reals}. 
 
 I

nZ = {[a, b] | a, b  Zn}. 
 
 Thus we have defined the collection of all intervals of 
different types.  We first make the following observation which 
is very essential. 
 
 We see Q  QI (a = [a, b]  QI). 
 
 Likewise Z  ZI, Q+  IQ , Zn  I

nZ , RI  R, R+  IR . 
 
 Thus these which will be known as interval sets are 
generalized or contain the related sets as subsets.  We shall call 
QI the rational intervals, ZI the integer intervals, RI the real 
intervals and I

nZ  the modulo integer intervals. 
 
 Further Z  ZI  QI  RI 
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 Z  Q  QI  RI, Z  Q  R  RI. 
 
 [–7, 3] is an integer interval in ZI. 

 
[3, 5] is a positive integer interval in IZ .   
 
We see Z+  IZ   ZI. 

  
[–5/2, 3/7] is a rational interval in QI. 
 

 [9/7,5/2] is a positive rational interval in IQ ; Q+  IQ  QI. 
 
 [ 2 , 5 ] is a real interval in RI but [ 3 , 7 ] is a 
positive real interval in IR .  Thus R+  IR    RI.  We see [0, 1] 
[0, 4] and modulo integer intervals of I

5Z . 
 
 It is important and interesting to note I

nZ has only finite 
number elements in it. 
 
 Infact I

2Z  has only four elements viz. {[0, 0], [1, 1] [0, 1]}. 
 
 I

3Z  has only 6 elements viz {[0, 0] [1, 1], [2, 2], [0, 1], [0, 
2], [1, 2]}. 
 
 I

4Z  has only 10 intervals viz. {[0, 0], [1, 1], [2, 2], [3,3]. [0, 
1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]}. 
 
 I

5Z  has only 15 modulo intervals. {[0, 0], [1, 1], [2, 2], [3, 
3], [4, 4], [0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4], [2, 3], 
[2, 4], [3, 4]}. 
 
 I

7Z  has only 28 modulo intervals. 
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 Thus I
nZ  has only n+ (n–1) + … + 2+1 = n(n 1)

2
  modulo 

intervals. 
 
 Z15 has only {[0, 0], [1, 1], [2, 2], …, [14, 14], [0, 1], [0, 2], 
…, [0, 14], [1, 2], …, [1, 14], [2, 3], …, [2, 14], …, [13, 14]} = 

I
15Z . 

 Number of intervals in I
15Z  is 120.   

 
Now we recall the operations on intervals given by |26] 

 
DEFINITIONS [26] 
 
 [a, b] = [c, d] if and only if a =  c and b = d 
 [a, b]  [c, d] if only if c  a  b  d. 
 
 [a, b] < [c, d] if and only if b < c.  The width of an interval 
[a, b] is denoted by w([a, b]) = b – a and the magnitute of the 
interval |[a, b]| = max (|a|, |b|). 
 
 Degenerate intervals are those intervals which has zero 
width, can be identified with real numbers.  Thus a = [a, a]. 
 
 We now proceed onto give the arithmetic operations as 
given by Kuperman. 
 
 If * denotes any one of the symbols +, –, ., | (. Product, / 
division).   
 

Then the interval [a, b] * [c, d] = 
a x b

x * y
c y d

   
    

 except 

we do not define [a,b] | [c, d] if o  [c, d].  (This excludes the 
definition by zero possibility).  Alternatively we can define the 
arithmetic operations on intervals by giving the endpoints of the 
intervals resulting from the sum, difference, product or quotient 
of two intervals. 
 Equivalent to the definition in I we thus we 
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 [a, b] + [c, d] = [a+c, b+d] 
 [a, b] – [c, d] = [a–d, b–c] 
 [a, b] . [c, d] = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)] 
 [a, b] / [c, d] = [a, b] / [1/d, 1/c], provided 0  [c, d]. 
 

For the denominator cannot be zero.  Thus in the definition 
of division c and d are either both positive or both negative.  By 
way of numerical example we thus have 
 
 (i)  [–2, 3] + [–9, –3] = [–11, 0] 
   [8, 11] + [5, 7] = [13, 18]. 
  [–3, 8] + [3, 4] = [0, 12] 
 
 (ii) [–3, 8] – [–7, –2] = [–3 – (–2), 8+2] 
    = [–1, 10] 
 
  [8, 17] – [–2, 6] = [8 – 6, 17 – (–2)] 
    = [2, 19] 
 
  [2, 7] – [–1, 3] = [2–3, 7–(–1)] 
    = [–1, 8] 
 

(iii) [3, 5] . [7, 9] = [min {21, 27, 35, 45},  
max {21, 27, 35, 45}] 

    = [21, 45] 
 

[–2, 1] . [2, 5]  = [min {–4, 2, 5, –10},  
max {–4, 2, 5, –10}] 

      = [–10, 5] 
 

[–5, 2] . [3, 7]  = [min {–15, 6, 14, –35},  
max {–15, 6, 14, –35}] 

= [–35, 14] 
 

[–2, 7] / [3, 8]  = [min {–2/3, –2/8, 7/3, 7/8},  
max {–2/3, –2/8, 7/8, 7/3}] 

= [–2/3, 7/3] 
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[–5, 4] / [–2,6]  = [min {5/2, –5/6, –4/2, 4/6},  
max {5/2, –2, 4/6, –5/6}] 

= [–2, 5/2]} 
 

[–8, 9] / [3, 7]  = [min {–8/3, 8/7, 3, 9/7},  
max {–8/3, 8/7, 3, 9/7} 

= [–8/3, 3] 
 
 Now we recall the properties of interval arithmetic given by 
Kooperman.  
 
 For more about these notions please refer [26] 
 
 We may note that interval arithmetic is a generalization or 
extension of real arithmetic since [a, a] is a real number and the 
definitions hold for intervals of this form as well. 
 
 Thus laws that hold for interval arithmetic must 
automatically hold for real arithmetic.  But laws that hold for 
real arithmetic may not always hold for interval arithmetic. 
 
 For example, interval arithmetic is associative and 
commutative with respect to addition and multiplication.  Thus, 
given interval numbers I, J, K we have  
 
 (I, J) + K = I + (J + K) 
 I + J = J + I 
 

But distributive laws does not always hold for interval 
arithmetic. 

 
 [3, 5] ([1, 2] + [–7, 2]) 
 = [3, 5] [1, 2] + [3, 5] [–7, 2] 

= [min {3, 5, 6, 10}, max {3, 5, 6, 10}] +  
[min {–21, 6, –35, 10}, max {–21, 6, –35, 10}] 

 = [3, 10] + [–35, 10] 
 = [–32, 20] = [3, 5] [1, 2] + [3, 5] [–7, 2] 
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 Consider [3, 5] ([1, 2] + [–7, 2]) 
 = [3, 5] [–6, 4] = [min {–18, –30, 12, 20},  

max {–18, –30, 12, 20}] 
 = [–30, 20] 
 
 Thus [3, 5] ([1, 2] + [–7, 2])  [3, 5] [1, 2] + [3, 5] [–7, 2]. 
 
 It is pertinent to mention here that the distributive laws hold 
good when the interval is a real number say k ; i.e., the 
degenerate interval [k, k] of zero with, then it is easy to verify 
 
 [k, k] ([a, b] + [c, d]) = [k, k] [a, b] + [k, k] [c, d] 
 = k([a, b] + [c, d]) = k [a, b] + k [c, d] 
 = k [a+c, b+d] = [ka, kb] + [kc, kd] 
 = [k(a+c), k(b+c)] = [ka + kc, kb + kd] 
 = [ka + kc, kb + kd] 
 
 Thus we have  
 b [a – a, a + a] = b ([a, a] + [–a, a]) 
       = b[a, a] + b[–a, a] 
 [ba, ba] + [–|b|  a, |b| a] 
             = [ba – |b|a, ba + |b| a] 
 b[a – a, a + a]   = [ba – |b| a, ba + |b|a] 
 
 (We may note that a is non negative by implication of its 
appearance in [a – a, a + a] for in any interval [c, d], c  d). 
 
 We now proceed onto recall the concept of rounded interval 
arithmetic. An important use of interval arithmetic is to 
determine upper bounds for the errors due to rounding. 
 
 In rounded interval arithmetic working in either single or 
double precision, we regard each real number as an interval.  An 
in the first place we round the lower endpoint down and the 
upper end point up. 
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 In this way, the maximum possible effect of rounding is 
taken into account, so that the interval for the final result 
contains the true value. 
 
 In using rounded interval arithmetic it should be clear that 
the final result can be obtained as sharply as desired, i.e., the 
width of the final interval can be as small as desired, by using a 
sufficiently long wordlength.  By way of a numerical example.  
Suppose we multiply two number.  a = 0.2310 | 581 and b = 
0.8351 | 621 is a decimal coded machine using a precision of 
wordlength of four decimal digits. 
 
 Then, in the first place we write down the intervals 
containing a and b. 
 
 a  [0.2310, 0.2311] and b  [0.8351, 0.8352] 
 
 Then carrying out the multiplication we have 
 ab  [0.2310, 0.2311] [0.8351, 0.8352] 
 = [0.1929 | 18 , …,  0.1929 | 92 …] 
 = [0.1929, 0.1930]. 
 
 Thus, rounded interval arithmetic leads to the following 
interval which contains ab : [0.1929, 0.1930], the width of this 
interval being 0.1930 – 0.1929 = 0.0001. 
 
 To obtain the product ab more sharply we clearly have to 
use a longer wordlength for the computation. 
 
 The actual rounding down and up can most easily be 
achieved in machine coding.  The lower endpoint should be 
rounded down so that the rounded value is less than or equal to 
the value being rounded.  Thus if the value being rounded down 
is positive we need merely truncate while if the value is 
negative we truncate, examine the truncated portion, and, if this 
is not zero, we subtract one unit in the least significant position.  
And the upper end point must be rounded up if a computation is 
being carried out in rounded interval arithmetic, an interval 
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being said to be properly rounded if the endpoints are rounded 
as described above. 
 
 We may mention that the rounding up and down can be 
coded in Fortan necessary although not as efficiently. 
 
 Thus the final interval obtained by rounded interval 
arithmetic takes account of the errors due to rounding and 
contains the true value. 
 
 Interval vectors and matrices and vectors and matrices 
whose elements are interval numbers, the superscript I being 
used to indicate such a vector or matrix. 
 
 Thus given matrices B = (bij) and C = (cij) of order n such 
that 
 bij  cij, i, j = 1, 2, …, n, then the interval matrix AI = [B, C] 
is defined by 
 AI = [B, C] = {A = (aij) | bij  aij  cij; i, j = 1, 2, …, n}.  
Kuperman [26] calls B the lower endpoint matrix of the interval 
matrix AI = [B, C], C the upper endpoint matrix and M =  
½ (B+C) the midpoint matrix. 
 
DEFINITION 5.1:  Let A = (a1, …, an) and B = (b1, …, bn) ai, bi 
 R and Zn or Q or Z or C where A and B are of some order, 
viz; 1  n. We define the row matrix of natural class of interval 
as  

[A, B] = [(a1, …, an), (b1, …, bn)]. 
 
 If each ai > bi, 1  i  n we say [A, B] such that A > B if 
each ai < bi, 1  i  n we say the row matrix natural class of 
interval [A, B] with A < B.  For more about properties and 
working with natural class of intervals refer [57-58]. 
 
 If some ai > bi and some aj < bj and some ak = bk we cannot 
say A > B or A < B.  We will illustrate the row matrix of natural 
class of interval or in short row matrix interval by some 
examples. 
 



158 Innovative Uses of Matrices 
 
 
 
 
 
 

Example 5.1:  Let X = [(5, 3, –1, 0, 2, 4), (2, 4, 5, 7, –3, 1)] = 
[A, B] is the row matrix interval clearly A is not comparable 
with B.   
 
Example 5.2:  Let Y = [A, B] = [(5, 2, 0, 7, 9, 6, 10), (7, 3, 4, 5, 
9, 10, 8, 12)] be a row matrix interval where A < B. 
 
Example 5.3:  Let M = [(8, 3, 4, 9, –2, 7, 18, –9), (2, 1, 3, 5, –
10, 2, 9, –14) = [A, B] be the row matrix interval where A > B. 
 
Example 5.4:  Let S = [(3, 4, 2, 1, 5), (3, 4, 2, 1, 5)] = [A, B] be 
the row matrix interval, here A = B.  So S = (3, 4, 2, 1, 5).  We 
call this row matrix interval as degenerate interval.  
 
 We will now proceed onto define the notion of addition, 
multiplication, subtraction and division of these row interval 
matrices. 
 
 First we define the notion of order in a row interval matrix. 
 
 Let X = [A, B] be a row interval matrix where order of A 
and B is 1  n.  We define the order of X, the row interval 
matrix to be 1  n.  Thus X is a 1  n row interval matrix.   
 

We can add two row interval matrices if and only if they are 
of same order otherwise addition is not defined; for we cannot 
add a 1  5 row matrix with a 1  9 row matrix. 
 
DEFINITION 5.2:  Let X = [A, B] = [(a1, a2, …, an), (b1, b2, …, 
bn)] and Y = [C, D] = [(c1, c2, …, cn), (d1, d2, …, dn)] be any two 
1  n row matrix interval.  We define X + Y = [A, B] + [C, D] 
 
 = [A + C, B + D] 
 = [(a1, …, an) + (c1, …, cn), (b1, …, bn) + (d1, …, dn)] 
 = [(a1 + c1, …, an + cn), (b1 + d1, …, bn + dn)] 
 
 X + Y is again a 1  n row matrix interval. 
 
 We will first illustrate this by some examples. 
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Example 5.5:  Let X = [A, B] = [(3, 1, 5, 0, –3, 2), (7, 8, 9, 11, 
0, 1)] and Y = [C, D] = [(–5, 2, 3, –7, 8, 10), (–2, 11, 10, –4, 5, –
3)] be any two 1  6 row matrix intervals. 
 
 We see X + Y = [A, B] + [C, D] 
 
 = [(3, 1, 5, 0, –3, 2), (7, 8, 9, 11, 0, 1)] +  

[(–5, 2, 3, –7, 8, 10), (–2, 11, 10, –4, 5, –3)] 
 = [(3, 1, 5, 0, –3, 2) + (–5, 2, 3, –7, 8, 10), (7, 8, 9, 11, 0, 1)  

+ (–2, 11, 10, –4, 5, –3)] 
 = [(3 + (–5), 1+2, 5+3, 0+(–7), –3 + 8, 2+10),  

(7–2, 8+11, 9+10, 11+(–4) 0+5, 1 + (–3)) 
 = [(–2, 3, 8, –7, 5, 12), (5, 19, 19, 7, 5, –2)] 
is again a 1  6 row matrix interval. 
 
Example 5.6:  Let P = [A, B] = [(3, 7, 1), (5, 1, –3)] and  
 
R = [C, D] = [(–2, 1, 0), (–7, 5, 2)] be two 1  3 row matrix 
intervals. 
 P + R  = [A, B] + [C, D] 
      = [A + C, B + D]  

    = [(3, 7, 1) + (–2, 1, 0), (5, 1, –3) + (–7, 5, 2)]. 
 Now as in case of natural class of intervals we may have  
A + B > C + D or A + B < C + D or A + B not comparable with 
C + D or A + B = C + D. 
 
Example 5.7:  Let  
S = [(0, 0, 0, 0, 0, 0), (3, 1, 2, –5, 7, 2)= [S1, S2] and  
P = [(7, 2, 1, 0, 5, 1), (0, 0, 0, 0, 0, 0)] = [P1, P2] be any two  
1  6 row matrix intervals. 
 
 Now S + P = [S1, S2] + [P1, P2] 
 = [(S1 + P1), (S2 + P2)]  
 = [(0, 0, 0, 0, 0, 0) +  (7, 2, 1, 0, 5, 1), (3, 1, 2, –5, 7, 2)   

+ (0, 0, 0, 0, 0, 0)] 
 = [(7, 2, 1, 0, 5, 1), (3, 1, 2, –5, 7, 2)]  
 
is again a 1  6 row matrix interval. 
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 We observe that addition of 1  n row matrix intervals is 
commutative for if A = [A1, A2] and B = [B1, B2] then A + B = 
B + A. 
 
 Further addition of 1  n row intervals is associative, that is 
if A = [A1, A2], B = [B1, B2] and C = [C1, C2] then (A + B) + C 
= A + (B + C). 
 
 We define 0 = [(0, 0, …, 0), (0, 0, …, 0)] as the zero 
interval matrix or 1  n row zero matrix interval or 1  n row 
matrix zero interval.  0 acts as the additive identity.   
 

For if A = [A1, A2] and (0) = [(0), (0)]  then A + (0) =  
(0) + A = A for all A; 1  n row matrix interval.  Further if  
A = [A1, A2] then –A = [–A1, –A2] and A + (–A) = [(0), (0)]. 
 
 Let V = {[A, B] = M where A and B are 1  n row matrices 
with entries from R or Z or Q or Zn or C}; V is an additive 
abelian group of 1  n row matrix interval. 
 
 Now we can define product of two 1  n row matrix 
intervals.  Suppose A = [A1, B1] and B = [C1, D1] be two 1  n 
row matrix intervals; we define product AB as follows: 
 
 Let AB = [A1, B1] [C1, D1] 
 = [A1C1,  B1D1] 
 = [(a1, a2, …, an), (c1, c2, …, cn) (b1, b2, …, bn),  

(d1, d2, …, dn)] 
 = [(a1, c1, a2c2, …, ancn), (b1d1, b2d2, …, bndn)]. 
 
We see AB is again a 1  n row matrix interval. 
 
 We will illustrate this situation by some simple examples. 
 
Example 5.8:  Let  
V = [A, B] = [(5, 7, –2, 0, 7, 8, 9, 11), (3, 1, +2, 4, 0, 18, 3, 0)] 
and S = [S1, S2] = [(3, 2, 0, 1, 5, 0, –2, 0), (0, 4, 0, 2, 1, 0, 2, –4)] 
be two 1  8 row matrix intervals.   
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Consider VS = [A, B] [S1, S2] 
 = [AS1, BS2] 
 = [(5, 7, –2, 0, 7, 8, 9, 11), (3, 1, +2, 4, 0, 18, 3, 0),  

(3, 2, 0, 1, 5, 0, –2, 0), (0, 4, 0, 2, 1, 0, 2, –4)] 
 = [(15, 14, 0, 0, 35, 0, –18, 0), (0, 4, 0, 8, 0, 0, 6, 0)]  
 
is again a 1  8 row matrix interval. 
 
Example 5.9:  Let V = [(3, 2, 0, 5, 1), (7, 8, 1, 0, 3)] and  
M = [(0, 1, 2, 0, 5), (3, 0, 0, 7, 0)] be two 1  5 row matrix 
intervals.  Now  VM = [(3, 2, 0, 5, 1), (7, 8, 1, 0, 3), (0, 1, 2, 0, 
5), (3, 0, 0, 7, 0)] 
 = [(0, 2, 0, 0, 5), (21, 0, 0, 0, 0)] is again a 1  5 row matrix 
interval. 
 
Example 5.10:  Let A = [(–3, 2, 5, 1, 0, 2), (7, 0, 0, 8, 0, 1)] and 
B = [(0, 0, 0, 0, 8, 0), (0, 7, 5, 0, –3, 0)] be two 1  6 row matrix 
intervals.   
 

We see AB = [(–3, 2, 5, 1, 0, 2), (7, 0, 0, 8, 0, 1)]  
[(0, 0, 0, 0, 8, 0), (0, 7, 5, 0, –3, 0)] 

 = [(–3, 2, 5, 1, 0, 2), (0, 0, 0, 0, 8, 0), (7, 0, 0, 8, 0, 1)  
(0, 7, 5, 0, –3, 0)] 

=  [(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)]. 
 
 Thus A  [(0), (0)] and B  [(0), (0)], 
 but AB = [(0), (0)]. 
 
 Now we see if V = {M = [A, B] | collection of all 1  n row 
matrix intervals} then V is closed with respect to multiplication.  
The operation multiplication is commutative and associative on 
V; but we see V is only a commutative semigroup under 
multiplication.  For we see V has infinitely many zero divisors. 
 
Example 5.11:  Let M = [A, (0)] and [(0), B] = P be two 1  n 
row matrix intervals.  We see MP = [(0), (0)] is a zero divisor.   

 
Now we define subtraction of two 1  n row matrix interval.  

Suppose M = [(5, 3, –1, 0, 5), (3, 2, 4, 2, 0)] and P = [(3, 0, 1, 2, 
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4), (2, –1, 5, 4, –3)] be two 1  5 row matrix intervals.  We fine 
M – P = [(5, 3, –1, 0, 5), (3, 2, 4, 2, 0)] [(3, 0, 1, 2, 4), (2, –1, 5, 
4, –3)] = [(2, 3, –2, –2, 1), (1, 3, –1, –2, 3)] is again a 1  5 row 
matrix intervals. 

 
 The following points are pertinent to be observed. 

(1) The operation subtraction is not commutative. 
(2) The operation of subtraction is non associative. 

 
Consider A = [A1, B1] = [(3, 2, –1, 0), (8, 5, 1, 2)] and   

B = [A2, B2] = [(6, 3, 4, 8), (–4, 3, 2, 7)] two 1  4 row matrix 
intervals.  
 

A – B = [A1, B1] – [A2, B2] = [A1 – A2, B1 – B2] 
= [(3, 2, –1, 0) – (6, 3, 4, 8), (8, 5, 1, 2), (–4, 3, 2, 7)] 
= [(–3, –1, –5, –8), (12, 2, –1, –5)]. 

 
 Consider B – A = [A2, B2] – [A1, B1]  
 = [96, 3, 4, 8), (–4, 3, 2, 7)] – [(3, 2, –1, 0), (–4, 3, 2, 7)  

– (8, 5, 1, 2)] 
 = [(3, 1, 5, 8), (–12, –2, 1, 5)]. 
 A – B  B – A. 
 
 Thus the operation subtraction is non commutative. 
 
 It is easy to check A – (B – C) = (A – B) – C for any 1  n 
row matrix interval. 
 
 Consider A = (A1, B1), B = (A2, B2) and C = (A3, B3) be 
three 1  3 row matrix interval.  
 
 A = (A1, B1) = [(3, 2, 0), (–2, 1, 5)],  
 B = (A2, B2) = [(–3, –2, 4), (5, 3, –1)] 
and C = (A3, B3) = [(2, 4, 5), (0, 1, 2)]; 
 
 (A – B) – C = ([(3, 2, 0), (–2, 1, 5)] – [(–3, –2, 4), (5, 3, –1)]  

– [(2, 4, 5), (0, 1, 2)] 
 = [(6, 4, –4), (–7, –2, 6)] – [(2, 4, 5), (0, 1, 2)] 
 = [(4, 0, –9), (–7, –3, 4)]. 
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 A – (B – C) = [(3, 2, 0), (–2, 1, 5)] – ([(–3, –2, 4), (5, 3, –1)]  

– [(2, 4, 5), (0, 1, 2)]) 
 = [(3, 2, 0), (–2, 1, 5)] – [(–5, –6, –1), (5, 2, –3)] 
 = [(8, 8, 1), (–7, –1, 8)]. 
 Thus (A – B) – C  A – (B – C). 
 
 We now proceed onto define the notion of division of two  
1  n row matrix intervals. 
 
 Division of an 1  n row matrix interval A = [A1, B1] can be 
divided by B = [A2, B2] if and only if no coordinate in A2 and B2 
is zero: 
 
 That is if A = [A1, B1] = [(a1, a2, …, an), (b1, b2, …, bn)] 
and B = [(c1, c2, …, cn), (d1, d2, …, dn)]. 
 
Then A / B = [A1/A2, B1/B2] 
 = [(a1/c1, a2/c2, …, an/cn), (b1/d1, b2/d2, …, bn/dn)] where ci  
0 and di  0 for 1  i  n. 
 
 We see clearly A/B  B / A even if none of the coordinates 
in A1 and B1 is zero. 
 
 Also the division operation is non associative. 
 
 Now we can give better structure for the 1  n row matrix 
interval. 
 
THEOREM 5.1:  Let V = {M = [A, B] the collection of all 1  n 
row matrix intervals with entries from R or Q or Z or Zn or C or 
C(Zn)}; V is a commutative ring with unit and has zero divisors. 
 
 The proof is direct and hence is left as an exercise to the 
reader. 
 
 Note V in general is an infinite ring.  V is a finite ring only 
the entries of M are from Zn or C(Zn). 
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We will give one or two examples of this ring. 

 
Example 5.12:  Let  
M={P = [A, B] = [(a1, a2, a3), (b1, b2, b3)] | ai, bi  Z2; 1  i  3} 
be the collection of all 1  3 row matrix intervals. Clearly M is a 
finite commutative ring with zero divisors.  Further |M| = 64. 
 
Example 5.13:  Let  
P = {M = [A, B] = [(a1, a2), (b1, b2)] where ai, bi  Z, 1  i  2} 
be the collection of all 1  2 row matrix intervals P is a ring.  P 
has no units but zero divisors.  P is of infinite order. 
 
Example 5.14:  Let K = {M = [A, B] = [(a1, …, a10), (b1, …, 
b10)] | ai, bi  C, 1  i  10} be a collection of all 1  10 row 
matrix intervals, K is a ring of infinite order. 
 
 We can define substructures on these structures.  This is 
simple and hence is left as an exercise; these rings have subrings 
and ideals. 
 
 Now we bring in the representation / connection between  
1  n row matrix intervals and 1  n interval matrices. 
 

We know N = ([a1, b1], …, [an, bn]) is a 1  n row interval 
matrix and M = [A, B] 

 
 = [(a1, …, an), (b1, …, bn)] is a 1  n row matrix interval. 
 
 We see every M can be made into N and vice verse. 
 

Consider N = ([a1, b1], …, [an, bn]) = [(a1, …, an), (b1, …, bn)] 
 
(by taking the first components of every interval in N together 
and the second components of every interval in N together. 
 
Consider M = [(a1, …, an), (b1, …, bn)] = ([a1, b1], …, [an, bn]). 
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Write M as n intervals by taking the first component of A 
and first component of B to form the first interval [a1, b1] and so 
on we see M = [A, B] becomes N and N becomes M. 

 
 Now we proceed onto define the notion of n  1 column 
matrix interval. 
 
DEFINITION 5.3:  Let  
 

M = [A, B] = 

    
    
    
    
         

 

1 1

2 2

m m

a b
a b

,

a b

 

 
be a pair of column matrices.  We define M to be a m  1 
column matrix interval. 
 
 From now on wards if we say a m  1 column matrix 
interval we mean a pair [A, B] where A and B are m  1 column 
matrices (vectors). 
 
 We will illustrate this situation by an example. 
 
Example 5.15:  Let  
 

M = 

5 1
3 2
2 3

,0 4
7 5
8 6
1 7

    
    
    
    
    
    
    
    
    
        

 , 

 
M is a 7  1 column matrix interval. 
 



166 Innovative Uses of Matrices 
 
 
 
 
 
 

 
 
 
Example 5.16:  Let  
 

P = 

3 8
0 2

,1 7
2 5
4 3

    
        
    
    
    
        

 , 

 
be a 5  1 column matrix interval. 
 
 
Example 5.17:  Let  
 

T = 

8 0
3 2
1 4

,
2 3
1 0
7 4

    
    
    
    
    
    
    
            

 

 
be a 6  1 column matrix interval.   
 

We can add only two column matrix intervals of same 
order; just as in case of usual m  1 column matrix interval.   

 
 We will just show how addition of two m  1 column 
matrix intervals is obtained. 
 



Interval Matrices and Natural Class of Intervals 167 
 
 
 
 
Example 5.18:  Let  
 

M = 

8 2
2 0
0 2

,4 5
5 1
7 8
1 2

    
    
    
    
    
    
        
    
        

 and N = 

2 3
1 2
5 1

,4 4
0 3
3 2
5 4

    
    
    
    
    

    
    
    
    
        

 

 
 
be two 7  1 column matrix intervals. 
 
 
 

 We find M + N = 

8 2
2 0
0 2

,4 5
5 1
7 8
1 2

    
    
    
    
    
    
        
    
        

 + 

2 3
1 2
5 1

,4 4
0 3
3 2
5 4

    
    
    
    
    

    
    
    
    
        

 

 
 

= 

8 2 2 3
2 1 0 2
0 5 2 1

,4 4 5 4
5 0 1 3
7 3 8 2
1 5 2 4

         
        
        
        
                  
                
        
                
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 = 

10 5
3 2
5 1

,8 1
5 4

10 10
4 6

    
    
    
    
    
    
    
    
    
        

 

 
is again a 7  1 column matrix interval. 
 
Example 5.19:  Let  
 

M = 

6 1
7 2

,8 3
9 4
0 5

    
    
    
    
    
    
        

 and P = 

5 0
4 1

,3 2
2 0
1 3

    
        
    
    
    
        

 

 
be any two 5  1 column matrix intervals.  
 

M + P = 

6 1
7 2

,8 3
9 4
0 5

    
    
    
    
    
    
        

 + 

5 0
4 1

,3 2
2 0
1 3

    
        
    
    
    
        

 

 

= 

6 5 1 0
7 4 2 1

,8 3 3 2
9 2 4 0
0 1 5 3

        
                
         
        
        
                
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= 

11 1
11 1

,5 5
11 4

1 8

    
    
    
    
    
    
        

 

 
is a 5  1 column matrix interval. 
 
 We see addition of two n  1 column matrix intervals is 
commutative and associative. 
 

 0 = 

0 0
0 0

,

0 0

    
    
    
    
         

 
 is the zero column matrix interval. 

 
 Further for every  
 

 
 

M = 

1 1

2 2

n n

a b
a b

,

a b

    
    
    
    
         

 
 we have –M = 

1 1

2 2

n n

a b
a b

,

a b

     
         
    
          

 
 

 
 

and M + (–M) = 

0 0
0 0

,

0 0

    
    
    
    
         

 
. 

 
 Inview of all this we have the following theorem. 
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THEOREM 5.2:  Let  
 

V=

     
     
                     

 

1 1

2 2

m m

a b
a b

M ,

a b

 ai, bi  Z or R or C(Zn) or Q or Zn or C} 

 
be the collection of all n  1 column matrix intervals. V is an 
abelian group under addition. 
 
 The proof is simple and hence is left as an exercise for the 
reader. 
 
 Clearly if M and N be two n  1 column matrix intervals 
then MN cannot be defined or found. 
  
Example 5.20:  Let  
 

M =

1 1

2 2

3 3

4 4

a b
a b

P ,
a b
a b

     
     
                     

 where ai, bi  Z3, 1  i  4} 

 
be the collection of all 4  1 column matrix interval.  M is an 
abelian group under addition of finite order. 
 
Example 5.21:  Let  
 

W =

1 1

2 2

7 7

a b
a b

S ,

a b

     
     
                     

 
 where ai, bi  Z, 1  i  7} 

 
be a 7  1 column matrix interval group of infinite order.  
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 Now having seen examples of m  1 column matrix interval 
group.  We now proceed onto define m  n matrix intervals  
(m  n). 
 
 We will illustrate this by some examples. 
 

Let P = 

11 1n 11 1n

21 2n 21 2n

m1 mn m1 mn

a ... a b ... b
a ... a b ... b

,

a ... a b ... b

    
    
    
    
         

   
 

 
where aij, bij  Z or Q or R or C or C (Zn) or Zn. 1  i  m and 1 
 j  n}.  We say P is a m  n matrix interval.  
 
 We will illustrate this by some examples before we define 
some operations of these sets. 
 

Let P = 

3 0 1 4 3 5 1 2
5 3 4 0 0 1 2 0

,1 2 3 4 1 2 0 4
7 0 8 4 5 1 6 2
0 1 0 2 0 0 1 1

    
    
    
    
    
    
        

, 

 
P is a 5  4 matrix interval.   
 
We can as in case of row / column matrix intervals add any m  
n matrix interval. 
 
 Consider  
 

M = 

3 4 0 2 8 4
2 0 1 0 1 2

,
0 4 3 1 0 1
7 1 0 6 4 0

    
         
    
         

   and 
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N = 

2 1 4 1 2 3
0 3 1 4 5 6

,
2 0 4 7 8 9
5 1 0 0 1 2

     
         
     
         

 

 
be two 5  5 matrix intervals.  We find M + N  as follows: 
 

M + N = 

3 4 0 2 8 4
2 0 1 0 1 2

,
0 4 3 1 0 1
7 1 0 6 4 0

    
         
    
         

 + 

2 1 4 1 2 3
0 3 1 4 5 6

,
2 0 4 7 8 9
5 1 0 0 1 2

     
         
     
         

 

 

= 

3 4 0 2 1 4 2 8 4 1 2 3
2 0 1 0 3 1 0 1 2 4 5 6

,
0 4 3 2 0 4 1 0 1 7 8 9
7 1 0 5 1 0 6 4 0 0 1 2

          
                              
                 

 

 

= 

1 5 4 1 6 7
2 3 0 4 4 4

,
2 4 1 8 8 10

12 2 0 6 5 2

    
         
    
         

 

 
is again a 4  3 matrix interval.  Thus we can add matrix 
intervals of same order. 
 
 In view of this we have the following theorem. 
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THEOREM 3.3:  Let V = {[[aij]mn,  [bij]mn] where aij, bij  Zn or 
C(Zn) or Z or Q or R or C, 1  i  m, 1  j  n} be the m  n 
matrix interval.  V is an additive abelian group. 
 
 If elements of V are in Zn or C(Zn) then V is finite otherwise 
V is infinite. 
 
 However multiplication is not defined on V as 
multiplication is not compatible. 
 
Example 5.22:  Let  
 

V = 
1 2 1 2

3 4 3 4

5 6 5 6

a a b b
a a , b b
a a b b

    
    
    
         

 ai, bj  Z5, 1  i, j  6} 

 
be the additive 3  2 matrix interval.  V is a group of finite order 
and V is commutative. 
 
Example 5.23:  Let  
 

M = 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

a a a a b b b b
,

a a a a b b b b

    
    
    

 

ai, bj  Z, 1  i, j  8} 
 

be the additive 2  8 matrix group interval.  M is of finite order 
and is commutative. 
 
Example 5.24:  Let  
 

P = 
a b e f

,
c d g h

    
    
    

 and T = 1 1 1 1

1 1 1 1

a b e f
,

c d g h
    
    
    

 

 
be two 2  2 matrix intervals. 
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 We define  
 

P + T =
a b e f

,
c d g h

    
    
    

 +  1 1 1 1

1 1 1 1

a b e f
,

c d g h
    
    
    

 

 

= 1 1 1 1

1 1 1 1

a a b b e e f f
,

c c d d g g h h
       
           

 

is again a 2  2 matrix intervals. 

PT = 
a b e f

,
c d g h

     
           

1 1 1 1

1 1 1 1

a b e f
,

c d g h
     
           

 

 

= 1 1 1 1

1 1 1 1

a b e fa b e f
,

c d g hc d g h
       
       
       

 

 

= 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

aa bc ab bd ee fg ef fh
,

ca dc cb dd ge hg gf hh
       
           

 

 
is again a 2  2 matrix interval. 
 

TP = 1 1 1 1

1 1 1 1

a b e f
,

c d g h
    
    
    

a b e f
,

c d g h
    
    
    

 

 

= 1 1 1 1

1 1 1 1

aa b c a b b d ae bg af bh
,

c a d c bc d d ce dg cf dh
       
          

. 

 
Clearly PT  TP.   
 

Thus the product of two square matrix intervals is in general 
non commutative.   

 
Further we see the product of square matrix intervals can 

also be zero. 
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Example 5.25:  Let  
 

P = 
3 0 1 1 0 2
2 1 0 , 0 2 1
0 2 1 2 0 1

    
    
    
        

  and  

R = 
0 3 1 1 0 2
1 2 0 , 0 3 1
0 1 2 6 1 0

    
    
    
        

 

 
be any two 3  3 matrix interval.  
 

PR = 
3 0 1 1 0 2
2 1 0 , 0 2 1
0 2 1 2 0 1

    
    
    
        

  
0 3 1 1 0 2
1 2 0 , 0 3 1
0 1 2 6 1 0

    
    
    
        

 

 

= 
3 0 1 0 3 1 1 0 2 1 0 2
2 1 0 1 2 0 , 0 2 1 0 3 1
0 2 1 0 1 2 2 0 1 6 1 0

      
      
      
            

 

 

= 
0 8 1 17 2 2
1 8 2 6 7 2
2 5 2 8 1 4

   
   
   
      

 

 
is a 3  3 matrix interval. 
 
 Consider  
 

RP = 
0 3 1 1 0 2
1 2 0 , 0 3 1
0 1 2 6 1 0

    
    
    
        

  
3 0 1 1 0 2
2 1 0 , 0 2 1
0 2 1 2 0 1

    
    
    
        
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= 
0 3 1 3 0 1 1 0 2 1 0 2
1 2 0 2 1 0 , 0 3 1 0 2 1
0 1 2 0 2 1 6 1 0 2 0 1

      
      
      
            

 

 

= 
6 5 1 5 0 4
7 2 1 , 2 6 4
2 5 2 6 2 13

    
        
        

 

 
is again a 3  3 matrix interval.  However RP  RP. 
 
Example 5.26:  Let  
 

M = 

0 2 1 0 4 0 1 0
4 0 0 1 0 2 0 4

,
1 0 2 0 1 1 0 0
0 3 4 0 0 0 1 0

    
    
    
    
    
     

 and  

 

N = 

1 0 2 1 0 1 0 1
0 1 0 2 2 0 1 0

,
1 1 0 0 1 0 2 0
0 1 0 1 0 2 0 1

    
    
    
    
    
     

 

 
be two 4  4 matrix intervals.  
 

Now N + M= 

1 2 3 1 4 1 1 1
4 1 0 3 2 2 1 4

,
2 1 2 0 2 1 2 0
0 4 4 1 0 2 1 1

    
    
    
    
    
     

 

 
is again a 4  4 matrix interval. 
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 Consider MN =  
 

0 2 1 0 1 0 2 1 4 0 1 0 0 1 0 1
4 0 0 1 0 1 0 2 0 2 0 4 2 0 1 0,1 0 2 0 1 1 0 0 1 1 0 0 1 0 2 0
0 3 4 0 0 1 0 1 0 0 1 0 0 2 0 1

      
      
      
                  

 

 

= 

1 3 0 4 1 4 2 4
4 1 8 5 4 8 10 4

,
1 2 2 1 2 1 1 1
4 7 0 6 1 0 2 0

    
        
    
    
     

 

 
is a 4  4 matrix interval.  
 
 Now NM =  
 

1 0 2 1 0 2 1 0 0 1 0 1 4 0 1 0
0 1 0 2 4 0 0 1 2 0 1 0 0 2 0 4

,
1 1 0 0 1 0 2 0 1 0 2 0 1 1 0 0
0 1 0 1 0 3 4 0 0 2 0 1 0 0 1 0

      
      
      
      
      
       

 

 

= 

2 1 7 0 0 2 1 4
4 6 8 1 9 1 2 0

,
4 2 1 1 6 2 1 0
4 3 4 1 0 4 1 8

    
    
    
    
    
     

 

 
is a 4  4 matrix interval.   
 

We see MN  NM.  We have the following theorem. 
 
THEOREM 5.4:  Let V = [[aij]mm,  [bij]mm] be a collection of m 
 m interval matrices with aij, bij  Zn or C(Zn) or Z or Q or R 
or C.  V is a non commutative ring with respect to matrix 
interval addition and multiplication. 
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 This proof is direct and simple and hence left as an exercise 
for the reader to prove. 
 
 Clearly V is a ring with zero divisors units and idempotents. 
 
 Further we see as in case of row matrix interval we can in 
case of square matrix interval also obtain the square interval 
matrix.  Also from a square interval matrix find the square 
matrix interval.   
 
 This we will illustrate by some examples. 
 
Example 5.27:  Let  
 

V = 

5 0 1 2 3 5 1 2
3 5 4 1 0 15 1 5

,
2 3 0 4 1 2 3 0
0 1 6 0 0 1 0 7

    
        
    
    
     

 

 
be a 4  4 matrix interval.  We have V = [V1, V2] = [(aij), (bij)].  
Now we can write V = ([aij, bij]). 
 

V = 

[5,3] [0, 5] [1,1] [2,2]
[3,0] [5,15] [4, 1] [1,5]
[2,1] [3,2] [0,3] [4,0]
[0,0] [1,1] [6,0] [0,7]

 
  
 
 
 

 

 

= 

[5,3] [0, 5] 1 2
[3,0] [5,15] [4, 1] [1,5]
[2,1] [3,2] [0,3] [4,0]

0 1 [6,0] [0,7]

 
  
 
 
 

 

 
is clearly a 4  4 interval matrix where intervals in V are 
increasing or decreasing or degenerate intervals. 
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 Thus given a 4  4 matrix interval we can convert it into a  
4  4 interval matrix. 
 
 Now we just show how an interval square matrix M can be 
written as a square interval.  Consider  
 

M = 

[0,1] [2,3] [5,0] [1,1] [2, 1]
[4,2] [0,0] [7,1] [8,0] [0,5]
[1,1] [2,4] [3,3] [1, 1] [8,9]
[7,1] [4,3] [1,2] [10,0] [4,4]
[8,5] [7,7] [2,0] [5,5] [3,7]

 
 
 
 
 
 
  

 

 
be a 5  5 interval matrix. 
 

Write M = 

0 2 5 1 2 1 3 0 1 1
4 0 7 8 0 2 0 1 0 5

,1 2 3 1 8 1 4 3 1 9
7 4 1 10 4 1 3 2 0 4
8 7 2 5 3 5 7 0 5 7

    
    
    
    
    
    
        

 

 
 = [M1, M2]; M is a 5  5 matrix interval.  Thus we have the 
following theorem the proof of which is direct and simple. 
 
THEOREM 3.5:  Let M = ([mij, nij]) be a n  n interval matrix.  
Then M = [(mij), (nij)] is a n  n matrix interval. Conversely if A 
= [(aij), (bij)] is a n  n matrix interval then A = ([aij, bij]) is a  
n  n interval matrix. 
 
 The proof is left as an exercise to the reader. 
 
 Thus we see we can have in case of square matrix intervals 
the notion of determinant of intervals.  If M = [M1, M2] where 
M1 and M2 are n  n matrices then the determinant interval M is 
denoted by |M| = |[M1, M2]| = [|M1|, |M2|]. 
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 We will first illustrate this situation by some simple 
examples. 
 
Example 5.28:  Let  
 

P = 
3 4 4 1

,
5 7 2 7

    
        

 

 
be a 2  2 matrix interval. 
 
 Determinant interval of P denoted by  
 

|P| = 
3 4 4 1

,
5 7 2 7

    
        

 

 

= 
3 4 4 1

,
5 7 2 7

 
  

 

 
= [1, 30] is again an interval matrix. 

 
Example 5.29:  Let  
 

A = 
3 7 1 7 0 1
0 5 4 , 0 1 0
2 0 1 5 0 1

    
    
    
        

 

 
be a 3  3 matrix interval. 
 

|A| = 
3 7 1 7 0 1
0 5 4 , 0 1 0
2 0 1 5 0 1

    
    
    
        
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 = 

3 7 1 7 0 1
0 5 4 , 0 1 0
2 0 1 5 0 1

 
 
 
  

 

 

=  
5 4 0 4 0 5

3 7 1 ,
0 1 2 1 2 0


 


 

 
1 0 0 0 0 1

7 0 1
0 1 5 1 5 0


    

 

 
= [61, –12] is the interval determinant. 

 
 Now we show how inverse of an interval matrix can be 
found. 
 
 Suppose M = [M1, M2] is a n  n matrix interval, then  
M–1 = 1 1

1 2M ,M    . 
 
 Thus MM–1 = 1 1

1 1 2 2M M ,M M     
 
    = 1 1

1 1 2 2M M ,M M     
 
    = M–1M 
 
    = [In, In]. 
 

We can use any known method to determine the inverse of a 
n  n matrix interval. 
 
 We can use Gauss - Jordan method to find inverse for a 
matrix interval. 
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Suppose  
 

M = 

11 12 1n 11 12 1n

21 22 2n 21 22 2n

n1 n2 nn n1 n2 nn

a a ... a b b ... b
a a ... a b b ... b

,

a a a b b b

    
    
    
    
         

     
 

  
= [A, B] = [(aij), (bij)] then the rows of A are denoted by R11, 

R12, …, R1n and the rows of B are denoted by R21, R22, …, R2n 
we write M as 
 

11 12 1n

21 22 2n

n1 n 2 nn

a a ... a 1 0 ... 0
a a ... a 0 1 ... 0

a a a 0 0 ... 1

 
 
 
 
 
 

     
, 

 

11 12 1n

21 22 2n

n1 n2 nn

b b ... b 1 0 ... 0
b b ... b 0 1 ... 0

b b b 0 0 ... 1

 
 
 
 
 
 

     
.   

 
 
We by row operations on A and B make A and B to Inn 

identity matrices and all the operations are done on A and B are 
also simultaneously performed on Inn.  

 
The adjoined matrices Inn turns to be A–1 and B–1 

respectively.  That is M–1 = [A–1, B–1]. 
 

 For instance if 
 
 M = [A, B] = [(aij), (bij)] 
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 = 

3 1 1 1 5 2
0 1 2 , 0 0 2
0 0 1 0 1 3

    
    
    
        

 to find M–1. 

 

M~  
3 1 1 1 0 0 1 5 2 1 0 0
0 1 2 0 1 0 , 0 0 2 0 1 0
0 0 1 0 0 1 0 1 3 0 0 1

    
    
    
        

 

 

11 13

11

21 22

21

R R
R

R R
R



= 
3 1 0 1 0 1 1 5 0 1 1 0
0 1 2 0 1 0 , 0 0 2 0 1 0
0 0 1 0 0 1 0 1 3 0 0 1

     
    
    
        

 

 
12 13

12

21

R 2R
R

R / 2




3 1 0 1 0 1 1 5 0 1 1 0
0 1 0 0 1 2 , 0 0 1 0 1/ 2 0
0 0 1 0 0 1 0 1 3 0 0 1

     
         
        

 

 
11 12

11

23 22

23

R R
R

R 3R
R




3 0 0 1 1 1 1 5 0 1 1 0
0 1 0 0 1 2 , 0 0 1 0 1/ 2 0
0 0 1 0 0 1 0 1 0 0 3/ 2 1

      
         
        

 

 

11

21 23

11
22 23

R / 3
R 5R

R
R R






1 0 0 1/ 3 1/ 3 1/ 3 1 0 0 1 13/ 2 5
0 1 0 0 1 2 , 0 1 0 0 3/ 2 1
0 0 1 0 0 1 0 0 1 0 1/ 2 0

     
          
        

 

 
 

Now M–1 = 
1/ 3 1/ 3 1/ 3 1 13/ 2 5

0 1 2 , 0 3/ 2 1
0 0 1 0 1/ 2 0

     
         
        

. 

 

MM–1 =  
3 1 1 1/ 3 1/ 3 1/ 3 1 5 2 1 13/ 2 5
0 1 2 0 1 2 , 0 0 2 0 3/ 2 1
0 0 1 0 0 1 0 1 3 0 1/ 2 0

       
             
            
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= 
1 0 0 1 0 0
0 1 0 , 0 1 0
0 0 1 0 0 1

    
    
    
        

 = [I3, I3]. 

 
Also  
 

M–1M =  
1/ 3 1/ 3 1/ 3 3 1 1 1 13/ 2 5 1 5 2

0 1 2 0 1 2 , 0 3/ 2 1 0 0 2
0 0 1 0 0 1 0 1/ 2 0 0 1 3

       
             
            

 

 

= 
1 0 0 1 0 0
0 1 0 , 0 1 0
0 0 1 0 0 1

    
    
    
        

= [I3, I3]. 

 
 Thus MM–1 = M–1M.  M–1 is the inverse matrix interval of 
M. 
 
 We can using Gauss Jordan method to find the inverse 
matrix interval. 
 
 Now we can use the method of row reduction and bring a  
m  n matrix interval M to row-reduced echelon matrix interval. 
 

(i) If the m  n matrix interval M = [M1, N1] is row 
reduced  

 
(a) If the first non zero entry in each non zero row of 

M1 and N1 is equal to 1 in M. 
 
(b) Each column of M1 and N1 in M which contains 

the leading non zero entry of some row has all its 
other entries 0. 

 
(ii) Every row of M1 and N1 which has all its entries 0 

occurs below every row which has a non zero entry. 
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(iii) If rows R11, R12, …, 
11sR  and R21, R22, …, 

22sR  are 
non zero rows of M1 and N1 respectively and if the 
leading non zero entry of rows p and q occurs in kp 
and tq respectively of M1 and N1; p = 1, 2, …, s1 and  
q = 1, 2, …, s2 with k1 < k2 < … < 

1s
k and t1 < t2 <  

… < 
2st . 

 

We can also describe an m  n row reduced echelon matrix 
interval M = (M1, N1) as follows: 

 
Here M = [(mij), (nij)] = [M1, N1]. 
 
Either every entry in M1 and N1 is 0 or there exists positive 

integers s1, s2; 1  s1, s2  m and s1 and s2 positive integers.  k1, 
1s

k , and t1, t2, …, 
2st with 1  ki, tj  n and 

 
(a) mij = 0 and npv = 0 if i > s1 and mij = 0 if j < kj and 

p > s2 and npv = 0 if v < tv. 
 
(b) miki = ij; 1  i  s1, 1  j  s1 iptn = pv; 1  p  s2; 

1  v  s2. 
 

(c) k1 < k2 < … < 
1s

k and t1, t2 < … <
2st . 

 
 We just give examples of 3  5 row reduced echelon matrix 
interval R = [R1, R2] 
 

= 
0 1 2 0 1/ 3 0 1 5 0 1/ 7
0 0 0 1 5 , 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0

     
    
    
        

. 

 
 The following theorem is simple and hence is left as an 
exercise to the reader. 
 
THEOREM 5.6:  Every m  n matrix interval M = (M1, N1) is 
row equivalent to a row reduced echelon m  n matrix interval. 
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 P(x) is the polynomial intervals we have introduced the 
notion of interval polynomials in [55] and have discussed their 
related properties.  
 
 Suppose we have two sets of m-linear equations in n 
unknowns. 
 
say    A11 x1 + A12 x2 + … + A1n xn = y1 
  A21 x1 + A22 x2 + … + A2n xn = y2 
                                              
  Am1x1 + Am2x2 + … + Amnxn = ym 
 
where y1y2 … ym and Aij; 1  i  m, 1  j  n are given elements 
of a field F. 
 
 Any n tuple (x1, …, xn) of elements of F which satisfies 
each of the equations is a solution of the systems.  
 
 Consider another set of m-linear equations in n-unknowns. 
 
say    B11 1x  + B12 2x  + … + B1n nx  = z1 
  B21 1x  + B22 2x  + … + B2n nx  = z2 
                               
  Bm1 1x  + Bm2 2x  + … + Bmn nx  = zm 
 
where z1, z2 ,…, zm and Bij; 1  i  m, 1  j  n are given 
elements of F. 
 
 Any n tuple ( 1x , …, nx ) of elements of F which satisfies 
the equations is called the solution of the systems.  
 
 If y1 = y2 = … = ym = 0 and z1 = z2 = … = zm = 0 is 
homogeneous set of equations or that each of the equations is 
homogeneous. 
 
 We now define the notion of interval system of m linear 
equations in n interval unknowns. 
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 Consider  
 

11 1 1n n 11 1 1n n

21 1 2n n 21 1 2n n

m1 1 mn n m1 1 mn n

A x ... A x B x ... B x
A x ... A x B x ... B x

A x ... A x , B x ... B x

     
      
 
      

   
 = 

1 1

2 2

m m

y z
y z

,

y z

    
    
    
    
    
     

 
  

 
              (5.1) 

 
(5.1) is a system of m linear interval equations in interval n 
unknowns.  A row matrix interval [(x1, x2, …, xn), ( 1x , 2x , …, 

nx )] of elements from the field F which satisfies each of 
equations (5.1) is called the solution interval of the system. 
 
 We will first give some examples. 

 

Consider 
1 2 3 1 2 3

1 3 2 3

1 2 3 1 2

3x x x x x 7x
x 3x x 4x

4x 2x 5x 7x 2x

     
   
     

 

 

= 
7 2
3 0
1 8

    
    
    
         

 

 
is an 3-linear interval equations in 3 unknowns. 
 
 We give yet another example. 
 
Take  
 

1 2 3 4 5 2 3 5

1 2 4 5 1 2 4 5

2 3 4 5 1 3 4 5

3 5 1 2 5

x 3x x 4x x 3x 4x x
8x x x 5x 2x 4x x 2x

7x 5x 4x 2x x 3x x 5x
x 4x x x x

       
       
      
 

   

= 

4 1
2 2

,
3 3
0 2

    
    
    
    
    

     
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this is again a 4-linear interval equations in 5 unknowns. 
 
Yet we consider another example. 
 

1 2 3 4 2 3 4

1 3 4 1 3 4

2 3 4 3 2 1

1 2 3 1 2 3 4

1 3 4 2 3 4

5x x x 2x x 3x 4x
3x x 2x 2x x x
5x x 3x 3x x x
7x x 8x 3x x 4x x
2x 5x 2x 5x 3x 2x

     
     
    
 

     
      

 = 

3 0
1 2

,2 1
1 4
0 5

    
        
    
    
    
        

 

 
is again a 5-linear interval equations in four unknowns. 
 
 Now we can give these linear interval equations a matrix 
interval equations representations which is as follows. 
 

11 12 1n 11 12 1n

21 22 2n 21 22 2n

m1 m2 mn m1 m2 mn

A A ... A B B ... B
A A ... A B B ... B

,

A A ... A B B ... B

    
    
    
    
    
     

     
  

 
([(x1, …, xn), ( 1x , …, nx )]) 

 

= 

1 1

2 2

m m

y z
y z

,

y z

    
    
    
    
    
     

 
. 

 
Here [A, B] [X, X] = [Y, Z] where A = (Aij), B = (Bij) 
 
 X=  (x1, …, xn) and X = ( 1x , …, nx ). 
 

We call [A, B] the matrix interval of coefficients of the 
system. 
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 Thus this m  n matrix interval with entries from the field F 
is a function [A, B] from the set of pairs of integers (i, j); 1  j  
m; 1  j  n, into the field F.  The entries of the matrix interval 
[A, B] are scalar intervals [A(i, j), B(i, j)] = [Aij, Bij] and quite 
often it is convenient to describe this matrix interval by 
displaying it entries in a rectangular interval array having m row 
intervals and n column intervals.  [X, X] is a n  1 matrix 
interval and [Y, Z] is a m  1 matrix interval. 
 
 Thus [A, B] [X, X] = [Y, Z] or [AX, BX] = [Y, Z] is 
nothing more than a shorthand notation of the system of linear 
interval equation. 
 
 Just like in usual matrices we can define row equivalent  
m  n matrix interval [A, B], [A, B] such that [AX, BX] = 
[(0), (0)] and [AX, BX] = [(0), (0)] have exactly the same 
interval solutions (solution intervals).  
 
 The proof of this result is direct and can be derived by any 
interested reader. 
 
 We can as in case of usual simple matrices say a n  n 
matrix interval M = [A, B] is an invertible n  n matrix interval 
and N = [C, D] is another n  n invertible matrix interval then 
 

(1) M–1 = [A, B]–1 = [A–1, B–1] 
and (M–1)–1 = [A–1 B–1]–1 

    = [A, B] (since (A–1)–1 = A. 
and (B–1)–1 = B). 

 
 If both M = [A, B] and N = [C, D] are invertible n  n 
matrix interval then so is MN and (MN)–1 = N–1M–1. 
 
 Further it can be easily verified that product of n  n 
invertible matrix intervals is invertible.  Further if A = [A1, B1] 
is invertible matrix interval; that is A row equivalent with  
I = [In, In] the n  n identity matrix interval. 
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If A = [A1, B1] is an n  n invertible matrix interval then  
AX = [(0), (0)]; that is [A1X1, B1X2] = [(0), (0)] has only the 
trivial solution X = [X1, X2] = [(0), (0)]. 
 
 The system of interval equations AX = Y  
 

[A1, B1] [X1, X2] = [Y1, Y2] that is  
 
[A1X1, B1X2] = [Y1, Y2] has a solution  
 
X = [X1, X2] for each n  1 matrix interval Y = [Y1, Y2]. 

 
We can define as in case of usual square matrices define 

these notions in case of square matrix intervals. 
 
Let A = [A1, B1] be a n  n matrix interval over the field F.   
 
The principal interval minors or minor intervals of  

A = [A1, B1] = [(Aij), (Bij)]; 1  i, j  n are scalars  
 
k(A) = [k(A1), k(B1)] defined by  
k(A) = [k A1, kA2] 
 

= 

11 1k 11 1k

21 2k 21 2k

k1 kk k1 kk

A ... A B ... B
A ... A B ... B

det , det

A ... A B ... B

    
    
    
    
    
     

   
 where 1  k  n. 

 
 Let A = [A1, A2] be a n  n matrix interval we say A is a n  
n upper triangular matrix interval if both A1 and A2 are upper 
triangular matrix interval. 
 
 Consider M = [M1, N1]  
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= 

11 12 1n 11 12 13 1n

22 2n 22 23 2n

3n 33 3n

4n 4n

nn nn

M M ... M N N N ... N
0 M ... M 0 N N ... N
0 0 ... M 0 0 N ... N

,
0 0 ... M 0 0 0 ... N

0 0 ... M 0 0 0 ... N

    
    
    
    
    
    
    
            

      

 

 
 

that is M = 

5 7 2 0 2 1 0 4
0 1 5 7 0 3 1 2

,
0 0 3 2 0 0 4 0
0 0 0 1 0 0 0 7

    
          
    
    
     

 

 
is a 4  4 upper triangular matrix interval.  
 
 Take A = [A1, B1] be a n  n square matrix interval.  If both 
A1 and B1 are n  n lower triangular matrices then we define A 
to be a n  n lower triangular matrix interval.  
 
 We will just give an example before we proceed onto define 
further structures. 
 
 Let  
 

P = [P1, P2] = 

5 2 0 0 1 7 6 4 0 2
0 7 0 6 3 0 1 0 5 0

,0 0 5 2 1 0 0 2 2 2
0 0 0 6 1 0 0 0 1 4
0 0 0 0 8 0 0 0 0 7

    
    
    
    
    

    
        

 

 
is a 5  5 upper triangular matrix interval.  
 
 Consider PT = [P1, P2]T = [ T T

1 2P ,P ]  
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= 

5 0 0 0 0 7 0 0 0 0
2 7 0 0 0 6 1 0 0 0

,0 0 5 0 0 4 0 2 0 0
0 6 2 6 0 0 5 2 1 0
1 3 1 1 8 2 0 2 4 7

    
    
    
    
    

    
        

, 

 

we see PT is a lower triangular matrix interval. 
 
 Consider A = [A1, B1] 
 

= 

6 0 0 0 2 0 0 0
7 1 0 0 0 5 0 0

,
8 2 4 0 1 2 7 0
0 5 1 2 3 0 1 5

    
    
    
    
    
     

 

 
be a 4  4 lower triangular matrix interval.   
 

At = [ t t
1 1A ,B ] = 

6 7 8 0 2 0 1 3
0 1 2 5 0 5 2 0

,
0 0 4 1 0 0 7 1
0 0 0 2 0 0 0 5

    
    
    
    
    
     

 

is a 4  4 lower triangular matrix interval.   
 

Thus we see by taking transpose we can easily covert a  
n  n lower triangular matrix interval into a n  n upper 
triangular matrix interval and vice versa. 

 
 We can easily verify the following statements are equivalent 
in case of an invertible n  n matrix interval A = [A1, A2]; 
 

(a) There is an upper triangular matrix interval  
P = [P1, P2] =    1 2

ij ijP , P 
   with 1

kkP  = 2
kkP  = 1; 1  k 

 n such that B = AP = [A1P1, A2P2] = [B1, B2] is a 
lower triangular matrix interval. 
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(b) The principal minors of A = [A1, A2]; that is the 
principal minors of A1 and A2 are all different from 0. 

 
We call A = [A1, A2] to be a n  n diagonal matrix interval 

if  A = [A1, A2] = [(Aij), (Bij)] than Aij = 0 and Bij = 0 if i  j,  
1  i, j  n. 

 

Thus [P1, P2] = 

7 0 0 0 8 0 0 0
0 8 0 0 0 6 0 0

,
0 0 1 0 0 0 1 0
0 0 0 5 0 0 0 7

    
    
    
    
    

     

 

 
is a 4  4 diagonal matrix interval. 
 

Further it can be easily verified if A = [A1, A2]  = [(aij), (bij)] 
be a n  n square upper triangular matrix interval that is if aij = 
0, bij = 0 for i > j, that is every entry below the main diagonal is 
zero.  A is invertible if and only if every entry on the main 
diagonal of both A1 and A2 are different from zero.   

 
For instance  
 

A = 
8 0 4 3 1 2
0 5 1 , 0 5 7
0 0 8 0 0 1

    
    
    
        

 

 
the upper triangular matrix interval is invertible, where as  
 

P = 

8 0 4 8 1 2 0 5
0 0 5 9 0 1 2 3

,
0 0 7 4 0 0 0 5
0 0 0 2 0 0 0 7

    
    
    
    
    

     

 

 
the upper triangular matrix interval is not invertible. 
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Prove if P = [P1, P2] 
 

= 

1 1/ 2 1/ 3 1/ 4 1 1/ 2 1/ 3 1/ 4
1/ 2 1/ 3 1/ 4 1/ 5 1/ 2 1/ 3 1/ 4 1/ 5

,
1/ 3 1/ 4 1/ 5 1/ 6 1/ 3 1/ 4 1/ 5 1/ 6
1/ 4 1/ 5 1/ 6 1/ 7 1/ 4 1/ 5 1/ 6 1/ 7

    
    
    
    
    
     

  

 
is an invertible matrix interval and P–1 = [ 1 1

1 2P ,P  ] has integer 
entries. 

 
We can define permutation matrix interval as in case of 

usual matrices.   
 
We will give an example or two. 
 

P = [P1, P2] = 

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

,
1 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0

    
    
    
    
    
     

 

 
is a permutation matrix interval. 
   

Now we proceed onto give example of symmetric and skew 
symmetric matrix intervals. 

Consider  
 

H = [H1, H2] = 

3 1 2 4 8 4 3 1
1 8 4 0 4 1 4 2

,
2 4 3 9 3 4 0 7
4 0 9 2 1 2 7 2

    
         
    
    
     

 

 
we see in this matrix interval aij = aji if i  j, 1  i, j  4. 
 

Thus if A = [A1, B1] = [(aij), (bij)] be a square matrix 
interval.  If in A1 and B1, aij = aji and bij = bji if i  j, 1  i, j  n 
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then we define A = [A1, B1] to be a symmetric matrix interval.  
If A = [A1, B1] = [(aij), (bij)] be a square matrix interval.   

 
If aij = –aji and bij = –bji for i  j and if i = j then aii = bii = 0, 

1  i  n, 1  i, j  n, then we define A to be a skew symmetric 
matrix interval.  

 
Let P = [P1, P2]  
 
 

0 3 1 4 5 8 0 1 2 3 4 5
3 0 2 1 3 0 1 0 6 7 8 9
1 2 0 7 2 9 2 6 0 1 2 3

,
4 1 7 0 5 1 3 7 1 0 4 5
5 3 2 5 0 8 4 8 2 4 0 6
8 0 9 1 8 0 5 9 3 5 6 0

    
              
        

     
       

        
                 

  

 
be a 6  6 skew symmetric matrix interval.   
 

We can as in case of usual square matrices write the square 
matrix interval as a sum of a square symmetric matrix interval 
and a square skew symmetric matrix interval. 

 
We will illustrate this situation by an example or two. 

 
Let  
 

 

A = [A1, B1] = 

8 4 3 5 2 4 3 1
7 1 2 2 0 5 7 2

,
10 5 8 0 7 0 5 0
0 4 0 7 2 4 0 8

    
         
    
    

      

 

 
be a 4  4 square matrix interval. 
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At = [A1, B1]t =  
 

t t
1 1A ,B    = 

8 7 10 0 2 0 7 2
4 1 5 4 4 5 0 4

,
3 2 8 0 3 7 5 0
5 2 0 7 1 2 0 8

    
         
    
    

       

 

 
be the transpose of the 4  4 square matrix interval. 
 

Let A = [P1, P2] + [Q1, Q2] 
 

= [P1 + Q1, P2 + Q2] 
 

where P1 = 
t

1 1A A
2
 , Q1 = 

t
1 1B B

2
 , 

 

P2 = 
t

1 1A A
2
  and Q2 =

t
1 1B B

2
 . 

 

Now P1 = 

8 4 3 5 8 7 10 0
7 1 2 2 4 1 5 4

10 5 8 0 3 2 8 0
0 4 0 7 5 2 0 7

2

   
       
   
   

       

 

           =

16 11 13 5
11 2 3 21
13 3 16 02
5 2 0 14

 
  
 
 

 

. 

 
Clearly P1 is a symmetric matrix of order 4  4. 
 

Now consider P2 = 
t

1 1A A
2
   



Interval Matrices and Natural Class of Intervals 197 
 
 
 
 

 
 

= 

8 4 3 5 8 7 10 0
7 1 2 2 4 1 5 41

10 5 8 0 3 2 8 02
0 4 0 7 5 2 0 7

    
             
    

       

 

 
 

= 

0 3 7 5
3 0 7 61
7 7 0 02
5 6 0 0

  
  
 
 
 

. 

 
Clearly P2 is a skew symmetric matrix of order four. 
 

Q1 = 
t

1 1B B
2
  

 

= 

2 4 3 1 2 0 7 2
0 5 7 2 4 5 0 41
7 0 5 0 3 7 5 02
2 4 0 8 1 2 0 8

     
             
    
      

 

 

= 

4 4 10 1
4 10 7 21

10 7 10 02
1 2 0 16

  
  
 
 
 

. 

 
It is easily verified that Q1 is a symmetric matrix of order 

four. 
 

Q2 = 
t

1 1B B
2
  
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= 

2 4 3 1 2 0 7 2
0 5 7 2 4 5 0 4
7 0 5 0 3 7 5 0
2 4 0 8 1 2 0 8

2

    
       
   
   
      

 
 

     = 

0 4 4 3
4 0 7 6
4 7 0 0
3 6 0 0

  
  
 
 
 

 

 
is a skew symmetric matrix of order four. 
 
 

Now A = 

16 11 13 5 0 3 7 5
11 2 3 2 3 0 7 61 1
13 3 16 0 7 7 0 02 2
5 2 0 14 5 6 0 0

     
              
    

      

 

 
 

4 4 10 1 0 4 4 3
4 10 7 2 4 0 7 61 1

10 7 10 0 4 7 0 02 2
1 2 0 16 3 6 0 0

      
       
   
   
    

 

 
 

     = [A1, B1] 
 
 

     = [ 1
2

 (P1 + P2), 
1
2

(Q1 + Q2)]. 
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 The sign column matrix interval is  
 
 

X = [X1, X2] = 

1 1

2 2

n n

a b
a b

,

a b

    
    
    
    
    
     

 
 

 
where ai, bi  {–1, 1}; 1  i  n. 
 
 

Y = 

1 1
1 1

1 1
,1 1

1 1
1 1

1 1

    
        
    
    

    
    
    
    

    
    

 

 
 = [Y1, Y2] is a sign column matrix interval or sign column 
vector interval.   
 

The sign row matrix interval sign row vector interval  
A = [A1, A2] 
 
= [(a1, …, am), (b1, b2, …, bm)] where ai, bi  {–1, 1}; 1  i  m. 
 

Thus  
A = [(1, –1, 1, 1, 1, –1, –1, 1), (–1, 1, 1, –1, –1, 1, –1, 1)]  

is a sign row vector interval or (sign row matrix interval). 
 
 These sort of matrix intervals are useful in factor analysis. 
 
 We will give examples of orthogonal matrix interval. 
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Let  
 

X = 
1 1 2 1
1 2 , 1 2
1 3 0 1

    
         
        

  

be a matrix interval. 
 

Xt = 
1 1 1 2 1 0

,
1 2 3 1 2 1

    
         

 

 
is again a matrix interval. 
 
 Consider  

Xt X =  
1 1 1 2 1 0

,
1 2 3 1 2 1

    
         

  
1 1 2 1
1 2 , 1 2
1 3 0 1

    
         
        

 

 

= 
1 1 2 1

1 1 1 2 1 0
1 2 , 1 2

1 2 3 1 2 1
1 3 0 1

    
                           

 

 

= 
3 0 5 0

,
0 14 0 5

    
    
    

. 

 
 Thus this is an example of a orthogonal matrix interval.  
 
 If we have X = [A, B] be a matrix interval. 
 
 Xt = [At, Bt] be the transpose of X. 
 
 Suppose XtX = [AtA, BtB] = [In, In] then we call x to be a 
orthogonal interval matrix. 
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 Consider  
 

X = 

1 0 0 0
0 0 0 1

,
0 1 0 0
0 0 1 0

    
    
    
    
    
     

 

 
to be the matrix interval. 
 

 

Xt = 
1 0 0 0 0 0 0 1

,
0 0 1 0 0 1 0 0

    
    
    

 

 
be the transpose of the matrix interval X. 
 

XtX = 
1 0 0 0 0 0 0 1

,
0 0 1 0 0 1 0 0

    
    
    

  

1 0 0 0
0 0 0 1

,
0 1 0 0
0 0 1 0

    
    
    
    
    
     

 

  

= 
1 0 1 0

,
0 1 0 1

    
    
    

 

 
= [I2, I2]. 

 
Thus X is an orthonormal matrix interval. 
 
Suppose X = [A, B] be a matrix interval and Xt = [At, Bt]  be 

the transpose of the matrix interval; if XtX = [AtA, BtB] = [Im, 
Im] then we say X is a orthonormal matrix interval. 

 
Interested reader can give examples of them. 
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This result can easily be extend to square matrix interval.  If 
X = [A, B] be a n  n square matrix interval and Xt = [At, Bt] be 
the transpose of X be such that XtX = [In, In] then we define X 
to be a orthogonal matrix interval or more specifically X is a 
orthonormal matrix interval.  Suppose XtX = [D, C] where D 
and C are just diagonal matrices or symmetric matrices then we 
define X to be only a orthogonal square matrix interval.  

 
Thus we use matrix theory in a new way to study properties 

of interval matrices constructed using natural class of intervals. 
 



 
 

 

Chapter Six 

 

 

 

 

 

DSM MATRIX OF REFINED LABELS  
 
 

 
 

[46, 52] have worked with the new notion of DSm vector 
spaces and DSm super vector spaces. LZ = {…, L–j, …, L–1, L0, 
L1, L2, …, Lj, …} = {Lj | j  Z} the set of extended labels with 
positive and negative indexes. 

 
Similarly LQ = Lq | q  Q} as set of labels whose indexes 

are fractions.  LQ is isomorphic to Q, through the isomorphism  

fQ (Lq) = q
m 1

, 

for any q  Q. 
 
On similar lines they define LR = {Lj | j  R}; R the set of 

real numbers.   
 
LR is isomorphic with R through the isomorphism  

fR(Lr) = r
m 1

 

for any r  R.  For more refer [46, 52].   
 



204 Innovative Uses of Matrices 
 
 
 
 
 
 

Further they have proved {LR, +, } is a field where + is the 
vector addition of labels and  is the vector multiplication of 
labels defined as DSm field of refined labels. 

If [L1, L2] is a label interval then L3/2 = L1.5 is the label in 
the middle of the label interval. 

 
Also L–i = –Li that occur in qualitative calculations.  We just 

from [  ] recall the operations. 
 
Let a, b, c  R and the labels  

La = a
m 1

, Lb = b
m 1

 and Lc = c
m 1

. 

 
Vector addition of labels  
 

La + Lb = La+b = a b
m 1

L 


. 

 In this chapter we just indicate how we have used matrix 
theory in the construction of refined label matrices.  When the 
refined labels happen to be ordered that is 
 

L0 < L1 < … < Lm 
m  N; then we can use these matrices to built vector spaces, 
find eigen values and all properties pertaining to vector spaces 
can be derived.  This has been elaborately carried out in [46, 
52]. 
 
 So this is an unique and a new way of using matrix theory. 
 Not only it is matrix of refined labels whose properties are 
studied, we have also invented to notion of DSm super vector 
spaces, which uses refined labels of super matrices. 
 
 This study is elaborately made in [46, 52]. 
 
 



 
 

 

Chapter Seven 

 

 

 

 

 

n-MATRICES AND THEIR APPLICATIONS   
 
 

 
 

In this chapter we proceed onto recall the definition, 
properties and applications of n-matrices. This is yet another 
innovative method of using matrices.  For more about these 
concepts please refer [47, 51, 54, 56]. 
 
DEFINITION 7.1:   Let A = A1  A2 where A1 and A2 are two 
matrices which are distinct and the entries are taken from Q or 
R or Z or Zn or C(Zn). 
 
 If both A1 and A2 are row matrices we call A to be a birow 
matrix.  Similarly, if both A1 and A2 are column matrices we call 
A to be a bicolumn matrix; A is defined as the square bimatrix if 
both A1 and A2 are square matrices.  If A1 and A2 are 
rectangular matrices we define A to be a rectangular bimatrix.  
If in A = A1  A2 one of A1 is a row matrix and A2 is not a row 
matrix we define A to be a mixed bimatrix.  That is if A1 and A2 
are two different matrices of order m  n and s  t we call A to 
be mixed bimatrix.   
 
 We will illustrate this by some examples. 
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Example 7.1:  Let  
 

A = A1  A2 = (3, 1, 5, 6, 0, 2)  (3, 1 0, 0, 5), 
 

we call A to be a row bimatrix. 
 
 
Example 7.2:  Let  
 

A = A1  A2 = 

3
2
1
5
6

 
 
 
 
 
 
  

  

5
0
1

2

 
 
 
 
 
 

 

 
be a column bimatrix. 
 
 
Example 7.3:  Let  
 

B = B1  B2 = (9, 0, 1)  (8, 4, –4), 
 

B is a row bimatrix. 
 
 
Example 7.4:  Let  
 

A = A1  A2 = 
9 0 1 2
0 1 0 4
 
  

  
4 2 7 1 0
0 1 9 1 8
5 6 8 1 4

 
  
  

, 

 
A is a rectangular bimatrix. 
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Example 7.5:  Let  
 

A = A1  A2 = 
3 4
1 0

 
  

  

8 0 1 2
4 7 0 3
1 2 0 1

0 1 5 8

 
 
 
 
 
 

 

 
be a square bimatrix.   
 
 
Example 7.6:  Let  
 

M = (8, 0, –1, 4, 3, 3 , 7)    

5
6

8
1
4

 
  
 
 
 
  

 

 
be a mixed bimatrix. 
 
 
Example 7.7:  Let  
 

T = T1  T2 = 
9 0 2
1 0 3

   
     

  

9
2
3
4
5

6

 
 
 
 
 
 
 
 
  

 

 
be a mixed bimatrix. 
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Example 7.8:  Let  
 

S = S1  S2 = 

9
2

3
0
3

0

 
  
 
 
 
 
 
  

 
9 0
1 2

 
  

 

 
be the mixed bimatrix. 
 
 
Example 7.9:  Let  
 

P = P1  P2 = (–3, 0, 1, 2)  
3 1 2 1 5 7
8 1 0 6 2 0

 
   

 

 
be the mixed bimatrix. 
 
 Now we can have bimatrices both mixed or otherwise. 
 
 Suppose A = A1  A2  A3  …  An;  > n  2 and Ai’s 
are distinct row matrices we define A to be n-row matrix.  If  
n = 2 it becomes a row bimatrix.  If n = 3 we get the row 
trimatrix and so on. 
 
 If row matrices are replaced by column matrices we call 
them as n-column matrix.  Instead of a column matrix we use 
rectangular matrices we call them as n-rectangular matrix or 
rectangular n-matrix. 
 
 Suppose in A = A1  A2  … An the Ai’s are square 
matrices, we define A to be a n-square matrix or a square n-
matrix.  
 
 We will illustrate all these situations by examples. 
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Example 7.10:  Let A = A1  A2  A3  A4  A5 = (8, –1, 0, 2, 
1)  (0, 5, 8)  (3, 2)  (–7, 1, 2, 3, 4, 5, –7)  (4, 6, 8, 10, 12) 
be a 5-row matrix or row 5-matrix. 
 
 
Example 7.11:  Let  
 

M = M1  M2  M3  M4 = 

8
1

3
0

 
  
 
 
 

  

4
5
8
7

0
2

 
 
 
 
 
 
 
 
  

  

0
1
2
3
4

5
7

 
 
 
 
 
 
 
 
 
  

  
8

5
0

 
 
 
  

 

 
be the column 4-matrix. 
 
Example 7.12:  Let V = V1  V2  V3  V4  V5  V6  V7  
 

 

= 
8 7
0 1
 
 
 

  
1 2 3
4 5 6
7 0 1

 
 
 
  

 
3 0
0 5
 
  

  

8 0 1 2
0 5 6 7
0 0 7 8
0 0 0 5

 
 
 
 
 

 

   

 
1 2 3 4 5
6 7 8 9 0
1 2 3 4 5

6 7 8 9 6
0 1 2 5 8

  
   
   
 

  
  

  
1 0 0
2 3 0
4 5 6

 
 
 
  

  

9 0 0 0
0 8 1 2
0 0 5 0
0 0 0 7

 
 
 
 
 
 

 

 
be a 7-square matrix or square 7-matrix. 
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Example 7.13:  Let T = T1  T2  T3  T4  T5  
 

= 
8 0 5 0 8 5 1 2
1 2 0 7 5 0 7 0

  
  

  
1 2 3 4 5 6 7
6 5 4 3 2 1 0
9 1 2 8 3 7 5

 
 
 
  

 

 

 

3 2
1 5
0 1
4 2
0 1

 
 
 
 
 
 
  

  

8 2 0
1 0 5

4 2 3
5 6 7
8 9 4
0 0 1
1 5 0

 
  
 
 
 
 
 
 
  

  

8 0 1 2 0 1 4
5 2 0 1 0 1 0
0 1 2 0 1 1 1
6 1 0 5 0 8 7
5 2 1 0 7 0 6
6 0 2 6 1 1 0

 
 
 
 
 

 
 
 
  

 

 
be a rectangular 5-matrix or 5-rectangular matrix. 
 
 
Example 7.14:  Let V = V1  V2  V3  V4  
 

= (–9, 0, 3 , I, 7+i)  

7
1

8 i
5i

4 8i

 
  
 
 
 
  

  
9 i

3 4

 
 
 

 

 

 
8 i 7 i 8 4i
0 1 2 3
4i 5 i 0 0

   
 
 
  

 

 
be a 4-mixed matrix or mixed 4-matrix.  
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Example 7.15:  Let A = A1  A2  A3  A4  A5  A6  

 

= (–8, 0, 1, 3+2i)  

9 8
8 i
4 5
0 6
3 2

 
  
 
 
 
  

  
8 0 1 3 2 0
1 6 0 2 4 0

2 4 7 0 5 7

 
  
  

 

 

 
3 8
0 4
 
 
 

  

7
i 8
7 i
4 3
7 2i

 
  
 
 

 
  

  

3 1 4 i
4 2 7
5 0 8 i
0 7 4

 
 
 
 
 

 

 

 
be a 6-mixed matrix or mixed 6-matrix.   
 
 Now we have seen just definition and examples of them.  
We proceed onto give three major applications of them.  
 
 The first application of bimatrices (n-matrices) is in the 
construction of bilinear algebra (n-linear algebra of type I and 
type II).  For more literature please refer [60-1]. 
 
 One of the major application of these n-matrices (bimatrices 
is that they can be used in the construction of n-eigen values 
(bieigen values) and n-eigen vectors (bieigen vectors).  This 
bulk operation helps in saving time as well as easy for 
calculation and comparison. Further bimatrices are used in the 
construction of bifuzzy models like BiFCMs, BiFRMs, n-FCMs 
and n-FRMs; n  2.  
 

We just indicate how the bieigen values (n-eigen values) are 
calculated.  We only give illustrations for theory please refer  
[60-1]. 
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Example 7.16:  Let  
 

M = M1  M2 = 
3 0
8 1
 
  

  
8 0 0
0 1 2
0 6 1

 
  
  

 

 
be a bimatrix associated with some linear operator.  The bieigen 
values associated with M is as follows: 
 
|M – (1  2)| = |M1 – 1|  |M2 – 2| 
 

 = 1

1

3 0
8 1
  

    
  

2

2

2

8 0 0
0 1 2
0 6 1

  
    
   

 

 
 = (3 – 1) (–1 – 1)  (8–2) [–(1– 2

2 ) – 12] = 0  0 
 = – (1–1) (3–1)  –(8–2) ((1- 2

2 )+12) 
 = 0  0 
 
leading to 1 = 3 and –1 and 2 = 8 2 =  13 . 
 
 Thus  = 3  8, 3   13 , 3  – 13  
 –1  8, –1  13 , –1  – 13 . 
 
 Thus using these six bieigen values one can calculate the 
related bieigen vectors.  By this way we can compare the eigen 
values and also perform the operations simultaneously. 
 
 However the entries of the matrix M are taken from the 
field of reals.  If they are taken from the rationals all the 
solution will not exist.  We may have partial solution in that 
case. 
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Example 7.17:  Let P = P1  P2  P3  
 

= 
3 1
0 5
 
 
 

  
2 0 1
0 1 0
0 0 3

 
 
 
  

  

1 0 0 0
0 2 0 0
9 0 3 0
0 1 0 4

 
 
 
 
 
 

 

 
be the trimatrix with the entries from reals.  To find the trieigen 
values and trieigen vectors of P. 
 
 Consider |P –  (=1  2  3)| 
 
 = |P1 – 1|  |P2 – 2|  |P3 – 3| 
 

= 1

1

3 1
0 5
  

 
 

2

2

2

2 0 1
0 1 0
0 0 3

 
 

 
  

 
 

 

3

3

3

3

1 0 0 0
0 2 0 0
9 0 3 0
0 1 0 4

 
 

 
 

 

 
 = (3–1) (5–1)  (2–2) (1–2)   

(3–2)  (1–3) (2–3) (3–3) (4–3) 
 
 Thus the trieigen values are (3, 2, 1), (3, 2, 2), (3, 2, 3),  
(3, 2, 4), (3, 1, 1), (3, 1, 2), (3, 1, 3), (3, 1, 4), (3, 3, 1), (3, 3, 2), 
(3, 3, 3), (3, 3, 4), (5, 2, 1), (5, 2, 2), (5, 2, 3), (5, 2, 4), (5, 1, 2), 
(5, 1, 3), (5, 1, 4), (5, 1, 1), (5, 3, 1), (5, 3, 2), (5, 3, 3), (5, 3, 4). 
 
 We have 24 sets of trieigen values and their corresponding 
24 set of trieigen vectors can be calculated.  This is one of the 
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major innovative method of applying the bimatrix (n-matrix) 
theory in bilinear algebra or (n-linear algebra).  
 The next set of applications of bimatrices (n-matrices) is in 
the fuzzy models.  We just indicate how these bimatrices (n-
matrices) used.  We call a bimatrix A = A1  A2 to be a fuzzy 
matrix if the entries of both A1 and A2 are from the unit interval 
[0, 1].  We make use of the min max or max min or min min or 
max max operations on them. 
 
 On similar lines we define n-fuzzy matrix.  A matrix S = S1 
 S2  …  Sn (n > 2) is said to be a n-fuzzy matrix if the 
entries of each Si is from the unit interval [0, 1]; 1  i  n.  We 
use min max or max min or other such operators on Si’s.  We 
also at times include –1 as a fuzzy number depending on the 
fuzzy model.  The fuzzy models which make use n-fuzzy 
matrices are n- FCMs, n-FRMs and n-FAMs.   
 
 For more about these structures one can refer the books  
[48, 54, 56]. 
 
 Suppose we have a problem related with the school 
students. 
 
 The school student problem is dependent on the teachers 
also dependent on the parents and on the school management.  
So the school children problem is dependent on three groups.  
Thus we can use a fuzzy trimatrix and use the Fuzzy Relational 
Maps (FRMs) model to analyse the problem. 
 
 Let us assume S1, S2, …, S6 are the attributes associated 
with the FRM. 
 
 Let T1, T2, …, T7 be the attributes related with the teachers. 
 
 P1, P2, …, P6 are the attributes associated with the parents 
and M1, M2, …, M8 are the attributes associate with the 
management. 
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 We get using an experts opinion a trigraph and the matrix 
associated with the trigraph will be the fuzzy trimatrix which 
serves as the dynamical system of the triFRM model.  If S 
denotes the triFRM models tridynamical system then S = S1  
S2  S3 
 

= 

1 2 7

1

2

6

T T ... T
S
S

S

 
 
 
 
 
 


   

1 2 6

1

2

6

P P ... P
S
S

S

 
 
 
 
 
 


  

1 2 8

1

2

6

M M ... M
S
S

S

 
 
 
 
 
 


. 

 
 
The entries of the matrices S1, S2 and S3 are from the unit 
interval [0, 1]. 
 
 Any state vector X = X1  X2  X3 = 
 
 = ( 1

1x  … 1
6x )  ( 2

1x … 2
6x )  ( 3

1x  … 3
6x ) 

 
where j

ix   {0, 1}; 1  i  6, 1  j  3. 
 
 We find X o S = X1 o S1  X2 o S2  X3 o S3 
  = Y1  Y2  Y3 
  = Y. 
where elements of Yi are from {0, 1} Y1 will be ( 1

1y  … 1
7y ) Y2 

will be ( 2
1y , 2

2y , …, 2
6y ) and Y3 will be ( 3

1y , 3
2y , …, 3

8y ) j
iy   

{0, 1}, 1  j  3 and 1  i  8.   
 
 Thus these n-fuzzy matrices are used in constructing  
n-fuzzy models, when we have n-experts or these models can 
also be defined as multi expert models. 
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 Finally we see these n-matrices when constructed over np
Z , 

p a prime and  > n  1, can be used in the construction of n-
codes. 
 We have defined n-codes [49].  For more about the uses of 
n-matrices in algebraic coding theory refer [49]. 

The construction of n-codes using n-matrices happens to be 
one of the new ways of applying n-matrices to algebraic coding 
theory. 

Thus the concept of n-matrices and their applications are 
innovative contributions in matrix theory by the authors. 
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