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A Journey into Quantization in Astrophysics: A collection of scientific papers 

Preface 

 

The present book consists of 17 select scientific papers from ten years of work 

around 2003-2013. The topic covered here is quantization in Astrophysics. 

We also discuss other topics for instance Pioneer spacecraft anomaly.   

We discuss a number of sub-topics, for instance the use of Schrödinger 

equation to describe celestial quantization. Our basic proposition here is that 

the quantization of planetary systems corresponds to quantization of 

circulation as observed in superfluidity. And then we extend it further to the 

use of (complex) Ginzburg-Landau equation to describe possible nonlinearity 

of planetary quantization.   

Some of these papers have been published in journal form, but they were 

scattered around in a number of publications, so they are not easy to locate. So 

we decide to collect them all in one book for easy reading. Other papers 

included here have not been published before in journal or book form.  

The present book is suitable for young astronomers and astrophysicists as 

well as for professional astronomers who wish to update their knowledge in 

the vast topic of quantization in astrophysics. This book is also suitable for 

college students who want to know more about this subject. 

We would like to express our deep gratitude to many scientists who have 

inspired us along the way of this journey, including Profs. Robert M. Kiehn, 

Carlos Castro, Antun Rubcic, F. Winterberg, and Dr. Pavel Pintr, and also to a 

number of journal editors for their permissions to reprint our papers 

(Apeiron, Progress in Physics, and Prespacetime Journal). And special thanks to 

Multimedia Larga at Gallup, New Mexico, who supports this publication. 

   

Ver. 1.0: Oct. 28th, 2013. Ver. 1.1: Nov. 7th, 2013. Ver. 1.2: Nov. 17th, 2013. 
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What Gravity Is. Some Recent Considerations
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It is well-known, that when it comes to discussions among physicists concerning the

meaning and nature of gravitation, the room temperature can be so hot. Therefore,

for the sake of clarity, it seems worth that all choices were put on a table, and we

consider each choice’s features and problems. The present article describes a non-

exhaustive list of such gravitation theories for the purpose of inviting further and more

clear discussions.

1 Introduction

The present article summarizes a non-exhaustive list of grav-

itation theories for the purpose of inviting further and more

clear discussions. It is well-known, that when it comes to

discussions among physicists concerning the meaning and

nature of gravitation, the room temperature can be so hot.

Therefore, for the sake of clarity, it seems worth that all

choices were put on a table, and we consider each choice’s

features and problems. Of course, our purpose here is not to

say the last word on this interesting issue.

2 Newtonian and non-relativistic approaches

Since the days after Newton physicists argued what is the

meaning of “action at a distance” (Newton term) or “spooky

action” (Einstein term). Is it really possible to imagine how

an apple can move down to Earth without a medium whatso-

ever?

Because of this difficulty, from the viewpoint of natu-

ral philosophy, some physicists maintained (for instance Eu-

ler with his impulsion gravity), that there should be “perva-

sive medium” which can make the attraction force possible.

They call this medium “ether” though some would prefer this

medium more like “fluid” instead of “solid”. Euler himself

seems to suggest that gravitation is some kind of “external

force” acting on a body, instead of intrinsic force:

“gravity of weight: It is a power by which all bodies

are forced towards the centre of the Earth” [3].

But the Michelson-Morley experiment [37] opened the way

for Einstein to postulate that ether hypothesis is not required

at all in order to explain Lorentz’s theorem, which was the

beginning of Special Relativity. But of course, one can ask

whether the Michelson-Morley experiment really excludes

the so-called ether hypothesis. Some experiments after Mi-

chelson seem to indicate that “ether” is not excluded in the

experiment setup, which means that there is Earth absolute

motion [4, 5].

To accept that gravitation is external force instead of in-

trinsic force implies that there is distinction between grav-

itation and inertial forces, which also seem to indicate that

inertial force can be modified externally via electromag-

netic field [6].

The latter notion brings us to long-time discussions in var-

ious physics journals concerning the electromagnetic nature

of gravitation, i.e. whether gravitation pulling force have the

same properties just as electromagnetic field is described by

Maxwell equations. Proponents of this view include Tajmar

and de Matos [7, 8], Sweetser [9]. And recently Rabounski

[10] also suggests similar approach.

Another version of Euler’s hypothesis has emerged in mo-

dern way in the form of recognition that gravitation was car-

ried by a boson field, and therefore gravitation is somehow

related to low-temperature physics (superfluid as boson gas,

superconductivity etc.). The obvious advantage of superfluid-

ity is of course that it remains frictionless and invisible; these

are main features required for true ether medium — i.e. no

resistance will be felt by objects surrounded by the ether, just

like the passenger will not feel anything inside the falling ele-

vator. No wonder it is difficult to measure or detect the ether,

as shown in Michelson-Morley experiment. The superfluid

Bose gas view of gravitation has been discussed in a series of

paper by Consoli et al. [11], and also Volovik [12].

Similarly, gravitation can also be associated to supercon-

ductivity, as shown by de Matos and Beck [29], and also in

Podkletnov’s rotating disc experiment. A few words on Pod-

kletnov’s experiment. Descartes conjectured that there is no

gravitation without rotation motion [30]. And since rotation

can be viewed as solution of Maxwell equations, one can say

that there is no gravitation separated from electromagnetic

field. But if we consider that equations describing supercon-

ductivity can be viewed as mere generalization of Maxwell

equations (London field), then it seems we can find a modern

version of Descartes’ conjecture, i.e. there is no gravitation
without superconductivity rotation. This seems to suggest the

significance of Podkletnov’s experiments [31, 32].



3 Relativistic gravitation theories

Now we will consider some alternative theories which agree

with both Newton theory and Special Relativity, but differ ei-

ther slightly or strongly to General Relativity. First of all,

Einstein’s own attempt to describe gravitation despite earlier

gravitation theories (such as by Nordstrom [1]) has been in-

spired by his thought-experiment, called the “falling eleva-

tor” experiment. Subsequently he came up with conjecture

that there is proper metric such that a passenger inside the el-

evator will not feel any pulling gravitation force. Therefore

gravitation can be replaced by certain specific-chosen metric.

Now the questions are twofold: (a) whether the proper-

metric to replace gravitation shall have non-zero curvature

or it can be flat-Minkowskian; (b) whether the formulation

of General relativity is consistent enough with Mach princi-

ple from where GTR was inspired. These questions inspired

heated debates for several decades, and Einstein himself (with

colleagues) worked on to generalize his own gravitation theo-

ries, which implies that he did find that his theory is not com-

plete. His work with Strauss, Bergmann, Pauli, etc. (Prince-

ton School) aimed toward such a unified theory of gravitation

and electromagnetism.

There are of course other proposals for relativistic gravi-

tation theories, such as by Weyl, Whitehead etc. [1]. Mean-

while, R. Feynman and some of his disciples seem to be more

flexible on whether gravitation shall be presented in the

General-Relativity “language” or not.

Recently, there is also discussion in online forum over

the question: (a) above, i.e. whether curvature of the metric

surface is identical to the gravitation. While most physicists

seem to agree with this proposition, there is other argument

suggesting that it is also possible to conceive General Rela-

tivity even with zero curvature [13, 14].

Of course, discussion concerning relativistic gravitation

theories will not be complete without mentioning the PV-

gravitation theory (Puthoff et al. [15]) and also Yilmaz theory

[16], though Misner has discussed weaknesses of Yilmaz the-

ory [17], and Yilmaz et al. have replied back [18]. Perhaps

it would be worth to note here that General Relativity itself

is also not without limitations, for instance it shall be modi-

fied to include galaxies’ rotation curve, and also it is actually

theory for one-body problem only [2], therefore it may be

difficult to describe interaction between bodies in GTR.

Other possible approaches on relativistic gravitation the-

ories are using the fact that the “falling-elevator” seems to

suggest that it is possible to replace gravitation force with

certain-chosen metric. And if we consider that one can find

simplified representation of Maxwell equations with Special

Relativity (Minkowski metric), then the next logical step of

this “metrical” (some physicists prefer to call it “geometro-

dynamics”) approach is to represent gravitation with yet an-

other special relativistic but with extra-dimension(s). This

was first conjectured in Kaluza-Klein theory [19]. Einstein

himself considered this theory extensively with Strauss etc.

[20]. There are also higher-dimensional gravitation theories

with 6D, 8D and so forth.

In the same direction, recently these authors put forth a

new proposition using Carmeli metric [21], which is essen-

tially a “phase-space” relativity theory in 5-dimensions.

Another method to describe gravitation is using “torsion”,

which is essentially to introduce torsion into Einstein field

equations. See also torsional theory developed by Hehl,

Kiehn, Rapoport etc. cited in [21].

It seems worth to remark here, that relativistic gravita-

tion does not necessarily exclude the possibility of “aether”

hypothesis. B. Riemann extended this hypothesis by assum-

ing (in 1853) that the gravitational aether is an incompress-

ible fluid and normal matter represents “sinks” in this aether

[34], while Einstein discussed this aether in his Leiden lecture

Ether and Relativity.

A summary of contemporary developments in gravitation

theories will not be complete without mentioning Quantum

Gravity and Superstring theories. Both are still major topics

of research in theoretical physics and consist of a wealth of

exotic ideas, some or most of which are considered contro-

versial or objectionable. The lack of experimental evidence

in support of these proposals continues to stir a great deal of

debate among physicists and makes it difficult to draw defi-

nite conclusions regarding their validity [38]. It is generally

alleged that signals of quantum gravity and superstring theo-

ries may occur at energies ranging from the mid or far TeV

scale all the way up to the Planck scale.

Loop Quantum Gravity (LQG) is the leading candidate

for a quantum theory of gravitation. Its goal is to combine

the principles of General Relativity and Quantum Field The-

ory in a consistent non-perturbative framework [39]. The fea-

tures that distinguish LQG from other quantum gravity the-

ories are: (a) background independence and (b) minimality

of structures. Background independence means that the the-

ory is free from having to choose an apriori background met-

ric. In LQG one does not perturb around any given clas-

sical background geometry, rather arbitrary fluctuations are

allowed, thus enabling the quantum “replica” of Einstein’s

viewpoint that gravity is geometry. Minimality means that

the general covariance of General Relativity and the princi-

ples of canonical quantization are brought together without

new concepts such as extra dimensions or extra symmetries.

It is believed that LQG can unify all presently known in-

teractions by implementing their common symmetry group,

the four-dimensional diffeomorphism group, which is almost

completely broken in perturbative approaches.

The fundamental building blocks of String Theory (ST)

are one-dimensional extended objects called strings [40, 41].

Unlike the “point particles” of Quantum Field Theories,

strings interact in a way that is almost uniquely specified by

mathematical self-consistency, forming an allegedly valid

quantum theory of gravity. Since its launch as a dual res-



onance model (describing strongly interacting hadrons), ST

has changed over the years to include a group of related su-

perstring theories (SST) and a unifying picture known as the

M-theory. SST is an attempt to bring all the particles and

their fundamental interactions under one umbrella by model-

ing them as vibrations of super-symmetric strings.

In the early 1990s, it was shown that the various super-

string theories were related by dualities, allowing physicists

to map the description of an object in one superstring theory

to the description of a different object in another superstring

theory. These relationships imply that each of SST represents

a different aspect of a single underlying theory, proposed by

E. Witten and named M-theory. In a nut-shell, M-theory com-

bines the five consistent ten-dimensional superstring theories

with eleven-dimensional supergravity. A shared property of

all these theories is the holographic principle, that is, the idea

that a quantum theory of gravity has to be able to describe

physics occurring within a volume by degrees of freedom that

exist on the surface of that volume. Like any other quantum

theory of gravity, the prevalent belief is that true testing of

SST may be prohibitively expensive, requiring unprecedented

engineering efforts on a large-system scale. Although SST is

falsifiable in principle, many critics argue that it is un-testable

for the foreseeable future, and so it should not be called sci-

ence [38].

One needs to draw a distinction in terminology between

string theories (ST) and alternative models that use the word

“string”. For example, Volovik talks about “cosmic strings”

from the standpoint of condensed matter physics (topologi-

cal defects, superfluidity, superconductivity, quantum fluids).

Beck refers to “random strings” from the standpoint of sta-

tistical field theory and associated analytic methods (space-

time fluctuations, stochastic quantization, coupled map lat-

tices). These are not quite the same as ST, which are based

on “brane” structures that live on higher dimensional space-

time.

There are other contemporary methods to treat gravity, i.e.

by using some advanced concepts such as group(s), topology

and symmetries. The basic idea is that Nature seems to pre-

fer symmetry, which lead to higher-dimensional gravitation

theories, Yang-Mills gravity etc.

Furthermore, for the sake of clarity we have omitted here

more advanced issues (sometimes they are called “fringe re-

search”), such as faster-than-light (FTL) travel possibility,

warpdrive, wormhole, cloaking theory (Greenleaf et al. [35]),

antigravity (see for instance Naudin’s experiment) etc. [36].

4 Wave mechanical method and diffraction hypothesis

The idea of linking gravitation with wave mechanics of Quan-

tum Mechanics reminds us to the formal connection between

Helmholtz equation and Schrödinger equation [22].

The use of (modified) Schrödinger equation has become

so extensive since 1970s, started by Wheeler-DeWitt (despite

the fact that the WDW equation lacks observation support).

And recently Nottale uses his scale relativistic approach

based on stochastic mechanics theory in order to generalize

Schrödinger equation to describe wave mechanics of celestial

bodies [23]. His scale-relativity method finds support from

observations both in Solar system and also in exo-planets.

Interestingly, one can also find vortex solution of Schrö-

dinger equation, and therefore it is worth to argue that the

use of wave mechanics to describe celestial systems implies

that there are vortex structure in the Solar system and beyond.

This conjecture has also been explored by these authors in the

preceding paper. [24] Furthermore, considering formal con-

nection between Helmholtz equation and Schrödinger equa-

tion, then it seems also possible to find out vortex solutions

of Maxwell equations [25, 26, 27]. Interestingly, experiments

on plasmoid by Bostick et al. seem to vindicate the existence

of these vortex structures [28].

What’s more interesting in this method, perhaps, is that

one can expect to to consider gravitation and wave mechanics

(i.e. Quantum Mechanics) in equal footing. In other words,

the quantum concepts such as ground state, excitation, and

zero-point energy now can also find their relevance in gravi-

tation too. This “classical” implications of Wave Mechanics

has been considered by Ehrenfest and also Schrödinger him-

self.

In this regards, there is a recent theory proposed by Gulko

[33], suggesting that matter absorbs from the background

small amounts of energy and thus creates a zone of reduced

energy, and in such way it attracts objects from zones of

higher energy.

Another one, by Glenn E. Perry, says that gravity is dif-

fraction (due to the changing energy density gradient) of mat-

ter or light as it travels through the aether [33].

We can remark here that Perry’s Diffraction hypothesis

reminds us to possible production of energy from physical

vacuum via a small fluctuation in it due to a quantum indeter-

minancy (such a small oscillation of the background can be

suggested in any case because the indeterminancy principle).

On the average the background vacuum does not radiate —

its energy is constant. On the other hand, it experiences small

oscillation. If an engine built on particles or field interacts

with the small oscillation of the vacuum, or at least ”senses

the oscillation, there is a chance to get energy from them. Be-

cause the physical vacuum is eternal capacity of energy, it is

easy to imagine some possible techniques to be discovered in

the future to extract this energy.

Nonetheless, diffraction of gravity is not a “new hot topic”

at all. Such ideas were already proposed in the 1920’s by the

founders of relativity. They however left those ideas, even

unpublished but only mentioned in memoirs and letters. The

main reason was that (perhaps) almost infinitely small energy

which can be extracted from such background per second. (In

the mean time, there are other vaious proposals suggesting

that it is possible to ’extract’ energy from gravitation field).



About Glenn Perry and his theory. There is a drawback

that that matter he called “aether” was not properly deter-

mined by him. In such a way like that, everything can be

“proven”. To produce any calculation for practical purpose,

we should have exact data on the subject of this calculation,

and compare it with actual experiments.

On the other hand, such an idea could be put into another

field — the field of Quantum Mechanics. That is, to study

diffraction not gravitational radiation (gravitational waves

which is so weak that not discovered yet), but waves of the

field of the gravitational force — in particular those can be

seismic-like waves travelling in the cork of the Earth (we

mean not the earthquakes) but in the gravitational field of the

planet. These seismic-like oscillations (waves) of the grav-

itational force are known to science, and they aren’t weak:

everyone who experienced an earthquake knows this fact.

Other hint from wave aspect of this planet is known in the

form of Schumann resonance, that the Earth produces vibra-

tion at very-low frequency, which seems to support the idea

that planetary mass vibrates too, just as hypothesized in Wave

Mechanics (de Broglie’s hypothesis). Nonetheless, there are

plenty of things to study on the large-scale implications of the

Wave Mechanics.

5 Concluding remarks

The present article summarizes a non-exhaustive list of grav-

itation theories for the purpose of inviting further and more

clear discussions. Of course, our purpose here is not to say

the last word on this interesting issue. For the sake of clarity,

some advanced subjects have been omitted, such as faster-

than-light (FTL) travel possibility, warpdrive, wormhole,

cloaking theory (Greenleaf et al.), antigravity etc. As to the

gravitation research in the near future, it seems that there are

multiple directions which one can pursue, with which we’re

not so sure. The only thing that we can be sure is that ev-

erything changes (Heraclitus of Ephesus), including how we

define “what the question is” (Wheeler’s phrase), and also

what we mean with “metric”, “time”, and “space”. Einstein

himself once remarked that ’distance’ itself is merely an illu-

sion.
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In the present article, we argue that it is possible to generalize Schrödinger equation
to describe quantization of celestial systems. While this hypothesis has been described
by some authors, including Nottale, here we argue that such a macroquantization was
formed by topological superfluid vortice. We also provide derivation of Schrödinger
equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid
dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize
Schrödinger equation to describe quantization of celestial
systems, based on logarithmic nature of Schrödinger equa-
tion, and also its exact mapping to Navier-Stokes equa-
tions [1].

While this notion of macro-quantization is not widely ac-
cepted yet, as we will see the logarithmic nature of Schrödin-
ger equation could be viewed as a support of its applicability
to larger systems. After all, the use of Schrödinger equation
has proved itself to help in finding new objects known as
extrasolar planets [2, 3]. And we could be sure that new
extrasolar planets are to be found in the near future. As an
alternative, we will also discuss an outline for how to derive
Schrödinger equation from simplification of Ginzburg-
Landau equation. It is known that Ginzburg-Landau equation
exhibits fractal character, which implies that quantization
could happen at any scale, supporting topological interpret-
ation of quantized vortices [4].

First, let us rewrite Schrödinger equation in its common
form [5] [

i
∂

∂t
+
∇̄2
2m

− U (x)
]
ψ = 0 (1)

or

i
∂ψ

∂t
= Hψ . (2)

Now, it is worth noting here that Englman and Yahalom
[5] argues that this equation exhibits logarithmic character

lnψ(x, t) = ln
(|ψ(x, t)|)+ i arg(ψ(x, t)) . (3)

Schrödinger already knew this expression in 1926, which
then he used it to propose his equation called “eigentliche
Wellengleichung” [5]. Therefore equation (1) can be re-
written as follows

2m
∂
(
ln|ψ|)
∂t

+2∇̄ ln |ψ|∇̄arg[ψ]+∇̄∇̄arg[ψ]=0 . (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]
was also based on generalization of Schrödinger equation
to describe quantization of celestial systems. It is known
that Nottale-Schumacher’s method [6] could predict new
exoplanets in good agreement with observed data. Nottale’s
scale-relativistic method is essentially based on the use of
first-order scale-differentiation method defined as follows [2]

∂V

∂(lnδt)
= β (V ) = a+ b V + . . . . (5)

Now it seems clear that the natural-logarithmic derivat-
ion, which is essential in Nottale’s scale-relativity approach,
also has been described properly in Schrödinger’s original
equation [5]. In other words, its logarithmic form ensures
applicability of Schrödinger equation to describe macro-
quantization of celestial systems. [7, 8]

2 Quantization of celestial systems and topological

quantized vortices

In order to emphasize this assertion of the possibility to de-
scribe quantization of celestial systems, let us quote Fischer’s
description [4] of relativistic momentum from superfluid
dynamics. Fischer [4] argues that the circulation is in the
relativistic dense superfluid, defined as the integral of the
momentum

γs =

∮
pμ dx

μ = 2πNv � , (6)

and is quantized into multiples of Planck’s quantum of action.
This equation is the covariant Bohr-Sommerfeld quantization
of γs. And then Fischer [4] concludes that the Maxwell
equations of ordinary electromagnetism can be written in
the form of conservation equations of relativistic perfect fluid
hydrodynamics [9]. Furthermore, the topological character of
equation (6) corresponds to the notion of topological elect-
ronic liquid, where compressible electronic liquid represents
superfluidity [25]. For the plausible linkage between super-
fluid dynamics and cosmological phenomena, see [16–24].



It is worth noting here, because vortices could be defined
as elementary objects in the form of stable topological exci-
tations [4], then equation (6) could be interpreted as Bohr-
Sommerfeld-type quantization from topological quantized
vortices. Fischer [4] also remarks that equation (6) is quite
interesting for the study of superfluid rotation in the context
of gravitation. Interestingly, application of Bohr-Sommerfeld
quantization for celestial systems is known in literature [7, 8],
which here in the context of Fischer’s arguments it has
special meaning, i. e. it suggests that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale [4]. In our opinion, this result supports known
experiments suggesting neat correspondence between con-
densed matter physics and various cosmology phen-
omena [16–24].

To make the conclusion that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale a bit conceivable, let us consider the problem
of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this
hypothesis we could begin with the Bohr-Sommerfeld’s con-
jecture of quantization of angular momentum. This con-
jecture may originate from the fact that according to BCS
theory, superconductivity can exhibit macroquantum phen-
omena [26, 27]. In principle, this hypothesis starts with
observation that in quantum fluid systems like superfluidity
[28]; it is known that such vortexes are subject to quantization
condition of integer multiples of 2π, or

∮
vsdl= 2πn�/m.

As we know, for the wavefunction to be well defined and
unique, the momenta must satisfy Bohr-Sommerfeld’s quant-
ization condition [28]∮

Γ

p dx = 2πn� (6a)

for any closed classical orbit Γ. For the free particle of unit
mass on the unit sphere the left-hand side is [28]∫ T

0

v2dτ = ω2T = 2πω , (7)

where T = 2π/ω is the period of the orbit. Hence the quantiz-
ation rule amounts to quantization of the rotation frequency
(the angular momentum): ω=n�. Then we can write the
force balance relation of Newton’s equation of motion [28]

GMm

r2
=
mv2

r
. (8)

Using Bohr-Sommerfeld’s hypothesis of quantization of
angular momentum, a new constant g was introduced [28]

mvr =
ng

2π
. (9)

Just like in the elementary Bohr theory (before Schrödin-
ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]

r =
n2g2

4π2GMm2
, (10)

which can be rewritten in the known form of gravitational
Bohr-type radius [2, 7, 8]

r =
n2GM

v20
, (11)

where r, n, G,M , v0 represents orbit radii, quantum number
(n= 1, 2, 3, . . . ), Newton gravitation constant, and mass of
the nucleus of orbit, and specific velocity, respectively. In
this equation (11), we denote [28]

v0 =
2π

g
GMm. (12)

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific
velocity v0 is 144 km/sec for planetary systems. By noting
that m is meant to be mass of celestial body in question, then
we could find g parameter (see also [28] and references cited
therein).

Using this equation (11), we could predict quantization of
celestial orbits in the solar system, where for Jovian planets
we use least-square method and use M in terms of reduced
mass μ= (M1+M2)

M1M2
. From this viewpoint the result is shown

in Table 1 below [28].
For comparison purpose, we also include some recent

observation by Brown-Trujillo team from Caltech [29–32].
It is known that Brown et al. have reported not less than four
new planetoids in the outer side of Pluto orbit, including
2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VB12 (at
76 AU, dubbed as Sedna). And recently Brown-Trujillo team
reported a new planetoid finding, called 2003UB31 (97 AU).
This is not to include their previous finding, Quaoar (42 AU),
which has orbit distance more or less near Pluto (39.5 AU),
therefore this object is excluded from our discussion. It is
interesting to remark here that all of those new “planetoids”
are within 8% bound from our prediction of celestial quant-
ization based on the above Bohr-Sommerfeld quantization
hypothesis (Table 1). While this prediction is not so precise
compared to the observed data, one could argue that the
8% bound limit also corresponds to the remaining planets,
including inner planets. Therefore this 8% uncertainty could
be attributed to macroquantum uncertainty and other local
factors.

While our previous prediction only limits new planet
finding until n= 9 of Jovian planets (outer solar system),
it seems that there are sufficient reasons to suppose that
more planetoids in the Oort Cloud will be found in the near
future. Therefore it is recommended to extend further the
same quantization method to larger n values. For prediction
purpose, we include in Table 1 new expected orbits based



Object No. Titius Nottale CSV Observ. Δ, %

1 0.4 0.43

2 1.7 1.71

Mercury 3 4 3.9 3.85 3.87 0.52

Venus 4 7 6.8 6.84 7.32 6.50

Earth 5 10 10.7 10.70 10.00 −6.95

Mars 6 16 15.4 15.4 15.24 −1.05

Hungarias 7 21.0 20.96 20.99 0.14

Asteroid 8 27.4 27.38 27.0 1.40

Camilla 9 34.7 34.6 31.5 −10.00

Jupiter 2 52 45.52 52.03 12.51

Saturn 3 100 102.4 95.39 −7.38

Uranus 4 196 182.1 191.9 5.11

Neptune 5 284.5 301 5.48

Pluto 6 388 409.7 395 −3.72

2003EL61 7 557.7 520 −7.24

Sedna 8 722 728.4 760 4.16

2003UB31 9 921.8 970 4.96

Unobserv. 10 1138.1

Unobserv. 11 1377.1

Table 1: Comparison of prediction and observed orbit distance of
planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For
Jovian planets corresponding to quantum number n= 10 and
n= 11, our method suggests that it is likely to find new
orbits around 113.81 AU and 137.71 AU, respectively. It is
recommended therefore, to find new planetoids around these
predicted orbits.

As an interesting alternative method supporting this pro-
position of quantization from superfluid-quantized vortices
(6), it is worth noting here that Kiehn has argued in favor of
re-interpreting the square of the wavefunction of Schrödinger
equation as the vorticity distribution (including topological
vorticity defects) in the fluid [1]. From this viewpoint, Kiehn
suggests that there is exact mapping from Schrödinger equa-
tion to Navier-Stokes equation, using the notion of quantum
vorticity [1]. Interestingly, de Andrade and Sivaram [33] also
suggest that there exists formal analogy between Schrödinger
equation and the Navier-Stokes viscous dissipation equation:

∂V

∂t
= ν∇2V , (13)

where ν is the kinematic viscosity. Their argument was based
on propagation torsion model for quantized vortices [23].
While Kiehn’s argument was intended for ordinary fluid,
nonetheless the neat linkage between Navier-Stokes equation
and superfluid turbulence is known in literature [34, 24].

At this point, it seems worth noting that some criticism
arises concerning the use of quantization method for de-
scribing the motion of celestial systems. These criticism
proponents usually argue that quantization method (wave
mechanics) is oversimplifying the problem, and therefore
cannot explain other phenomena, for instance planetary mig-
ration etc. While we recognize that there are phenomena
which do not correspond to quantum mechanical process, at
least we can argue further as follows:

1. Using quantization method like Nottale-Schumacher
did, one can expect to predict new exoplanets (extra-
solar planets) with remarkable result [2, 3];

2. The “conventional” theories explaining planetary mig-
ration normally use fluid theory involving diffusion
process;

3. Alternatively, it has been shown by Gibson et al. [35]
that these migration phenomena could be described via
Navier-Stokes approach;

4. As we have shown above, Kiehn’s argument was based
on exact-mapping between Schrödinger equation and
Navier-Stokes equations [1];

5. Based on Kiehn’s vorticity interpretation one these
authors published prediction of some new planets in
2004 [28]; which seems to be in good agreement with
Brown-Trujillo’s finding (March 2004, July 2005) of
planetoids in the Kuiper belt;

6. To conclude: while our method as described herein
may be interpreted as an oversimplification of the real
planetary migration process which took place some-
time in the past, at least it could provide us with useful
tool for prediction;

7. Now we also provide new prediction of other planet-
oids which are likely to be observed in the near future
(around 113.8 AU and 137.7 AU). It is recommended
to use this prediction as guide to finding new objects
(in the inner Oort Cloud);

8. There are of course other theories which have been
developed to explain planetoids and exoplanets [36].
Therefore quantization method could be seen as merely
a “plausible” theory between others.

All in all, what we would like to emphasize here is
that the quantization method does not have to be the true
description of reality with regards to celestial phenomena.
As always this method could explain some phenomena, while
perhaps lacks explanation for other phenomena. But at least
it can be used to predict something quantitatively, i. e. mea-
surable (exoplanets, and new planetoids in the outer solar
system etc.).

In the meantime, it seems also interesting here to consider
a plausible generalization of Schrödinger equation in partic-
ular in the context of viscous dissipation method [1]. First,
we could write Schrödinger equation for a charged particle



interacting with an external electromagnetic field [1] in the
form of Ulrych’s unified wave equation [14][

(−i�∇− qA)μ(−i�∇− qA)μψ
]
=

=

[
−i2m ∂

∂t
+ 2mU(x)

]
ψ .

(14)

In the presence of electromagnetic potential, one could
include another term into the LHS of equation (14)[

(−i�∇− qA)μ(−i�∇− qA)μ + eA0
]
ψ =

= 2m

[
−i ∂
∂t
+ U(x)

]
ψ .

(15)

This equation has the physical meaning of Schrödinger
equation for a charged particle interacting with an external el-
ectromagnetic field, which takes into consideration Aharonov
effect [37]. Topological phase shift becomes its immediate
implication, as already considered by Kiehn [1].

As described above, one could also derived equation
(11) from scale-relativistic Schrödinger equation [2, 3]. It
should be noted here, however, that Nottale’s method [2,
3] differs appreciably from the viscous dissipative Navier-
Stokes approach of Kiehn [1], because Nottale only considers
his equation in the Euler-Newton limit [3]. Nonetheless,
it shall be noted here that in his recent papers (2004 and
up), Nottale has managed to show that his scale relativistic
approach has linkage with Navier-Stokes equations.

3 Schrödinger equation derived from Ginzburg-

Landau equation

Alternatively, in the context of the aforementioned superfluid
dynamics interpretation [4], one could also derive Schrödin-
ger equation from simplification of Ginzburg-Landau equa-
tion. This method will be discussed subsequently. It is known
that Ginzburg-Landau equation can be used to explain vari-
ous aspects of superfluid dynamics [16, 17]. For alternative
approach to describe superfluid dynamics from Schrödinger-
type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction
of N bosons of a reduced mass m∗ can be described as [40]

−
(
�
2

2m∗

)
∇2ψ + κ |ψ|2ψ = i� ∂ψ

∂t
. (16)

For some conditions, it is possible to replace the potential
energy term in equation (16) with Hulthen potential. This
substitution yields

−
(
�
2

2m∗

)
∇2ψ + VHulthenψ = i� ∂ψ

∂t
, (17)

where

VHulthen = −Ze2 δ e−δr

1− e−δr . (18)

This equation (18) has a pair of exact solutions. It could
be shown that for small values of δ, the Hulthen potential (18)
approximates the effective Coulomb potential, in particular
for large radius

V eff

Coulomb = −
e2

r
+
�(�+ 1) �2

2mr2
. (19)

By inserting (19), equation (17) could be rewritten as

−
(
�
2

2m∗

)
∇2ψ+

[
−e

2

r
+
�(�+1)�2

2mr2

]
ψ = i�

∂ψ

∂t
. (20)

For large radii, second term in the square bracket of LHS
of equation (20) reduces to zero [41],

�(�+ 1)�2

2mr2
→ 0 , (21)

so we can write equation (20) as[
−
(
�
2

2m∗

)
∇2 + U(x)

]
ψ = i�

∂ψ

∂t
, (22)

where Coulomb potential can be written as

U(x) = −e
2

r
. (22a)

This equation (22) is nothing but Schrödinger equation
(1), except for the mass term now we get mass of Cooper
pairs. In other words, we conclude that it is possible to re-
derive Schrödinger equation from simplification of (Gross-
Pitaevskii) Ginzburg-Landau equation for superfluid dyn-
amics [40], in the limit of small screening parameter, δ.
Calculation shows that introducing this Hulthen effect (18)
into equation (17) will yield essentially similar result to (1),
in particular for small screening parameter. Therefore, we
conclude that for most celestial quantization problems the
result of TDGL-Hulthen (20) is essentially the same with the
result derived from equation (1). Now, to derive gravitational
Bohr-type radius equation (11) from Schrödinger equation,
one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of
Schrödinger equation from (Gross-Pitaevskii) Ginzburg-
Landau equation is in good agreement with our previous con-
jecture that equation (6) implies macroquantization corres-
ponding to superfluid-quantized vortices. This conclusion is
the main result of this paper. Furthermore, because Ginzburg-
Landau equation represents superfluid dynamics at low-
temperature [40], the fact that we can derive quantization
of celestial systems from this equation seems to support
the idea of Bose-Einstein condensate cosmology [42, 43].
Nonetheless, this hypothesis of Bose-Einstein condensate
cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,
Neutrosophy, and Schrödinger Equation that is in print.
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In recent years, there are attempts to describe quantization of planetary distance
based on time-independent gravitational Schrödinger equation, including Rubcic &
Rubcic’s method and also Nottale’s Scale Relativity method. Nonetheless, there is
no solution yet for time-dependent gravitational Schrödinger equation (TDGSE). In
the present paper, a numerical solution of time-dependent gravitational Schrödinger
equation is presented, apparently for the first time. This numerical solution leads
to gravitational Bohr-radius, as expected. In the subsequent section, we also discuss
plausible extension of this gravitational Schrödinger equation to include the effect
of phion condensate via Gross-Pitaevskii equation, as described recently by Moffat.
Alternatively one can consider this condensate from the viewpoint of Bogoliubov-
deGennes theory, which can be approximated with coupled time-independent
gravitational Schrödinger equation. Further observation is of course recommended
in order to refute or verify this proposition.

1 Introduction

In the past few years, there have been some hypotheses sug-
gesting that quantization of planetary distance can be derived
from a gravitational Schrödinger equation, such as Rubcic
& Rubcic and also Nottale’s scale relativity method [1, 3].
Interestingly, the gravitational Bohr radius derived from this
gravitational Schrödinger equation yields prediction of new
type of astronomical observation in recent years, i.e. extra-
solar planets, with unprecedented precision [2].

Furthermore, as we discuss in preceding paper [4], using
similar assumption based on gravitational Bohr radius, one
could predict new planetoids in the outer orbits of Pluto
which are apparently in good agreement with recent observa-
tional finding.. Therefore one could induce from this observ-
ation that the gravitational Schrödinger equation (and gravi-
tational Bohr radius) deserves further consideration.

In the meantime, it is known that all present theories
discussing gravitational Schrödinger equation only take its
time-independent limit. Therefore it seems worth to find out
the solution and implication of time-dependent gravitational
Schrödinger equation (TDGSE). This is what we will discuss
in the present paper.

First we will find out numerical solution of time-inde-
pendent gravitational Schrödinger equation which shall yield
gravitational Bohr radius as expected [1, 2, 3]. Then we ex-
tend our discussion to the problem of time-dependent grav-
itational Schrödinger equation.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include the

effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat [5]. Alternatively one can
consider this phion condensate model from the viewpoint of
Bogoliubov-deGennes theory, which can be approximated
with coupled time-independent gravitational Schrödinger
equation. To our knowledge this proposition of coupled time-
independent gravitational Schrödinger equation has never
been considered before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

All numerical computation was performed using Maple.
Please note that in all conditions considered here, we use
only gravitational Schrödinger equation as described in Rub-
cic & Rubcic [3], therefore we neglect the scale relativistic
effect for clarity.

2 Numerical solution of time-independent gravitational

Schrödinger equation and time-dependent gravita-

tional Schrödinger equation

First we write down the time-independent gravitational
Schrödinger radial wave equation in accordance with Rubcic
& Rubcic [3]:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− � (�+ 1)

r2
R = 0 .

(1)

When H , V , E′ represents gravitational Planck constant,
Newtonian potential, and the energy per unit mass of the



orbiting body, respectively, and [3]:

H = h

(
2π f

Mmn

m2
0

)
, (2)

V (r) = −GMm
r

, (3)

E′ =
E

m
. (4)

By assuming that R takes the form:

R = e−αr (5)

and substituting it into equation (1), and using simplified
terms only of equation (1), one gets:

Ψ = αe e−αr − 2αe
−αr

r
+
8πGMm2 e−αr

rH2
. (6)

After factoring this equation (6) and solving it by equat-
ing the factor with zero, yields:

RR = −2
(
4πGMm2 −H2α

)
α2H2

= 0 , (7)

or
RR = 4πGMm2 −H2α = 0 , (8)

and solving for α, one gets:

a =
4π2GMm2

H2
. (9)

Gravitational Bohr radius is defined as inverse of this
solution of α, then one finds (in accordance with Rubcic &
Rubcic [3]):

r1 =
H2

4π2GMm2
, (10)

and by substituting back equation (2) into (11), one gets [3]:

r1 =

(
2πf

αc

)2
GM , (11)

which is equivalent with Nottale’s result [1, 2], especially
when we introduce the quantization number: rn= r1n2 [3].
For complete Maple session of these all steps, see Appen-
dix 1.

Solution of time-dependent gravitational Schrödinger
equation is more or less similar with the above steps, except
that we shall take into consideration the right hand side
of Schrödinger equation and also assuming time dependent
form of r:

R = e−αr(t) . (12)

Therefore the gravitational Schrödinger equation now
reads:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− � (�+ 1)

r2
R = H

dR

dt
,

(13)

or by using Leibniz chain rule, we can rewrite equation
(15) as:

−H dR

dr (t)

dr (t)

dt
+
d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2GMm2

H2
R− � (�+ 1)

r2
R = 0 .

(14)

The remaining steps are similar with the aforementioned
procedures for time-independent case, except that now one
gets an additional term for RR:

RR′ = H3α

(
d

dt
r (t)

)
r (t)− α2r (t)H2+

+8πGMm2 − 2H2α = 0 .

(15)

At this point one shall assign a value for d
dt r (t) term,

because otherwise the equation cannot be solved. We choose
d
dt r (t)= 1 for simplicity, then one gets solution for (17):

a2:=

〈
α=α, π=π, m=m, H=H, G=G, M =M,

t=RootOf(r(_Z)αH3−r(_Z)α2H2+8π2GMm2−2αH2)

〉
,

{α=0, t= t, m=m, H=H, G=G, M =M, π=0} ,
{α=0, π=π, t= t, m=m, H=H, M =M, G=0} ,{
π=π, t= t, m=m, H=H, M =M, α=H, G= H3

4π2Mm2

}
,

{α=α, H =0, π=π, t= t, m=m, M =M, G=G} ,
{α=0, π=π, t= t, m=m, H=H, G=G, M =0} ,
{α=0, π=π, t= t, H=H, G=G, M =M, m=0} ,
{α=α, H =0, π=π, t= t, m=m, G=G, M =0} ,
{α=α, H =0, π=π, t= t, G=G, M =M, m=0}

Therefore one can conclude that there is time-dependent
modification factor to conventional gravitational Bohr radius
solution. For complete Maple session of these steps, see
Appendix 2.

3 Gross-Pitaevskii effect. Bogoliubov-deGennes appro-

ximation and coupled time-independent gravitational

Schrödinger equation

At this point it seems worthwhile to take into consideration a
proposition by Moffat, regarding modification of Newtonian
acceleration law due to phion condensate medium, to include
Yukawa type potential [5, 6]:

a(r) = −G∞M
r2

+K
exp(−μφr)

r2
(1 + μφr) . (16)

Therefore equation (1) can be rewritten to become:

d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM −K exp(−μφr)(1 + μφr)

)
m2

H2
R−

− � (�+ 1)
r2

R = 0 ,

(17)

or by assuming μ=2μ0=μ0 r for the exponential term, eq-
uation (17) can be rewritten as:



d2R

dr2
+
2

r

dR

dr
+
8πm2E′

H2
R+

+
2

r

4π2
(
GM −Ke−2μ0(1 + μ0r)

)
m2

H2
R−

− � (�+ 1)
r2

R = 0 .

(18)

Then instead of equation (8), one gets:

RR′′=8πGMm2−2H2α−8π2m2Ke−μ0(1+μ)=0. (19)

Solving this equation will yield a modified gravitational
Bohr radius which includes Yukawa effect:

r1 =
H2

4π2(GM −Ke−2μ0)m2
(20)

and the modification factor can be expressed as ratio be-
tween equation (20) and (11):

χ =
GM

(GM −Ke−2μ0) , (21)

for complete Maple session of these steps, see Appendix 3.
A careful reader may note that this “Yukawa potential

effect” as shown in equation (21) could be used to explain
the small discrepancy (around ±8%) between the “observed
distance” and the computed distance based on gravitational
Bohr radius [4, 6a]. Nonetheless, in our opinion such an
interpretation remains an open question, therefore it may be
worth to explore further.

There is, however, an alternative way to consider phion
condensate medium, i.e. by introducing coupled Schrödinger
equation, which is known as Bogoliubov-deGennes theory
[7]. This method can be interpreted also as generalisation of
assumption by Rubcic-Rubcic [3] of subquantum structure
composed of positive-negative Planck mass. Therefore,
taking this proposition seriously, then one comes to hypo-
thesis that there shall be coupled Newtonian potential, in-
stead of only equation (3).

To simplify Bogoliubov-deGennes equation, we neglect
the time-dependent case, therefore the wave equation can be
written in matrix form [7, p. 4]:[

A
][
Ψ
]
= 0 , (22)

where
[
A
]

is 2×2 matrix and
[
Ψ
]

is 2×1 matrix, respecti-
vely, which can be represented as follows:

[
A
]
=

⎛
⎜⎜⎝

8πGMm2e−αr

rh̄2
αe−αr−2αe

−αr

r

αe−αr−2αe
−αr

r
−8πGMm

2 e−αr

rh̄2

⎞
⎟⎟⎠ (23)

and [
Ψ
]
=

(
f (r)

g (r)

)
. (24)

Numerical solution of this matrix differential equation
can be found in the same way with the previous methods,
however we leave this problem as an exercise for the readers.

It is clear here, however, that Bogoliubov-deGennes ap-
proximation of gravitational Schrödinger equation, taking
into consideration phion condensate medium will yield non-
linear effect, because it requires solution of matrix differen-
tial equation∗ (22) rather than standard ODE in conventional
Schrödinger equation. This perhaps may explain complicated
structure beyond Jovian Planets, such as Kuiper Belt, inner
and outer Oort Cloud etc. which of course these structure
cannot be predicted by simple gravitational Schrödinger eq-
uation [1, 2, 3]. In turn, from the solution of (22) one could
expect that there are multitude of celestial objects not found
yet in the Oort Cloud.

Further observation is also recommended in order to
verify and explore further this proposition.

4 Concluding remarks

In the present paper, a numerical solution of time-dependent
gravitational Schrödinger equation is presented, apparently
for the first time. This numerical solution leads to gravita-
tional Bohr-radius, as expected.

In the subsequent section, we also discuss plausible ex-
tension of this gravitational Schrödinger equation to include
the effect of phion condensate via Gross-Pitaevskii equation,
as described recently by Moffat. Alternatively one can con-
sider this condensate from the viewpoint of Bogoliubov-
deGennes theory, which can be approximated with coupled
time-independent gravitational Schrödinger equation.

It is recommended to conduct further observation in order
to verify and also to explore various implications of our pro-
positions as described herein.
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Appendix 1 Time-independent gravitational Schrödinger equation

> restart;
> with (linalg);
> R:= exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr
D2R := −α2 e−αr

> SCHEQ1:=D2R+D1R*2/r+8*piˆ2*m*E*R/hˆ2+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)−
l*(l+1)*R/rˆ2=0;
> XX1:=factor (SCHEQ1);
> #Using simplified terms only from equation (A*8, of Rubcic & Rubcic, 1998)
> ODESCHEQ:=D2R+D1R*2/r+8*piˆ2*G*M*mˆ2*R/(r*hˆ2)=0;

ODESCHEQ := α
2
e
−αr − 2αe−α r

r
+
8π2GMm2e−α r

rH2
= 0

> XX2:=factor (SCHEQ2);

XX2 :=
e−αr
(
α2rH2 − 2H2α+ 8π2GMm2

)
rH2

= 0

> RR:= solve (XX2, r);

RR := − 2(4π
2GMm2 −H2α)

α2H2

> #Then solving for RR=0, yields:
> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;

SCHEQ3 := 4π
2
GMm

2 −H
2
α = 0

> a:= solve (SCHEQ3, alpha);

a :=
4π2GMm2

H2

> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

Appendix 2 Time-dependent gravitational Schrödinger equation

> #Solution of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #with time evolution (Hagendorn’s paper);
> S:=r (t); R:=exp (−(alpha*S)); R1:=exp (−(alpha*r));

S := r(t)

R := e
−αr

> D4R:=diff (S,t); D1R:=−alpha*exp (−(alpha*S)); D2R:=−alphaˆ2*
exp (−(alpha*S)); D5R:=D1R*D4R;

D4R :=
d

dt
r (t)

D1R := −αe−αr(t)

D2R := −α2 e−αr(t)

D1R := −αe−αr(t) d
dt
r (t)

> #Using simplified terms only from equation (A*8)
> SCHEQ3:= −h*D5R+D2R+D1R*2/S+8*piˆ2*G*M*mˆ2*R/(S*hˆ2);
> XX2:=factor (SCHEQ3);

XX2 :=
e−αr(t)

(
H3α

dr(t)
dt r(t)−α2r(t)H2−2H2α+8π2GMm2

)
r (t)H2

= 0

> #From standard solution of gravitational Schrodinger equation, we know (Rubcic,
Fizika 1998):
> SCHEQ4:=4*piˆ2*G*M*mˆ2−hˆ2*alpha;

SCHEQ4 := 4π
2
GMm

2 −H
2
α

> #Therefore time-dependent solution of Schrodinger equation may introduce new
term to this gravitational Bohr radius.
> SCHEQ5:=(XX2*(S*hˆ2)/(exp (−(alpha*S))))−2*SCHEQ4;

ODESCHEQ5 := H
3
α
dr(t)

dt
r(t)− α

2
r(t)H

2

> #Then we shall assume for simplicity by assigning value to d[r (t)]/dt:
> D4R:=1;
> Then we can solve again SCHEQ5 similar to solution of SCHEQ4:
> a2:=solve((hˆ3*alpha*(D4R)*S−alphaˆ2*S*hˆ2)+2*SCHEQ4);

a2 :=

〈
α=α, π=π, m=m, H=H, G=G, M =M,

t = RootOf(r(_Z)αH3−r(_Z)α2H2+8π2GMm2−2αH2)

〉
,

{α=0, t= t, m=m, H=H, G=G, M =M, π=0} ,
{α=0, π=π, t= t, m=m, H=H, M =M, G=0} ,{
π=π, t= t, m=m, H=H, M =M, α=H, G= H3

4π2Mm2

}
,

{α=α, H =0, π=π, t= t, m=m, M =M, G=G} ,
{α=0, π=π, t= t, m=m, H=H, G=G, M =0} ,
{α=0, π=π, t= t, H=H, G=G, M =M, m=0} ,
{α=α, H =0, π=π, t= t, m=m, G=G, M =0} ,
{α=α, H =0, π=π, t= t, G=G, M =M, m=0}

> #Therefore one could expect that there is time-dependent change of gravitational
Bohr radius.

Appendix 3 Time-independent gravitational Schrödinger equation

with Yukawa potential [5]

> #Extension of gravitational Schrodinger equation (Rubcic, Fizika 1998);
> restart;
> #departure from Newton potential;
> R:=exp (−(alpha*r));

R := e
−αr

> D1R:=diff (R,r); D2R:=diff (D1R,r);

D1R := −αe−αr

D2R := −α2 e−αr



> SCHEQ2:=D2R+D1R*2/r+8*piˆ2*(G*M−K*exp (−2*mu)*(1+mu*r))*mˆ2*R/
(r*hˆ2)=0;

ODESCHEQ := α
2
e
−αr − 2αe−α r

r
+

+
8π2(GM −Ke−2μ(1 + μr))m2e−α r

rH2
= 0

> XX2:=factor(SCHEQ2);
> RR1:=solve(XX2,r);

RR1 := − 2(−H
2α+ 4π2GMm2 − 4π2m2Ke−2μ)
−α2H2 + 8π2m2Ke−2μ

> #from standard gravitational Schrodinger equation we know:
> SCHEQ3:=4*piˆ2*G*M*mˆ2−hˆ2*alpha=0;
> a:=solve(SCHEQ3, alpha);
> #Gravitational Bohr radius is defined as inverse of alpha:
> gravBohrradius:=1/a;

rgravBohr :=
H2

4π2GMm2

> #Therefore we conclude that the new terms of RR shall yield new terms (YY) into
this gravitational Bohr radius:
> PI:= (RR*(alphaˆ2*hˆ2)−(−8*piˆ2*G*M*mˆ2+2*hˆ2*alpha));
> #This new term induced by pion condensation via Gross-Pitaevskii equation may
be observed in the form of long-range potential effect. (see Moffat J., arXiv: astro-
ph/0602607, 2006; also Smarandache F. and Christianto V. Progress in Physics, v. 2,
2006, & v. 1, 2007, www.ptep-online.com)
> #We can also solve directly:
> SCHEQ5:=RR*(alphaˆ2*hˆ2)/2;

SCHEQ5 :=
α2H2(−H2α+ 4π2GMm2 − 4π2m2Ke−2μ)

−α2H2 + 8π2m2Ke−2μ

> a1:=solve(SCHEQ5, alpha);

a1 := 0, 0,
4π2m2(GM −Ke−2μ)

H2

> #Then one finds modified gravitational Bohr radius in the form:
> modifgravBohrradius:=1/(4*piˆ2*(G*M−K*exp (−2*mu))*mˆ2/hˆ2);

rmodified.gravBohr :=
H2

4π2m2(GM −Ke−2μ)

> #This modification can be expressed in chi-factor:
> chi:=modifgravBohrradius/gravBohrradius;

χ :=
GM

GM −Ke−2μ



A Cantorian Superfluid 
Vortex and the Quantization 

of Planetary Motion 
V. Christianto, vxianto@yahoo.com 

This article suggests a preliminary version of a Cantorian 
superfluid vortex hypothesis as a plausible model of non-
linear cosmology. Though some parts of the proposed theory 
resemble several elements of what have been proposed by 
Consoli (2000, 2002), Gibson (1999), Nottale (1996, 1997, 
2001, 2002a), and Winterberg (2002b), it seems such a 
Cantorian superfluid vortex model instead of superfluid or 
vortex theory alone has never been proposed before. 
Implications of the proposed theory will be discussed 
subsequently, including prediction of some new outer planets 
in solar system beyond Pluto orbit. Therefore further 
observational data is recommended to falsify or verify these 
predictions. If the proposed hypothesis corresponds to the 
observed facts, then it could be used to solve certain unsolved 
problems, such as gravitation instability, clustering, vorticity 
and void formation in galaxies, and the distribution of planet 
orbits both in solar system and also exoplanets. 

Keywords: multiple vortices, superfluid aether, nonlinear 
cosmology, gravitation instability, Bose-Einstein condensate, 
Cantorian spacetime, fluid dynamics. 



Introduction 
In recent years, there has been a growing interest in the quantum-like 
approach to describe orbits of celestial bodies. While this approach 
has not been widely accepted, motivating idea of this approach was 
originated from Bohr-Sommerfeld’s hypothesis of quantization of 
angular momentum, and therefore it has some resemblance with 
Schrödinger’s wave equation (Chavanis 1999, Nottale 1996, Neto et 
al. 2002). This application of wave mechanics to large-scale 
structures (Coles 2002) has led to several impressive results in terms 
of the prediction of planetary semimajor axes, particularly to predict 
orbits of exoplanets (Armitage et al. 2002, Lineweaver et al. 2003, 
Nottale et al. 1997, 2000, Weldrake 2002). However, a question 
arises as how to describe the physical origin of wave mechanics of 
such large-scale structures. This leads us to hypothesis by Volovik-
Winterberg of superfluid phonon-roton as quantum vacuum aether 
(Volovik 2001, Winterberg 2002a, 2002b). 

In this context, gravitation could be considered as result of 
diffusion process of such Schrödinger-like wave equation in the 
context of Euler-Newton equations of motion (Kobelev 2001, Neto et 
al. 2002, Rosu 1994, Zakir 1999, Zurek 1995). And large-scale 
structures emerge as condensed objects within such a quantum 
vacuum aether. 

In the mean time, despite rapid advancement in theoretical 
cosmology development, there are certain issues that remain 
unexplainable in the presently available theories; one of these issues 
concern the origin and nature of gravitation instability (Coles 2002, 
Gibson 1999). Recent studies that have incorporated condensation, 
and void formation occurring on the non-acoustic density nuclei 
produced by turbulent mixing, appear to indicate that the universe is 
inherently nonlinear nature. Thus a very different nonlinear 



cosmology is emerging to replace the presently accepted linear 
cosmology model. 

For instance, recently Gibson (1999) suggested that the theory of 
gravitational structure formation in astrophysics and cosmology 
should be revised based on real fluid behavior and turbulent mixingi 
theory, which leads us to nonlinear fluid model. His reasoning of this 
suggestion is based on the following argument: “The Jeans theory of 
gravitational instability fails to describe this highly nonlinear 
phenomenon because it is based on a linear perturbation stability 
analysis of an inadequate set of conservation equations excluding 
turbulence, turbulent mixing, viscous forces, and molecular and 
gravitational diffusivity.” This is because Jeans’ theory neglects 
viscous and nonlinear terms in Navier-Stokes momentum equations, 
thus reducing the problem of gravitational instability in a nearly 
uniform gas to one of linear acoustics.ii 

In related work, Nottale (1996, 1997) argued that equation of 
motion for celestial bodies could be expressed in terms of a scale-
relativistic Euler-Newton equation.iii By separating the real and 
imaginary part of Schrödinger-like equation, he obtained a 
generalized Euler-Newton equation and the continuity-equation 
(which is therefore now part of the dynamics), so the system becomes 
(Nottale 1997, Nottale et al. 2000 p. 384): 

)()./.( QVVVtm  φ (1a) 

0)(/  Vdivt ρρ  (1b) 

ρπφ G4 (1c) 
It is clear therefore Nottale’s basic Euler-Newton equations above, 

while including the inertial vortex force, neglect viscous terms (–
V) in Navier-Stokes momentum equations,iv so his equations will 
obviously lead us to certain reduction of gravitational instability 



phenomena similar to Jeans’ theory. Though Nottale’s expression 
could offer a plausible explanation on the origin of dark energy 
(Ginzburg 2002, Nottale 2002a p. 20-22, Nottale 2002b p. 13-14), his 
expression appears to be not complete enough to explain other 
phenomena in a nonlinear cosmology, such as clustering, gravitation 
condensation and void formation. 

Therefore the subsequent arguments will be based on a more 
complete form of Navier-Stokes equations including inertial-vortex 
force (Gibson 1999). Furthermore in the present article, two basic 
conjectures are proposed, i.e. 

(i) in accordance with Thouless et al. (2001), it is proposed 
here: Instead of using the Euler-Lagrange equation, ‘the 
nonlinear Navier-Stokes equations are applicable to 
represent the superfluid equations of motion’. By doing so 
we can expect to obtain an extended expression of 
Nottale’s Euler-Schrödinger equations (Nottale 1996, 
1997, 2000, 2001, 2002a). 

(ii) by taking into consideration recent developments in 
Cantorian spacetime physics, particularly by Castro et al. 
(2000, 2001) and Celerier & Nottale (2002), we propose 
that modeling the universe using superfluid aether is 
compatible (at least in principle) with Nottale’s scale 
relativity framework. This is the second basic conjecture in 
this article.v 

Accordingly, this article suggests that the nonlinear dynamics of 
Cantorian vortices in superfluid aether can serve as the basis of a 
nonlinear cosmological model. The term ‘Cantorian’ here represents 
the notion of ‘transfinite set’ introduced by Georg Cantor.vi Recently 
this term has been reintroduced for instance by Castro et al. (2000) 
and Castro & Granik (2001) to describe the exact dimension of the 
universe. As we know, a transfinite set is associated with the mapping 



of a set onto itself, producing a ‘self-similar’ pattern. This pattern is 
observed in various natural phenomena, including turbulence and 
tropical hurricane phenomena. 

Turbulence usually occurs when conditions of low viscosity and 
high-speed gradients are present. A turbulent fluid can be visually 
identified by the presence of vortices. As we know, a flow pattern, 
whose streamlines are concentric circles, is known as circular vortex 
(vortice). If the fluid particle rotates around its own axis, the vortex is 
called rotational. Such vortices continually form and evolve over 
time, giving rise to highly complex motions. In this context, 
vortices are defined as the curl of the velocity (  V) in Navier-
Stokes equations.vii Landau describes turbulence as a superposition of 
an infinite number of vortices, with sizes varying over all scales (this 
‘all scales’ notion leads us to Cantorian term). From the large scale 
vortices, energy is transmitted down to smaller ones without loss. The 
energy of the fluid is finally dissipated to the environment when it 
reaches the smallest vortices in the range of scales. The solutions to 
the velocity field are unique when the helicity = v . curl v = 0; 
otherwise the solutions are not unique. 

As we know, real fluid flow is never irrotational, though the mean 
pattern of turbulent flow outside the boundary layer resembles the 
pattern of irrotational flow. In rotational flow of real fluids, vorticity 
can develop as an effect of viscosity. Provided other factors remain 
the same, vortices can neither be created nor destroyed in a non-
viscous fluid. Since the vortex moves with the fluid, vortex tube 
retain the same fluid elements and these elements retain their 
vorticity. The term ‘vorticity’ here is defined as the number of 
circulations in a certain area, and it equals to the circulation around an 
elemental surface divided by the area of the surface (supposing such 
vortex lattice exists within equal distance).viii 



In quantum fluid systems like superfluidity, such vortices are 
subject to quantization condition of integer multiples,ix i.e. they are 
present in certain N number of atoms, as experimentally established 
in the superfluid phase of 4He, 

os nmndlv κπ ./.2. 4  (2) 

where m4 is the helium particle mass, and o is the quantum of 
circulation (Nozieres & Pines 1990, Thouless et al. 2001). 
Furthermore, quantized vortices is a topological excited state, which 
takes form of circulation with equidistance distribution known as 
vorticity (Carter 1999, Kiehn 2001). Usually the Landau two-fluid 
model is used, with a normal and superfluid component. The normal 
fluid component always possesses some nonvanishing amount of 
viscosity and mutual friction; therefore it could exhibit quantum 
vorticity as observed in Ketterle’s experiments. 

A ‘Cantorian vortice’ can be defined in simple terms as tendency 
of the dynamics of both fluids and superfluids to produce multiple 
regions of vortex and circulation structures at various scales (Barge & 
Sommeria 1995, Castro et al. 2002, Chavanis 1999, Kobelev 2001, 
Nozieres & Pines 1990, Volovik 2000b, 2000c). In principle, the 
notion of Cantorian Superfluid Vortex suggests that there is a 
tendency in nature, particularly at the astronomical level scale, to 
produce mini vortices within the bigger vortices ad infinitum. Though 
some parts of the proposed theory resemble several elements of what 
have been proposed by Consoli (2000, 2002), Gibson (1999), Nottale 
(1996, 1997, 2001, 2002a), Volovik (2000a, 2000b, 2001), and also 
Winterberg (2002a, 2002b), to the author’s present knowledge the 
idea of using a Cantorian superfluid vortex model instead of 
(ordinary) superfluid model or vortex theory alone has never been 
proposed before. The Cantorian term here implies that such a 
superfluid vortice is—in accordance with Landau’s definition of 



turbulence—supposed to exist both as quantum vacuum aether 
background (micro phenomena) and as representation of various 
condensed objects such as neutron stars (macro phenomena). The 
proposed hypothesis results in a non-homogenous isotropic Euclidean 
flat-spacetime expanding universe at all scales, but without a 
cosmological constant. This cosmology constant nullity is somewhat 
in accordance with some recent articles, for instance by Guendelman 
et al. (2002), Volovik (2001), and Winterberg (2002a, 2002b). 

Implications of the proposed model will be discussed 
subsequently, where first results of the method yield improved 
prediction of three new planets in outer planet orbits of the solar 
system beyond Pluto. If the predictions of the proposed hypothesis 
correspond to the observed facts, it is intuitively conjectured that the 
proposed theory could offer an improved explanation for several 
unexplainable things (at least not yet in a quantifiable form) in regards 
to the origin of gravitation instability, void formation, and unifying 
gravity and quantum theory.  

A review of recent developments 
Throughout the last century of theoretical physics since Planck era, 
physicists have investigated almost every conceivable idea of how 
geometry can be used or modified to describe physical phenomena. 
For instance, Minkowski refined his 4D spacetime-geometry to 
explain Einstein’s STR. Others have come up with 5D (Kaluza-
Klein), 6D, and then ten D, eleven D, and recently 26D (bosonic 
string theory as a dual resonance model in 26D; see Winterberg 
2002a). It seems like the number of geometrical dimensions simply 
grow with time. We could also note a considerable amount of 
study has been devoted to geometry with infinite-dimension or 
Hilbert space. 
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 However, recently it seems there is also a reverse drift of 
simplifying these high dimensional (integer) numbers, for instance by 
use of the replacement of the dual resonance model in 26D with QCD 
in 4D to describe nuclear forces; and by using of the aforementioned 
analogies between Yang-Mills theories and vortex dynamics, there is 
a suggestion that string theory should perhaps be reinstated by some 
kind of vortex dynamics at the Planck scale (Winterberg 2002a). 
Furthermore, Castro et al. (2000, 2001) have proposed that the exact 
dimension of the universe is only a bit higher than Minkowskian 4D 
(less than 5D). They arrived at this conclusion after reconciling 
Cantorian spacetime geometry with the so-called Golden Section. 
Therefore instead of proposing a trivial argument over which 
geometry is superior, this article proposing accepting the hypothesis 
that the Cantorian fractal spacetime dimension as proposed by Castro 
et al. (2000) can be the real geometric dimension of the universe. 
This fractal dimension will be called the Cantorian-Minkowski 
dimension. This conjecture is somewhat in accordance with a recent 
suggestion made by Kobelev (2001) that Newton equation is a 
diffusion equation of multifractal universe. 

In the mean time, despite the fact that most theoretical physics 
efforts are devoted toward the proper expressions of fields, fields are 
not the only objects which one can think as occupying spacetime, 
there are also fluids. When there is no equation of state specified they 
are more general than fields (Roberts 2001).x In this regards quantum 
fluids, which are usually understood as a limited class of objects used 
to describe low-temperature physics phenomena, have in recent years 
been used to model various cosmological phenomena, for instance 
neutron stars (Andersson & Comer 2001, Elgaroy & DeBlassio 2001, 
Sedrakian & Cordes 1997, Yakovlev 2000). It is not surprising 
therefore that there is increasing research in using superfluid model to 



represent cosmology dynamics (Liu 2002, Roberts 2001, Volovik 
2000a, 2000b, 2000c, 2001, Zurek 1995). 

In this context, it is worth noting here some recent development in 
superfluidity research. This direction of research includes application 
of NLSE (Nonlinear Schrödinger equation) as a model of the Bose-
Einstein condensate under various conditions (Quist 2002). There are 
also NLSE proposals representing Cantorian fractal spacetime 
phenomena (Castro et al. 2002). Experiments on Bose-Einstein 
condensates have now begun to address vortex systems. Superfluid 
turbulence issues and its explanation in terms of quantum vortex 
dynamics have become one of the most interesting physics research 
these days (Volovik 2000a, 2002b, Zurek 1995). For instance, recent 
experiments in the past few years showed that some turbulent flows 
of the superfluid phase of 4He (helium II) are similar to analogous 
turbulent flow in a classical fluid (Thouless et al. 2001). In theoretical 
realm, there is also new interest in the relationship between the 
topology (broken by reconnections, hence release of energy) and the 
geometry of structure—sometimes known as topological defects in 
cosmology (Yates 1996, Zurek 1995)—which cannot be changed 
arbitrarily as done traditionally by topologists but changes according 
to the dynamics (NLSE or Navier-Stokes equationxi). 

Winterberg (2002a) has suggested that the universe can actually be 
considered an Euclidean flat-spacetime provided we include 
superfluid aether quantum vacuum into the model. Winterberg's 
aether is a densely filled substance with an equal number of positive 
and negative Planck masses mP = (hc/G) which interact locally 
through contact-type delta-function potentials. In the framework of 
this approach Winterberg (2002a, 2002b) has shown that quantum 
mechanics can be derived as an approximate solution of the 
Boltzmann equation for the Planck aether masses. The particle in his 
model is a formation appeared as result of the interaction between the 



positive and negative Planck masses similar to the phonon in a solid. 
This suggestion is seemingly in a good agreement with other study of 
gravity phenomena as long wave-length excitation of Bose-Einstein 
condensate by Consoli (2000, 2002). Consoli (2000) noted that the 
basic idea that gravity can be a long-wavelength effect induced by the 
peculiar ground state of an underlying quantum field theory leads to 
considering the implications of spontaneous symmetry breaking 
through an elementary scalar field. He pointed out that Bose-Einstein 
condensation implies the existence of long-range order and of a gap-
less mode of the Higgs-field. This gives rise to a 1/r potential and 
couplings with infinitesimal strength to the inertial mass of known 
particles. If this is interpreted as the origin of Newtonian gravity one 
finds a natural solution of the hierarchy problem. In the spirit of 
Landau, Consoli (2000, 2002) has also considered similarity between 
his condensate model and superfluid aether hypothesis. Furthermore, 
he also suggested: “all classical experimental tests of general 
relativity would be fulfilled in any theory incorporating the 
Equivalence Principle.” 

Furthermore, recently Celerier & Nottale (2002) have shown that 
the Dirac equation can be derived from the scale relativity theory. 
Since the Dirac equation implies the existence of aether, this 
derivation can be interpreted as: modeling superfluid aether in the 
universe is compatible (at least in principle) with Nottale’s scale 
relativity framework.xii Nottale’s conjecture on the applicability of the 
Schrödinger equation to describe macroscopic phenomena (up to 
astronomic scale) seems also to imply the presence of a certain form 
of fluid (aether) as the medium of vacuum quantum fluctuation or a 
zero point field (Roberts 2001). And because the only type of matter 
capable of resembling such quantum phenomena macroscopically is 
Bose-Einstein condensate or its special case superfluid (Consoli 2000, 



2002), then this leads us to a conjecture that the aether medium is very 
likely a quantum fluid. 

Combining the character of these selected recent developments, 
this article suggests that the nonlinear wave dynamics of Cantorian 
vortices of superfluid aether can serve as the basis of a nonlinear 
cosmological model, which will be capable of describing various 
phenomena including a plausible mechanism of continuous particle 
generation in the universe. The preceding work (albeit somewhat 
controversial from the present accepted view) suggests that this 
alternative and nonlinear cosmological model shall include: (a) an 
aether, (b) Euclidean flat spacetimexiii, (c) vortex dynamics, (d) 
superfluid (Bose-Einstein condensate), and (e) fractal phenomena—as 
the basis of real physical model and also the theoretical analysis of 
nonlinear cosmology. It is the opinion of this author that a proper 
combination will lead us to a consistent real model. 

Therefore, in theoretical terms this article argues in favor of 
combining Cantorian-Minkowski geometry with Nottale-Gibson-
Winterberg’s vortex of superfluid aether. The proposed model results 
in a Euclidean flat spacetime with some fluctuations induced by 
fractal phenomena (expressed as a non-integer dimension in 
Cantorian universe) arising from multiple vortices. A real physically-
observed model is chosen here instead of geometrical construct, 
because it will directly lead us to a set of experimental tests which can 
be used to determine if the model is not valid. With regards to 
superfluidity research, perhaps the conjectures of this article can be 
considered as extending Volovik’s (2000a, 2000b, 2001) superfluid 
theory to Cantorian spacetime case. 



A derivation of the basic vortex model and 
quantization of semimajor axes 
The Schrödinger equation of wave mechanics can be interpreted as a 
description for the tendency of micro aggregates of matter to make 
structures. In this regards, Nottale (1993, 1996, 1997) put forth a 
conjecture that spacetime is non-differentiable,xiv which led to a 
fractal version of the Schrödinger-like equation capable of predicting 
the semimajor axes of both planetary-like systems as well as micro 
orbits at molecular level. This reasoning could be considered as an 
alternative interpretation of Ehrenfest Theorem. 

However, such a quantum-like approach in a large-scale structure 
has not been widely accepted (Coles 2002), for the quantization of 
macroscopic systems is something outside the scope of known 
physics (Neto et al. 2002). Nevertheless, some possible origins for 
such effects have been outlined. For instance Bohr-Sommerfeld’s 
hypothesis of quantization of angular momentum, appears to be more 
direct than the Schrödinger-like equation, at least for (planar case of) 
planetary orbits in the solar system. For a spherical case (for some 
exoplanet systems) we should derive solution of the Schrödinger-like 
equation. 

As we know, for the wave function to be well defined and single-
valued, the momenta must satisfy Bohr-Sommerfeld’s quantization 
conditions (Van Holten 2001): 




 ndxp .2. π (3) 

for any closed classical orbit . For the free particle of unit mass on 
the unit sphere the left-hand side is 
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where T = 2/ is the period of the orbit. Hence the quantization rule 
amounts to quantization of the rotation frequency (the angular 
momentum): nω .

Then the force balance relation of Newton’s equation of motion: 
rmvrGMm // 22  (3b) 

Using Bohr-Sommerfeld’s hypothesis of quantization of angular 
momentum (3a), a new constant g was introduced (which plays the 
role of a gravitational analog of the Planck constant): 

π2/ngmvr 
Just like in the elementary Bohr theory (before Schrödinger), this pair 
of equations yields a known simple solution for the orbit radius for 
any quantum number of the form: 

)..4/(. 2222 mGMgnr π  (5) 
or 

22 /. ovGMnr  (6) 

where r, n, G, M, vo represents semimajor axes, quantum number 
(n = 1,2,3,…), Newton gravitation constant, and mass of the nucleus 
of orbit, and specific velocity, respectively. In this equation (6), we 
denote 

GMmgvo )./2( π  (6a) 

This result (6) is the same as Nottale’s basic equation for predicting 
semimajor axes of planetary-like systems (Nottale 1996, Nottale et al. 
1997, 2000). It can be shown that equation (6) could be derived 
directly from the Schrödinger equation for planar case (Christianto 



2001), therefore it represents the solution of the Schrödinger equation 
for planar axisymmetric cylindrical case. The value of m is an 
adjustable parameter (similar to g). For a planetary system including 
exoplanets Nottale et al. (1997, 2000) has found the specific velocity 
vo is + 144 km/s. Therefore this equation (6) implies the semimajor 
axes distribution can be predicted from a sequence of quantum 
numbers. This equation (5) is also comparable with Neto et al.’s 
(2002) approach, where they propose m = 2.1  1026 kg (the average 
mass of the planets in solar system). 

It is worth noting here Nottale et al. (1997, 2000) reported this 
equation (6) agrees very well with observed data including those for 
exoplanets, and particularly for inner planet orbits in the solar system. 
Indeed the number of exoplanets found has increased fivefold since 
their first study (Nottale et al. 2000). However, a question arises when 
we compare this prediction with outer planet orbits in the solar 
system, since this results in very low predictions compared with 
observed data, i.e. 52.6% for Jupiter, 36.3% for Saturn, 22.3% for 
Uranus, 17.2% for Neptune, and 15.6% for Pluto. Therefore, Nottale 
(1996) proposed to use a different value for vo to get the distribution 
of outer planets (the so-called Jovian planets). 

Nottale (1996) proposed a plausible explanation for this 
discrepancy by suggesting outer planets from Jupiter to Pluto are part 
of different systems since they apparently consist of different physical 
and chemical planetary compositions, so we can expect two different 
diffusion coefficients for them. Therefore he proposed the following 
relation to predict orbits of inner planets and outer planets (Nottale 
1996, p. 51) a = n.(n + ½ ).ao. Nottale then suggested the proper 
values are ao.inner = 0.038025AU for inner orbits and 
ao.outer = 1.028196AU for outer orbits, and based on these values the 
discrepancy in predicting outer planet distribution can be reconciled. 



While Nottale’s (1996, p. 53) description on these different 
chemical and physical compositions, distribution of mass, and 
distribution of angular momentum seem to be at least near to right, he 
did not offer any explanation of why there are different chemical and 
physical compositions if these outer planets were generated by the 
same Sun in the past. Nottale’s proposed equation was based on the 
second quantum number l, derived from Schrödinger-type equation 
for spherical case. However, it should be noted that while the second 
quantum number could plausibly explain the different orbits for outer 
planets, it cannot provide any explanation for their different chemical 
and physical compositions. Therefore, this leads us to a conjecture, 
i.e. these differences of planetary distribution and different chemical 
and physical compositions of the outer planets in the solar system are 
the consequences of the interaction of a negative mass (star) with the 
Sun.xv From this author’s opinion, it seems only through using this 
conjecture we could explain why the outer planets are physico-
chemically different from the inner planets. From this conjecture, then 
we reinterpreted Nottale’s conjecture that Jupiter should be the 
second planet (n = 2) in the outer orbit system, to obtain predicted 
values of semimajor axes of those Jovian planets, based on the notion 
of reduced mass . The result of this approach will be described 
subsequently. 

Another plausible explanation of the outer planets distribution has 
been suggested by Chavanis (1999) based on two-fluids model. 
However, while this suggestion is in good agreement with 
observation of outer planet orbits, in the author opinion it also does 
not offer a convincing argument for the difference of chemical and 
physical composition if those inner and Jovian planets were generated 
by the same Sun. 



Now let’s turn our attention to the implications of equation (6) in 
regards to the basic vortex model. If T is the orbit period of the above 
planet around the Sun, then by Kepler’s third law, 

223 )/2( vrTr π (7) 
Or 

springkrv  22 4π

where r, T, v, kspring represents semimajor axes, orbit period, orbit 
velocity, and ‘spring constant’ of the dynamics system, 
respectively.xvi For gravity case, one obtains kspring = G.M. We remark 
here this constant kspring could be comparable with Nottale’s (Nottale 
et al. 2000) notion of parameter D = G.M/2thus 
kspring = D.2 = D.2gc. This alternative expression comes from the 
definition of gravitation coupling constant g = /c, where g

–

1 = 2072 + 7 (Nottale et al. 2000). 
By observing the above expressions, we conclude that equation (8) 

has the same basic form of Nottale’s equation (6). We also note here 
Nozieres & Pines (1990) suggested that a vortex structure exists in a 
superfluid if its velocity is radius-dependent (v = f(1/r)). Since from 
equation (8) the quadratic of velocity is radius-dependent v2 = (k/r), 
we propose here that equation (8) also implies a special case of vortex 
motion. Therefore, we conclude equation (6) also implies a vortex 
motion. This seems to be in agreement with Nottale et al.’s (1997, 
2000) assertion that specific velocity vo = 144 km/s represents a new 
fundamental constant observed from the planetary up to extragalactic 
scale. 

In order to generalize further equation (6), we proposed using 
Kobelev’s (2001) idea that Newton’s equations may be treated as a 
diffusion process in a multi-fractal universe. Provided such a 
relationship exists, we could conclude that equation (6) implies a 



Cantorian fractality of vortex structure in the universe. But a question 
arises here as to whether a scaling factor is required to represent 
equation of motion of celestial bodies at various scales using equation 
(6). Therefore, by using a fractional derivative method as described 
by Kolwankar (1998, eq. 2.9), then 

})](/[)(.{]/[)( qqqqq xdxfddxxfd ββββ   (9) 
where it is assumed that for dxxddx  )(,0 β . Hence this author 
obtained (Christianto 2002b) a linear scaling factor for equation (6): 
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This equation implies : 
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In other words, for different scaling reference frames, specific 
velocity v1 may vary and may be influenced by a scale effect . To 
this author’s present knowledge, such a scaling factor has never 
appeared before elsewhere; neither in Nottale’s work (1996, 1997, 
2001, 2002) nor in Neto et al. (2002). A plausible reason for this is 
that Nottale’s and Neto et al.’s theory were intended to describe 
planetary orbits only. 

A note on this interpretation is perhaps worth making. While of 
course this Cantorian fractality of vortex structure in the universe is 
not the only possible interpretation, we believe this is the nearest 
interpretation considering the turbulence phenomena.xvii It is known 
that turbulent flows seem to display self-similar statistical properties 
at length scales smaller than the scales at which energy is delivered to 
the flow (this sometimes referred to as ‘multi-fractality’ of 
turbulence). For instance, Kolmogorov argued that at these scales, in 
three dimensions, the fluids display universal statistical features 
(Bernard 2000, Foias et al. 2001 p. 17, Gibson 1991, Weinan 2000). 



Turbulent flow is conventionally visualized as a cascade of large 
vortices (large scale components of the flow) breaking up into ever 
smaller sized vortices (fine-scale components of the flow) – the 
principal cascading entity is the ‘enstrophy’.xviii 

Recent observational data of the similar size of semimajor axes 
between solar system and exoplanet systems (a/M = 0.043 AU/Mo for 
n = 1; and a/M = 0.17 AU/Mo for n = 2) seems to indicate that those 
are clusters of celestial objects at the same hierarchy (scale) of 
quantized vortices (Armitage et al. 2002, Lineweaver et al. 2003, 
Neto et al. 2002, Nottale et al. 1997, 2000, Weldrake 2002). This 
seems to imply that the proposed Cantorian vortices interpretation is 
in good agreement with observed data.  

Superfluid vortices model 
It is worth discussing here the rationale for suggesting a Cantorian 
superfluid aether as a real physical model for nonlinear cosmology. 
This brings us back in time to where GTR was first introduced (in 
passing we note in pre-GTR era aether hypothesis was almost entirely 
abandoned because of the growing acceptance of STR; see Munera 
1998). 

It is known that in GTR there is no explicit description of the 
medium of interaction in space (aether), though actually this was 
considered by Einstein himself in his lecture in Leiden 1921, “Ether 
and Relativity” (Einstein 1921): 

“..According to the general theory of relativity space 
without an ether is unthinkable; for in such a space there 
not only would be no propagation of light, but also no 
possibility of existence for standards of space and time 
(measuring-rods and clocks), nor therefore any space-
time intervals in the physical sense. But this ether may not 



be thought of as endowed with the quality characteristic 
of ponderable media, as consisting of parts which may be 
tracked through time. The idea of motion may not be 
applied to it.” 

A perfect fluid in GTR is therefore could be thought of as a liquid 
medium with no viscosity and no heat induction. Such a perfect fluid 
is basically a special case of quantum liquid or superfluid (Nozieres & 
Pines 1990). We note the term ‘special case’ because the superfluid 
here should be able to represent non-ponderable (weightless) 
characteristic of the aether medium, though perhaps it could have 
motion. 

It is clear therefore aether is inherently implied in a GTR 
geometrical construct (see also Consoli 2002). Furthermore, it is 
possible to explain the frame dragging phenomena in a GTR 
geometrical construct as it is actually a fluid vortex—with a massive 
object in its vortex centre (Prix 2000)—capturing a volume of 
surrounding fluid and entraining its rotation. 

In Maxwell’s hypothesis, aether is a frictionless fluid. Based on 
this conjecture Winterberg (2002a, 2002b) has proposed an aether 
model, which consists of a quantum fluid made up of Bose particles. 
This analogy leads to the Planckian aether hypothesis which makes 
the assumption the vacuum of space is a kind of plasma (see also 
Roberts 2001). The ultimate building blocks of matter are Planck 
mass particles obeying the laws of classical Newtonian mechanics, 
but there are also negative Planck mass particles. Furthermore, with 
the Planck aether having an equal number of positive and negative 
Planck mass particles, the cosmological constant is zero and the 
universe is Euclidean flat-spacetime. In its groundstate the Planck 
aether is a two component positive-negative mass superfluid with a 
phonon-roton energy spectrum for each component. 



The theory of superfluid vortices is based upon various versions of 
the Landau’s two-component fluid model (Godfrey et al. 2001), and 
is adequately described by many researchers (Kivshar et al. 1998, 
Quist 2002, Thouless et al. 2001, Tornkvist & Schroder 1997, 
Volovik 2000c, 2001, Zurek 1995). For applications to Cosmology, it 
is presumed that the “vacuum” is a superfluid-like continuum in 
which the formation of topological defects as “vortices” generates the 
stars and galaxies as components of the normal fluid. The diffusive 
and dissipative Navier-Stokes fluid equations, with constraints that 
lead to the Complex Ginzburg-Landau equations to describe the 
superfluid, form the basis of the mathematical model. The topological 
defects can be homogeneously defined, hence they are self-similar, 
and scale covariant. Such topological defect domains can support not 
only fractals but also quantum like integer values for their closed 
integrals. 

The conceptual map (Figure 1) depicts how the various parts of the 
most recent theories could plausibly be used to form a Cantorian 
superfluid vortex model for nonlinear cosmology. 



Figure 1. Conceptual map of the plausible synthesis of a Cantorian superfluid 
vortex model for nonlinear cosmology 

Now we are going to illustrate how the equation of motion (6) is 
compatible with the proposed superfluid vortices model as described 
above. In other words, we will provide an argument to link the 
solution of the Schrödinger equation (6) with the solution of Navier-
Stokes equations. Theoretically, R. Kiehn (1989, 1999) has shown 
that there is an exact mapping between the Schrödinger equation and 
Navier-Stokes equation, though without reference yet to its 
cosmological implications. Therefore now we extend his conjecture to 



a cosmological setting. In order to do this, we consider two 
approaches here: 

o Gibson’s (1999) Navier-Stokes model for cosmology;
o Godfrey et al.’s (2001) model of superfluid vortices.

First, we note here that Gibson (1999) has shown that his Navier-
Stokes-Newton model yields the following solution: 

2/'. rGtmvr  (12) 
where r, t, G, m’, vr represents semimajor axes, time elapsed, Newton 
gravitation constant, mass of the nucleus of orbit, and specific 
velocity, respectively. It is clear therefore that equation (12) admits 
mass growth rate as time elapsed, which is permitted by Gibson’s 
Navier-Stokes model. Now we assert Trv /2π or vtvTr  π2/ , 
and substitute this value to one of r in equation (12). We get: 

2/'. vGmr  (13) 
which is very similar to equation (6), except the expression for 
quadratic quantum number n2. A plausible reason for this missing 
quantum number is that Gibson (1999) assumed a normal fluid in his 
model instead of quantum liquid. He also argued that equation (12) 
only governs the formation stage (such as spiral nebulae formation); 
while equation (13) is also applicable for present time provided we 
assert a quantum liquid for the system. Therefore we also conclude 
again that Nottale’s equation (6) actually implies a quantum liquid as 
medium of interaction.  

For the second method, we note here that according to Godfrey et 
al. (2001) the analytic form of an oscillating plane boundary layer 
flow of superfluid vortices can be derived from the Navier-Stokes 
equation, and the velocity u(z,t) is given by: 

)cos(.. kzteAu kz   ω (14) 



where )2/( vk ω , T/2πω  is the angular frequency of 
oscillation, T is the period of oscillation,  is the kinematic viscosity 
and A is an arbitrary constant. In the limit that the coupling of the 
superfluid and normal fluid components through mutual friction is 
negligible, we may take this oscillating velocity profile for the normal 
fluid, with the superfluid remaining at rest. Because we can assert 
velocity u = dz/dt = d/dt, therefore we can obtain  and also its 
second differentiation d2/dt2. Hence we get: 

ωω ).sin(../ 22 kzteAdtd kz   (15) 
or 

0./ 222  ωdtd (16) 
which is the most basic form of the Schrödinger equation. In other 
words, we obtain the Schrödinger equation from a velocity expression 
derived from the Navier-Stokes equation for superfluid vortices 
(Godfrey et al. 2001). These two methods confirm Kiehn’s (1989, 
1999) conjecture that there is exact mapping between the Schrödinger 
equation and Navier-Stokes equation regardless of the scale of the 
system considered. This conclusion, which was based on a two-fluid 
model of superfluid vortices, is the main result of this article; and to 
this author’s present knowledge this conclusion has never been made 
before for the astronomical domain (neither in Chavanis 1999, Neto et 
al. 2002, nor Nottale 1996, 1997, 2001, 2002). In this author opinion, 
Chavanis’ article (1999) is the nearest to this approach, because he 
already considered two-fluid model for the Schrödinger equation 
(though without reference to superfluidity), though he did not mention 
the role of Navier-Stokes equations like Gibson (1999). 

A distinctive feature of this proposed superfluid vortices approach 
is that we could directly compare our model with laboratory 
observation (Volovik 2001, Zurek 1995). For instance, using this 



model Godfrey et al. (2001) argued that the fluid at the edge of the 
disk moves a distance 4cR in a time T (with angular velocity 
 = 2/T), thus having a critical dimensional linear velocity of 

πφω /.2 Rv cdisk  (17) 

In this equation, c represents critical amplitude where damping of 
the oscillations reduce to a value, which was interpreted as the 
damping due only to viscosity of the normal fluid component. In this 
regards, interpretation of the experiment is that superfluid boundary 
layer vortices are the cause of critical amplitude of oscillations 
observed. Therefore it seems we could expect to observe such critical 
amplitude for the motion of celestial objects. Of course for spherical 
orbit systems the equation of critical dimensional linear velocity is 
somewhat different from equation (17) above (Godfrey et al. 2001). 
To this author’s present knowledge such theoretical linkage between 
critical amplitude of superfluid vortices and astronomical orbital 
motions has also never been made before; neither in Chavanis (1999), 
Nottale (1996, 1997, 2001, 2002), Volovik (2000a, 2000b, 2000c, 
2001), nor Zurek (1995). 

New planets prediction in solar system 
Based on equation (6) and using Nottale’s conjecture of Jupiter 
should be the second planet (n = 2) in the outer orbit system, we 
derive predicted and observed values of semimajor axes of those 
outer planets. Then by using Nottale’s (1996, p. 53) conjecture for 
quantization of galaxy pairs, and minimizing the standard deviation 
(s) between these observed and predicted values, we can solve 
equation (6) for the reduced mass  to get the most probable 
distribution for outer planet orbits: 

)/().( 2121 mmmm μ  (18) 



It is worth noting here, that a somewhat similar approach using 
reduced mass to derive planetary orbits has also been used by Neto 
et al. (2002), as follows: 

    EVrrrrg 22222 /.//.2/ ϕμ  (18a)
though Neto et al. (2002) did not come to the same conclusion as 
presented here. Result of this method (18) is presented in Table 1 
below. 

Table 1. Predicted orbit values of inner and outer planets in Solar system 
From Table 1 above we obtain  = 26.604.m1, for the minimum 

standard deviation s = 0.76AU.xix Inserting this  value into equation 
(18) and solving it, we get the most likely companion mass of m2 = –
(26.604/25.604).m1. Therefore we conclude it is very likely there is a 
negative-mass star (NMS) interacting with the Sun. This NMS has a 
mass value of very near to the Sun but with a negative sign, so this 
can be considered as the dim twin-companion star of the Sun. This is 
somewhat comparable to what some astronomers suggest of the 
hypothetical ‘dark star’ (Damgov et al. 2002), though to this author’s 



present knowledge none of the existing astronomic literatures has 
considered a negative-mass star as plausible candidate of the twin-
companion of the Sun. Therefore thus far, this conclusion of the 
plausible presence of a large negative-mass object in the solar system 
could only be explained using superfluid/superconducting model 
(DeAquino 2002). xx 

On the basis of this value of  = 26.604.m1, we obtained a set of 
predicted orbit values for both inner planets and Jovian planets. For 
inner planets, our prediction values are very similar to Nottale’s 
(1996) values, starting from n = 3 for Mercury; for n = 7 Nottale 
reported minor object called Hungarias; for Jovian planets from n = 2 
for Jupiter up to n = 6 for Pluto our prediction values are also 
somewhat similar with Nottale’s (1996) values. It is worth noting 
here, we don’t have to invoke an ad hoc quantum number to predict 
orbits of Venus and Earth as Neto et al. (2002) did. We also note here 
that the proposed method results in prediction of orbit values, which 
are within a 7% error range compared to observed values, except for 
Jupiter which is within a 12.6% error range. 

The departure of our predicted values compared to Nottale’s 
predicted values (1996, 1997, 2001) appear in outer planet orbits 
starting from n = 7. We proposed some new predictions of the 
possible presence of three outer planets beyond Pluto (for n = 7, n = 8, 
n = 9) to be called here as  at orbits around 
55.77 + 1.24AU, 72.84 + 1.24AU, and 92.18 + 1.24AU, respectively. 
This prediction of most likely semimajor axes has taken into 
consideration standard deviation found above s = 0.76AU (Table 1). 
Two of these predicted orbits of outer planets are somewhat in 
agreement with previous predictions by some astronomers on the 
possible presence of outer planets beyond Pluto around ~50AU and 
around ~100AU (Horner et al. 2001). However, it is worth noting 
here, the predicted planet (for n = 8) at orbit 72.84 + 1.24AU is purely 



based on equation of quantization of orbit (6) for Jovian planets. It is 
also worth noting here, that these proposed planets beyond Pluto are 
different from what is predicted by Matese et al. (1999), since 
Matese’s planet is supposed to be somewhere around the outer Oort 
cloud. 

Further remarks are worth considering here concerning predicted 
orbits at n = 8 and n = 9. We consider first for the case of inner orbits. 
It was suggested by Olber and also recently by Van Flandern in 1993 
(Damgov et al. 2002) of a planet (or planets) existed until relatively 
recently between Mars and Jupiter, at the location where a missing 
planet is expected by the well-known Titius-Bode law (see Table 1 
under column ‘Orbit size’). As we know, Titius-Bode law was based 
on series of numbers 0,3,6,12,24,48,96… which then translated by 
factor 4. Thus we have series of 4,7,10,16,28,52,… which are 
supposed to be able to predict the orbit size of planets in solar system. 
This argument was subsequently supported by Nottale’s equation 
except for orbits at n = 7 and n = 9, between Mars and Jupiter, which 
can be regarded as departure from the Titius-Bode law. However, 
while Nottale (1996, p. 51) has reported planets (or at least, 
recognizable objects) at n = 8 and n = 9 for inner orbit in solar system 
were observed, to our present knowledge no similar prediction has 
been made for n = 8 and n = 9 for outer orbits. Therefore new 
observational data is highly recommended to find the real semimajor 
axes of the proposed new outer planets beyond Pluto. 

If these new outer planets correspond to the observational data, it 
is conjectured intuitively that the proposed Cantorian superfluid 
vortices model could offer an improved explanation for several things 
unexplainable (at least not yet in a observable and quantifiable form) 
thus far with regards to the origin of continuous particle generation, 
gravitation instability, and unifying gravity and quantum theory. 



Notes on the superfluid experiments for 
cosmology: fractal superfluid 
Zurek (1995) and Volovik (2000b) have proposed some aspects of 
superfluid analogies to describe various cosmological phenomena. 
However, extending this view towards Cantorian Superfluid Vortex 
hypothesis implies we should be able to observe fractal phenomena of 
superfluid and also Bose-Einstein condensate systems. While this has 
not become the accepted view, recent articles indicate such 
phenomena were already observed (Kivotides et al. 2001, 2001b, 
Ktitorov 2002). 

In this regards, some recent observations have shown that the 
number of galaxies N(r) within a sphere of radius r, centered on any 
galaxy, is not proportional to r3 as would be expected of a 
homogeneous distribution. Instead N(r) is proportional to rD, where D 
is approximately equal to 2, which is symptomatic of distribution with 
fractal dimension D. It is interesting to note, that for D = 2, the 
cosmological gravitational redshift gives the linear distance-redshift 
relation and becomes an observable phenomenon (Mittal & Lohiya 
2001). This non-integer dimension is known as Hausdorff dimension 
dH, which can be computed to be within the range of 1.6 ~ 2.0 up to 
the scale 1 ~ 200 Mpc (Baryshev 1994, 1999). Furthermore, 
transition to homogeneity distribution has not been found yet. In this 
regards Anderson et al.xxi also admitted: “These findings (of 
clustering and void formation) have become increasingly difficult to 
reconcile with standard cosmological theories, in which the approach 
to homogeneity at large-scales is central element.” What more 
interests us here is that an extended version of Gross-Pitaevskii 
equation admits self-similar solutions and also it corresponds to 
Hausdorff dimension dH ~ 2, which seems to substantiate our 



hypothesis that there is exact correspondence between cosmological 
phenomena and condensed matter physics.xxii 

In principle, the proposed Cantorian Superfluid Vortex theory 
leads us to a fractal superfluid description of Euclidean flat-spacetime 
universe, which is scale-invariant and expanding at all scales, but 
without a cosmological constant (this was also suggested by 
Guendelman et al. 2002, Winterberg 2002a, 2002b). This Cantorian 
Superfluid Vortex model is inhomogeneous though it is perhaps 
isotropic (in accordance with Einstein-Mandelbrot Cosmological 
Principle; Mittal & Lohiya 2001). Gibson (1999) has also described 
how the nonlinear cosmology model based on Navier-Stokes 
equations could explain the hidden-universe problem. Furthermore, it 
seems that the superfluid vortice model could explain why the inner 
cylindrical core of earth rotates independently of the rest of the 
planet.xxiii 

It seems therefore we could expect that further research will 
divulge more interesting fractal phenomena of Bose-Einstein 
condensate and superfluid systems (somewhat related to superfluid 
turbulence and its damping phenomena; Godfrey et al. 2001), which 
could lead us to further generalization of the proposed Cantorian 
Superfluid Vortex model. 

A new method to predict quantization of planetary orbits has been 
proposed based on a Cantorian superfluid vortex hypothesis. It could 
be expected that in the near future there will be more precise 
nonlinear cosmology models based on real fluid theory. 
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Endnotes 
i Term ‘turbulent mixing’ here has been used in accord with Gibson’s 

original terminology. Turbulence is defined as “an eddy-like state of fluid 
motion where the inertial-vortex forces of the eddies are larger than the viscous, 
buoyancy, electromagnetic or any other forces which tend to damp the eddies.” 
Furthermore, natural flows at very high Reynolds, Froude, Rossby numbers in 
the ocean, atmosphere, stars and interstellar medium develop highly intermittent 
turbulent and mixing (Gibson 1991, also Foias et al. 2001). 

ii For other publications of C. Gibson related to this issue, see arXiv.org: 
astro-ph/9904230, astro-ph/9904237, astro-ph/9904260, astro-ph/9904284, 
astro-ph/9904283, astro-ph/9904317, astro-ph/9911264, astro-ph/9904362, 
astro-ph/0003147, astro-ph/0002381, astro-ph/9810456, astro-ph/0003352, 
astro-ph/9904366, astro-ph/9908335. 

iii See also Castro, Mahecha, Rodriguez (2002) for further discussion on this 
approach from the fractal diffusion viewpoint. 

iv As we know (V.)V is the only nonlinear term in the Navier-Stokes 
equations; this term is also called the inertial (vortex) term. The Navier-Stokes 
equations are among the very few equations of mathematical physics for which 
the nonlinearity arises not from the physical attributes of the system but rather 
from the mathematical (kinematical) aspects of the system. In divergence free 
condition div u =0, the Navier-Stokes equations for a viscous, incompressible, 
homogenous flow are usually expressed as: 

,).(./ fpuuuvtu   
0.  u  

where for notational simplicity, we represent the divergence of u by u, and 
for all practical purposes the density has been normalized to unity, =1 (C. Foias 
et al., 2001). It shall be worthnoting, however, the origin of viscosity imposes a 
limit on the domain of validity of the Navier-Stokes equations. We should learn 
of some natural lengths characterizing the length scale region in which flow 
energy dissipation is dominated by viscous phenomena. 



Therefore we find the significance of the Reynolds number emerges by 
comparing the inertial and dissipation terms of the Navier-Stokes equations. The 
inertial term dominates when: 

1/Re **  vUL  
By setting the Re = + (i.e. = 0), we obtain the case of inviscid flows. In 

this case, the divergence-free condition is retained but the momentum equation 
changes, resulting in the Euler equations for inviscid perfect fluids: 

,).(/ fpuutu 
0.  u  

Note here, some of the difficulties encountered in studying turbulent 
behavior, a largely inviscid regime, arise because of transition from Euler’s 
equations to the Navier-Stokes equations necessitates a change from a first-order 
system to a second-order one in space ( to  (C. Foias et al. 2001). 

v We admit here the accepted viewpoint is superfluidity implies no 
dissipation (no turbulence is possible); the condensations –as long-lived states 
perhaps far from equilibrium – are indeed related to superfluidity, where the 
solutions are harmonic, so dissipative effects do not appear. Hence chaos can 
appear in the superfluid but not irreversible turbulence. However, recent 
research have begun to embrace this ‘superfluid turbulence’ issue (see 
Proceedings of the Isaac Newton Institute Workshop on Quantized Vortex 
Dynamics and Superfluid Turbulence, Cambridge, UK, Aug. 2000). They 
discussed for instance: hydrodynamic description of superfluid helium 
turbulence with quantum vortices; valuable comparison between the physics of 
Navier-Stokes and helium II turbulence; and a realistic possibility of 
experimental study of quantum turbulence in superfluid 3He. 
Other researchers have considered the possibility of superfluid 

turbulence phenomena, particularly for superfluid 3He and He4. Zurek 

(1995, 16) considered turbulent tangle of vortex lines. Volovik (2000b) 

considered 3He-A effects to represent turbulent cosmic plasmas, though 

he admits these effects are less dramatic. Some experiments showing 



unusual properties damping and viscosity properties of helium II, 

indicating turbulence phenomenon, have also been reported by (Godfrey 

et al. 2001). Therefore we could expect under certain condition superfluid 

(helium) could exhibit such turbulence phenomena. 

vi See also for instance arXiv:math-ph/9909033. 

vii Inspired by Landau two-fluid theory, a number of researchers share a 
viewpoint that a vortex can be a singularity in a “background” fluid. The 
background fluid is the superconductor (or superfluid) which can admit 
circulation, but without vorticity and without dissipation. The defect “vortex” 
regions are then topological defects (Yates 1996), which, if not empty holes, are 
bounded regions of real vorticity, with a vorticity discontinuity on the boundary 
of the defect domain. The discontinuity implies a lack of differentiability. In the 
limit, these regions are taken to be “vortex” threads or strings, but this is only 
part of the story for there are other types of topologically bounded regions of 
“vorticity” which in many cases can have persistent lifetimes, and therefore 
represent “objects” in the background fluid (see Kiehn 2001). In this regards, an 
active community sponsored by ESF in Europe, COSLAB-VORTEX-
BEC2000+ groups have combined to give a workshop in Bilbao this summer 
(2003), see http://tp.lc.ehu.es/ILE/bilbaocoslab.htm. It appears that the objective 
of COSLAB is to see how these objects in a laboratory superfluid may be 
considered as models of a cosmology (Zurek 1995, Volovik 2000b). In effect, 
the background is the “vacuum aether superfluid” and the stars and galaxies are 
the “condensed objects” within it.  

viii Vorticity in cosmology has been considered in a recent article, C. Schmid, 
arXiv:gr-qc/0201095 (2002); while the idea of condensation may correspond to 
article by G. Chapline, arXiv:hep-th/9812129 (1998). 

ix Such vortices sometimes are known as ‘circulatory wave’ or Wolter’s 
vortex, see H. Rosu, arXiv:quant-ph/9506015 (1997). 

x This argument can be considered as based on the simple observation, i.e. 
one can represent natural objects like gas or water as (kinematic) dynamics of 



fluids, but not as fields. Therefore we could conclude the domains of application 
of fields are less than those of fluids. 

xi It is known there exist exact solutions to the Navier-Stokes equations that –
at constant vorticity- create bounded regions of fluid bubbles of isolated 
vorticity which are formed as the mean translational flow increases. It seems this 
could be an example of particle generation in dissipative media. It is perhaps 
also worth noting here, i.e. there does exist one-to-one correspondence between 
the Schroedinger equation and the Navier-Stokes equation for viscous 
compresible fluids, not just Madelung-Eulerian fluids (Kiehn 1989, 1999). The 
square of the wavefunction is the enstrophy of these fluids. 

xii At this point, it is worthnoting here this previous works by Cartan have 
shown that Dirac equation can be generalized without any recourse to non-
differentiability nor to an aether. Therefore, such aether interpretation could be 
considered merely as plausible alternative interpretation, somewhat in 
accordance with the previous works of Prokhovik, Rothwarf (1998), Consoli 
arXiv:hep-ph/0109215 etc. 

xiii Similar suggestion of flat spacetime universe has also been argued 
recently for instance by Moniz (arXiv:gr-qc/0011098) and K. Akama 
(arXiv:hep-th/0007001, hep-th/0001113). 

xiv Non-differentiable function is defined here in simple term as function, 
which has a derivative nowhere. It is known there are such functions, which are 
continuous but nowhere differentiable. Some mathematicians propose 
Weierstrass function belongs to this group.  

xv Alternatively, we could consider negative mass is inherent in the structure 
of the core of the Sun (arXiv:physics/0205040). This possibility has been 
discussed by DeAquino for the case of neutron stars. Otherwise, perhaps this 
negative mass could be considered as effects related to (ultra-cold superfluid 
neutron) boson stars as theorised by several authors.  

xvi There is also known transformation (Kustaanheimo-Steifel) from the 
Kepler problem to the harmonic oscillator problem. An alternative expression 
was given by Tewari (1998). 

xvii See also Apeiron Vol. 9 No. 2 (2002), though this article discusses 
atmospheric flows instead of the motion of celestial bodies. 

xviii Mandelbrot also suggested turbulent velocity fields may have fractal 
structure with a non-integer Hausdorff dimension: a pattern of spiral with 
smaller spirals on them—and so on to increasingly smaller scales. This is in 



accordance with Landau’s (1963) turbulence definition as “superposition of an 
infinite number of vortices, or eddies, with sizes varying over all scales.” For 
discussion on possible limitations of such scale symmetry assumption, we refer 
to E.I. Guendelman, arXiv:gr-qc/0004011, arXiv:gr-qc/9901067.  

xix This method uses Ordinary Least Square (OLS) theorem, or known as 
‘least square error’ principle. However it shall be kept in mind, this OLS method 
has seven well-known premises known as “Gauss-Markov assumptions.” 

xx For discussion on the plausibility of the proposed Negative-Mass Star 
(NMS), see for instance F. De Aquino, arXiv:physics/0205040 (2002a). In 
principle, he conjectures there is negative mass inside the vortex core of neutron 
stars. Therefore either we could observe a distant negative mass star as 
companion of the Sun, or perhaps the negative mass with mass approximately 
equivalent with the mass of the Sun is located inside the core of the Sun, as part 
of its inner structure. Alternatively, we could think such a negative mass as 
extension to Cantorian space of negative electron mass in Hall effect theory: 

eEmeEm eh  /  which can only hold if mh=-me. See H. Myers, Introductory 
solid state physics, Taylor & Francis, 2nd ed. (1997), p. 266-267. 

xxi Anderson, P.W., et al., Europhys. Lett. (), arXiv:astro-ph/0002054 (2000). 
xxii Kolomeisky, E., et al., arXiv:cond-mat/0002282 (2000). 
xxiii X. Song and P. Richards of Columbia University's Lamont-Doherty, 

http://www.ldeo.columbia.edu/song/pr/html 



Comparison of Predictions 
of Planetary Quantization 

and Implications of the 
Sedna Finding  

V. Christianto, vxianto@yahoo.com 

In this article we compare some existing methods to predict 
quantization of planetary orbits, including a recent Cantorian 
Superfluid Vortex hypothesis by this author. It is concluded 
that there exists some plausible linkage between these 
methods within the framework of Quantum Cosmology 
hypothesis, which in turn may be due to gravitation-related 
phenomena from boson condensation.  

Keywords: quantization of planetary orbits, Quantum 
Cosmology, vortices, boson condensation, gravitation 

Introduction 
As we know, in recent years there have been some methods 
proposed in order to predict the planetary orbits using quantum-
like approach, instead of classical dynamics approach. These new 
approaches have similarity, that they extend the Bohr-Sommerfeld 
hypothesis of quantization of angular momentum to planetary 
systems. This application of wave mechanics to large-scale structures 
[1] has led to several impressive results in terms of prediction of 



planetary semimajor axes, particularly to predict orbits of exoplanets 
[2][3][4][5]. However, a question arises as to how to describe the 
physical origin of wave mechanics of such large-scale structures. 

An interesting approach to explain this is by considering the 
known fact of scale-invariant spectrum [6], which is sometimes called 
as Harrison-Zel’dovich spectrum. For instance, Clayton & Moffat 
recently argued using variable light speed argument, that the Cosmic-
Microwave Background Radiation (CMBR) anisotropy may be 
explained in terms of this kind of spectrum [7]. This notion of scale-
invariant spectrum may also be related to noncommutative geometry 
representation of cosmology [8]. What is interesting here is that 
perhaps this scale-invariant spectrum may correspond to the fact 
mentioned before by G. Burbidge, i.e. if we supposed that if  is the 
density of visible matter in the universe and that He/H ratio by mass 
in it is 0.244, then the thermalized energy which has been released in 
producing He leads to blackbody temperature of T=2.76 K. This 
value is astonishingly near to the value of 2.73 oK observed by COBE 
[9]. And because the CMBR’s observed low temperature may be 
related to Bose-Einstein condensate, of course an interesting question 
is whether the universe resembles a large Bose-Einstein condensate in 
its entirety [10][11][12][13]. 

While at first glance this proposition appears quite fantastic, this 
can be regarded as no more than an observational implication of the 
notion of Quantum Cosmology hypothesis as proposed by some 
authors, including Vilenkin [14][15]. Provided this relationship 
corresponds to the facts, then it seems reasonable to hypothesize 
further that all predictions of planetary orbits using quantum-like 
approach shall somehow comprise the same theoretical implication, 
i.e. they correspond to the Quantum Cosmology hypothesis. 
Therefore it seems worth to compare these predictions here, which to 
this author’s knowledge has not been made before, though a 



comparison of Titius-Bode law and a random stable solar system 
hypothesis is available elsewhere [16][19][20].  

In this article we would compare the following approaches 
available in the literatures:  

a. Nottale’s Scale Relativity theory [4];
b. Chechelnitsky’s Wave Universe theory [17];
c. Ilyanok’s Macroquantum Condensate theory [12];
d. Neto et al.’s Schrödinger-type diffusion equation [18];
e. Cantorian Superfluid Vortices hypothesis.

We begin with a short description of each approach considered. It is 
worth noting here that this article does not attempt to examine validity 
of each of these theories, but instead we merely present what these 
authors intend to say as is. Therefore the original notations by these 
authors are kept intact.  

Scale Relativity 
Nottale [4] argued that equation of motion for celestial bodies could 
be expressed in terms of a scale-relativistic Euler-Newton equation, 
by separating the real and imaginary part of Schrödinger-like 
equation. Then he obtained a generalized Euler-Newton equation of 
(Ref .[4] p. 384): 

)()./.( QVVVtm  φ (1) 

0)(/  Vdivt ρρ  (2) 

ρπφ G4 (3) 
Using these set of equations, Nottale came up with the generalised 
Schrödinger equation, by giving up the notion of differentiability 
of spacetime. For a Kepler potential and in the time-independent 
case, this equation reads (Ref [4] p. 380): 



0).//(2 2  rGMmED  (4) 
Solving this equation, he obtained that planetary orbits are 
quantized according to the law: 

22 / on vGMna  (5) 

where an,G,M,n,vo each represents orbit radius for given n, Newton 
gravitation constant, mass of the Sun, quantum number, and 
specific velocity (vo=144 km/sec for Solar system and also 
exoplanet systems), respectively. Furthermore, according to 
Nottale, the ratio 

cvog /α  (6) 

actually corresponds to gravitational coupling constant, similar to fine 
coupling constant in quantum electrodynamics. These equations form 
the basis of Nottale’s Scale Relativity prediction of planetary orbits 
both in Solar system and also in exoplanet systems. The result of this 
equation (5) for the solar system is presented in Table 1. 

Wave Universe 
Chechelnitsky’s Wave Universe hypothesis began with a 
fundamental wave equation, which reads as follows [17]: 

  0./2 2  Ud ε (7) 
where for the solar system, U=-K/a; and K=1.327x1011 km3/sec-2, as 
the gravitational parameter of the Sun. The result of this equation is 
also presented in Table 1.  

What is interesting here is that Chechelnitsky does not invoke 
argument of non-differentiability of spacetime, as Notale did. 
Furthermore, he also arrived at some Jovian planetary orbits beyond 



Pluto, which obviously recommend an observation for verification or 
refutation.  

Macroquantum condensate 
Ilyanok & Timoshenko [12] took a bold step further by hypothesizing 
that the universe resembles a large Bose-Einstein condensate, 
therefore the distribution of all celestial bodies must also be 
quantized. This conjecture may be originated from the fact that 
according to BCS theory, superconductivity could exhibit 
macroquantum phenomena [21]. Therefore it seems also reasonable 
to argue that the universe resembles such macroquantum phenomena, 
at least in the context of Quantum Cosmology hypothesis [14][15].  

According to Ilyanok and Timoshenko, the quantization of 
planetary orbits in solar system follows a formula of orbit radii and 
orbital velocity represented by [12]: 

  1
2.)12.(3/23/ RmnRn  (8) 

 )12(2/3 1  mnvvn (9) 

where n,m are integers and v1 and R1 represents orbital velocity and 
orbit radius of Mercury, as follows: 

9,8,7,6,5,4,3,2,1n

5,4,3,2,1,0,0,0,0m  

sec/89307.473 2
1 kmcv  α (10) 

  mxcmhR p
1012

1 10796.5/  α (11) 

where , mp, c each represents fine structure constant (1/137), proton 
mass, and the speed of light, respectively. The result of this method is 
presented in Table 1.  



It seems worth noting here that at first glimpse this method appears 
similar to Nottale’s quantization approach [4]. However, Ilyanok & 
Timoshenko attempt to build a direct linkage between fine structure 
constant and the quantization of planetary orbits, while Nottale puts 
forth a conjecture of gravitational coupling constant (6). It is perhaps 
also interesting to remark that Ilyanok & Timoshenko do not invoke 
argument of nondifferentiability of spacetime, which notion is 
essential in Notale’s derivation. In a macroquantum condensate 
context, this approach seems reasonable, considering the fact that 
Bose-Einstein condensate with Hausdorff dimension DH~2 could 
exhibit fractality [22], implying a conjecture of nondifferentiability of 
spacetime perhaps is not required. The same fractality property has 
been observed in astrophysics [23][24][25], which in turn may bring 
us back to an explanation of the origin of multifractal spectrum as 
described by Gorski [6].  

Neto et al.’s Schrodinger-type diffusion 
In a recent article, Neto et al. considered an axisymmetrical flat 
analytical solution of Schrödinger-type equation involving an 
attractive central field, which is given by [18]: 

    ErVrrrrg )(/././.2/ 222122 ϕμ  (12)

where g is a constant and  is reduced mass. Then they derived a 
solution using separation of variables: 

)().(),( ϕϕ  rfr  (13) 

After a rescaling and defining βμ 2/ gGMmn  , and by using 
rGMmrV /)(  , they obtained: 

0)(]/)4/1(/4/1[" 22  ρρρ unu (14) 



which is a confluent hypergeometric equation, referred as Whittaker’s 
equation. This equation has a regular solution given by a 
hypergeometric series which converges if and only if, 

kn  2/1  k=0,1,2,3 (15) 

from which condition they obtained the solution for f(r) in (13): 
  )exp(.12.)( 1 rrcrf ββ  (16) 

It is obvious therefore that in order to find the appropriate asymptotic 
expression of Schrödinger-type equation they invoke some arbitrary 
assumptions. Furthermore their result is based on averaging planetary 
masses, and also their equation (16) leads to prediction of planetary 
orbits which is equivalent the observed planetary data in Solar system 
except for Earth and Venus. Therefore, in order to reconcile with 
observed data, they have to invoke a second quantum number.  

The result of their method is also presented in Table 1. 

Cantorian superfluid vortex hypothesis 
In principle the Cantorian superfluid vortex hypothesis as proposed 
by this author suggests that distribution of planetary systems can be 
modeled using superfluid vortices [26]. For a planar cylindrical case 
of solar system, this hypothesis leads to a known Bohr-Sommerfeld- 
type quantization of planetary orbits [27]. 

This hypothesis starts with observation that in quantum fluid 
systems like superfluidity, it is known that such vortices are subject to 
quantization condition of integer multiples of 2, or Ŀ vs.dl = 

4/.2 mnπ . Furthermore, such quantized vortices are distributed in
equal distance, which phenomenon is known as vorticity. In large 
superfluid system, usually we use Landau two-fluid model, with 
normal and superfluid component. The normal fluid component 
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always possesses some nonvanishing amount of viscosity and mutual 
friction. Similar approach with this proposed model has been 
considered in the context of neutron stars [28], and this proposed 
quantized vortice model may also be related to Wolter’s vortex [29].  

To obtain planetary orbit prediction from this hypothesis we could 
begin with the Bohr-Sommerfeld’s conjecture of quantization of 
angular momentum. As we know, for the wave function to be well 
defined and unique, the momenta must satisfy Bohr-Sommerfeld’s 
quantization condition [30]: 




 ndxp .2. π (17) 

for any closed classical orbit . For the free particle of unit mass on 
the unit sphere the left-hand side is 

 
T

Tdv
0

22 .2.. ωπωτ (18) 

where T=2/ is the period of the orbit. Hence the quantization rule 
amounts to quantization of the rotation frequency (the angular 
momentum): nω .

Then we can write the force balance relation of Newton’s equation 
of motion: 

rmvrGMm // 22  (19) 
Using Bohr-Sommerfeld’s hypothesis of quantization of angular 
momentum (18), a new constant g was introduced: 

π2/ngmvr  (20) 
Just like in the elementary Bohr theory (before Schrödinger), this pair 
of equations yields a known simple solution for the orbit radius for 
any quantum number of the form [26]:  



)..4/(. 2222 mGMgnr π  (21) 
or 

22 /. ovGMnr  (22) 

where r, n, G, M, vo represents orbit radii (semimajor axes), quantum 
number (n=1,2,3,…), Newton gravitation constant, and mass of the 
nucleus of orbit, and specific velocity, respectively. In this equation 
(22), we denote 

GMmgvo )./2( π  (23) 

This result (23) is the same with Nottale’s equation for predicting 
semimajor axes of planetary-like systems (5).The value of m is an 
adjustable parameter (similar to g). The result of this equation (22) is 
also presented in Table 1. While this method results in the same 
prediction with Nottale’s equation (5) for inner orbits, this author uses 
a different approach for Jovian orbits. It is known that Nottale has to 
invoke a second quantum number for Jovian planets, while the Solar 
system is actually a planar cylindrical system [18], therefore a second 
quantum number seems to be superfluous. Therefore, instead of a 
second quantum number, in CSV hypothesis we describe outer Jovian 
planet orbits using a conjecture of reduced mass,  [26]. 

Perhaps it would be more interesting if we note here that the same 
Bohr-Sommerfeld’s quantization of orbits could also be treated using 
the viewpoint of quantum Hall liquid in the context of Chern-Simons 
theory [31][32]. According to L. Susskind [31] we could assume that 
the particles making up the fluid are electrically charged and move in 
a background magnetic field B. Furthermore he showed that the 
conservation law requires the “magnetic field” at each point y, to be 
time independent, and the analog of a vortex is a  function magnetic 
field [31]: 



)(.2 2 yqxA o δρπ  (24) 

where q measures the strength of the vortex. The solution of this 
equation is unique up to a gauge transformation. In the Coulomb 
gauge, 

0.  A (25) 
it is given by 

2/ yyqA jijoi  ρ  (26) 

To further understand the quasiparticle we must quantize the fluid. 
Assume the fluid is composed of particles of charge e. Then the 
momentum of each particle is [31]: 

2/baa xeBp  (27) 

The standard Bohr-Sommerfeld quantization condition is 




 ndxp aa .2. π  (28) 

Inserting equation (27) into (28), then the quantization condition 
becomes [31]: 




 ndxxeB aba .2).2/( π (29) 

Using equation (26) then gives: 
neBq π2  (30) 

Therefore an elementary quasiparticle (n=1) has electric charge: 
Be opq /2πρ  (31) 

which result agree with the quasiparticle charge from Laughlin’s 
theory [31]. This expression could be extended to include a source. 
What interests us here from these relationships as described by 
Susskind is that it was understood recently that Bose-Einstein 



condensate in dilute atomic gases could be used to describe the 
physics of vortex matter when they undergo rotation [33]. 
Furthermore, there is a possibility that at larger angular velocity () 
the vortex lattice melts and is replaced by a quantum Hall liquid. 
Exactly at this point, it seems we could find a plausible linkage 
between a quantum Hall liquid and quantization of planetary motion. 
And the electron fluid representation in quantum Hall liquid may 
correspond to the 'sea of electron' terms of Dirac. In this regards, it is 
worth noting here that universality of quantum Hall liquid has been 
around in the literature for more than a decade [34], and and it has 
also been argued that Hall effect could also have some roles in star 
formation [35].  

It may also be worth to remark here, that according to Obukhov 
[36] it is possible to explain the CMBR anisotropy from the viewpoint 
of rotating universe [37], which seems to support our conjecture that 
the universe in its entirety resembles a large rotating Bose-Einstein 
condensate. While of course this conjecture is not conclusive yet, it 
seems that CMBR anisotropy could become a test problem; i.e. to 
observe whether the proposed Bose-Einstein condensate vortices 
cosmology model could explain this phenomenon.  

Comparison of predictions and implications of 
Sedna finding 
Based on predicting methods as described above, a comparison table 
is presented in Table 1. 



Table 1. Comparison of several methods of orbit prediction 

It also seems interesting here to make graph plots for these data in 
Table 1. The two graphs presented below clearly show how 
prediction varies against quantum number (n), and against the 
observed data (Obs). Of course, for an exactly corresponding 
prediction values to observed data, we will get a gradient =1, 
corresponding to y=x+0.  



 

Graph 1. Comparison of orbit predictions to quantum number 

From Table 1 and its graphplots we observe that all methods 
compared are very near to the observed data, which seems to support 
our argument above of the similarity of wave mechanics approach for 
planetary quantization. We also note that Titius-Bode law 
overpredicts large orbits, at least for Pluto. Furthermore, there are 
only two methods which predict planetary orbits beyond Pluto, i.e. 
Chechelnitsky’s Wave Universe hypothesis and the CSV hypothesis 
suggested by this author. Therefore it seems further observational data 
is required to verify or refute these predicted orbits beyond Pluto. 



Graph 2. Comparison of orbit predictions to observed data 

In this regard, it seems worth to put a recent observation of Sedna 
in this context of planetary quantization, corresponding to n=9 of 
Jovian planets in Table 1, though it does not mean that Sedna could 
not be explained in other ways than planetary quantization. As we 
know, Sedna has found by M. Brown et al. from Caltech [38] [39], 
having around 1770 km in diameter. This Sedna finding obviously 
leads to some interesting implications. First of all, in numerical terms 
this finding is very near to a quantum number n=9 as presented in 
Table 1, within error range of 6.7% as compared with CSV prediction 
of 92.2AU. Another recent article has also post-predicted this finding, 
though it was based on Jeans instability [40]. Other interesting aspect 
of this Sedna includes its very elliptical orbit.  

In this article we compared and discussed some methods to predict 
planetary orbits based on wave-mechanics-type arguments. If the 
proposition described in this article corresponds to the facts, i.e. the 



wave mechanics description of celestial bodies correspond to a kind 
of Quantum Cosmology hypothesis, then it seems further theoretical 
development could be expected, for instance to extend 
noncommutative representation of Dirac equation to large scale 
structure of the universe [41]. Furthermore, a vortex interpretation of 
Schrödinger equation has also been suggested elsewhere [42][43]. 
While these are of course not the only plausible approaches, these 
seem quite interesting in order to find more precise cosmological 
theories, considering some recent remarkable observation of 
exoplanets as predicted by such a wave mechanics approach.  
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On recent discovery of new 
planetoids in the solar 

system and quantization of 
celestial system 

           V. Christianto (vxianto@yahoo.com), 
      F. Smarandache (fsmarandache@yahoo.com) 

The present note revised the preceding article discussing new 
discovery of a new planetoid in the solar system. Some recent 
discoveries have been included, and its implications in the 
context of quantization of celestial system are discussed, in 
particular from the viewpoint of superfluid dynamics. In 
effect, it seems that there are reasons to argue in favor of 
gravitation-related phenomena from boson condensation.  

Keywords: quantization, planetary orbit, quantized superfluid, 
boson condensation, gravitation 

Discovery of new planetoids
Discovery of new objects in the solar system is always interesting 
for astronomers and astrophysicists alike, not only because such 
discovery is very rare, but because it also presents new observation 
data which enables astronomers to verify what has been known 
concerning how our solar system is functioning. 



       In recent years a number of new planetoids have been 
reported, in particular by M. Brown and his team [1][2][3][4]. 
While new planet discoveries have been reported from time to 
time, known as exoplanets [9][10], nonetheless discovery of new 
planetoids in the solar system are very interesting, because they are 
found after a long period of silence after Pluto finding, around 
seventy years ago. Therefore, it seems interesting to find out 
implications of this discovery to our knowledge of solar system, in 
particular in the context of quantization of celestial system.    

As we discussed in the preceding article [5], there are some 
known methods in the literature to predict planetary orbits using 
quantumwave- like approach, instead of classical dynamics 
approach. These new approaches have similarity, i.e. they extend 
the Bohr-Sommerfeld’s quantization of angular momentum to 
large-scale celestial systems. This application of wave mechanics to 
large-scale structures [6] has led to several impressive results in 
particular to predict orbits of exoplanets [8][9][10]. However, in the 
present note we will not discuss again the physical meaning of wave 
mechanics of such large-scale structures, but instead to focus on 
discovery of new planetoids in solar system in the context of 
quantization of celestial system. 

As contrary as it may seem to present belief that it is unlikely to 
find new planets beyond Pluto, Brown et al. have reported not less 
than four new planetoids in the outer side of Pluto orbit, including 
2003EL61 (at 52AU), 2005FY9 (at 52AU), 2003VB12 (at 76AU, 
dubbed as Sedna. It is somewhat different to our preceding article 
suggesting orbit distance = 86AU in accordance with ref. [14]). And 
recently Brown and his team report new planetoid finding, dubbed as 
2003UB31 (97AU). This is not to include Quaoar (42AU), which has 
orbit distance more or less near Pluto (39.5AU), therefore this object 
is excluded from our discussion. Before discovery of 2003UB31 



(Brown himself prefers to call it ‘Lila’), Sedna has been reported as 
the most distant object found in the solar system, but its mass is less 
than Pluto, therefore one could argue whether it could be considered 
as a ‘new planet’. But 2003UB31 is reported to have mass definitely 
greater than Pluto, therefore Brown argues that it is definitely worth to 
be considered as a ‘new planet’. (Table 1)  

Table 1. Comparison of prediction and observed orbit distance of 
planets in the Solar system (in 0.1AU unit ) 

Object No. Titius Nottale CSV Observed  (%) 
1 0.4 0.428 
2 1.7 1.71 

Mercury 3 4 3.9 3.85 3.87 0.52 
Venus 4 7 6.8 6.84 7.32 6.50 
Earth 5 10 10.7 10.70 10.00 -6.95 
Mars 6 16 15.4 15.4 15.24 -1.05 
Hungarias 7 21.0 20.96 20.99 0.14 
Asteroid 8 27.4 27.38 27.0 1.40 
Camilla 9 34.7 34.6 31.5 -10.00 
Jupiter 2 52 45.52 52.03 12.51 
Saturn 3 100 102.4 95.39 -7.38 
Uranus 4 196 182.1 191.9 5.11 
Neptune 5 284.5 301 5.48 
Pluto 6 388 409.7 395 -3.72 
2003EL61 7 557.7 520 -7.24 
Sedna 8 722 728.4 760 4.16 
2003UB31 9 921.8 970 4.96 
Unobserved 10 1138.1 
Unobserved 11 1377.1 



Moreover, from the viewpoint of quantization of celestial systems, 
these findings provide us with a set of unique data to be compared 
with our prediction based on CSV hypothesis [5]. It is therefore 
interesting to remark here that all of those new ‘planetoids’ are within 
8% bound compared to our prediction (Table 1). While this result 
does not yield high-precision accuracy, one could argue that this 8% 
bound limit corresponds to the remaining planets, including inner 
planets. Therefore this 8% uncertainty could be attributed to 
macroquantum uncertainty and other local factors. 

What’s more interesting here is perhaps that some authors have 
argued using gravitational Schrödinger equation [12], that it is 
unlikely to find new planets beyond Pluto because density distribution 
becomes near zero according to the solution of Schrödinger equation 
[7][8][11]. From this viewpoint, one could argue concerning to how 
extent applicability of gravitational Schrödinger equation to predict 
quantization of celestial systems, despite its remarkable usefulness to 
predict exoplanets [9][10].  

Therefore in the subsequent section, we argue that using Ginzburg-
Landau equation, which is more consistent with superfluid dynamics, 
one could derive similar result with known gravitational Bohr-
Sommerfeld quantization [13][15]: 

  22 / on vGMna  (1) 

where an,G,M,n,vo each represents orbit radius for given n, Newton 
gravitation constant, mass of the Sun, quantum number, and 
specific velocity (vo=144 km/sec for Solar system and also 
exoplanet systems), respectively [7][8].  



Interpretation
In principle the Cantorian superfluid vortex (CSV) hypothesis [5] 
suggests that the quantization of celestial systems corresponds to 
superfluid quantized vortices, where it is known that such vortices are 
subject to quantization condition of integer multiples of 2 , or  vs.dl 
= 4/.2 mnhπ [5]. For a planar cylindrical case of solar system, this 
hypothesis leads to Bohr-Sommerfeld-type quantization of planetary 
orbits. It is also worthnoting here, while likelihood to find planetoid at 
around 90AU has been predicted by some astronomers, our prediction 
of new planets corresponding to n=7 (55.8AU) and n=8 (72.8AU) 
were purely derived from Bohr-Sommerfeld quantization [5].      

The CSV hypothesis starts with observation that in quantum fluid 
systems like superfluidity, quantized vortices are distributed in equal 
distance, which phenomenon is known as vorticity. In a large 
superfluid system, we usually use Landau two-fluid model, with 
normal and superfluid component. Therefore, in the present note we 
will not discuss again celestial quantization using Bohr-Sommerfeld 
quantization, but instead will derive equation (1) from Ginzburg-
Landau equation, which is known to be more consistent with 
superfluid dynamics. To our knowledge, deriving equation (1) from 
Ginzburg-Landau equation has never been made before elsewhere.    

According to Gross, Pitaevskii, Ginzburg, wavefunction of N 
bosons of a reduced mass m* can be described as [17]: 

tim  /.*).2/( 222 ψψψκψ hh         (2) 
 For some conditions, it is possible to substitute the potential 

energy term ( 2ψκ ) in (2) by Hulthen potential, which yields: 
tiVm Hulthen  /..*).2/( 22 ψψψ hh         (3) 

where Hulthen potential could be written in the form: 



)1/(..2 rr
Hulthen eeZeV δδδ           (4) 

It could be shown that for small values of screening parameter δ , 
the Hulthen potential (4) approximates the effective Coulomb 
potential: 

  )2/().1(/ 222 mrreV eff
Coulomb hll           (5) 

Therefore equation (3) could be rewritten as: 
  timrrem  /..)2/().1(/*2/ 22222 ψψψ hhllh          (6)

Interestingly, this equation takes the form of time-dependent 
Schrödinger equation. In the limit of time-independent case, equation 
(6) becomes similar with Nottale’s time- independent gravitational 
Schrödinger equation from Scale relativistic hypothesis with Kepler 
potential [7][8][9]:  

0).//(2 2  rGMmED           (7) 
Solving this equation with Hulthen effect (4) will make difference, 

but for gravitational case it will yield different result only at the order 
of 10-39 m compared to prediction using equation (7), which is of 
course negligible. Therefore, we conclude that for most celestial 
quantization problems the result of TDGL-Hulthen (3) is essentially 
the same with the result derived from equation (7). 

Furthermore, the extra potential to Keplerian potential in equation 
(5) is also negligible, in accordance with Pitkanen’s remarks: 
“centrifugal potential 2/)1( rll  in the Schrödinger equation is 
negligible as compared to the potential term at large distances so that 
one expects that degeneracies of orbits with small values of l do not 
depend on the radius.” [18] 

It seems also worth noting here that planetoids 2003EL61 and 
2005FY9 correspond to orbit distance of 52AU. This pair of 
planetoids could also be associated with Pluto-Charon pair. In the 
context of macroquantum phenomena of condensed matter physics, 



one could argue whether these pairs indeed correspond to 
macroobject counterpart of Cooper pairs [16]. While this conjecture 
remains open for discussion, we predict that more paired-objects 
similar to these planetoids will be found beyond Kuiper belt. This will 
be interesting for future observation. 

Furthermore, while our previous prediction only limits new 
planetoids finding until n=9 of Jovian planets (outer solar system), it 
seems that there are more than sufficient reasons to expect that more 
planetoids are to be found in the near future. Therefore it is 
recommended to extend further the same quantization method to 
larger n values. For prediction purpose, we have included in Table 1 
new expected orbits based on the same celestial quantization as 
described above. For Jovian planets corresponding to n=10 and n=11, 
our prediction yields likelihood to find orbits around 113.81 AU and 
137.71 AU, respectively. It is recommended therefore, to find new 
objects around these predicted orbits. 

In this note, we revised our preceding article suggesting that Sedna 
corresponds to orbit distance 86AU, and included recently found 
planetoids in the outer solar system as reported by Brown et al. While 
our previous prediction only limits new planet finding until n=9 
corresponding to outer solar system, it seems that there are reasons to 
expect that more planetoids are to be found. While in the present note, 
we argue in favor of superfluid-quantized vortices, it does not mean to 
be the only plausible approach. Instead, we consider this discovery as 
a new milestone to lead us to find better cosmological theories, in 
particular taking into consideration some recent remarkable 
observation of exoplanets as predicted by wave mechanics approach.  
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Possible CGLE signatures in 
solar system: Spiral gravity 

from spherical kinetic 
dynamics1 

The present article discusses how some known phenomena in 
solar system, including the Lense-Thirring effect of 
anomalous precession, could be described using spherical 
kinetic dynamics approach. Other implications include a 
plausible revised version of the Bohr-Sommerfeld 
quantization equation described by Rub i  & Rub i . Our 
proposition in this paper can be summarized as follows: by 
introducing time-incremental to the ordinary celestial 
quantization method (Nottale et al.), we can expect to observe 
signatures of CGLE (complex Ginzburg-Landau equation) in 
Solar system. Possible verification may include the use of 
Earth-based satellites, which go beyond traditional GTR tests 
such as precession of the first planet. Further observation to 
verify or refute this conjecture is recommended, plausibly 
using LAGEOS-type satellites.   

Keywords: Lense-Thirring effect, Bohr-Sommerfeld 
quantization, quantized vortices, celestial quantization, 
LAGEOS satellite, boson condensation, signature of CGLE in 
solar system, spiral gravity 
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Introduction 
It is known that the use of Bohr radius formula to predict celestial 

quantization, based on Bohr-Sommerfeld quantization rules [2][3], 
has led to numerous verified observations [1]. While this kind of 
approach is not widely accepted yet, this could be related to wave 
mechanics equation to describe large-scale structure of the Universe 
[4], and also a recent suggestion to reconsider Sommerfeld’s 
conjectures in Quantum Mechanics [5]. Some implications of this 
quantum-like approach include exoplanet prediction, which becomes 
a rapidly developing subject in recent years [6][7]. 

Rub i  & Rub i ’s approach [2] is particularly interesting in this 
regard, because they begin with a conjecture that Planck mass 

( Gcmp π2/= ) is the basic entity of Nature, which apparently
corresponds to Winterberg’s assertion that Planckian aether is 
comprised superfluid of phonon-roton pairs [8]. In each of these pairs, 
superfluid vortices can form with circulation quantized according to 

pmndxv /. =−+ . This condition implies the Helmholtz vortex 

theorem, 0./ =−+ dxvdtd . This relationship seems conceivable, at
least from the viewpoint of likely neat linkage between cosmology 
phenomena and various low-temperature condensed matter physics 
[9][10][11]. In effect, celestial objects at various scales could also be 
regarded as spinning Bose-Einstein condensate; which method has 
been used for neutron stars [32]. 

Despite these aforementioned advantages of using quantum 
mechanical viewpoint to describe astrophysical phenomena, it is also 
known that all of the existing celestial quantization methods [1][2][3] 
thus far have similarity that they assume a circular motion, while the 
actual celestial orbits (and also molecular orbits) are elliptical. 



 

Historically, this was the basis of Sommerfeld’s argument in contrast 
to Bohr’s model, which also first suggested that any excess 
gravitational-type force would induce a precessed orbit. Similar 
argument is used here as the starting premise of the present article, 
albeit for brevity we will not introduce elliptical effect yet [12]. 

Using a known spherical kinetic dynamics approach, some known 
interesting phenomena are explained, including the receding Moon, 
the receding Earth from the Sun, and also anomalous precession of 
the first planet (Lense-Thirring effect). Despite some recent attempts 
to rule out the gravitational quadrupole moment (J2) contribution to 
this effect [13][14][15][16][17], it seems that the role of spherical 
kinetic dynamics [12] to describe the origin of Lense-Thirring effect 
has not been taken into consideration thus far, at least to this author’s 
knowledge. 

After deriving prediction for these known observed phenomena, 
this article will also present a revised version of quantization equation 
of L. Nottale [1] in order to take into consideration this spherical 
kinetic dynamics effect. Some implications are discussed, including 
possible time-incremental modification of ordinary Bohr-type 
quantization for solar system, which can take the form of spiral 
gravity. In turn, this ‘spiralling gravity’ phenomena can be considered 
as signatures of CGLE (complex Ginzburg Landau equation) in solar 
system. 

Our paper starts from simple hypothesis that smaller celestial 
objects acquire its (spinning) energy from the larger systems. That is, 
Earth spinning motion gets its energy from the Sun. In turn, Solar 
system gets its spinning energy from its Galaxy center. One can say 
that this is just an astrophysics implications of turbulence dynamics 
(see Gibson et al. [22][23]), where energy cascades from the larger 
scales down to the smaller scales.   



 

If this proposition described here corresponds to the facts, then one 
can say that it is possible to ‘re-derive’ General Relativity phenomena 
from the viewpoint of Bohr-Sommerfeld quantization and spherical 
kinetic dynamics. Possible verification of this proposition may 
include the use of Earth-based satellites, which go beyond traditional 
GTR-tests such as precession of the first planet. Further observation 
to verify or refute this conjecture is recommended, plausibly using 
LAGEOS-type satellites ( see Ciufolini and others [14]-[16]).   

Spherical kinetic dynamics: Earth bulging from 
Earth geodynamics 

     Analysis of spinning dynamics of solid sphere with mass M (see 
Appendix I) yields:  

).5/(./ 22
scMRtM ωω−=ΔΔ   (1) 

where cs represents the sound velocity obeying [10b; p.4]: 

)/)(/()( 222 dndmnncs ∈=  (2) 

For 0=ω  the equation (1) shall equal to zero, therefore this
equation (1) essentially says that a linear change of angular velocity 
observed at the surface of the spinning mass corresponds to mass 
flux, albeit this effect is almost negligible in daily experience. But for 
celestial mechanics, this effect could be measurable. 

If, for instance, we use the observed anomalous decceleration rate 
[30] of angular velocity of the Earth as noted by Kip Thorne [19]: 

 yearsx 11106/ =ωω  (3) 
 And using values as described in Table 1 for other parameters: 



 

Table  1. Parameter values to compute kinetic expansion of the Earth 
Parameter Value Unit 

Re 6.38x106 M 
Me 5.98x1024 Kg 
Te 2.07x106 Sec 
ωe 3.04x10-6 rad/s 
cs 0.14112 m/s 

     It is perhaps worthnoting that the only free parameter here is cs 
=0.14112 m/sec. This value is approximately within the range of 
Barcelo et al.’s estimate of sound velocity (at the order of cm/sec) for 
gravitational Bose-Einstein condensate [11], provided the Earth could 
be regarded as a spinning Bose-Einstein condensate. Alternatively, 
the sound velocity could be calculated using equation (ii) in Appendix 
I, but this obviously introduces another kind of uncertainty in the 
form of determining temperature (T) inside the center of the Earth; 
therefore this method is not used here. 

Then by inserting these values from equation (3) and Table 1 into 
equation (1) yields: 

yearkgxtM /1076.3/ 16≈ΔΔ  (4) 
Perhaps this effect could be related to a recent Earth bulging data, 

which phenomenon lacks a coherent explanation thus far [36].    
Now we want to know how this mass accumulation affects the 

Earth surface and also its rotational period. Assuming a solid 
sphere, we start with a known equation [34]: 

3/..4 3rM sphereρπ=  (5) 

where sphereρ  is the average density of the ‘equivalent’ solid sphere. 

For Earth data (Table 1), we get sphereρ =5.50x106 gr/m3. Using the
same method with equation (8f), which will be discussed 
subsequently, equation (5) could be rewritten as: 



 

3/)/.(.4/ 3trrtMM sphere ΔΔ+=ΔΔ+ ρπ  (6) 
or 

rtMMtr sphere −ΔΔ+=ΔΔ 3 ).4/(3)./(/ ρπ  (6a) 

From equation (7) we get dr/dt=13.36 mm/year for Earth. 
It would be worth here to compare this result with the known 

Expanding Earth hypothesis by Pannella, Carey, Vogel, Shields and 
others, who suggested that the Earth was only 60% of its present size 
in the Jurassic [49]. There is also a recent suggestion that Earth has 
experienced a slow down in spin rate during the past 9x108 years.2 To
get a numerical estimate of Earth’s radial increase each year, we 
quote here from Smoot [49]: 

“In order for this to happen, the lunar tides would have to slow down, which 
would affect the length of the lunar month. … an Earth year of 447 days at 1.9 Ga 
decreasing to an Earth year of 383 days at 290 Ma to 365 days at this time. 
However, the Devonian coral rings show that the day is increasing by 24 seconds 
every million years, which would allow for an expansion rate of about 0.5% for 
the past 4.5 Ga, all other factors being equal.” 

This observation seems to be in agreement with known ‘facts’ 
from geochronometry [50]: 

“It thus appears that the length of the day has been increasing throughout 
geological time and that the number of days in the year has been decreasing. At, the 
beginning of the Cambrian the length of the day would have been 21 h.” 

Now using this value of T=24 sec/million years, T=23.9 hours, 
and rotational velocity TRv /2π= , and assuming that rotational

2  http://image.gsfc.nasa.gov/poetry/ask/a11765.html 



 

velocity is the same throughout, then we could write in the same way 
with equation (6): 

vRRRTTT /)/1(.2)/1.( Δ+=Δ+ π   (7) 
     Inserting these values into equation (7) including Earth radius 
value from Table 1, we get R=1.7766 mm/year for Earth, which is 
surprisingly of the same order of magnitude with the result from 
equation (6). Of course, some difference could be expected because 
this approximation was obtained from Devonian coral rings 
observation, which could contain some biases.[49]  
      In the subsequent sections we will discuss an alternative method 
to measure this effect more precisely. It is worth to note here that this 
result does not necessarily mean to support all arguments related to 
Expanding Earth hypothesis by Panella-Carey-Vogel-Shields, despite 
its calculated result can be quite similar, because nowhere they have 
considered quantization of motion [49]. 

Derivation of extended celestial quantization 
and prediction of the receding Moon 

     Now let suppose that this predicted value (4) is fully conserved 
to become inertial mass, and then we could rewrite Nottale’s 
method of celestial quantization [1]. Alternatively, we could begin 
with the known Bohr-Sommerfeld quantization rule [3]:   

( )= cendqp ejjj ./.2.. 2 απ (8a) 

Then, supposing that the following substitution is plausible [3]: 

ge GMme αα //2 →  (8b) 
where e,αe,αg represents electron charge, Sommerfeld’s fine structure 
constant, and gravitational-analogue of fine structure constant, 



 

respectively. This corresponds to Nottale’s basic equations 
nvncv ogn //. == α  and   vo=144 km/sec [1]. And by introducing the

gravitational potential energy [12]: 
( ) ( )[ ]2/1cos3.)/.(1./, 22

2 −−−=Φ ϑϑ raJrGMr  (8c) 
where ϑ is the polar angle (collatude) in spherical coordinate, M the
total mass, and a  the equatorial radius of the solid.

Neglecting higher order effects of the gravitational quadrupole 
moment J2 [13][14][15][16][17], then we get the known Newtonian 
gravitational potential: 

rGM /−=Φ             (8d) 
Then it follows that the semi-major axes of the celestial orbits are 
given by [1][3]: 

22 / on vGMnr =  (8e) 
where n=1,2,….is the principal quantum number. 

It could be shown, that equation (8a) also corresponds to the 
conjecture of quantization of circulation [4b], which may correspond 
to the observation of quantized vortices dynamics, in particular in 
condensed matter physics (superfluidity etc.) [8][9][10][11] Therefore 
one can say that Bohr-Sommerfeld quantization has neat link with 
quantized vortice dynamics, just like Thompson’s vortex hypothesis 
(before Rutherford). [51] In other words, our proposition for using 
Bohr-Sommerfeld quantization to describe celestial orbits may be just 
another implications of recent development in superfluid analogy in 
astrophysics, by Volovik et al. 

By re-expressing equation (8e) for mass flux effect (5) by defining 

nnnn tMMM ΔΔ+=+ /1 , then the total equation of motion becomes: 

)./()./()/( 22
0 nGvtrrtMM ΔΔ+=ΔΔ+  (8f) 

For 0→Δ , equation (8f) can be rewritten as:



 

0././ =−+− χχ rMdtdrdtdM  (8g) 
where 

)./( 22
0 nGv=χ  (8h) 

Now inserting (5a) into equation (8g), and dividing both sides by 
χ, yields: 

0).5/(.// 22 =++− scMRrMdtdr χωωχ   (8i) 
This equation (8i) can be rewritten in the form: 

0=++ ϕrr  (8j) 
by denoting dtdrr /=  and

)].5/(.1.[/ 22
scRM ωωχϕ −−=   (8k) 

if we suppose a linear decceleration at the surface of the spinning 
mass. This proposition corresponds to the Expanding Earth 
hypothesis, because [49]: 

“In order for expansion to occur, the moment of inertia constraints must be 
overcome. An expanding Earth would necessarily rotate more slowly than a 
smaller diameter planet so that angular momentum would be conserved.”   

     Equation (8j) and (8k) is obviously a first-order linear ODE 
equation [26], which admits exponential solution. In effect, this 
implies that the revised equation for celestial quantization [1][2] takes 
the form of spiral motion. This could also be interpreted as a plausible 
solution of diffusion equation in dissipative medium [33], which 
perhaps may also correspond to the origin of spiral galaxies formation 
[28]. And if this corresponds to the fact, then it could be expected that 
the spiral galaxies and other gravitational clustering phenomena [22b] 
could also be modeled using the same quantization method [39], as 
described by Nottale [1] and Rub i  & Rub i  [2]. 



To this author’s knowledge these equations (8j) and (8k) have not 
been presented before elsewhere, at least in the context of celestial 
quantization. In the subsequent section we will discuss how this spiral 
path could be understood using Ginzburg-Landau equation. 

Inserting result in equation (7) into (8e) by using n=3 and vo=23.71 
km/sec for the Moon [2] yields a receding orbit radius of the Moon as 
large as 0.0401 m/year, which is very near to the observed value ~ 
0.04 m/year [20]. The quantum number and specific velocity here are 
also free parameters, but they have less effect because these could be 

replaced by the actual Moon orbital velocity using nvvn /0=  [1]. 
While this kind of receding Moon observation could be described 

alternatively using oscillation of gravitational potential [30], it seems 
that the kinetic expansion explanation is more preferable particularly 
with regard to a known hypothesis of continental drift after A. 
Wegener [29][49]. Apparently, none of these effects could be 
explained using oscillation of gravitational field argument, because 
they are relentless effects. 

Effect of varying M, instead of varying G 
In this regard, it is interesting to note that Sidharth has argued in 

favor of varying G [21]. From this starting point, he was able to 
explain –among other things-- anomalous precession (Lense-Thirring 
effect) of the first planet and also anomalous Pioneer acceleration, 
which will be discussed in the subsequent section. In principle, 
Sidharth’s basic assertion is [21]: 

( )⊗⊗ += ttGG /1.  (9) 
It is worthnoting here that Barrow [40c] has also considered a 

somewhat similar argument in the context of varying constants: 



( )cttGG −= ⊗⊗ /.  (9a) 
However, in this article we will use (9) instead of (9a), partly 

because it will lead to more consistent predictions with observation 
data. Alternatively, we could also hypothesize using Maclaurin 
formula: 

...)!3/)/(!2/)/(/1.(. 32/ ++++== ⊗⊗⊗⊗⊗
⊗ ttttttGeGG tt

 (9b) 
This expression is a bit more consistent with the exponential 

solution of equation (8j) and (8k). Therefore, from this viewpoint 
equation (9) could be viewed as first-order approximation of (9b), by 
neglecting second and higher orders in the series. It will be shown in 
subsequent sections, that equation (9) is more convenient for deriving 
predictions.   

If we conjecture that instead of varying G, the spinning mass M 
varies, then it would result in the same effect as explained by Sidharth 
[21], because for Keplerian dynamics we could assert k=GM, where k 
represents the stiffness coefficient of the system. Accordingly, Gibson 
[22] has derived similar conjecture of exponential mass flux from 
Navier-Stokes gravitational equation, which can be rewritten in the 
form: 

...)!3/)/(!2/)/(/1.(. 32/ ++++== ⊗⊗⊗⊗⊗
⊗ ttttttMeMM tt

 (10) 
provided we denote for consistency [22]: 

πτ 2/gt =⊗   (10a) 
Using the above argument of Maclaurin series, equation (10) 

could be rewritten in the similar form with (9) by neglecting higher 
order effects: 

( )⊗⊗ += ttMM /1.  (11) 
    Now the essential question here is: which equation should be 
used, a varying G or varying M? A plausible reasoning could be 
given as follows: In a recent article Gibson & Schild [23] argue 



that their gravitational equation based on Navier-Stokes approach 
results in better explanation than what is offered by Jeans 
instability, which yields equation (10). Furthermore, R.M. Kiehn 
has also shown that the Navier-Stokes equation corresponds 
exactly to Schrödinger equation [27].  
     In the meantime, Bertschinger [22b] has discussed a plausible 
extension of Euler equation and Jeans instability to describe 
gravitational clustering, which supports Gibson’s arguments of 
invoking viscosity term and also turbulence phenomena [22c, 22d]. 
Therefore, from kinematical gravitational instability viewpoint, 
apparently equation (11) is more plausible than equation (9), albeit 
the result will be similar for most (Newtonian) gravitation 
problems. 

From equation (11) we could write for M at time difference 

12 ttt −=Δ :
( )⊗⊗ += ttMM /1. 22  (12) 

( )⊗⊗ += ttMM /1. 11  (13) 

from which we get:
)).(/( 12 tttMM −=Δ ⊗⊗  (14) 

Inserting our definition 12 ttt −=Δ  yields:
ktMtM ==ΔΔ ⊗⊗ )/(/  (15) 

 For verification of this assertion, we could use equation (15) 
instead of (1) to predict mass flux of the Earth. Inserting the present 
mass of the Earth from Table 1 and a known estimate of Earth epoch 
of 2.2x109 years, we get k=0.272x1016 kg/year, which is
approximately at the same order of magnitude (ratio=13.83) with 
equation (4). 

Inserting equation (15) into equation (1), we get: 
).5/(./ 22 cMRtM ωω−≈⊗⊗  (16) 



which is the basic conjecture of the present article. 

Quantization of anomalous celestial precession 

 It is known that the Newtonian gravitation potential equation 
(8d) is only weak-field approximation, and that GTR makes a basic 
assertion that this equation is exact. And if gravitation could be 
related to boson condensation phenomena [9][10][11], then it 
seems worth to quote a remark by Consoli [9b; p.2]:  

“for weak gravitational fields, the classical tests of general relativity would be 
fulfilled in any theory that incorporates the Equivalence Principle.”  

And in the same paper he describes [9b; p.18]: 

“Einstein had to start from the peculiar properties of Newtonian gravity to get 
the basic idea of transforming the classical effects of this type of interaction into 
a metric structure. For this reason, classical general relativity cannot be 
considered a dynamical explanation of the origin of gravitational forces.”  

Furthermore, Consoli also argued that the classical GTR effects 
other than anomalous precession could be explained without 
introducing non-flat metric, as described by Schiff [9b; p.19], 
therefore it seems that the only remarkable observational 
vindication of GTR is anomalous precession of the first planet 
[37]. Therefore, it seems reasonable to expect that the anomalous 
precession effect could be predicted without invoking non-flat 
metric, which suggestion is particularly attributed to R. Feynman, 
who ‘believed that the geometric interpretation of gravity beyond 
what is necessary for special relativity is not essential in physics’ 
[9d]. It will be shown that a consistent approach with equation (10) 
will yield not only the anomalous celestial precession, but also a 
conjecture that such an anomalous precession is quantized.  



 By using the same method as described by Sidharth [21], except 
that we assert varying mass M instead of varying G – in accordance 
with Gibson’s solution [22]--, and denoting the average angular 
velocity of the planet by 

T/2π≡Ω  (17) 
and period T, according to Kepler’s Third Law: 

GMaT /.2 2/3π=  (18) 
Then from equation (10), (17), (18) we get: 

⊗Ω−=Ω−Ω tto /.0  (19) 
Integrating equation (19) yields: 

⊗−=Ω−Ω= ttTt o /)./()( 2πϖ  (20) 
which is average precession at time ‘t’. Therefore the anomalous 
precession corresponds to the epoch of the corresponding system. 
For Mercury, with T=0.25 year, equation (20) yields the average 
precession per year at time ‘t’: 

⊗−=Ω−Ω= ttt Mercury /.4)( 2
0 πϖ  (21) 

Using again yearxt 10102=⊗  as the epoch of the solar system and 
integrating for years n=1 … 100, equation (21) will result in total 
anomalous precession in a century: 

=

=

==
100

1

''86.43)()(
n

n

percenturynn ϖϖ  (22) 

It would be more interesting in this regard if we also get prediction 
of this effect for other planets using the same method (20), and then 
compare the results with GTR-prediction (using Lense-Thirring 
effect). Table 2 presents the result, in contrast with observation by 
Hall and also prediction by Newcomb, which are supposed to be the 
same [25]. 



Table 2. Comparison of prediction and observed anomalous precession 
Celestial 
Object 

Period, 
T predictionω Hall/ 

Newcomb 
Diff. GTR/ 

Thirring 
Diff. 

(year) (arcsec/cy) (arcsec/cy) (%) (arcsec/cy) (%) 
Mercury 0.25 43.86 43.00 2.03 42.99 -0.05 
Venus 0.57 19.24 16.80 14.54 0.8 -95.2 
Earth 1.00 10.96 10.40 5.46 3.84 -63.1 
Mars 1.88 5.83 5.50 6.02 1.36 -76.0 
Jupiter 4346.5 2.52x10-3 
Saturn 10774.9 1.02x10-3 
Uranus 30681.0 3.57x10-4 
Neptune 60193.2 1.82x10-4 
Pluto 90472.4 1.21x10-4 

It is obvious from Table 2 above that the result of equation (20) 
appears near to GTR’s prediction and observation by Hall for the first 
planet, but there is substantial difference between GTR and 
observation for other planets particularly Venus. In the mean time, 
average percentage of error from prediction using equation (20) and 
observation (Hall) is 7.01%. The numerical prediction for Jovian 
planets is negligible; though perhaps they could be observed provided 
there will be more sensitive observation methods in the near future. 

It is perhaps also worthnoting here, that if we use the expression 
of quantization of period [3]: 

3
0

3 /..2 vnGMT π=  (23) 

where skmcv g /144.0 == α in accordance with Nottale [1]. Inserting 
this equation (23) into (20), yields: 

⊗−=Ω−Ω= ttGMnvt precess /).2/()( 233
00ϖ  (24) 

or 
233 /.4)(/2 tvGMnttT oprecessprecess ⊗−== πϖπ  (24a) 



These equations (24) and (24a) imply that the anomalous 
precession of Lense-Thirring type should also be  quantized. 
Apparently no such an assertion has been made before in the 
literature.  

It would be interesting therefore to verify this assertion for giant 
planets and exoplanets, but this is beyond the scope of the present 
article.  

A plausible test using LAGEOS-type satellites 
     In this regard, one of the most obvious methods to observe those 
effects of varying spinning mass M as described above is using 
LAGEOS-type satellites, which have already been used to verify 
Lense-Thirring effect of Earth. What is presented here is merely an 
approximation, neglecting higher order effects [12][16][31].    
     Using equation (8c) we could find the rotational effect to satellite 
orbiting the Earth. Supposed we want to measure the precessional 
period of the inclined orbit period. Then the best way to measure 
quadrupole moment (J2) effect would be to measure the ϑ

component of the gravity force (8c): 

4
2

2 /cos.sin..3/./1 rJaGMVrg ϑϑϑ −=∂∂=  (25) 

 This component of force will apply a torque to the orbital angular 
momentum and it should be averaged over the orbit. This yields a 
known equation, which is often used in satellite observation:

2
2

2 2/cos.3/ riJasp −=ωω  (26) 

where i is the inclination of the satellite orbit with respect to the 
equatorial plane, a is Earth radius, r is orbit radius of the satellite, 



sω is the orbit frequency of the satellite, and pω is the precession
frequency of the orbit plane in inertial space. Now using LAGEOS 
satellite data [31] as presented in Table 3: 

Table 3. LAGEOS satellite parameters 
Parameter Value Unit 
RLAGEOS 12.265x106 M 
iLAGEOS 109.8 o

TLAGEOS 13673.4 sec 
ωs 4.595x10-4 rad/s 
J2 1.08x10-3 

 Inserting this data into equation (26) yields a known value: 
dayp /337561.0 °=ω  (27) 

which is near enough to the observed LAGEOS precession = 
0.343o/day.
     Now let suppose we want to get an estimate of the effect of Earth 
kinetic expansion to LAGEOS precession. Inserting (r+dr/dt) from 
equation (6) to compute back equation (26) yields: 

yeararcdayxnpnpp sec/558.2/1041.1 9
,1, =°=−=Δ −

+ ωωω     (28)
 Therefore, provided the aforementioned propositions 

correspond to the facts, it could be expected to find a secondary 
precession of LAGEOS-satellite around 2.558 arcsecond/year. To 
this author’s knowledge this secondary effect has not been 
presented before elsewhere. And also thus far there is no coherent 
explanation of those aforementioned phenomena altogether, except 
perhaps in [21] and [30]. 

As an alternative to this method, it could be expected to observe 
Earth gravitational acceleration change due to its radius increment. 
By using equation (8d) and (5): 



 3/...4/)( 2 rGrGMtr sphereρπ==  (29) 
From this equation, supposing there is linear radius increment, 

then we get an expression of the rate of change of the gravitational 
acceleration: 

)(3/)/.(..4/)( trtrrGtrtr sphere −ΔΔ+=ΔΔ= ρπ  (30) 

Therefore, it would be interesting to find observation data from 
LAGEOS to verify or refute this equation.  

Ginzburg-Landau equation and solar system: 
possible signatures of spiral gravity 

     The pattern formation is often described as result of diffusion 
reaction. And the most popular equation in these pattern-formation 
studies is CGLE (complex Ginzburg-Landau equation). These 
reaction-diffusion systems govern almost all phenomena in Nature 
from the smallest quantum entities to galaxies [40][41]. E. Goldfain 
has also considered CGLE with possible application in description of 
elementary particle masses [52]. 
      In this regards, a considerable attempt has been made towards a 
better understanding of partial differential equations of parabolic type 
in infinite space. A typical equation is known as CGLE, which is 
commonly described as follows [42]: 

2
).1()1( AAiAAiAt βα +−+Δ−=∂  (31) 

The most interesting characteristics of CGLE is its superspiral 
solution [43], or ‘scroll waves’ pattern [44]. This equation could also 
lead to a kind of 'dark soliton’, which is quite related to NLSE 
(nonlinear Schrödinger equation) [45].  



A relative periodic orbit of the CGLE with drift ),( Sϕ and
period T contains solutions that satisfy for all t [46]: 

),(.),( TtSxAetxA i ++= ϕ
 (32) 

The corresponding solution of the system of ODEs derived from 
CGLE thus satisfies [46]: 

)(..)( Ttaeeta m
imSi

m += ϕ
  (33) 

for all m and t. This equation could be reintroduced in the form [46]: 
)/(.)( /. Ttbeta TLgt

m
−=  (34) 

Where b is periodic with the period one, and 
)( imSidiagLg += ϕ   (34a) 

 Alternatively, solution of CGLE could be found in terms of MAW 
(modulated amplitude waves) with expression as follows [43]: 

)()( .).(),( tqrizi eezatrA ωφ −=  (35) 
     Interestingly, this could be related to an extended solution of Bohr-
radius-type equation of celestial quantization. In accordance with 
equation (8i)-(8j)-(8k), we could extend Bohr-radius type expression 
of quantized orbit of celestial bodies in solar system in the form of 
spiral motion. Therefore, it seems plausible to assert that the form of 
equation (34) and (35) appears very similar with equations (8i)-(8j)-
(8k). This seems to suggest a possibility that CGLE could be related 
to quantization of celestial bodies, in lieu of describing this 
macroquantization using Schrödinger-Euler-Newton like Nottale’s 
Scale Relativity Theory [1]. In this regards, El Naschie has also noted 
the significance of spiral geometry to describe gravitation (sometimes 
called ‘spiral gravity’).  
    For observational verification, we could rewrite equation (8j) and 
(8k): 



rcRMdtdr s −−= )].5/(.1.[// 22ωωχ  (36) 

and inserting equation (15), we get:

rMtMMdtdr −+= ⊗⊗ )]./(1.[// χ  (37) 

A plausible test of this conjecture could be made by inserting the 
result from equation (14) into equation (8e) and using 

gxM 331098951.1=⊗  and yearxt 10102=⊗  as the epoch of the solar 
system [21], and specific velocity vo=144 km/sec [1], then from 
equation (37) we get a receding Earth orbit radius from the Sun at the 
order of: 

yearmtrEarth /03.6/ =ΔΔ  (38) 

Interestingly, there is an article [24] hypothesizing that the Earth 
orbit is receding from the Sun at the order of 7.5 m/year, supposing 
Earth orbit radius has been expanding as large as 93x106 miles since
the beginning of the solar epoch. (Of course, it shall be noted that 
there is large uncertainty of the estimate of solar epoch, see for 
instance Gibson [22]).  

Therefore, it is suggested here to verify this asumption of solar 
epoch using similar effect for other planets. For observation purposes, 
some estimate values were presented in Table 4 using the same 
approach with equation (37). 

Table 4. Prediction of planetary orbit radii (r) increment 
Celestial object Quantum number (n) Orbit increment (m/yr) 

Mercury 3 2.17 
Venus 4 3.86 



Earth 5 6.03 
Mars 6 8.68 

Concluding remarks 

     If physical theories could be regarded as continuing search to 
find systematic methods to reduce the entropy required to do 
calculation to minimum; then the fewer free parameters in a theory 
and the less computation cost required, the better is the method. 
Accordingly, in this article some twelve phenomena can be 
explained using only few free parameters, including: 

The Moon is receding from the Earth [20];
Earth’s angular velocity decrease (Kip Thorne, G.
Smoot, J. Wells) [19];
Planets are receding from the Sun [24];
Lense-Thirring effect for inner planets, corresponding to
Hall/Newcomb’s observation;
Celestial orbit prediction in solar system [1][2][3];
Exoplanets orbit prediction [1][3];
Pioneer-type anomalous acceleration [21];
A plausible origin of increasing day length (24 second
each million years);
A plausible origin of continental drift effect [29];
A plausible origin of spiral motion in spiral nebulae [22];
Prediction of possible extra precession of LAGEOS
satellite [31];
Prediction of angular velocity decrease of other planets.

As a plausible observation test of the propositions described 
here, it is recommended to measure the following phenomena: 



Lense-Thirring effect of inner planets, compared to
spherical kinetic dynamics prediction derived herein;
Annual extra precession of Earth-orbiting LAGEOS-type
satellites;
Receding planets from the Sun;
Receding satellites from their planets, similar to receding
Moon from the Earth – all these celestial objects take the
form of spiral motion;
Angular velocity decrease of the planets;
Angular velocity decrease of the Sun.

It appears that some existing spacecrafts are already available to do 
this kind of observation, for instance LAGEOS-type satellites [31]. 
Further refinement of the method as described here could be 
expected, including using ellipsoidal kinetic dynamics [12] or using 
analogy with neutron star dynamics [32]. Further extensions to 
cosmological scale could also be expected, for instance using some 
versions of Cartan-Newton theory [38]; or to find refinement in 
predictions related to varying constants.  

All in all, the present article is not intended to rule out the existing 
methods in the literature to predict Lense-Thirring effect, but instead 
to argue that perhaps the notion of ‘frame dragging’ in GTR [14][16] 
could be explained in terms of dynamical interpretation, through 
invoking the spherical kinetic dynamics. In this context, the dragging 
effect is induced by the spinning spherical mass to its nearby celestial 
objects.  

Provided all of these correspond to the observed facts, it seems 
plausible to suggest that it is possible to derive celestial quantization 
in terms of (complex) Ginzburg-Landau equation, instead of the 
known Schrodinger-Euler-Newton like in Nottale’s Scale Relativistic 
Theory [1]. Because CGLE is also commonly used in the context of 



Bose gas [43][48], then it seems also plausible to hypothesize that the 
subtle medium of subparticle structure may be described using 
Winterberg’s superfluid phonon-roton model [8]. It is known that an 
essential feature of Winterberg’s superfluid Planckian aether model is 
that the basic entity is comprised of pairs of Planck mass. 
Interestingly, similar hypothesis of Planck mass as the basic entity of 
Nature has also been suggested by Spaans, using topological 
arguments [47]. Other implications of this CGLE’s superspiral 
quantization either in nuclei realm or cosmological prediction remain 
to be explored [48]. 

If this proposition described here corresponds to the facts, then one 
can say that it is possible to ‘re-derive’ General Relativity phenomena 
from the viewpoint of Bohr-Sommerfeld quantization and spherical 
kinetic dynamics. Possible verification of this proposition may 
include the use of Earth-based satellites, which go beyond traditional 
GTR-tests such as precession of the first planet. Further observation 
to verify or refute this conjecture is recommended, plausibly using 
LAGEOS-type satellites 
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Appendix I: Derivation of equation (1) 
We start with some basic equations that will be used throughout the 
present article. It is assumed that the solar nebula is disk-shaped and 
is in hydrostatic equilibrium in the vertical direction. Let suppose that 
the disk has approximately Keplerian rotation, ω; then the half-
thickness of the disk is given by [4d; p.4-5]: 

ω/scd =  (i) 

and 

mkTcs /≈ (ii) 

where d and cs represents half-thickness of the disk and sound 
velocity, respectively.  
     In order to find the spherical kinetic dynamics contribution to 
Lense-Thirring effect, we begin with the spinning dynamics of solid 
sphere with mass M. Using the known expression [12; p.6, p.8]: 

2/2ωzzkinetic IE −=  (iii)

5/2 2MRI sphere =  (iv) 

where Izz, ω, M, R represents angular momentum, angular velocity, 
spinning mass of the spherical body, and radius of the spherical body, 
respectively. Inserting equation (iv) into (iii) yields: 

5/22ωMREkinetic −=  (v) 

     This known equation is normally interpreted as the amount of 
energy required by a spherical body to do its axial rotation. But if 



instead we conjecture that ‘galaxies get their angular momentum from 
the global rotation of the Universe due to the conservation of the 
angular momentum’ [34], and likewise the solar system rotates 
because of the corresponding galaxy rotates, then this equation 
implies that the rotation itself exhibits extra kinetic energy. 
Furthermore, it has been argued that the global rotation gives a natural 
explanation of the empirical relation between the angular momentum 
and mass of galaxies: 3/5MJ α≈  [34]. This conjecture seems to be 
quite relevant in the context of Cartan torsion description of the 
Universe [18][38]. For reference purpose, it is worthnoting in this 
regard that sometime ago R. Forward has used an argument of non-
Newtonian gravitation force of this kind, though in the framework of 
GTR (Amer.J.Phys. 31 No. 3, 166, 1963).  

Let suppose this kind of extra kinetic energy could be 
transformed into mass using a known expression in condensed-
matter physics [10b; p.4], with exception that cs is used here 
instead of v to represent the sound velocity: 

2..),( ssskinetic cmpcpnE == (vi) 

where the sound velocity obeying [10b; p.4]: 

)/)(/()( 222 dndmnncs ∈=  (vii) 
     Physical mechanism of this kind of mass-energy transformation is 
beyond the scope of the present article, albeit there are some recent 
articles suggesting that such a condensed-matter radiation is permitted 
[35]. Now inserting this equation (vi) into (v), and by dividing both 
sides of equation (v) by tΔ , then we get the incremental mass-energy
equivalent relation of the spinning mass: 

 ).5/()./.(/ 22
ss cMRttm ΔΔ−=ΔΔ ωω  (viii) 

By denoting tΔΔ= /ωω , then this equation (viii) can be rewritten as:



).5/()./.(/ 22
ss cMRttm ΔΔ−=ΔΔ ωω  (ix) 
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Gravitational Schrödinger
equation from Ginzburg-
Landau equation, and its 

noncommutative spacetime 
coordinate representation

V. Christianto, vxianto@yahoo.com 

Despite known analogy between condensed matter physics 
and various cosmological phenomena, a neat linkage between 
low-energy superfluid and celestial quantization is not yet 
widely accepted in literature. In the present article we argue 
that gravitational Schrödinger equation could be derived from 
time-dependent Ginzburg-Landau (or Gross-Pitaevskii) that is 
commonly used to describe superfluid dynamics. The solution 
for celestial quantization takes the same form with Nottale 
equation. Provided this proposed solution corresponds to the 
facts, and then it could be used as alternative solution to 
predict celestial orbits from quantized superfluid vortice 
dynamics. Furthermore, we also discuss a representation of the 
wavefunction solution using noncommutative spacetime 
coordinate. Some implications of this solution were discussed 
particularly in the context  of offering a plausible explanation 
of the physical origin of quantization of motion of celestial 
objects. 

Keywords: superfluidity, Bose-Einstein condensate, vortices, 
gravitation, celestial quantization 



 

Introduction
There has been a growing interest in some recent literatures to 
consider gravity as scalar field from boson condensation [1]. This 
conjecture corresponds to recent proposals suggesting that there is 
neat linkage between condensed matter physics and various 
cosmological phenomena [2,3]. In this regard, it is worth noting 
here that some authors have described celestial quantization from 
the viewpoint of gravitational Schrödinger-type wave equation [4]. 
Considering that known analogy between condensed matter 
physics and various cosmological phenomena, then it seems also 
plausible to describe such a celestial quantization from the 
viewpoint of condensed-matter physics, for instance using Gross-   
Pitaevskii (GP) or Ginzburg-Landau wave equation.   
      In the present article, we derived gravitational Schrödinger-type 
wave equation from various equations known in condensed matter 
physics, including Gross-Pitaevskii (GP) equation and also time-
dependent Ginzburg-Landau (TDGL) wave equation. This method 
could be regarded as ‘inverse’ way from method discussed in 
Berger’s article [5], suggesting that it is possible to extend 
Schrödinger equation to TDGL using De Broglie potential. 
Provided this neat linkage from TDGL/GPE and Schrödinger 
equation is verified by observation, then it seems to support a 
previous conjecture of a plausible linkage between celestial
quantization and quantized vortices [4]. And then we discuss some 
issues related to describing cosmological phenomena in terms of 
diffusion theory of gravitational Schrödinger-type equation, though 
this issue has been discussed in the preceding articles [3,8,9]. 
Furthermore, following our argument that it is possible to find 
noncommutative representation of the wavefunction [4], and then 
we will discuss a plausible interpretation of the gravitational 



 

Schrödinger equation in terms of noncommutative spacetime 
coordinate. This extension to noncommutative coordinate perhaps 
will be found useful for further research. And if this proposition 
corresponds to the astrophysical facts, then it can be used to 
explain the origin of quantization in astrophysics [7][8]. 

An alternative method to find solution of 
gravitational Schrödinger-type equations
The present author acknowledged that the proposed method on 
relating cosmological phenomena with condensed-matter/low-energy 
physics has not been widely accepted yet, though some of these 
approaches have been used to predict phenomena corresponding to 
neutron stars [12,39]. Furthermore, there is also a deeper question 
concerning the appropriateness of using and solving gravitational 
Schrödinger-type equations for depicting cosmological phenomena, 
beyond what is called as Wheeler-DeWitt (WDW) equation. It should 
be noted here that our derivation method is somewhat different from 
Neto et al.’s approach [14], because we use Legendre polynomials 
approach. 

  Now we are going to find solution of the most basic form of 
Schrödinger-type equation using Legendre polynomials, from which 
we will obtain the same expression with known Nottale’s quantization 
equation [11]. We start with noting that Schrödinger equation is 
derived from a wave of the form: 

λπα /2sin. x               (1) 
By deriving twice equation (1), then we get the most basic form of 

Schrödinger equation: 
0./ 22  Adxd            (2) 

where for planetary orbits, it can be shown [13, 5] that we get: 



 

).2/(//4 2222 KEmvA ωωλπ             (3) 
Solution of equation (2) is given by: 

)2/exp(.)2/exp(.1 ρρχ  CC (4) 
But we shall reject the first term because it will result in infinity 

for large distance (>>0). This suggests solution of the form [14]: 
 )2/exp().( ρρχ  F              (5) 

Substituting (5) into (2), we get: 
 0.// 22  FAddFdFd ρρ (6) 
Now we shall find the series solution to (6) and put: 
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The lower limit of this summation is p=1 rather than p=0, 
otherwise F and therefore  would not be zero at =0. Thus [14]: 
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By inserting these equations (7), (8), (9), and (10) into equation 
(6), and observing that each power of ρ mush vanish, and by 
inserting our defiition of variable A from equation (3) and 
inserting the kinetic energy definition rGMmKE 2/ , and then 
we could find the expression for orbital radii which is similar to 
Nottale’s equation [11]: 

22 /. oo vGMnr     (11) 
Therefore we observed that a solution using Legendre polynomials 



 

yields the same expression with Nottale’s quantization equation [11]. 
It is also obvious that some assumptions must be invoked in order to 
find the proper asymptotic solution.   

On celestial quantization from GPE and TDGL
In a preceding article we provided simplified derivation of equation of 
quantization of planetary orbit distance based on Bohr-Sommerfeld 
hypothesis of quantization of angular momentum [4], which could be 
considered as ‘retro’ version of Bohr-Sommerfeld quantization 
method in microphysics. As shown above, similar quantization result 
can be derived from generalized Schrödinger-Newton equation 
suggested by L. Nottale [11].  
      But this Schrödinger-type wave equation does not exactly 
correspond to the superfluid theory or condensed matter, therefore in 
the present article we will derive Schrödinger-type wave equation 
based on GP/TDGL equation, which is commonly used to describe 
superfluid medium [3]. It will be shown that the previous solution 
(11) based on gravitational Schrödinger-type equation is only an 
approximation of a more general GP/TDGL equation, becauses it 
neglects nonlinear effects like temperature dependent or screening 
potential. This conjecture of quantum vortice dynamics also 
corresponds to hypothesis by Winterberg of superfluid phonon-roton 
as Planckian quantum vacuum aether [9]. 

First, we will discuss how to get Schrödinger-type equation from 
GP equation, and then from TDGL. At subsequent section we will 
discuss other nonlinear Schrödinger-type equation from Chern-
Simons theory. 

a. Gross-Pitaevskii equation (GPE)
As we know, superfluid medium is usually described using GP 

equation, or sometimes known as nonlinear Landau-Ginzburg 



 

equation or nonlinear Schrödinger equation (NLSE) [12,2]. In the GP 
theory the ground state and weakly excited states of a Bose gas are 
described by the condensate wave function =a.exp(i) which is a 
solution of the nonlinear Schrödinger equation [6]: 

ψψψψ 222 ||.2//. Vmti  hh         (12) 
where V is the amplitude of two-particle interaction. 

It has been argued [6], that two-fluid hydrodynamics relations can 
be derived from the hydrodynamics of an ideal fluid in presence of 
thermally excited sound waves, i.e. phonon scattering by a vortex line. 
In order to obtain a complete system of equations of the two-fluid 
theory, one should take into consideration phonon-phonon interaction, 
which is essential for the phonon distribution function being close to 
the equilibrium Planck distribution. It was shown in [1], that this 
sound wave of boson condensate system consists of phonons with 
sound velocity of ./")(/2 μρπμρ  Pcs   

Furthermore, the phonon scattering by a vortex line is analogous to 
the so-called Aharonov effect for electrons scattered by a magnetic-
flux tube, which analogy becomes more evident if one rewrites the 
sound equation [6] in presence of the vortex as: 

  0/
22  φφ sv cvkik rr

(13) 
But the stationery Schrödinger equation for an electron in presence 

of the magnetic flux confined to a thin tube is given by [6]: 
  )(/.2/1)(

2
rcAeimrE rrr

h
r ψψ  (14)       

Here  is the electron wave function with energy E and the 
electromagnetic vector potential is connected with the magnetic flux  
by the relation similar to that for the velocity vvr  around the vortex
line [6]: 

  22/ˆ. rrxzA πrr
 (15) 



 

In other words, we have outlined a logical mapping [6]: (i)  from 
GP (NLSE) equation to the two-fluid hydrodynamics; (ii) from 
hydrodynamics to the phonon scattering equation; (iii) from phonon 
scattering to electron scattered by magnetic- flux tube, and (iv) from 
electron scattering back to the stationery Schrödinger equation. Now 
it is worthnoting here, that there is exact solution of Aharonov effect 
for electrons obtained by the partial wave expansion. To find the 
solution of equation (14), partial-wave amplitudes  l should satisfy 
equations in the cylindrical system of coordinates (r,) [6]: 

0./.)1(/./1/ 22222  llll krdrdrdrd ψψγψψ                (16) 
where 

mkE 2/22h (17) 
or 

222 /1/.2 λ hKEmk (18) 
where KE, λ,h  denotes the kinetic energy of the system, Planck 
constant and wavelength, respectively. From this equation (16), then 
we shall find a solution, which at large distances has an asymptotic
character expressed in exponential form of =.exp(), which is 
typical solution of Schrödinger-type equation; where  and   are 
functions of some constants. 

Because equation (16) is an ordinary differential equation in planar 
cylindrical system of coordinates, we consider that this equation 
corresponds to the celestial quantization if we insert proper values of 
Newtonian equation [4]. Therefore in the subsequent derivation we 
will not follow the standard partial wave analysis method as described 
in [6], but instead we will use a method to find solution of ordinary 
differential equation of Schrödinger equation: a=n2.GM/vo

2, which is 
in accordance with Nottale’s solution [11]. Here a, n, G, M, vo, 
represents semimajor axes, quantum number (n=1,2,3,…), Newton 



 

gravitation constant, mass of nucleus of gravitation field, and specific 
velocity, respectively.  

Solution of equation (16) is given by  l(r,)= R(r).F(). Inserting 
this relation into (16), and separating the F() terms, then we get the 
ground state expression of the system (m2=0 case):  

0]./)1[()/.(/1/ 22222  RkrdrdRrdrRd γ                    (19) 
The solution for R(r) is given by : 

][)( .. rr eerR αα                                                                       (19a) 
In order to get the sought-after asymptotic solution for equation 

(16), we only use the negative expression of R(r), otherwise the 
solution will diverge to infinity at large distance r:    

rerR .)( α                                                                                    (20) 
Therefore 

redrrdR ../)( αα  (21) 
redrrRd .222 ./)( αα  (22) 

Inserting (19a)-(22) into equation (19) and eliminating the 
exponential term re .α , yield: 

})1(.{/1 22222 krrr  γαα                                                  (23) 
Because equation (23) must be right for any value of r, then the 

right hand side of equation (23) between the {} brackets must equal to 
zero: 

0)1( 222  krr γα                                                                (24) 
Maple solution for equation (24) is included in the Appendix 

section, which yields for γ :  
22221 rkrr  ααγ                                                            (25) 

The remaining part is similar to equation (10)-(11), by inserting 
kinetic energy definition for gravitational potential.  



 

Therefore we conclude that the right term between the {} brackets 
yields a secondary effect to the equation of celestial quantization, 
except for some condition where this extra term vanishes. To this 
author’s knowledge, this secondary effect has never been derived 
before; neither in Nottale [11], nor Neto et al. [13]. In our method, the 
secondary effect comes directly from the partial wave analysis 
expression of GP equation.  

Therefore we obtain a generalised form of the equation of celestial 
quantization [11], which has taken into consideration the secondary 
interaction effect of GPE. The expected value for  can be estimated 
by equating the right term between the {} brackets to one.1 However, 
it is not too clear in what kind of conditions this right term in the 
bracket will disappear, therefore we are going to discuss another 
approach for deriving gravitational Schrödinger-type equation, i.e. 
using TDGL (time-dependent Ginzburg-Landau equation).  

b. Time-dependent Ginzburg-Landau equation (TDGL)
It is known that Ginzburg-Landau (TDGL) equation is more 

consistent with known analogy between superfluidity and 
cosmological phenomena [2][3], and TDGL could also describe 
vortex nucleation in rotating superfluid [19]. According to Gross, 
Pitaevskii, Ginzburg, wavefunction of N bosons of a reduced mass 
m* can be described as [20]:  

tim  /.*).2/( 222 ψψψκψ hh       (26) 

     It is worthnoting here that this equation is quite similar to Jones’ 
nonlinear Schrödinger equation to describe gravitational systems 
[21]. For some conditions, it is possible to replace the potential 
energy term in equation (26) by Hulthen potential. This 
substitution yields: 

tiVm Hulthen  /..*).2/( 22 ψψψ hh (27) 

where 



 

)1/(..2 rr
Hulthen eeZeV δδδ         (28) 

This equation (27) has a pair of exact solutions. It could be 
shown that for small values of δ , the Hulthen potential (28) 
approximates the effective Coulomb potential, in particular for 
large radius: 

)2/().1(/ 222 mrreV eff
Coulomb hll        (29) 

Inserting (29) into equation (27) yields: 
  timrrem  /..)2/().1(/*2/ 22222 ψψψ hhllh        (30)

While this equation is interesting to describe neutron model, 
calculation shows that introducing this Hulthen effect (28) into 
gravitational equation will yield different result only at the order of 
10-39 m compared to prediction using equation (11), which is of 
course negligible. Therefore, we conclude that for most celestial 
quantization problems the result of TDGL with Hulthen potential (28) 
is essentially the same with the result derived from equation (11). 

Some implications to cosmology model 
The approach described in the previous section using arguments 

based on condensed matter physics also implies that the linear and 
point-like topological defects also induce an effective metric, which 
can be interesting for the theory of gravitation. In this regards, the 
vortex can be considered as cosmic spinning string.2 

Another question can be asked here, i.e. to how extent GP equation 
could be regarded as exact representation of cosmological 
phenomena, because there are arguments suggesting that GP equation 
is only an approximation [23]. For instance, Castro et al. [22] argued 
that GP equation of NLSE has some weakness, i.e. it does not meet 
Weinberg homogeneity condition.  

Therefore, it becomes obvious that there is also a typical question 



 

concerning whether such Schrödinger-type wave function expression 
corresponds to vortices description in hydrodynamics. In this regard, 
it seems worth here to consider a more rigorous approach based on 
Chern-Simons hydrodynamics. Pashaev & Lee [24] reformulated the 
case of Abelian Chern-Simons gauge field interacting with Nonlinear 
Schrodinger field as planar Madelung fluid. In this regard, the Chern-
Simons Gauss law has simple physical meaning of creation of the 
local vorticity for the fluid flow; which appears very similar to 
Kiehn’s derivation using Navier-Stokes argument [17,27]. Then 
Pashaev & Lee [24] obtained the following nonlinear wave equation: 

)/..(2/)1(2/ 22
0  mUmDiD h (31) 

where 
00 ./ AcD             (32) 

AcD ./ (33) 
Then in terms of a new wave function 

)/exp(. hiSρχ  (34) 
they recovered the standard linear Schrödinger equation: 

02/.2
0  χχχ UmDDi hh         (35) 

Thus they concluded that for 0h equation (34) is gauge 
equivalent to the Schrödinger equation, while for 0h  it reduces to 
nonlinear wave equation of classical mechanics. The semiclassical 
limit has been applied to defocusing NLSE [24]: 

022/. 22  χχχχ gmi t hh         (36) 
which provides an analytical tool to describe shockwave in nonlinear 
optics and vortices in superfluid. In the formal semiclassical limit 

0h (before shocks), one neglects the quantum potential and fluid 
becomes the Euler system. Introducing the local velocity field: 

]./.[/1 AceSmV                                                                   (37) 



 

And then they obtained a hydrodynamical model defined by two 
equations: 

mmgVVtV /)/.2/2()(/ 2 ρρρ  h              (38) 
)/( 22 cmexV κρ (39) 

Therefore we concluded that a more rigorous representation of 
quantum fluid admits vortice configuration. It is perhaps interesting to 
remark here, that these equations differ appreciably from Nottale’s 
basic Euler-Newton equations [11]: 

)()./.( QVVVtm  φ (40) 
0)(/  Vdivt ρρ (41) 

ρπφ G4 (42) 
which of course neglect vortice configuration. 
      Upon generalizing the solution derived above, we could expect to 
see some plausible consequences in cosmology. For instance, that (i) 
there should be a kind of Magnus-Iordanskii type force observed in 
astrophysical phenomena, and (ii) that there should be hollow tubes 
inside the center of spinning large celestial bodies, for instance in the 
Sun and also large planets, including this Earth;3 (iii) the universe is 
also very likely to rotate, in accord with recent observation by 
Nodland & Ralston [25];4 (iv) the notion of gravitational constant 
could be related to cosmological temperature [3]; and (v) there exists 
ergoregions in the rotating centers of celestial objects where phonon 
particles are continuously created [26]. This phenomenon of phonon 
creation in the ergoregions may offer a rational basis of the observed 
continuous expansion of the universe. However, it shall be noted here 
that all of these plausible consequences to cosmology require further 
research. 

Furthermore, some recent observations have concluded that our 
universe has fractality property. For clarity, the number of galaxies 
N(r) within a sphere of radius r, centered on any galaxy, is not 



 

proportional to r3 as would be expected of a homogeneous 
distribution. Instead N(r) is proportional to rD, where D is 
approximately equal to 2, which is symptomatic to distribution with 
fractal dimension D. It is interesting to note, for D=2, the 
cosmological gravitational redshift gives the linear distance-redshift 
relation and becomes an observable phenomenon [28]. This property 
is indicated by its Hausdorff dimension, which can be computed to be 
within the range of 1.6 ~ 2.0 up to the scale of 200 Mpc. Furthermore, 
transition to homogeneity distribution has not been found yet. In this 
regard, P.W.Anderson et al. [29] also remarked: “These findings (of 
clustering and void formation) have become increasingly difficult to 
reconcile with standard cosmological theories, in which the approach 
to homogeneity at large-scales is central element.” It is worth noting 
here that perhaps this fractality property can be explained using boson 
condensate model with non- integer dimension. It has been argued that 
such a boson condensate system exhibits Hausdorff dimension dH~2 
[30]. There is also article arguing in favor of relating the fractal 
dimension with fluctuation graph [31]: 

2/2 αD   for <2                                                                  (43) 
where  is the time decay exponent. Furthermore, it was shown 
recently that an extended version of GP equation admits self-similar 
solutions and also it corresponds to Hausdorff dimension dH~2 [23], 
which seems to confirm our hypothesis that there is exact 
correspondence between cosmological phenomena and condensed 
matter physics [1,2]. 

Therefore this Hausdorff dimension argument seems to be a 
plausible restriction for a good cosmology theoretical model: Any
cosmology theory which cannot exhibit fractality property from its 
intrinsic parameters perhaps is not adequate to explain
inhomogeneity of large scale structures in universe. 



 

It is also worthnoting here, that an alternative argument in favor of 
cosmology with dH~2 has been considered recently by Roscoe [30], 
which corresponds to Mach principle. While his argument seems very 
encouraging and perhaps it is also deeply interwoven with arguments 
presented herein, it shall be noted that his argument suggests the 
universe must have a fractal dimension dH~2, while in the context of 
condensed matter physics it can fluctuates around 1.6~2.0 as observed 
[7]. Furthermore, by making an allusion to Newton’s argument, 
Roscoe also did not consider any physical origin of such fractal 
distribution of masses in the universe, except that it corresponds to the 
nature of quantum vacuum aether. Nonetheless, Roscoe’s conjecture 
on the presence of universal clock is very interesting.  

Furthermore, if the equation of quantization of celestial motion 
derived herein from GPE/TDGL equation corresponds to the 
observed astrophysical facts, then it implies that it seems possible 
now to conduct a set of laboratory experiments as replica of some 
cosmological objects [2], provided we take into consideration proper 
scale modeling (similitude) theories.   

Noncommutative spacetime representation 
In this section we are going to discuss an alternative representation of 
the abovementioned Schrödinger equation using noncommutative 
spacetime coordinate, based on Vancea [33]. According to Vancea, 
the stationary Schrödinger equation is constructed by analogy with 
the commutation case an has the following form [33]: 

)(.)(),( xExpxH              (44) 
Here the wavefunction  belongs to the noncommutative algebra, 

 . If explicit form of Schrödinger equation is given by [33]: 
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where V(x) is an arbitrary function from  and M is the mass of 
particle. The star product in the kinetic term is equal to the 
commutative product. Therefore, following the commutative case, the 
coordinates xs for k=1,2,…,2N is a variable, and the coordinate xk for 
is fixed. Equation (45) could be rewritten in the form [33]: 

  )()(2/22 xExVM kk h        (46) 
     Supposed that there are two solutions of the equation (45) denoted 
by k and k

~ . Then they are linearly dependent, i.e. there are two 
nonzero complex numbers kc and kc~ , such that the following
relations hold simultaneously  

kkkk cc 
~./~      (47a) 

kkkkkk cc 
~./~      (47b) 

     Now, by introducing the quantum prepotential defined as in the 
commutative case by the following relation 

  kk
k

k F  /~             (48)
Then the relation between noncommutative coordinate xk and 
wavefunction has the following form; 

   sk
kkk

kk xfFx  2/~        (49) 
This result appears interesting because now our gravitational 

wavefunction (11) could be given spacetime coordinate 
representation. This would be interesting subject for further study of 
the connection between condensed matter wavefunction 
(GPE/TDGL) and spacetime metric.    



 

Concluding remarks 
In the present article, we derived an alternative derivation of celestial 
quantization equation based on GPE/TDGL equation. It was shown 
that the obtained solution is also applicable to describe various 
phenomena in cosmology, including inhomogeneity and clustering 
formation. In this regard, fractality property emerges naturally from 
the theoretical model instead of invoked; and it corresponds to the 
observed value [7] of Hausdorff dimension ranging from 1.6~2.0 in 
universe up to the scale of 200 Mpc.  
      It could be expected therefore that in the near future there will be 
more rigorous approach to describe this fractality phenomena both in 
boson condensate and also in astrophysics, from which we can obtain 
a coherent picture of their interaction. Another interesting issue for 
future research in this regard, is extending the solution derived herein 
to include superfluid turbulence and also finding its implications in 
astrophysics.     
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Appendix
Thanks to a note by anonymous referee, a Maple solution is included 
here to find solution of Schrodinger type radial equation from GPE 
(24). This solution indicates that for an exponential solution to 
present, this requires that extra term of GPE must vanish. 

> #Partial Wave analysis  
> restart; 
>  with (linalg):  

> R:=exp(-(alpha*r));
D1R:=diff(R,r);D2R:=diff(D1R,r);  

 := R ee
( ) r

 := D1R  ee
( ) r

 := D2R 2 ee
( ) r

Formulate the partial wave equation referenced from 
Sonin[6]

> SCHEQ:=D2R+D1R/r-(1-g)^2*R/r^2+(k)^2*R; 

 := SCHEQ   2 ee
( ) r  ee

( ) r

r
( )1 g 2 ee

( ) r

r2 k2 ee
( ) r

> XX1:=factor(SCHEQ);  



 

 := XX1
ee

( ) r
( )    2 r2  r 1 2 g g2 k2 r2

r2

For the assumed exponential solution to be true,
the bracket must vanish.
HENCE: the roots of the quadratic equation are:
EITHER (solving for g)

 GG:=solve(XX1,g);KK:=solve(XX1,k);AA:=solv
e(XX1,alpha);

 
 := GG ,1  2 r2  r k2 r2 1  2 r2  r k2 r2

or (solving for k)

 := KK ,
    2 r2  r 1 2 g g 2

r 
    2 r2  r 1 2 g g2

r

or (solving for alpha)

 := AA ,


1
2

1
2

  5 8 g 4 g 2 4 k2 r2

r


1
2

1
2

  5 8 g 4 g2 4 k2 r2

r



 

End note: 
1 Another expression for  was described in Ref. [37]: 

TkTTaaAna Bch ././)./.(.216 3 ωπγ h
though it is not yet clear whether this expression could be directly used for 
cosmological phenomena.  
2 This author acknowledged Prof. C. Castro and Prof. C. Beck for suggesting 
that there is plausible correspondence between superfluid vortice model and 
(random) string theory. 
3 X. Song and P. Richards of Columbia University's Lamont-Doherty, 
http://www.ldeo.columbia.edu/song/pr/html.   
4 Also S. Carneiro, arXiv:gr-qc/0003096; Y.N. Obukhov, arXiv:astro-
ph/0008106. 
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Using phion condensate model as described by Moffat [1], we consider a plausible
explanation of (Tifft) intrinsic redshift quantization as described by Bell [6] as result
of Hall effect in rotating frame. We also discuss another alternative to explain redshift
quantization from the viewpoint of Weyl quantization, which could yield Bohr-
Sommerfeld quantization.

1 Introduction

In a recent paper by Moffat [1] it is shown that quantum
phion condensate model with Gross-Pitaevskii equation
yields an approximate fit to data corresponding to CMB
spectrum, and it also yields a modified Newtonian accelera-
tion law which is in good agreement with galaxy rotation
curve data. It seems therefore interesting to extend further
this hypothesis to explain quantization of redshift, as shown
by Tifft et al. [2, 6, 7]. We also argue in other paper that
this redshift quantization could be explained as signature
of topological quantized vortices, which also agrees with
Gross-Pitaevskiian description [3, 5].

Nonetheless, there is remaining question in this quantiz-
ed vortices interpretation, i. e. how to provide explanation
of “intrinsic redshift” argument by Bell [6]. In the present
paper, we argue that it sounds reasonable to interpret the
intrinsic redshift data from the viewpoint of rotating Hall
effect, i. e. rotational motion of clusters of galaxies exhibit
quantum Hall effect which can be observed in the form
of “intrinsic redshift”. While this hypothesis is very new,
it could be expected that we can draw some prediction,
including possibility to observe small “blue-shift” effect ge-
nerated by antivortex part of the Hall effect [5a].

Another possibility is to explain redshift quantization
from the viewpoint of Weyl-Moyal quantization theory [25].
It is shown that Schrödinger equation can be derived from
Weyl approach [8], therefore quantization in this sense comes
from “graph”-type quantization. In large scale phenomena
like galaxy redshift quantization one could then ask whether
there is possibility of “super-graph” quantization.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Interpreting quantized redshift from Hall effect.

Cosmic String

In a recent paper, Moffat [1, p. 9] has used Gross-Pitaevskii
in conjunction with his phion condensate fluid model to

describe CMB spectrum data. Therefore we could expect
that this equation will also yield interesting results in gala-
xies scale. See also [1b, 1c, 13] for other implications of
low-energy phion fluid model.

Interestingly, it could be shown, that we could derive
(approximately) Schrödinger wave equation from Gross-
Pitaevskii equation. We consider the well-known Gross-
Pitaevskii equation in the context of superfluidity or super-
conductivity [14]:

ih̄
∂Ψ

∂t
= − h̄

2

2m
ΔΨ+

(
V (x)− γ |Ψ|p−1)Ψ, (1)

where p < 2N/(N − 2) if N � 3. In physical problems, the
equation for p = 3 is known as Gross-Pitaevskii equation.
This equation (1) has standing wave solution quite similar to
solution of Schrödinger equation, in the form:

Ψ(x, t) = e−iEt/h̄ · u(x) (2)

Substituting equation (2) into equation (1) yields:

− h̄
2

2m
Δu+

(
V (x)− E)u = |u|p−1 u , (3)

which is nothing but a time-independent linear form of
Schrödinger equation, except for term |u|p−1 [14]. If the
right-hand side of this equation is negligible, equation (3)
reduces to standard Schrödinger equation.

Now it is worth noting here that from Nottale et al. we
can derive a gravitational equivalent of Bohr radius from ge-
neralized Schrödinger equation [4]. Therefore we could also
expect a slight deviation of this gravitational Bohr radius in
we consider Gross-Pitaevskii equation instead of generalized
Schrödinger equation.

According to Moffat, the phion condensate model im-
plies a modification of Newtonian acceleration law to be-
come [1, p. 11]:

a(r) = −G∞M
r2

+K
exp (−μφr)

r2
(1 + μφr) , (4)



where

G∞ = G

[
1 +

√
M0

M

]
. (5)

Therefore we can conclude that the use of phion con-
densate model implies a modification of Newton gravitation-
al constant, G, to become (5). Plugging in this new equation
(5) into a Nottale’s gravitational Bohr radius equation [4]
yields:

rn ≈ n2 GM
v20

[
1 +

√
M0

M

]
≈ χ · n2 GM

v20
, (6)

where n is integer (1,2,3 . . . ) and:

χ =

[
1 +

√
M0

M

]
. (7)

Therefore we conclude that — provided the higher order
Yukawa term of equation (4) could be neglected — one has
a modified gravitational Bohr-radius in the form of (6). It
can be shown (elsewhere) that using similar argument one
could expect to explain a puzzling phenomenon of receding
Moon at a constant rate of ±1.5′′ per year. And from this
observed fact one could get an estimate of this χ factor. It
is more interesting to note here, that a number of coral reef
data also seems to support the same idea of modification
factor in equation (5), but discussion of this subject deserves
another paper.

A somewhat similar idea has been put forward by Mas-
reliez [18] using the metric:

ds2 = eαβ
[
dx2 + dy2 + dz2 − (icdt)2] . (8)

Another alternative of this metric has been proposed by
Socoloff and Starobinski [19] using multi-connected hyper-
surface metric:

ds2 = dx2 + e−2x (dy2 + dz2) (9)

with boundaries: e−x = Λ.
Therefore one can conclude that the use of phion con-

densate model has led us to a form of expanding metric,
which has been discussed by a few authors.

Furthermore, it is well-known that Gross-Pitaevskii eq-
uation could exhibit topologically non-trivial vortex solu-
tions [4, 5], which also corresponds to quantized vortices:∮

p · dr = Nv 2πh̄ . (10)

Therefore an implication of Gross-Pitaevskii equation
[1] is that topologically quantized vortex could exhibit in
astrophysical scale. In this context we submit the viewpoint
that this proposition indeed has been observed in the form
of Tifft’s redshift quantization [2, 6]:

δr =
c

H
δz . (11)

In other words, we submit the viewpoint that Tifft’s ob-
servation of quantized redshift implies a quantized distance
between galaxies [2, 5], which could be expressed in the
form:

rn = r0 + n(δr) , (12)

where n is integer (1,2,3, . . . ) similar to quantum number.
Because it can be shown using standard definition of Hubble
law that redshift quantization implies quantized distance
between galaxies in the same cluster, then one could say
that this equation of quantized distance (11) is a result of
topological quantized vortices (9) in astrophysical scale [5];
and it agrees with Gross-Pitaevskii (quantum phion condens-
ate) description of CMB spectrum [1]. It is perhaps more
interesting if we note here, that from (11) then we also get
an equivalent expression of (12):

c

H
zn =

c

H
z0 + n

( c
H
δz
)

(13)

or
zn = z0 + n(δz) (14)

or

zn = z0

[
1 + n

(
δz

z0

)]
. (15)

Nonetheless, there is a problem here, i. e. how to explain
intrinsic redshift related to Tifft quantization as observed in
Fundamental Plane clusters and also from various quasars
data [6, 6a]:

ziQ = zf
[
N − 0.1MN

]
(16)

where zf=0.62 is assumed to be a fundamental redshift con-
stant, and N (=1, 2, 3 . . . ), and M is function of N [6a].
Meanwhile, it is interesting to note here similarity between
equation (15) and (16). Here, the number M seems to play
a rôle similar to second quantum number in quantum
physics [7].

Now we will put forward an argument that intrinsic red-
shift quantization (16) could come from rotating quantum
Hall effect [5a].

It is argued by Fischer [5a] that “Hall quantization is
of necessity derivable from a topological quantum number
related to this (quantum) coherence”. He used total particle
momentum [5a]:

p = mv +mΩ× r + qA . (17)

The uniqueness condition of the collective phase repre-
sented in (9) then leads, if we take a path in the bulk of el-
ectron liquid, for which the integral of mv can be neglected,
to the quantization of the sum of a Sagnac flux, and the
magnetic flux [5a]:

Φ = q

∮
A · dr +m

∮
Ω× r · dr =

=

∫∫
B · dS = Nv 2πh̄ .

(18)



This flux quantization rule corresponds to the fact that a
vortex is fundamentally characterised by the winding number
N alone [5a]. In this regard the vortex could take the form of
cosmic string [22]. Now it is clear from (15) that quantized
vortices could be formed by different source of flux.

After a few more reasonable assumptions one could
obtain a generalised Faraday law, which in rotating frame
will give in a non-dissipative Hall state the quantization of
Hall conductivity [5a].

Therefore one could observe that it is quite natural to
interpret the quantized distance between galaxies (11) as an
implication of quantum Hall effect in rotating frame (15).
While this proposition requires further observation, one
could think of it in particular using known analogy between
condensed matter physics and cosmology phenomena [10,
22]. If this proposition corresponds to the facts, then one
could think that redshift quantization is an imprint of gene-
ralized quantization in various scales from microphysics to
macrophysics, just as Tifft once put it [2]:

“The redshift has imprinted on it a pattern that appears
to have its origin in microscopic quantum physics, yet
it carries this imprint across cosmological boundaries”.

In the present paper, Tifft’s remark represents natural im-
plication of topological quantization, which could be formed
at any scale [5]. We will explore further this proposition in
the subsequent section, using Weyl quantization.

Furthermore, while this hypothesis is new, it could be ex-
pected that we can draw some new prediction, for instance,
like possibility to observe small “blue-shift” effect generated
by the Hall effect from antivortex-galaxies [23]. Of course,
in order to observe such a “blue-shift” one shall first exclude
other anomalous effects of redshift phenomena [6]. (For in-
stance: one could argue that perhaps Pioneer spacecraft ano-
maly’s blue-shifting of Doppler frequency may originate
from the same effect as described herein.)

One could expect that further observation in particular
in the area of low-energy neutrino will shed some light on
this issue [20]. In this regard, one could view that the Sun
is merely a remnant of a neutron star in the past, therefore
it could be expected that it also emits neutrino similar to
neutron star [21].

3 An alternative interpretation of astrophysical quanti-

zation from Weyl quantization. Graph and quanti-

zation

An alternative way to interpret the above proposition con-
cerning topological quantum number and topological quan-
tization [5a], is by using Weyl quantization.

In this regards, Castro [8, p. 5] has shown recently that
one could derive Schrödinger equation from Weyl geometry
using continuity equation:

∂ρ

∂t
+

1√
g
∂i
(√
gρvi

)
(19)

and Weyl metric:

RWeyl = (d− 1)(d− 2)
(
AkA

k
)− 2(d− 1) ∂kAk . (20)

Therefore one could expect to explain astrophysical
quantization using Weyl method in lieu of using generalised
Schrödinger equation as Nottale did [4]. To our knowledge
this possibility has never been explored before elsewhere.

For instance, it can be shown that one can obtain Bohr-
Sommerfeld type quantization rule from Weyl approach [24,
p. 12], which for kinetic plus potential energy will take the
form:

2πNh̄ =

∞∑
j=0

h̄jSj(E) , (21)

which can be solved by expressing E=
∑
h̄kEk as power

series in h̄ [24]. Now equation (10) could be rewritten as
follows: ∮

p · dr = Nv 2πh̄ =
∞∑
j=0

h̄jSj (E) . (22)

Or if we consider quantum Hall effect, then equation (18)
can be used instead of equation (10), which yields:

Φ = q

∮
A · dr +m

∮
Ω× r · dr =

=

∫∫
B · dS =

∞∑
j=0

h̄jSj (E) .
(23)

The above method is known as “graph kinematic” [25]
or Weyl-Moyal’s quantization [26]. We could also expect to
find Hall effect quantization from this deformation quantiza-
tion method.

Consider a harmonic oscillator, which equation can be
expressed in the form of deformation quantization instead of
Schrödinger equation [26]:((

x+
ih̄

2
∂p

)2
+
(
p− ih̄

2
∂x

)2
− 2E

)
f (x, p) = 0 . (24)

This equation could be separated to become two simple
PDEs. For imaginary part one gets [26]:

(x∂p − p∂x) f = 0 . (25)

Now, considering Hall effect, one can introduce our defi-
nition of total particle momentum (17), therefore equation
(25) may be written:(

x∂p − (mv +mΩ× r + qA) ∂x
)
f = 0 . (26)

Our proposition here is that in the context of deformation
quantization it is possible to find quantization solution of
harmonic oscillator without Schrödinger equation. And



because it corresponds to graph kinematic [25], generalized
Bohr-Sommerfeld quantization rule for quantized vortices
(22) in astrophysical scale could be viewed as signature of
“super-graph”quantization.

This proposition, however, deserves further theoretical
considerations. Further experiments are also recommended
in order to verify and explore further this proposition.

Concluding remarks

In a recent paper, Moffat [1] has used Gross-Pitaevskii in his
“phion condensate fluid” to describe CMB spectrum data.
We extend this proposition to explain Tifft redshift quanti-
zation from the viewpoint of topological quantized vortices.
In effect we consider that the intrinsic redshift quantization
could be interpreted as result of Hall effect in rotating frame.

Another alternative to explain redshift quantization is
to consider quantized vortices from the viewpoint of Weyl
quantization (which could yield Bohr-Sommerfeld quanti-
zation).

It is recommended to conduct further observation in
order to verify and also to explore various implications of
our propositions as described herein.
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A numerical solution of Wheeler-De Witt equation for a quantum cosmological model

simulating boson and fermion creation in the early Universe evolution is presented. This

solution is based on a Wheeler-De Witt equation obtained by Krechet, Fil’chenkov, and

Shikin, in the framework of quantum geometrodynamics for a Bianchi-I metric.

1 Introduction

It is generally aserted that in the early stage of Universe evo-

lution, the quantum phase predominated the era. Therefore

there are numerous solutions have been found corresponding

to the Wheeler-DeWitt equation which governs this phase [2].

In the present paper we present another numerical solution of

Wheeler-De Witt equation for a quantum cosmological model

simulating boson and fermion creation in the early Universe

evolution for a Bianchi-type I metric [1].

The solution is based on Wheeler-De Witt equation for a

Bianchi-I metric obtained by Krechet, Fil’chenkov, and

Shikin [1], in the framework of quantum geometrodynamics.

Albeit the essence of the solution is quite similar from the so-

lution given in [1] using Bessel function, in the present paper

we present numerical result using Maxima. For comparison

with other solutions of 1-d hydrogen problem, see [3] and [4].

2 Solution of Wheeler-DeWitt equation for boson and
fermion creation

In the evolution of the Universe after inflation, a scalar field

describing de Sitter vacuum was supposed to decay and its

energy is converted into the energy of fermions and heavy

vector-particles (the so-called � and � bosons) [2].

In the framework of quantum geometrodynamics, and for

a Bianchi-I metric, the Wheeler-De Witt equation has been

obtained by Krechet, Fil’chenkov, and Shikin, which reduces

to become (Eq. 23 in [1]):

� �� �
���

��
� � � �� � � �� � �	 (1)

where � �� and � � represent second and first differentiation of

� with respect to 
. The resulting equation appears quite

similar to radial 1-dimensional Schrödinger equation for a

hydrogen-like atom [3], with the potential energy is given

by [1]:

��
� �
�

�
�


�

� ���
� (2)

� �
�

�
�

�
	

�
�
��

��

�
(3)

has here a continuous spectrum.

The solution of equation (1) has been presented in [1]

based on modified Bessel function. Its interpretation is that

in this quantum cosmological model an initial singularity is

absent.

As an alternative to the method presented in [1], the nu-

merical solution can be found using Maxima software pack-

age, as follows. All solutions are given in terms of � as con-

stant described by (3).

(a) Condition where � � �

’diff(y,r,2)�E*y�(2*%i*C/3/t)*y�0; ode2(%o1,y,r); (4)

The result is given by:

y�K1 
�� (a)�K2 
�
 (a) � (5)

where:

a�(r/
�
�)
�
�3E�2iC/t 	 (6)

(b) Condition where � ≶ �

’diff(y,r,2)�E*y�(2*%i*C/3/t)*y�(b/t�e/t���)*y�0;

ode2(%o2,y,r); (7)

The result is given by:

y�K1 
�� (d)�K2 
�
 (d) � (8)

where:

d�(r/(
�
� t���)

�
�3Et����2iCt����3e�3bt��� 	 (9)

As a result, the solution given above looks a bit different

compared to the solution obtained in [1] based on the modi-

fied Bessel function.



3 A few implications

For the purpose of stimulating further discussions, a few im-

plications of the above solution of Wheeler-DeWitt equation

(in the form of 1-d Schrödinger equation) are pointed as fol-

lows:

(a) Considering that the Schrödinger equation can be used

to solve the Casimir effect (see for instance Silva [5],

Alvarez & Mazzitelli [6]), therefore one may expect

that there exists some effects of Casimir effect in cos-

mological scale, in a sense that perhaps quite similar to

Unruh radiation which can be derived from the Casimir

effective temperature. Interestingly, Anosov [7] has

pointed out a plausible deep link between Casimir ef-

fect and the fine structure constant by virtue of the en-

tropy of coin-tossing problem. However apparently he

did not mention yet another plausible link between the

Casimir effective temperature and other phenomena at

cosmological scale;

(b) Other implication may be related to the Earth scale ef-

fects, considering the fact that Schrödinger equation

corresponds to the infinite dimensional Hilbert space.

In other words one may expect some effects with re-

spect to Earth eigen oscillation spectrum, which is re-

lated to the Earth’s inner core interior. This is part of

gravitational geophysical effects, as discussed by Gr-

ishchuk et al. [8]. Furthermore, this effect may corre-

spond to the so-called Love numbers. Other phenom-

ena related to variation to gravitational field is caused

by the Earth inner core oscillation, which yields oscil-

lation period � � 3–7 hours. Interestingly, a recent re-

port by Cahill [9] based on the Optical fibre gravita-

tional wave detector gave result which suggests oscil-

lation period of around 5hours. Cahill concluded that

this observed variation can be attributed to Dynami-

cal 3-space. Nonetheless, the Figure 6c in [9] may be

attributed to Earth inner core oscillation instead. Of

course, further experiment can be done to verify which

interpretation is more consistent.
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In the present article we argue that it is possible to write down Schrödinger represen-

tation of Navier-Stokes equation via Riccati equation. The proposed approach, while

differs appreciably from other method such as what is proposed by R. M. Kiehn, has an

advantage, i.e. it enables us extend further to quaternionic and biquaternionic version

of Navier-Stokes equation, for instance via Kravchenko’s and Gibbon’s route. Further

observation is of course recommended in order to refute or verify this proposition.

1 Introduction

In recent years there were some attempts in literature to find

out Schrödinger-like representation of Navier-Stokes equa-

tion using various approaches, for instance by R. M. Kiehn

[1, 2]. Deriving exact mapping between Schrödinger equa-

tion and Navier-Stokes equation has clear advantage, because

Schrodinger equation has known solutions, while exact solu-

tion of Navier-Stokes equation completely remains an open

problem in mathematical-physics. Considering wide applica-

tions of Navier-Stokes equation, including for climatic mod-

elling and prediction (albeit in simplified form called “geos-

trophic flow” [9]), one can expect that simpler expression of

Navier-Stokes equation will be found useful.

In this article we presented an alternative route to de-

rive Schrödinger representation of Navier-Stokes equation via

Riccati equation. The proposed approach, while differs ap-

preciably from other method such as what is proposed by

R. M. Kiehn [1], has an advantage, i.e. it enables us to extend

further to quaternionic and biquaternionic version of Navier-

Stokes equation, in particular via Kravchenko’s [3] and Gib-

bon’s route [4, 5]. An alternative method to describe quater-

nionic representation in fluid dynamics has been presented

by Sprössig [6]. Nonetheless, further observation is of course

recommended in order to refute or verify this proposition.

2 From Navier-Stokes equation to Schrödinger equation
via Riccati

Recently, Argentini [8] argues that it is possible to write down

ODE form of 2D steady Navier-Stokes equations, and it will

lead to second order equation of Riccati type.

Let � the density, � the dynamic viscosity, and f the body

force per unit volume of fluid. Then the Navier-Stokes equa-

tion for the steady flow is [8]:

� �� � ��� � ���� � � � � � ��� � (1)

After some necessary steps, he arrives to an ODE version

of 2D Navier-Stokes equations along a streamline [8, p. 5] as

follows:

��� ��� � �� �
��

�
� � � ��� 	 (2)

where � � �

�
is the kinematic viscosity. He [8, p. 5] also finds

a general exact solution of equation (2) in Riccati form, which

can be rewritten as follows:

��� � 
 � ��
�
� � � � 	 (3)

where:


 �
�

	�
	 � � �

�

�

�
��

�
� ��

�
��




�
� (4)

Interestingly, Kravchenko [3, p. 2] has argued that there

is neat link between Schrödinger equation and Riccati equa-

tion via simple substitution. Consider a 1-dimensional static

Schrödinger equation:


�� � � � � � (5)

and the associated Riccati equation:

�� � �� � �� � (6)

Then it is clear that equation (5) is related to (6) by the

inverted substitution [3]:

� �
��

�
� (7)

Therefore, one can expect to use the same method (7) to

write down the Schrödinger representation of Navier-Stokes

equation. First, we rewrite equation (3) in similar form of

equation (6):

��� � 
 � ��
�
� � � � � (8)

By using substitution (7), then we get the Schrödinger

equation for this Riccati equation (8):


�� 
� � � � � 	 (9)

where variable 
 and � are the same with (4). This Schrö-

dinger representation of Navier-Stokes equation is remark-

ably simple and it also has advantage that now it is possible

to generalize it further to quaternionic (ODE) Navier-Stokes



equation via quaternionic Schrödinger equation, for instance

using the method described by Gibbon et al. [4, 5].

3 An extension to biquaternionic Navier-Stokes equa-
tion via biquaternion differential operator

In our preceding paper [10, 12], we use this definition for

biquaternion differential operator:

� � ��
� ���

�

�
��

�

��
� ��

�

��
� ��

�

��
� ��

�

��

�
�

� �

�
��

�

��
� ��

�

�	
� ��

�

�

� ��

�

��

�
� (10)

where ��, ��, �� are quaternion imaginary units obeying

(with ordinary quaternion symbols: ��� �, ��� 
, ��� �):

��� 
�� �����, �
��
�� �, 
����
� �, ������� 


and quaternion Nabla operator is defined as [13]:

��
� ��

�

��
� ��

�

��
� ��

�

��
� ��

�

��
� (11)

(Note that (10) and (11) include partial time-differentiation.)

Now it is possible to use the same method described above

[10, 12] to generalize the Schrödinger representation of

Navier-Stokes (9) to the biquaternionic Schrödinger equation,

as follows.

In order to generalize equation (9) to quaternion version

of Navier-Stokes equations (QNSE), we use first quaternion

Nabla operator (11), and by noticing that � � ��, we get:�
�� ���

�
��

���

�
�� �� � � � � � (12)

We note that the multiplying factor �� in (12) plays sim-

ilar role just like � ����� factor in the standard Schrödinger

equation [12]:

�
�
�

��

�
�� ��� �

	�

	
�

�
��

�
� ���� �

�
� � � � (13)

Note: we shall introduce the second term in order to “neu-

tralize” the partial time-differentiation of �� ��� operator.

To get biquaternion form of equation (12) we can use our

definition in equation (10) rather than (11), so we get [12]:�
����

	�

	
�
� �

	�

	� �

�
�� �� � � � � � (14)

This is an alternative version of biquaternionic Schrö-

dinger representation of Navier-Stokes equations. Numerical

solution of the new Navier-Stokes-Schrödinger equation (14)

can be performed in the same way with [12] using Maxima

software package [7], therefore it will not be discussed here.

We also note here that the route to quaternionize Schrö-

dinger equation here is rather different from what is described

by Gibbon et al. [4, 5], where the Schrödinger-equivalent to

Euler fluid equation is described as [5, p. 4]:


��



�
� ����� � � (15)

and its quaternion representation is [5, p. 9]:


��



�
� �� � � � � (16)

with Riccati relation is given by:



�
�



� �� � ��
� �� (17)

Nonetheless, further observation is of course recommended

in order to refute or verify this proposition (14).
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There have been various explanations of Pioneer blueshift anomaly in the past few
years; nonetheless no explanation has been offered from the viewpoint of Q-relativity
physics. In the present paper it is argued that Pioneer anomalous blueshift may
be caused by Pioneer spacecraft experiencing angular shift induced by similar Q-
relativity effect which may also affect Jupiter satellites. By taking into consideration
“aether drift” effect, the proposed method as described herein could explain Pioneer
blueshift anomaly within ∼0.26% error range, which speaks for itself. Another new
proposition of redshift quantization is also proposed from gravitational Bohr-radius
which is consistent with Bohr-Sommerfeld quantization. Further observation is of
course recommended in order to refute or verify this proposition.

1 Introduction

In the past few years, it is becoming well-known that Pioneer
spacecraft has exhibited an anomalous Doppler frequency
blueshifting phenomenon which cannot be explained from
conventional theories, including General Relativity [1, 4].
Despite the nature of such anomalous blueshift remains un-
known, some people began to argue that a post-einsteinian
gravitation theory may be in sight, which may be considered
as further generalisation of pseudo-Riemannian metric of
general relativity theory.

Nonetheless, at this point one may ask: Why do we re-
quire a generalization of pseudo-Riemannian tensor, instead
of using “patch-work” as usual to modify general relativity
theory? A possible answer is: sometimes too much path-
work doesn’t add up. For instance, let us begin with a
thought-experiment which forms the theoretical motivation
behind General Relativity, an elevator was put in free-falling
motion [8a]. The passenger inside the elevator will not feel
any gravitational pull, which then it is interpreted as formal
analogue that “inertial acceleration equals to gravitational
acceleration” (Equivalence Principle). More recent experi-
ments (after Eötvös) suggest, however, that this principle is
only applicable at certain conditions.

Further problem may arise if we ask: what if the elevator
also experiences lateral rotation around its vertical axis?
Does it mean that the inertial acceleration will be slightly
higher or lower than gravitational pull? Similarly we observe
that a disc rotating at high speed will exert out-of-plane
field resemble an acceleration field. All of this seems to
indicate that the thought-experiment which forms the basis
of General Relativity is only applicable for some limited
conditions, in particular the F =mdv

dt part (because General
Relativity is strictly related to Newtonian potential), but it
may not be able to represent the rotational aspects of gravita-

tional phenomena. Einstein himself apparently recognizes
this limitation [8a, p.61]:

“. . . all bodies of reference K ′ should be given prefer-
ence in this sense, and they should be exactly equiva-
lent to K for the formation of natural laws, provided
that they are in a state of uniform rectilinear and non-
rotary motion with respect to K.” (Italic by Einstein).

Therefore, it shall be clear that the restriction of non-
rotary motion remains a limitation for all considerations by
relativity theory, albeit the uniform rectilinear part has been
relaxed by general relativity theory.

After further thought, it becomes apparent that it is re-
quired to consider a new kind of metric which may be able
to represent the rotational aspects of gravitation phenomena,
and by doing so extends the domain of validity of general
relativity theory.

In this regard, the present paper will discuss the afore-
mentioned Pioneer blueshift anomaly from the viewpoint of
Q-relativity physics, which has been proposed by Yefremov
[2] in order to bring into application the quaternion number.
Despite the use of quaternion number in physical theories
is very scarce in recent years — apart of Pauli matrix —
it has been argued elsewhere that using quaternion number
one could expect to unify all known equations in Quantum
Mechanics into the same framework, in particular via the
known isomorphism between Dirac equation and Maxwell
equations [5].

Another problem that was often neglected in most treat-
ises on Pioneer spacecraft anomaly is the plausible role of
aether drift effect [6]. Here it can be shown that taking
this effect into consideration along with the aforementioned
Q-relativity satellite’s apparent shift could yield numerical
prediction of Pioneer blueshift within ∼0.26% error range,
which speaks for itself.



We also suggest a new kind of Doppler frequency shift
which can be predicted using Nottale-type gravitational Bohr-
radius, by taking into consideration varying G parameter as
described by Moffat [7]. To our knowledge this proposition
of new type of redshift corresponding to gravitational Bohr-
radius has never been considered before elsewhere.

Further observation is of course recommended in order
to verify or refute the propositions outlined herein.

2 Some novel aspects of Q-relativity physics. Pioneer

blueshift anomaly

In this section, first we will review some basic concepts of
quaternion number and then discuss its implications to qua-
ternion relativity (Q-relativity) physics [2]. Then we discuss
Yefremov’s calculation of satellite time-shift which may be
observed by precise measurement [3]. We however introduce
a new interpretation here that such a satellite Q-timeshift is
already observed in the form of Pioneer spacecraft blueshift
anomaly.

Quaternion number belongs to the group of “very good”
algebras: of real, complex, quaternion, and octonion [2].
While Cayley also proposed new terms such as quantic, it
is less known than the above group. Quaternion number can
be viewed as an extension of Cauchy imaginary plane to
become [2]:

Q ≡ a+ bi+ cj + dk , (1)

where a, b, c, d are real numbers, and i, j, k are imaginary
quaternion units. These Q-units can be represented either via
2×2 matrices or 4×4 matrices [2].

It is interesting to note here that there is quaternionic
multiplication rule which acquires compact form:

1qk = qk1 = qk , qjqk = −δjk + εjknqn , (2)

where δkn and εjkn represent 3-dimensional symbols of
Kronecker and Levi-Civita, respectively [2]. Therefore it
could be expected that Q-algebra may have neat link with
pseudo-Riemannian metric used by General Relativity. Inte-
restingly, it has been argued in this regard that such Q-units
can be generalised to become Finsler geometry, in particular
with Berwald-Moor metric. It also can be shown that Finsler-
Berwald-Moor metric is equivalent with pseudo-Riemannian
metric, and an expression of Newtonian potential can be
found for this metric [2a].

It may also be worth noting here that in 3D space Q-
connectivity has clear geometrical and physical treatment as
movable Q-basis with behaviour of Cartan 3-frame [2].

It is also possible to write the dynamics equations of
Classical Mechanics for an inertial observer in constant Q-
basis. SO(3, R)-invariance of two vectors allow to represent
these dynamics equations in Q-vector form [2]:

m
d2

dt2
(xkqk) = Fkqk . (3)

Because of antisymmetry of the connection (generalised
angular velocity) the dynamics equations can be written in
vector components, by conventional vector notation [2]:

m
(
�a+ 2�Ω× �v + �Ω× �r + �Ω× (�Ω× �r)) = �F . (4)

Therefore, from equation (4) one recognizes known types
of classical acceleration, i.e. linear, coriolis, angular, centri-
petal. Meanwhile it is known that General Relativity intro-
duces Newton potential as rigid requirement [2a, 6b]. In
other words, we can expect — using Q-relativity — to predict
new effects that cannot be explained with General Relativity.

From this viewpoint one may consider a generalisation
of Minkowski metric into biquaternion form [2]:

dz = (dxk + idtk) qk , (5)

with some novel properties, i.e.:

• temporal interval is defined by imaginary vector;

• space-time of the model appears to have six dimen-
sions (6D);

• vector of the displacement of the particle and vector
of corresponding time change must always be normal
to each other, or:

dxkdtk = 0 . (6)

It is perhaps quite interesting to note here that Einstein
himself apparently once considered similar approach, by pro-
posing tensors with Riemannian metric with Hermitian sym-
metry [8]. Nonetheless, there is difference with Q-relativity
described above, because in Einstein’s generalised Riemann-
ian metric it has 8-dimensions, rather than 3d-space and 3d-
imaginary time.

One particularly interesting feature of this new Q-relativ-
ity (or rotational relativity) is that there is universal character
of motion of the bodies (including non-inertial motions),
which can be described in unified manner (Hestenes also
considers Classical Mechanics from similar spinor language).
For instance advanced perihelion of planets can be described
in term of such rotational precession [2].

Inspired by this new Q-relativity physics, it can be argued
that there should be anomalous effect in planets’ satellite
motion. In this regard, Yefremov argues that there should
be a deviation of the planetary satellite position, due to
discrepancy between calculated and observed from the Earth
motion magnitudes characterizing cyclic processes on this
planet or near it. He proposes [2]:

Δϕ ≈ ωVeVp
c2

t , (7)

or

Δϕ′ ≈ −ωVeVp
c2

t′. (8)

Therefore, given a satellite orbit radius r, its position
shift is found in units of length Δl = rΔϕ. His calculation



Satellites Cycle frequency ω, 1/s Angular shift Δϕ, ′′/100 yrs Linear shift Δl, km/100 yrs Linear size a, km

Phobos (Mars) 0.00023 18.2 54 20

Deimos (Mars) 0.00006 4.6 34 12

Metis (Jupiter) 0.00025 10.6 431 40

Adrastea (Jupiter) 0.00024 10.5 429 20

Amalthea (Jupiter) 0.00015 6.3 361 189

Table 1: The following table gives values of the effect for five fast satellites of Mars and Jupiter. Orbital linear velocities are: of the
Earth VE = 29.8 km/s, of Mars VP = 24.1 km/s, of Jupiter VP = 13.1 km/s; the value of the light velocity is c= 299 793 km/s; observation
period is chosen 100 years. Courtesy of A. Yefremov, 2006 [3].

for satellites of Mars and Jupiter is given in Table 1. None-
theless he gave no indication as to how to observe this
anomalous effect.

In this regard, we introduce here an alternative interpreta-
tion of the aforementioned Q-satellite time-shift effect by
Yefremov, i.e. this effect actually has similar effect with Pio-
neer spacecraft blueshift anomaly. It is known that Pioneer
spacecraft exhibits this anomalous Doppler frequency while
entering Jupiter orbit [1, 4], therefore one may argue that
this effect is caused by Jupiter planetary gravitational effect,
which also may cause similar effect to its satellites.

Despite the apparent contradiction with Yefremov’s own
intention, one could find that the aforementioned Q-satellite
time-shift could yield a natural explanation of Pioneer space-
craft blueshift anomaly. In this regard, Taylor [9] argues that
there is possibility of a mundane explanation of anomal-
ous blueshift of Pioneer anomaly (5.99×10−9 Hz/sec). The
all-angle formulae for relativistic Doppler shift is given
by [9a, p.34]:

v′ = v0γ
(1− β cosφ)√

1− β2 , (9)

where β= v/c. By neglecting the
√
1−β2 term because of

low velocity, one gets the standard expression:

v′ = v0γ (1− β cosφ) . (9a)

The derivative with respect to φ is:

dv′

dφ
= v0γ β sinφ , (10)

where dv′
dφ = 5.99×10−9 Hz/sec, i.e. the observed Pioneer

anomaly. Introducing this value into equation (10), one gets
requirement of an effect to explain Pioneer anomaly:

dφ =
arcsin (5.99×10−9 Hz)

v0γ β
= 1.4×10−12 deg/sec. (11)

Therefore, we can conclude that to explain 5.99×10−9

Hz/sec blueshift anomaly, it is required to find a shift of
emission angle at the order 1.4×10−12 degree/sec only (or
around 15.894

′′
per 100 years).

Interestingly this angular shift can be explained with the
same order of magnitude from the viewpoint of Q-satellite
angular shift (see Table 1), in particular for Jupiter’s Adrastea
(10.5

′′
per 100 years). There is however, a large discrepancy

at the order of 50% from the expected angular shift.
It is proposed here that such discrepancy between Q-

satellite angular shift and expected angular shift required
to explain Pioneer anomaly can be reduced if we take into
consideration the “aether drift” effect [6]. Interestingly we
can use experimental result of Thorndike [6, p.9], saying
that the aether drift effect implies a residual apparent Earth
velocity is vobs= 15 ± 4 km/sec. Therefore the effective Ve
in equation (8) becomes:

Ve.eff = vobs + Ve = 44.8 km/sec. (12)

Using this improved value for Earth velocity in equation
(8), one will get larger values than Table 1, which for Adras-
tea satellite yields:

Δϕobs =
ωVe.effVp

c2
t =

Ve.eff
Ve

Δϕ = 15.935
′′
/100 yrs. (13)

Using this improved prediction, the discrepancy with
required angular shift only (15.894

′′
per 100 years) becomes

∼ 0.26%, which speaks for itself. Therefore one may con-
clude that this less mundane explanation of Pioneer blueshift
anomaly with Q-relativity may deserve further consideration.

3 A new type of redshift from gravitational Bohr radius.

Possible observation in solar system.

In preceding paper [10, 11] we argued in favour of an alter-
native interpretation of Tifft redshift quantization from the
viewpoint of quantized distance between galaxies. A method
can be proposed as further test of this proposition both at
solar system scale or galaxies scale, by using the known
quantized Tifft redshift [14, 15, 16]:

δr ≈ c

H
δz . (14)

In this regards, we use gravitational Bohr radius equation:

rn = n
2GM

v20
. (15)



Inserting equation (15) into (14), then one gets quantized
redshift expected from gravitational Bohr radius:

zn =
H

c
n2
GM

v20
(16)

which can be observed either in solar system scale or galax-
ies scale. To our present knowledge, this effect has never
been described elsewhere before.

Therefore, it is recommended to observe such an accele-
rated Doppler-freequency shift, which for big jovian planets
this effect may be detected. It is also worth noting here
that according to equation (16), this new Doppler shift is
quantized.

At this point one may also take into consideration a
proposition by Moffat, regarding modification of Newtonian
acceleration law to become [7]:

a(r) = −G∞M
r2

+K
exp(−μφr)

r2
(1 + μφr) (17)

where

G∞ = G

[
1 +

√
M0

M

]
. (17a)

Therefore equation (16) may be rewritten to become:

zn ≈ H

c
n2
GM

v20

[
1 +

√
M0

M

]
≈ χ H

c
n2
GM

v20
(18)

where n is integer (1, 2, 3, . . . ) and:

χ =

[
1 +

√
M0

M

]
. (18a)

To use the above equations, one may start by using Bell’s
suggestion that there is fundamental redshift z= 0.62 which
is typical for various galaxies and quasars [14]. Assuming
we can use equation (16), then by setting n= 1, we can
expect to predict the mass of quasar centre or galaxy centre.
Then the result can be used to compute back how time-
variation parameter affects redshift pattern in equation (18).
In solar system scale, time-varying radius may be observed
in the form of changing Astronomical Unit [4].

This proposition, however, deserves further theoretical
considerations. Further observation is also recommended in
order to verify and explore further this proposition.

4 Concluding remarks

In the present paper it is argued that Pioneer anomalous
blueshift may be caused by Pioneer spacecraft experiencing
angular shift induced by similar Q-relativity effect which
may also affect Jupiter satellites. By taking into considera-
tion aether drift effect, the proposed method as described
herein could predict Pioneer blueshift within ∼0.26% error
range, which speaks for itself. Further observation is of course
recommended in order to refute or verify this proposition.

Another new proposition of redshift quantization is also
proposed from gravitational Bohr-radius which is consistent
with Bohr-Sommerfeld quantization. It is recommended to
conduct further observation in order to verify and also to
explore various implications of our propositions as described
herein.
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     In the present article we would like to make a few comments on a recent paper by 
A. Yefremov in this journal [1]. It is interesting to note here that he concludes his 
analysis by pointing out that using full machinery of Quaternion Relativity it is pos-
sible to explain Pioneer XI anomaly with excellent agreement compared with ob-
served data, and explain around 45% of Pioneer X anomalous acceleration. We argue 
that perhaps it will be necessary to consider extension of Lorentz transformation to 
H4 of Finsler-Berwald metric, as discussed by a number of authors in the past few 
years. In this regard, it would be interesting to see if the use of extended Lorentz 
transformation could also elucidate the long-lasting problem known as Ehrenfest 
paradox. Further observation is of course recommended in order to refute or verify 
this proposition.   

Introduction 

We are delighted to read A. Yefremov’s comments on our preceding pa-
per [3], based on his own analysis of Pioneer anomalous ‘apparent accelera-
tion’ [1]. His analysis made use of a method called Quaternion Relativity, 
which essentially is based on SO(1,2) form invariant quaternion square root 
from space-time interval rather than the interval itself [1][2]. Nonetheless it 
is interesting to note here that he concludes his analysis by pointing out that 
using full machinery of Quaternion Relativity it is possible to explain Pio-
neer XI anomaly with excellent agreement compared with observed data, 
and explain around 45% of Pioneer X anomalous acceleration [1].  

In this regard, we would like to emphasize that our preceding paper [3] 
was based on initial ‘conjecture’ that in order to explain Pioneer anomaly, it 
would be necessary to generalize pseudo-Riemann metric of General relativ-
ity theory into broader context, which may include Yefremov’s Quaternion 
Relativity for instance. It is interesting to note here, however, that Yefre-
mov’s analytical method keeps use standard Lorentz transformation in the 
form Doppler shift effect (eq. 6): 

−

−

= βcos1

1

'
2 c

v

c

v

f
f D

D

 (1) 

While his method using relativistic Doppler shift a la special relativity is 
all right for such a preliminary analysis, in our opinion this method has a 
drawback that it uses ‘standard definition of Lorentz transformation’ based 
on 2-dimensional problem of rod-on-rail as explained in numerous exposi-
tions of relativity theory [5]. While this method of rod-on-rail seems suffi-
cient to elucidate why ‘simultaneity’ is ambiguous term in physical sense, it 
does not take into account 3-angle problem in more general problem. This is 



why we pointed out in our preceding paper that apparently General Relativ-
ity inherits the same drawback from special relativity [3].  

Another problem of special relativistic definition of Lorentz transforma-
tion is known as ‘reciprocity postulate’, because in special relativity it is 
assumed that: ',',' vvttxx −↔↔↔ . [6] This is why Doppler shift can
be derived without assuming reciprocity postulate (which may be regarded 
as the ‘third postulate’ of Special Relativity) and without special relativistic 
argument, see [7]. Nonetheless, in our opinion, Yefremov’s Quaternion 
Relativity is free from this ‘reciprocity’ drawback because in his method 
there is difference between moving-observer and static-observer.[2]     

An example of implications of this drawback of 1-angle problem of Lor-
entz transformation is known as Ehrenfest paradox, which can be summa-
rized as follows: “According to special relativity, a moving rod will exhibit 
apparent length-reduction.  This is usually understood to be an observational 
effect, but if it is instead considered to be a real effect, then there is a para-
dox.  According to Ehrenfest, the perimeter of a rotating disk is like a se-
quence of rods.  So does the rotating disk shatter at the rim?” Similarly, after 
some thought Klauber concludes that ‘The second relativity postulate does 
not appear to hold for rotating systems’.[8]  

While of course, it is not yet clear whether Quaternion-Relativity is free 
from this Ehrenfest paradox, we would like to point out that an alternative 
metric which is known to be nearest to Riemann metric does exist in litera-
ture, and known as Finsler-Berwald metric. This metric has been discussed 
adequately by Pavlov, Asanov, Vacaru and others. [9][10][11][12].  

Extended Lorentz-transformation in Finsler-Berwald metric 

It is known that Finsler-Berwald metric is subset of Finslerian metrics 
which is nearest to Riemannian metric [12], therefore it is possible to con-
struct pseudo-Riemann metric based on Berwald-Moor geometry, as already 
shown by Pavlov [4]. The neat link between Berwald-Moor metric and Qua-
ternion Relativity of Yefremov may also be expected because Berwald-Moor 
metric is also based on analytical functions of the H4 variable [4].   

More interestingly, there was an attempt in recent years to extend 2d-
Lorentz transformation in more general framework on H4 of Finsler-
Berwald metric, which in limiting cases will yield standard Lorentz trans-
formation.[9][10] In this letter we will use extension of Lorentz transforma-
tion derived by Pavlov [9]. For the case when all components but one of the 
velocity of the new frame in the old frame coordinates along the three spe-
cial directions are equal to zero, then the transition to the frame moving with 
velocity V1 in the old coordinates can be expressed by the new frame as [9, 
p.13]: 

3
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Where the transformation matrix for Finsler-Berwald metric is written as 
follows [9, p.13]: 
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and 

 [0]=

0
0

00
 (4) 

Or 
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And 
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It shall be clear that equation (5) ( ) ( )1010 ,',' xxxx ↔  coincides with

the corresponding transformation of Special Relativity, while the transfor-
mation in equation (6) differs from the corresponding transformation of Spe-

cial Relativity where 3322 ',' xxxx == .[9]

 While we are not yet sure if the above extension of Lorentz transforma-
tion could explain Pioneer anomaly better than recent analysis by A. Yefre-
mov [1], at least it can be expected to see whether Finsler-Berwald metric 
could shed some light on the problem of Ehrenfest paradox. This proposi-
tion, however, deserves further theoretical considerations.  

 In order to provide an illustration on how the transformation keeps the 
Finslerian metric invariant, we can use Maple algorithm presented by Asa-
nov [10, p.29]: 

> c1:=cos(tau);c2:=cos(psi);c3:=cos(phi); 
> s1:=sin(tau);s2:=sin(psi);s3:=sin(phi); 
> l1:=c2*c3-c1*s2*s3;l2:=-c2*s3-
c1*s2*c3;l3:=s1*s2; 
> m1:=s2*c3+c1*c2*s3;m2:=-s2*s3+c1*c2*c3;m3:=-
s1*c2; 
> n1:=s1*s3;n2:=s1*c3;n3:=c1; 
> F1:=(e1)^((l1+m1+n1+l2+m2+n2+l3+m3+n3+1)/4)* 
(e2)^((-l1-m1-n1+l2+m2+n2-l3-m3-n3+1)/4)* 
(e3)^((l1+m1+n1-l2-m2-n2-l3-m3-n3+1)/4)* 
(e4)^((-l1-m1-n1-l2-m2-n2+l3+m3+n3+1)/4): 
> F2:=(e1)^((-l1+m1-n1-l2+m2-n2-l3+m3-n3+1)/4)* 



(e2)^((l1-m1+n1-l2+m2-n2+l3-m3+n3+1)/4)* 
(e3)^((-l1+m1-n1+l2-m2+n2+l3-m3+n3+1)/4)* 
(e4)^((l1-m1+n1+l2-m2+n2-l3+m3-n3+1)/4): 
> F3:=(e1)^((l1-m1-n1+l2-m2-n2+l3-m3-n3+1)/4)* 
(e2)^((-l1+m1+n1+l2-m2-n2-l3+m3+n3+1)/4)* 
(e3)^((l1-m1-n1-l2+m2+n2-l3+m3+n3+1)/4)* 
(e4)^((-l1+m1+n1-l2+m2+n2+l3-m3-n3+1)/4): 
> F4:=(e1)^((-l1-m1+n1-l2-m2+n2-l3-m3+n3+1)/4)* 
(e2)^((l1+m1-n1-l2-m2+n2+l3+m3-n3+1)/4)* 
(e3)^((-l1-m1+n1+l2+m2-n2+l3+m3-n3+1)/4)* 
(e4)^((l1+m1-n1+l2+m2-n2-l3-m3+n3+1)/4): 
> a:=array(1..4,1..4): 
for i from 1 to 4 
do 
for j from 1 to 4 
do 
a[i,j]:=diff(F||i,e||j); 
end do: 
end do: 
> b:=array(1..4,1..4): 
for i from 1 to 4 
do 
for j from 1 to 4 
do 
b[i,j]:=simplify(add(1/F||k*diff(a[k,i],e||j),
k=1..4),symbolic); 
end do: 
end do: 
> print(b); 

The result is as follows : 

0000

0000

0000

0000

This result showing that all the entries of the matrix are zeroes support the 
argument that the metricity condition is true. [10] 

Concluding remarks 

In the present paper we noted that it is possible to generalise standard Lor-
entz transformation into H4 framework of Finsler-Berwald metric. It could 
be expected that this extended Lorentz transformation could shed some light 
not only to Pioneer anomaly, but perhaps also to the long-lasting problem of 
Ehrenfest paradox which is also problematic in General Relativity theory, or 
by quoting Einstein himself: 



“…it will require a de tour of general relativity framework as described 
herein.” [5] 
     Nonetheless, further observation is of course recommended in order to 

refute or verify this proposition.     
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Abstract 
In a number of preceding papers we introduced a new PT-symmetric periodic potential, derived 
from biquaternion radial Klein-Gordon equation. In the present paper we will review our 
preceding result, and continue with numerical solution of Gamow integral for that periodic 
potential. And then we also compare with other periodic potentials which are already known, 
such as Posch-Teller or Rosen-Morse potential. We also discuss a number of recent development 
in the context of condensed matter nuclear science, in particular those experiments which are 
carried out by Prof. A. Takahashi and his team from Kobe University. There is hint to describe 
his team’s experiment as ‘mesofusion’ (or mesoscopic fusion). We then analyze possibility to 
enhance the performance of Takahashi’s mesofusion experiment under external pulse field. 
Further experiments are of course recommended in order to verify or refute the propositions 
outlined herein. 

a. Introduction

In a number of preceding papers we introduced a new PT-symmetric periodic potential,  derived 
from biquaternion radial Klein-Gordon equation. [1][2] In the present paper we will review our 
preceding result, and continue with numerical solution of Gamow integral for that periodic 
potential. And then we also compare with other periodic potentials which are already known, 
such as Posch-Teller or Rosen-Morse potential [9][10][11]. 

We also discuss a number of recent development in the context of condensed matter nuclear 
science, in particular those experiments which are carried out by Prof. A. Takahashi and his team 
from Kobe University [6][7]. There is hint to describe his team’s experiment as ‘mesofusion’ 
(from mesoscopic fusion). We then analyze possibility to enhance the performance of 
Takahashi’s mesofusion experiment under external pulse field.   

Further experiments are recommended in order to verify or refute the propositions outlined 
herein. 

b. PT-symmetric periodic potential and its Gamow integral

In this section, first we will review our preceding result on the periodic potential based on radial 
Klein-Gordon equation, and then we discuss its numerical solution for Gamow integral.  

There were some attempts in literature to introduce new type of symmetries in Quantum 
Mechanics, beyond the well-known CPT symmetry, chiral symmetry etc. In this regards, in 
recent years there are new interests on a special symmetry in physical systems, called PT-
symmetry with various ramifications. 

It has been argued elsewhere that it is plausible to derive a new PT-symmetric Quantum 
Mechanics (PT-QM) which is characterized by a PT-symmetric potential [3][4]: 
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One particular example of such PT-symmetric potential can be found in sinusoidal-form 
potential: 

sinV .                                                         (2) 
PT-symmetric harmonic oscillator can be written accordingly [3]. Znojil has argued too [4] 

that condition (1) will yield Hulthen potential: 
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In our preceding paper [2][5], we argue that it is possible to write biquaternionic extension of 
Klein-Gordon equation as follows: 
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Or this equation can be rewritten as: 
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Provided we use this definition: 
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Where e1, e2, e3 are quaternion imaginary units obeying (with ordinary quaternion symbols: 
e1=i, e2=j , e3 =k): 
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And quaternion Nabla operator is defined as [2][5]: 
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Note that equation (8) already included partial time-differentiation. 

Therefore one can expect to use the same method described above to find solution of radial 
biquaternion KGE [2][5].  

First, the standard Klein-Gordon equation reads: 
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     At this point we can introduce polar coordinate by using the following transformation: 
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  Therefore by introducing this transformation (10) into (9) one gets (by setting 0  ): 
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Using similar method (10)-(11) applied to equation (5), then one gets radial solution of 
BQKGE for 1-dimensional condition [2][5]: 
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Using Maxima computer package we find solution of (12) as a new potential taking the form 
of sinusoidal potential: 
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Where k1 and k2 are parameters to be determined. Now if we set k2 =0, then we obtain the 
potential function in the form of PT-symmetric periodic potential (2): 
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Where 
1i

rm
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     In a recent paper [8], we interpret and compare this result from the viewpoint of EQPET/TSC 
model which has been suggested by Prof. Takahashi in order to explain some phenomena related 
to Condensed matter nuclear Science (CMNS). 

c. Schrödinger equation and Gamow integral of PT-symmetric periodic potential

Now let us consider a PT-Symmetric potential of the form: 
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Hence, the respective Schrödinger equation with this potential can be written as follows: 
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Where 
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For the purpose of finding Gamow function, in area near x=a we can choose linear 
approximation for Coulomb potential, such that: 
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Substitution to Schrödinger equation yields: 
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which can be solved by virtue of Airy function. 

In principle, the Gamow function can be derived as follows: 

0)(2

2

yxP
dx

yd            (21) 

Separating the variables and integrating, yields: 
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Or 
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To find solution of Gamow function, therefore the integral below must be evaluated: 
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The general expression of Gamow function then is defined by: 
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Therefore it should be clear that we can find different solutions for any given form of potential. 
In the present paper we will only consider a few potential, namely Takahashi’s block-type 
potential (he called it STTBA model), and our PT-symmetric periodic potential. Rosen-Morse 
potential will be compared for the results only.  



c.1. Takahashi’s STTBA-block-type potential 

For the case of Takahashi experiment [3][4][5], we can use b=5.6fm, and r0=5fm, where the 
Gamow function is given by: 
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Where he obtained Vb=0.256 MeV. 

c.2. PT-symmetric periodic potential (14) 

Here we assume that E=Vb=0.257MeV. Therefore the integral becomes: 
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By setting boundary  conditions: 

(a) at r=0 then Vo=-Vb—0.257 MeV 
(b) at r=5.6fm then V1= 257.0)sin(1 brk =0.257Mev,therefore one can find estimate of m. 
(c) Using this procedure solution of the equation (11) can be  found. 

The interpretation of this Gamow function is the tunneling rate of the fusion reaction of cluster 
of deuterium (with the given data) corresponding to Takahashi data, with the difference that here 
we consider a PT-symmetric periodic potential. 

c.3. Rosen-Morse potential [8] 

Another type of potential which may be considered here is known as Rosen-Morse potential 
[9][10]: 
         zaaazbv 2csc).(cot.2 , (28) 

Where z=r/d. Therefore the Gamow function can be written, respectively: 
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(This section is not complete yet).  

Some new findings indicating Condensed matter nuclear science and Mesofusion 

In this section, we can mention that the most obvious objection against cold fusion is that the 
Coulomb wall between two nuclei makes the mentioned processes extremely unlikely to happen 
at low temperature. We can also mention here that there are three known reaction types in 
thermo fusion: 



a. D+D  4He+γ (23.8 MeV)
b. D+D  3He+n
c. D+D  3He+p

In this regards we would like to mention here some clear reasons why cold fusion cannot be 
analyzed in the classical framework of fission or ‘thermo’ fusion: 

a. No gamma rays are seen;
b. The flux of energetic neutron is much lower than expected on basis of the heat production

rate;
c. Lack of signature of D-D reaction;
d. Isotopes of Helium and also tritium accumulate to the Pd samples;
e. Cold fusion appears to occur more effective in Pd nano-particles [6][7];
f. The ratio of x to D atoms to Pd atoms in Pd particle must be in the critical range

[0.85,0.90] for the process to occur.

Other strict experimental conditions may also be considered before we can expect repeatability 
of this process. In this regards, a recent experiment in Arata Hall, Osaka University, on May 22 
2008 by Arata has clearly demonstrated that this process did happen. Because the experiment 
took place at Arata-Zhang laboratory, it then was referred to as Arata-Zhang experiment [6]. 
Other teams also produced excellent results, for example Prof. Takahashi and his Kobe 
University team [7].  

The basic element of Takahashi’s series of experiments is that a periodic potential of the Bloch 
wave type, as shown in the Figure 1 below. 

Figure 1. Lattice periodic potential used by Takahashi et al. [7] 

From another line of reasoning, one can also consider this possibility of low-temperature fusion. 
Consider the heat production in our Earth, that some researchers consider it produced by nuclear 
fission or fusion. But considering that the Earth is lacking uranium (by statistical distribution), 
chance is that fission is unlikely, but the temperature inside the Earth is clearly much lower than 



the Sun, therefore the hotfusion is also unlikely to happen. Therefore apparently we can infer that 
inside the Earth, the heat is produced either as Condensate Nuclear transmutation (CMNS), or 
other types of low-energy nuclear reaction (LENR).  

In other words, if we would like to keep ourselves a bit open-minded, then there other questions 
too which we don’t find quick answer even in the natural processes surrounding us. This would 
mean as an indication that new types of transmutation processes should be taken into 
consideration as a possibility. 

In this regards perhaps it would be useful to discuss a possible categorization of these new 
possibilities beyond standard (thermo) fusion process: 

a. CANR: or chemically aided nuclear reaction, which essentially uses special types of
chemical substance or enzymes [8]. For instance, see hydrino experiments (hydrino.org).
Other chemists may prefer to use isoprenoids to create this new effect.

b. LENR: low-energy nuclear reaction [8], or some researchers may prefer to call it ‘Lattice
fusion Reaction’, that is perhaps a more proper name for cold-fusion and other types of
deuterium reaction which happens far below the Gamow energy. The name ‘lattice
fusion’ also implies that the process includes neutron in some kind of solid-state physics.
An indication that the fusion associated to LENR is outside the domain of standard fusion
processes is lack of signature of D-D reaction, which would mean that perhaps the
process is much more complicated (for instance Takahashi considered tetra-deuterium
model). There is also indication of lacking of neutron emission during this process [7].
We will discuss more on these issues in subsequent section.

c. Mesofusion (or mesoscopic fusion): this belongs to experiments which can be associated
to nano-Pd samples for instance by Takahashi and his team in Japan [6]. While this term
is not well accepted yet, in our opinion this type of reactions will be much more common
in particular for industrial applications, since nanometer devices are much more
manageable rather than materials at the order of lepton or hadron scale.

Concluding remarks: Next steps 

We would like to conclude this note with a number of some kinds of wish-list. 

First of all, a rigorous theoretical framework is clearly on demand. This for instance, will include 
both to clarify the distinction between Mesofusion and Chromodynamics fusion, and also to 
consider new type of potentials.  

And then, in terms of experiments it appears to be more interesting to introduce new types of 
tools in order to enhance the performance of these Mesofusion or Chromodynamics fusions. For 
instance, perhaps it would be interesting to see whether the performance can be improved by 
introducing either laser or external electromagnetic pulse, just like what has been done in the 
conventional thermo fusion. 

All of these remarks are written here to emphasize that based on recent publication [5]-[8], we 
are clearly in the beginning of observing new types of fusion technologies, by harnessing our 
knowledge of hadron and chromodynamics theory.  
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A Journey into Quantization in
Astrophysics:
A collection of scientific papers

he present book consists of 17 select scientific papers from 
ten years of work around 2003-2013. The topic covered There is quantization in Astrophysics. We also discuss other 

topics for instance Pioneer spacecraft anomaly.

e discuss a number of sub-topics, for instance the use 
of Schrödinger equation to describe celestial Wquantization. Our basic proposition here is that the 

quantization of planetary systems corresponds to quantization of 
circulation as observed in superfluidity. And then we extend it 
further to the use of (complex) Ginzburg-Landau equation to 
describe possible nonlinearity of planetary quantization.  

he present book is suitable for young astronomers and 
astrophysicists as well as for professional astronomers who Twish to update their knowledge in the vast topic of 

quantization in astrophysics. This book is also suitable for college 
students who want to know more about this subject.


