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Preface 
 
 
The aim of this book is two fold. At the outset the book gives 
most of the available literature about Fuzzy Relational Equations 
(FREs) and its properties for there is no book that solely caters to 
FREs and its applications. Though we have a comprehensive 
bibliography, we do not promise to give all the possible available 
literature about FRE and its applications. We have given only 
those papers which we could access and which interested us 
specially. We have taken those papers which in our opinion could 
be transformed for neutrosophic study.  

The second importance of this book is that for the first time 
we introduce the notion of Neutrosophic Relational Equations 
(NRE) which are analogous structure of FREs. Neutrosophic 
Relational Equations have a role to play for we see that in most of 
the real-world problems, the concept of indeterminacy certainly 
has its say; but the FRE has no power to deal with indeterminacy, 
but this new tool NRE has the capacity to include the notion of 
indeterminacy. So we feel the NREs are better tools than FREs to 
use when the problem under investigation has indeterminates. 
Thus we have defined in this book NREs and just sketched its 
probable applications.  

This book has five chapters. The first chapter is a bulky one 
with 28 sections. These sections deal solely with FREs and their 
properties. By no means do we venture to give any proof for the 
results for this would make our book unwieldy and enormous in 
size. For proofs, one can refer the papers that have been cited in 
the bibliography.  

The second chapter deals with the applications of FRE. This 
has 10 sections: we elaborately give the applications of FRE in 
flow rates in chemical industry problems, preference and 
determination of peak hour in the transportation problems, the 
social problems faced by bonded laborers etc.  

Chapter three for the first time defines several new 
neutrosophic concepts starting from the notion of neutrosophic 
fuzzy set, neutrosophic fuzzy matrix, neutrosophic lattices, 
neutrosophic norms etc. and just indicate some of its important 
analogous properties. This chapter has six sections which are 
solely devoted to the introduction of several neutrosophic 
concepts which are essential for the further study of NRE.  



 

 8

Chapter four has eleven sections. This chapter gives all basic 
notions and definitions about the NREs and introduces NREs. 
Section 4.11 is completely devoted to suggest how one can apply 
NREs in the study of real world problems. We suggest many 
problems in chapter five for the reader to solve.  

This is the third book in the Neutrosophics Series. The earlier 
two books are Fuzzy Cognitive Maps and Neutrosophic Cognitive 
Maps (http://gallup.unm.edu/~smarandache/NCMs.pdf) and 
Analysis of Social Aspects of Migrant Labourers Living With 
HIV/AIDS Using Fuzzy Theory and Neutrosophic Cognitive 
Maps: With Specific Reference to Rural Tamil Nadu in India 
(http://gallup.unm.edu/~smarandache/NeutrosophyAIDS.pdf). 

Finally, we thank Meena Kandasamy for the cover design. 
We thank Kama Kandasamy for the layout of the book and for 
drawing all the figures used in this book. She displayed an 
enormous patience that is worthy of praise.  We owe deep thanks 
to Dr.K.Kandasamy for his patient proof-reading of the book. 
Without his help this book would not have been possible.  
 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 

 
 
FUZZY RELATIONAL EQUATIONS: 
BASIC CONCEPTS AND 
PROPERTIES 
 
 
 
The notion of fuzzy relational equations based upon the max-min 
composition was first investigated by Sanchez [84]. He studied 
conditions and theoretical methods to resolve fuzzy relations on 
fuzzy sets defined as mappings from sets to [0,1]. Some theorems 
for existence and determination of solutions of certain basic fuzzy 
relation equations were given by him. However the solution 
obtained by him is only the greatest element (or the maximum 
solution) derived from the max-min (or min-max) composition of 
fuzzy relations. [84]’s work has shed some light on this important 
subject. Since then many researchers have been trying to explore 
the problem and develop solution procedures [1, 4, 10-12, 18, 34, 
52, 75-80, 82, 108, 111]. 

The max-min composition is commonly used when a system 
requires conservative solutions in the sense that the goodness of 
one value cannot compensate the badness of another value [117]. 
In reality there are situations that allow compensatability among 
the values of a solution vector. In such cases the min operator is 
not the best choice for the intersection of fuzzy sets, but max-
product composition, is preferred since it can yield better or at 
least equivalent result. Before we go into the discussion of these 
Fuzzy Relational Equations (FRE) and its properties it uses and 
applications we just describe them. 

This chapter has 28 sections that deal with the properties of 
FRE, methods of solving FRE using algorithms given by several 
researchers and in some cases methods of neural networks and 
genetic algorithm is used in solving problems. A complete set of 
references is given in the end of the book citing the names of all 
researchers whose research papers have been used.   
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1.1 Binary Fuzzy Relation and their properties 
 
It is well known fact that binary relations are generalized 
mathematical functions. Contrary to functions from X to Y, binary 
relations R(X, Y) may assign to each element of X two or more 
elements of Y. Some basic operations on functions such as the 
inverse and composition are applicable to binary relations as well. 

Given a fuzzy relation R(X, Y), its domain is a fuzzy set on 
X, dom R, whose membership function is defined by 

 
dom (R(x)) = 

Yy∈
max R (x, y) 

 
for each x ∈ X. That is, each element of set X belongs to the 
domain of R to the degree equal to the strength of its strongest 
relation to any member of set Y. The range of R (X, Y) is a fuzzy 
relation on Y, ran R whose membership function is defined by 
 

ran R(y) = 
Xx∈

max R (x, y) 

 
for each y ∈ Y. That is, the strength of the strongest relation that 
each element of Y has to an element of X is equal to the degree of 
that elements membership in the range of R. In addition, the 
height of a fuzzy relation R(X,Y) is a number, h(R), defined by 
 

h (R) = 
XxYy ∈∈

maxmax (R (x, y). 

 
That is h(R) is the largest membership grade attained by any pair 
(x, y) in R. 

A convenient representation of binary relation R(X, Y) are 
membership matrices R = [rxy] where rxy = R(x, y). Another useful 
representation of binary relation is a sagittal diagram. Each of the 
sets X, Y is represented by a set of nodes in the diagram nodes 
corresponding to one set is distinguished from nodes representing 
the other set.  

Elements of X × Y with non-zero membership grades in R(X, 
Y) are represented in the diagram by lines connecting the 
respective nodes. 
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We illustrate the sagittal diagram of a binary fuzzy relation 
R(X, Y) together with the corresponding membership matrix in 
Figure 1.1.1.  

The inverse of a fuzzy relation R(X, Y) denoted by R-1(Y, X) 
is a relation on Y × X defined by R-1 (y, x) = R (x, y) for all x ∈ X 
and for all y ∈ X. A membership matrix   R-1 = [r-1

yx] representing 
R-1 (Y, X) is the transpose of the matrix R for R (X, Y) which 
means that the rows of R-1 equal the columns of R and the 
columns of R-1 equal the rows of R. 

Clearly (R-1)-1 = R for any binary fuzzy relation. Thus a 
fuzzy binary relation can be represented by the sagittal diagram. 
The corresponding membership matrix: 

 
     y1    y2     y3    y4     y5 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5.08.02.
7.6.000
7.3.000
011.00
00002.
01.04.0
005.7.0

7

6

5

4

3

2

1

x
x
x
x
x
x
x

 

 
R is the membership matrix. 

Figure: 1.1.1 
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Consider now two binary fuzzy relations P(X, Y) and Q(Y, 
Z) with a common set Y. The standard composition of these 
relations, which is denoted by P(X, Y) ° Q(Y, Z), produces a 
binary relation R (X, Z) on X × Z defined by  

 
R (x, z)  =  [P ° Q] (x, z) 

=  
Yy∈

max min [P(x, y), Q (y, z)] 

 
for all x ∈ X and all z ∈ Z. This composition, which is based on 
the standard t-norm and t-co-norm is often referred to as the max-
min composition. It follows directly from the above equation that 
 

[P (X, Y) ° Q (Y, Z)]-1 = Q-1 (Z, Y) ° P-1 (Y, X) 
[P (X, Y) ° Q (Y, Z)] ° R (Z, W) = P (X, Y) ° [Q (Y, Z) ° 
R (Z, W)]. 

 
This is the standard (or max-min) composition, which is 
associative, and its inverse is equal to the reverse composition of 
the inverse relations. 

However the standard composition is not commutative 
because Q(Y, Z) ° P(X, Y) is not even well defined when X ≠ Z. 
Even if X = Z and Q (Y, Z) ° P(X, Y) are well defined, we may 
have P(X, Y) ° Q (Y, Z) ≠ Q (Y, Z ) ° P(X, Y). Compositions of 
binary fuzzy relations can be performed conveniently in terms of 
membership matrices of the relations. Let P = [pik], Q = [qkj] and 
R = [rij] be the membership matrices of binary relations such that 
R = P ° Q. We can then write using this matrix notations 

 
[rij]  =  [pik] ° [qkj] 

 
where rij = 

k
max min (pik qkj). Observe that the same elements of P 

and Q are used in the calculation of R as would be used in the 
regular multiplication of matrices, but the product and sum 
operations are here replaced with max and min operations 
respectively. 
 A similar operation on two binary relations, which differs 
from the composition in that it yields triples instead of pairs, is 
known as the relational join. For fuzzy relations P(X, Y) and    
Q(Y, Z), the relational join P * Q, corresponding to the standard 
max-min composition is a ternary relation R(X, Y, Z) defined by  
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R (x, y, z)  =  [P * Q] (x, y, z)  =  min [P (x, y), Q (y, z)] for 
each x ∈ X, y ∈ Y and z ∈ Z. 
 The fact that the relational join produces a ternary relation 
from two binary relations is a major difference from the 
composition, which results in another binary relation.  

Formally [P °Q] (x, z) = max [P * Q] (x, y, z) for each x ∈ X 
and z ∈ Z. Now we just see what happens if the binary relation on 
a single set. Binary relation R (X, X) can be expressed by the 
same forms as general binary relations.  
 
The following properties are to be observed: 
 

i. Each element of the set X is represented as a single 
node in the diagram. 

ii. Directed connection between nodes indicates pairs 
of elements of X, with the grade of membership in R 
is non-zero. 

iii. Each connection in the diagram is labeled by the 
actual membership grade of the corresponding pair 
in R. 

 
An example of this diagram for a relation R (X, X) defined on X = 
{x1, x2, x3, x4, x5} is shown in Figure 1.1.3.  A crisp relation R (X, 
X) is reflexive if and only if (x, x) ∈ R. for each x ∈ R, that is if 
every element of X is related to itself, otherwise R(X, X) is called 
irreflexive. If (x, x) ∉ R for every x ∈ X the relation is called anti 
reflexive. 

A crisp relation R(X, X) is symmetric if and only if for every 
(x, y) ∈ R, it is also the case that (y, x) ∈ R where x, y ∈ X. Thus 

Figure: 1.1.2 
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whenever an element x is related to an element y through a 
symmetric relation, y is also related to x. If this is not the case for 
some x, y then the relation is called asymmetric. If both (x, y) ∈ R 
and (y, x) ∈ R implies x = y then the relation is called anti 
symmetric. If either (x, y) ∈ R or (y, x) ∈ R whenever x ≠ y, then 
the relation is called strictly anti symmetric. 

 
     x1     x2     x3     x4    x5 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5.001.6.
4.1.002.
002.01.
006.8.0
7.01.02.

5

4

3

2

1

x
x
x
x
x

 

 
The corresponding sagittal diagram is given in Figure 1.1.3: 

Figure: 1.1.3 
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Table 
 

x y R(x, y) 
x1 x1 .2 
x1 x3 .1 
x1 x5 .7 
x2 x2 .8 
x2 x3 .6 
x3 x1 .1 
x3 x3 .2 
x4 x1 .2 
x4 x4 .1 
x4 x5 .4 
x5 x1 .6 
x5 x2 .1 
x5 x5 .5 

 
A crisp relation R (X, Y) is called transitive if and only if (x, z) ∈ 
R, whenever both (x, y) ∈ R and (y, z) ∈ R for at least one y ∈ X. 

In other words the relation of x to y and of y to z imply the 
relation x to z is a transitive relation. A relation that does not 
satisfy this property is called non-transitive. If (x, z) ∉ R 
whenever both (x, y) ∈ R and (y, z) ∈ R, then the relation is 
called anti-transitive. The reflexivity, symmetry and transitivity is 
described by the following Figure 1.1.5: 

 

Figure: 1.1.5 

x1
x2x1

x3

x2x1
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A fuzzy relation R (X, X) is reflexive if and only if R(x,x) = 1 
for all x ∈ X, if this is not the case for same x ∈ X, the relation is 
called irreflexive, if it is not satisfied for all x ∈ X, the relation is 
called anti reflexive. A weaker form of reflexivity referred to as   
∈ - reflexivity denoted by R (x, x) ≥ ∈ where 0 < ∈ < 1. A fuzzy 
relation is symmetric if and only if 
 

R(x, y) = R (y, x) 
 

for all x, y ∈ X, if this relation is not true for some x, y ∈ X, the 
relation is called anti symmetric. Further more when R (x, y) > 0 
and R (y, x) > 0 implies x = y for all x, y ∈ X the relation R is 
called anti symmetric. 

A fuzzy relation R (X, X) is transitive if R (x, z) ≥ 
Yy∈

max  min 

[R (x, y), R (y, z)] is satisfied for each pair (x, z) ∈ X2. A relation 
failing to satisfy this inequality for some members of X is called 
non-transitive and if  
 

R (x, z) < 
Yy∈

max  min [R (x, y), R (y, z)] 

for all (x,z) ∈ X2, then the relation is called anti transitive.  
 
 
1.2  Properties of Fuzzy Relations 
 
In this section we just recollect the properties of fuzzy relations 
like, fuzzy equivalence relation, fuzzy compatibility relations, 
fuzzy ordering relations, fuzzy morphisms and sup-i-compositions 
of fuzzy relation. For more about these concepts please refer [43].  

Now we proceed on to define fuzzy equivalence relation. A 
crisp binary relation R(X, X) that is reflexive, symmetric and 
transitive is called an equivalence relation. For each element x in 
X, we can define a crisp set Ax, which contains all the elements of 
X that are related to x, by the equivalence relation. 

 
Ax = {y ⏐(x, y) ∈ R (X, X)}  

 
Ax is clearly a subset of X. The element x is itself contained in Ax 
due to the reflexivity of R, because R is transitive and symmetric 
each member of Ax, is related to all the other members of Ax. 
Further no member of Ax, is related to any element of X not 
included in Ax. This set Ax is referred to an as equivalence class 
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of R (X, X) with respect to x. The members of each equivalence 
class can be considered equivalent to each other and only to each 
other under the relation R. The family of all such equivalence 
classes defined by the relation which is usually denoted by X / R, 
forms a partition on X. 
 A fuzzy binary relation that is reflexive, symmetric and 
transitive is known as a fuzzy equivalence relation or similarity 
relation. In the rest of this section let us use the latter term. While 
the max-min form of transitivity is assumed, in the following 
discussion on concepts; can be generalized to the alternative 
definition of fuzzy transitivity. 
 While an equivalence relation clearly groups elements that 
are equivalent under the relation into disjoint classes, the 
interpretation of a similarity relation can be approached in two 
different ways. First it can be considered to effectively group 
elements into crisp sets whose members are similar to each other 
to some specified degree. Obviously when this degree is equal to 
1, the grouping is an equivalence class. Alternatively however we 
may wish to consider the degree of similarity that the elements of 
X have to some specified element x ∈ X. Thus for each x ∈ X, a 
similarity class can be defined as a fuzzy set in which the 
membership grade of any particular element represents the 
similarity of that element to the element x. If all the elements in 
the class are similar to x to the degree of 1 and similar to all 
elements outside the set to the degree of 0 then the grouping again 
becomes an equivalence class. We know every fuzzy relation R 
can be uniquely represented in terms of its α-cuts by the formula 
 

R = 
]1,0(

.
∈α

αα∪ R  

 
It is easily verified that if R is a similarity relation then each α-
cut, αR is a crisp equivalence relation. Thus we may use any 
similarity relation R and by taking an α - cut αR for any value α ∈ 
(0, 1], create a crisp equivalence relation that represents the 
presence of similarity between the elements to the degree α. Each 
of these equivalence relations form a partition of X. Let π (αR) 
denote the partition corresponding to the equivalence relation αR. 
Clearly any two elements x and y belong to the same block of this 
partition if and only if R (x, y) ≥ α. Each similarity relation is 
associated with the set π (R) = {π (αR) ⏐α ∈ (0,1]} of partition of 



 

 18

X. These partitions are nested in the sense that π (αR) is a 
refinement of π ( βR) if and only α ≥ β. 

The equivalence classes formed by the levels of refinement of 
a similarity relation can be interpreted as grouping elements that 
are similar to each other and only to each other to a degree not 
less than α.  

Just as equivalences classes are defined by an equivalence 
relation, similarity classes are defined by a similarity relation. For 
a given similarity relation R(X, X) the similarity class for each x 
∈ X is a fuzzy set in which the membership grade of each element 
y ∈ X is simply the strength of that elements relation to x or R(x, 
y). Thus the similarity class for an element x represents the degree 
to which all the other members of X are similar to x. Expect in the 
restricted case of equivalence classes themselves, similarity 
classes are fuzzy and therefore not generally disjoint. 

Similarity relations are conveniently represented by 
membership matrices. Given a similarity relation R, the similarity 
class for each element is defined by the row of the membership 
matrix of R that corresponds to that element. 

Fuzzy equivalence is a cutworthy property of binary relation 
R(X, X) since it is preserved in the classical sense in each α-cut of 
R. This implies that the properties of fuzzy reflexivity, symmetry 
and max-min transitivity are also cutworthy. Binary relations are 
symmetric and transitive but not reflexive are usually referred to 
as quasi equivalence relations. 

The notion of fuzzy equations is associated with the concept 
of compositions of binary relations. The composition of two fuzzy 
binary relations P (X, Y) and Q (Y, Z) can be defined, in general 
in terms of an operation on the membership matrices of P and Q 
that resembles matrix multiplication. This operation involves 
exactly the same combinations of matrix entries as in the regular 
matrix multiplication. However the multiplication and addition 
that are applied to these combinations in the matrix multiplication 
are replaced with other operations, these alternative operations 
represent in each given context the appropriate operations of 
fuzzy set intersections and union respectively. In the max-min 
composition for example, the multiplication and addition are 
replaced with the min and max operations respectively. 

We shall give the notational conventions. Consider three 
fuzzy binary relations P (X, Y), Q (Y, Z) and R (X, Z) which are 
defined on the sets  
 

X = {xi | i ∈ I} 
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Y = {yj | j ∈ J} and  
Z = {zk | k ∈ K}  

 
where we assume that I = Nn J = Nm and K = N5. Let the 
membership matrices of P, Q and R be denoted by P = [pij], Q = 
[qij], R = [rik] respectively, where pij = P (xi, yj), qjk = Q (yj, zk) rij 
= R (xi, zk) for all i∈I (=Nn), j∈J = (Nm) and k ∈ K (=N5). This 
clearly implies that all entries in the matrices P, Q, and R are real 
numbers from the unit interval [0, 1]. Assume now that the three 
relations constrain each other in such a way that P°Q = R where ° 
denotes max-min composition. This means that 

Jj∈
minmax  (pij, qjk) 

= rik for all i∈I and k∈- K. That is the matrix equation P° Q = R 
encompasses n × s simultaneous equations of the form            

Jj∈
minmax  (pij, qjk ) = rik. When two of the components in each of 

the equations are given and one is unknown these equations are 
referred to as fuzzy relation equations. 

When matrices P and Q are given the matrix R is to 
determined using P ° Q = R. The problem is trivial. It is solved 
simply by performing the max-min multiplication – like operation 
on P and Q as defined by 

Jj∈
minmax (pij, qjk ) = rik. Clearly the 

solution in this case exists and is unique. The problem becomes 
far from trivial when one of the two matrices on the left hand side 
of P ° Q = R is unknown. In this case the solution is guaranteed 
neither to exist nor to be unique. 

Since R in P ° Q = R is obtained by composing P and Q it is 
suggestive to view the problem of determining P (or alternatively 
Q ) from R to Q (or alternatively R and P) as a decomposition of 
R with respect to Q (or alternatively with respect to P). Since 
many problems in various contexts can be formulated as problems 
of decomposition, the utility of any method for solving P ° Q = R 
is quite high. The use of fuzzy relation equations in some 
applications is illustrated. Assume that we have a method for 
solving P ° Q = R only for the first decomposition problem (given 
Q and R). 

Then we can directly utilize this method for solving the 
second decomposition problem as well. We simply write P ° Q = 
R in the form Q-1 o P-1 = R-1 employing transposed matrices. We 
can solve Q-1 o P-1 = R-1 for Q-1 by our method and then obtain the 
solution of P ° Q = R by (Q-1)-1

 = Q. 
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We study the problem of partitioning the equations P ° Q = R. 
We assume that a specific pair of matrices R and Q in the 
equations P ° Q = R is given. Let each particular matrix P that 
satisfies P ° Q = R is called its solution and let S (Q, R) = {P | P ° 
Q = R} denote the set of all solutions (the solution set). 

It is easy to see this problem can be partitioned, without loss 
of generality into a set of simpler problems expressed by the 
matrix equations pi o Q = ri for all i∈I where 

Pi = [pij | j ∈ J] and 
ri = [rik | k ∈ K]. 

 
Indeed each of the equation in 

Jj∈
minmax (pijqjk) = rik contains 

unknown pij identified only by one particular value of the index i, 
that is, the unknown pij distinguished by different values of i do 
not appear together in any of the individual equations. Observe 
that pi, Q, and ri in pi ° Q = ri represent respectively, a fuzzy set on 
Y, a fuzzy relation on Y × Z and a fuzzy set on Z. Let Si (Q, ri) = 
[pi | pi o Q = ri] denote, for each i∈I, the solution set of one of the 
simpler problem expressed by pi ° Q = ri. 

Thus the matrices P in S (Q, R) = [P | P ° Q = R ] can be 
viewed as one column matrix 
 

P = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

np

p
p

M
2

1

 

 
where pi ∈ Si (Q, ri) for all i ∈ I = (=Nn). It follows immediately 
from 

Jj∈
minmax (pij qjk ) = rik. That if 

Jj∈
max  qjk < rik for some i ∈ I 

and some k ∈ K, then no values pij ∈ [0, 1] exists (j ∈ J) that 
satisfy P ° Q = R, therefore no matrix P exists that satisfies the 
matrix equation. This proposition can be stated more concisely as 
follows if  

ik
Jj

jk
Jj

rq
∈∈

< maxmax  

 
for some k ∈ K then S (Q, R) = φ. This proposition allows us in 
certain cases to determine quickly that P ° Q = R has no solutions 
its negation however is only a necessary not sufficient condition 
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for the existence of a solution of P ° Q = R that is for S (Q, R) ≠ φ. 
Since P ° Q = R can be partitioned without loss of generality into 
a set of equations of the form pi ° Q = ri we need only methods for 
solving equations of the later form in order to arrive at a solution. 
We may therefore restrict our further discussion of matrix 
equations of the form P ° Q = R to matrix equation of the simpler 
form P ° Q = r, where p = [pj | j ∈ J], Q = [qjk | j ∈ J, k ∈ K] and    
r = {rk | k ∈ K]. 
 We just recall the solution method as discussed by [43]. For 
the sake of consistency with our previous discussion, let us again 
assume that p, Q and r represent respectively a fuzzy set on Y, a 
fuzzy relation on Y × Z and a fuzzy set on Z. Moreover let J = Nm 
and K = Ns and let S (Q, r) = {p | p ° Q = r} denote the solution set 
of  

p ° Q = r. 
 

In order to describe a method of solving p ° Q = r we need to 
introduce some additional concepts and convenient notation. First 
let ℘ denote the set of all possible vectors. 

p = {pj | j ∈ J} 
such that pj ∈ [0, 1] for all j ∈ J, and let a partial ordering on 

℘ be defined as follows for any pair p1, p2 ∈ ℘ p1 ≤ p2 if and 
only if 22

ji pp ≤ for all j ∈J. Given an arbitrary pair p1, p2 ∈ ℘ 

such that p1 ≤ p2 let [p1 , p2] = {p ∈ ℘ | p1 ≤ p < p2}. For any pair 
p1, p2 ∈ ℘ ({p1, p2} ≤ } is a lattice. 

Now we recall some of the properties of the solution set S (Q, 
r). Employing the partial ordering on ℘, let an element p̂ of S (Q, 
r) be called a maximal solution of p ° Q = r if for all p ∈ S (Q, r), 
p ≥ p̂  implies p = p̂  if for all p ∈ S (Q, r) p < p~ then that is the 
maximum solution. Similar discussion can be made on the 
minimal solution of p ° Q = r. The minimal solution is unique if   
p  ≥ p̂ (i.e. p̂  is unique). 

It is well known when ever the solution set S (Q, r) is not 
empty it always contains a unique maximum solution p̂  and it 

may contain several minimal solution. Let S
(

(Q, r) denote the set 
of all minimal solutions. It is known that the solution set S (Q, r) 
is fully characterized by the maximum and minimal solution in 
the sense that it consists exactly of the maximum solution p̂  all 
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the minimal solutions and all elements of ℘ that are between p̂  
and the numeral solution. 

Thus S (Q, r) = 
p
∪  [ ]pp ˆ,~  where the union is taken for all 

Sp
(

∈~ (Q, r). When S (Q, r) ≠ φ, the maximum solution. 
p̂  = [ p̂ j | j ∈ J] of p ° Q = r is determined as follows: 

Kkjp
∈

= minˆ σ (qik, rk) where σ (qjk, rk) = 
⎩
⎨
⎧ >

otherwise
rqifr kjkk

1
 

 
when p̂  determined in this way does not satisfy p ° Q = r then 
S(Q, r) = φ. That is the existence of the maximum solution p̂  as 
determined by 

Kkjp
∈

= minˆ σ (qik, rk) is a necessary and sufficient 

condition for S (Q, r) ≠ φ. Once p̂  is determined by 
Kkjp

∈
= minˆ σ 

(qik, rk), we must check to see if it satisfies the given matrix 
equations p ° Q = r. If it does not then the equation has no solution 
(S (Q, r) = φ), otherwise p̂  in the maximum solution of the 

equation and we next determine the set S~ (Q, r) of its minimal 
solutions. 
 
 
1.3  Fuzzy compatibility relations and composition of fuzzy relations 
 
In this section we recall the definition of fuzzy compatibility 
relations, fuzzy ordering relations, fuzzy morphisms, and sup and 
inf compositions of fuzzy relations. 
 
DEFINITION [43]: A binary relation R(X, X) that is reflexive and 
symmetric is usually called a compatibility relation or tolerance 
relation. When R(X, X) is a reflexive and symmetric fuzzy relation 
it is sometimes called proximity relation. 

 
An important concept associated with compatibility relations is 
compatibility classes. Given a crisp compatibility relation R(X, 
X), a compatibility class is a subset A of X such that (x, y) ∈ R 
for all x, y ∈ A. A maximal compatibility class or maximal 
compatible is a compatibility class that is not properly contained 
with in any other compatibility class. The family consisting of all 
the maximal compatibles induced by R on X is called a complete 
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cover of X with respect to R. When R is a fuzzy compatibility 
relation, compatibility classes are defined in terms of a specified 
membership degree α. An α-compatibility class is a subset A of X 
such that R (x, y) ≥ α for all x, y ∈ A. Maximal α-compatibles 
and complete α-cover are obvious generalizations of the 
corresponding concepts for crisp compatibility relations. 

Compatibility relations are often conveniently viewed as 
reflexive undirected graphs contrary to fuzzy cognitive maps that 
are directed graphs. In this context, reflexivity implies that each 
node of the graph has a loop connecting the node to itself the 
loops are usually omitted from the visual representations of the 
graph although they are assumed to be present. Connections 
between nodes as defined by the relation, are not directed, since 
the property of symmetry guarantees that all existing connections 
appear in both directions. Each connection is labeled with the 
value corresponding to the membership grade R (x, y) = R (y,x). 

We illustrate this by the following example. 
 
Example 1.3.1:  Consider a fuzzy relation R(X, X) defined on X 
= {x1, x2,…, x8} by the following membership matrix: 
 

       x1   x2   x3    x4   x5   x6   x7   x8 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

18.005.8.06.
8.12.07.6.00
02.1007.00
00012.004.
5.7.02.103.0
8.6.7.0015.0
00003.5.13.
6.004.003.1

8

7

6

5

4

3

2

1

x
x
x
x
x
x
x
x

. 

 
Since the matrix is symmetric and all entries on the main diagonal 
are equal to 1, the relation represented is reflexive, and symmetric 
therefore it is a compatibility relation. The graph of the relation is 
shown by the following figure 1.3.1, its complete α-covers for α > 
0 and α ∈ {0, .3, .1, .4, .6, .5, .2, .8, .7, 1} is depicted. Figure 
1.3.1 is the graph of compatibility relation given in example 1.3.1 
while similarity and compatibility relations are characterized by 
symmetry, ordering relations require asymmetry (or anti-
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symmetry) and transitivity. There are several types of ordering 
relations. 
 

 
A crisp binary relation R(X, X) that is reflexive, anti 

symmetric and transitive is called a partial ordering. The common 
symbol ≤ is suggestive of the properties of this class of relations. 
Thus x ≤ y denotes (x, y) ∈ R and signifies that x precedes y. The 
inverse partial ordering R-1 (X, X) is suggested by the symbol ≥.  

If y ≥ x including that (y, x) ∈ R-1 then we say that y 
succeeds x. When x ≤ y; x is also referred to as a predecessor of y 
while y is called a successor of x. When x ≤ y and there is no z 
such that x ≤ y and z ≤ y, x is called an immediate predecessor of 
y and y is called an immediate successor of x. If we need to 
distinguish several partial orderings, such as P, Q and R we use 

the symbol 
QP
≤≤ , and 

R
≤   respectively. 

Observe that a partial ordering ‘≤’ on X does not guarantee 
that all pairs of elements x, y in X are comparable in the sense that 
either x ≤ y or y ≤ x. Thus, for some x, y ∈ X it is possible that x 
is neither a predecessor nor a successor of y. Such pairs are called 
non comparable with respect to ≤. 

Figure: 1.2.1 
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The following are definitions of some fundamental concepts 
associated with partial orderings: 
 

1. If x ∈ X and x ≤ y for every y ∈ X then x is called the 
first member (or minimum) of X with respect to the 
relation denoted by ≤. 

 
2. If x ∈ X and y ≤ x for every y ∈ X, then x is called the 

last member (or maximum) of X with respect to the 
partial ordering relation. 

 
3. If x ∈ X and y ≤ x implies x = y, then x is called a 

minimal member of X with respect to the relation. 
 

4. If x ∈ X and x ≤ y implies x = y, then x is called a 
maximal member of X with respect to the relation [43]. 
Using these concepts every partial ordering satisfies the 
following properties: 

 
i. There exist at most one first member and at 

most one last member. 
ii. There may exist several maximal members and 

several minimal members. 
iii. If a first member exists then only one minimal 

member exists and it is identical with the first 
member. 

iv. If a last member exists, then only one maximal 
member exists and it is identical with the last 
member. 

v. The first and last members of a partial ordering 
relation correspond to the last and first members 
of the inverse partial ordering, respectively. 

 
Let X again be a set on which a partial ordering is defined and let 
A be a subset of X (A ⊂ X). If x ∈ X and x ≤ y for every y ∈ A, 
then x is called a lower bound of A on X with respect to the 
partial ordering. If x ∈ X and y ≤ x for every y ∈ A, then x is 
called an upper bound of A on X with respect to the relation. If a 
particular lower bound succeeds, every other lower bound of A, 
then it is called the greatest lower bound or infimum, of A. If a 
particular upper bound proceeds every other upper bound of A 
then it is called the least upper bound or superemum of A.  
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A partial ordering on a set X that contains a greatest lower 
bound and a least upper bound for every subset of two elements of 
X is called a lattice. 

A partial ordering ≤ on X is said to be connected if and only 
if for all x, y ∈ X (x ≠ y) implies either x ≤ y or y ≤ x. When a 
partial ordering is connected all pairs of elements of X are 
comparable by the ordering such an ordering is usually called a 
linear ordering, some alternative names used in the literature are 
total ordering, simple ordering and complete ordering. 

Partial ordering can be represented by diagrams and this sort 
of diagrams are called Hasse’s diagrams. 

A fuzzy binary relation R on a set X is a fuzzy partial 
ordering if and only if it is reflexive anti-symmetric and transitive 
under some form of fuzzy transitivity. Any fuzzy partial ordering 
based on max-min transitivity can be resolved into a series of 
crisp partial orderings in the same way in which this is done for 
similarity relations, that is by taking a series of α-cuts that 
produce increasing levels of refinement. When a fuzzy partial 
ordering is defined on a set X, two fuzzy sets are associated with 
each element x in X. The first is called the dominating class of x.  

It is denoted by  
 

R≥ [x] and is defined by R ≥[x] (y) = R (x, y) 
 
where y ∈ X. In other words the dominating class of x contains 
the members of X to the degree to which they dominate x. The 
second fuzzy set of concern is the class dominated by x, which is 
denoted by  

R≤ [x] and defined by R≤ [x] (y) = R (y, x) 
where y ∈ X. The class dominated by x contains the elements of 
X to the degree to which they are dominated by x. An element x ∈ 
X is undominated if and only if R (x, y) = 0 for all y ∈ X and x ≠ 
y, an element x is undominating if and only if R (y,x) = 0 for all y 
∈ X and y ≠ x. For a crisp subset A of a set X on which a fuzzy 
partial ordering R is defined, the fuzzy upper bound for A is the 
fuzzy set denoted by U (R, A) and defined by  
 

U (R, A) = I
Ax

xR
∈

≥ ][  

where ∩ denotes an appropriate fuzzy intersection. This definition 
reduces to that of the conventional upper bound when the partial 
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ordering is crisp. If a least upper bound of the set A exists it is the 
unique element x in U (R, A) such that  

U (R, A) (x) > 0 and 
R (x, y) > 0 for all elements y in the support of U (R, A). Several 
other concepts of crisp orderings easily generalize to the fuzzy 
case. A fuzzy preordering is a fuzzy relation that is reflexive and 
transitive. Unlike a partial ordering, the preordering is not 
necessarily anti-symmetric. 

A fuzzy weak ordering R is an ordering satisfying all the 
properties of a fuzzy linear ordering except anti-symmetry. 
Alternatively it can be thought of as a fuzzy preordering in which 
either R (x, y) > 0 or R (y, x) > 0 for all x ≠ y. A fuzzy strict 
ordering is anti-reflexive anti-symmetric and transitive, it can 
clearly be derived from any partial ordering R by replacing the 
values R(x, x) = 1 with zeros for all x.  

Now we proceed on to recall the definition of fuzzy 
morphisms. 

If two crisp binary relations R (X, X) and Q (Y, Y) are 
defined on sets X and Y, respectively then a function h : X → Y is 
said to be a homomorphism from (X, R) to (Y, Q) if (x1, x2) ∈ R 
implies (h(x1), h(x2)) ∈ Q for all x1, x2 ∈ X. In other words a 
homomorphism implies that for every two elements of the set X 
which are related under the relation R, their homomorphic images 
h (x1), h(x2) in set Y are related under the relation Q. 

When R (X, X) and Q (Y, Y) are fuzzy binary relations this 
implication can be generalized to R (x1, x2) ≤ Q (h(x1), h(x2)), for 
all x1, x2 ∈ X and their images h (x1), h (x2) ∈ Y. Thus, the 
strength of relation between two elements under R is equated or 
exceeded by the strength of relation between their homomorphic 
images under Q. 

Note that it is possible for a relation to exist under Q between 
the homomorphic images of two elements that are themselves 
unrelated under R. When this is never the case under a 
homomorphic function h, the function is called a strong 
homomorphism. It satisfies the two implications  

 
〈x1, x2〉 ∈ R implies 〈h(x1), h(x2)〉 ∈ Q 

 
for all x1, x2 ∈ X and (y1, y2) ∈ Q implies (x1, x2) ∈ R, for all y1, 
y2 ∈ Y where x1 ∈ h-1 (y1) and x2 ∈h-1 (y2). Observe that when h 
is many to –one the inverse of h for each element of Y is a set of 
elements from X instead of a single element of X. If relations R 
(X, X) and Q (Y, Y) are fuzzy, then the criteria that a many-to-
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one function h must satisfy in order to be a strong homomorphism 
are somewhat modified. The function h imposes a partition. πh on 
the set X such that any two elements x1, x2 ∈ X belong to the 
same block of the partition if and only if h maps them to the same 
element of Y. Let A = {a1, a2, …, an} and B = {b1, b2,…, bn} be 
two blocks of this partition πh and let all elements of A be mapped 
to some element y1 ∈ Y and all elements of B to some element y2 
∈ Y. Then the function h is said to be a strong homomorphism 
from 〈X, R〉  to 〈Y, Q〉 if and only if the degree of the strongest 
relation between any element of A and any element of B in the 
fuzzy relation R equals the strength of the relation between y1 and 
y2 in the fuzzy relation Q. Formally  

ij
max  R(ai bj) = Q(y1, y2). 

This equality must be satisfied for each pair of blocks of the 
partition πh. If a homomorphism exists from (X, R) to (Y, Q) 
then the relation Q (X, Y) preserves some of the properties of the 
relation R (X, X) – namely, that all the pairs (x1, x2) ∈ X × X 
which are members of R have corresponding homomorphic 
images 〈h(x1), h(x2)〉 ∈ Y × Y which are members of Q. Other 
members of Q may exist, however that are not the counterparts of 
any number of R. This is not the case when the homomorphism is 
strong. Here more properties of the relation R are preserved in 
relation Q. In fact Q represents a simplification of R in which 
elements belong to the same block of the partition πh created by 
the function h on the set X are no longer distinguished. These 
functions are useful for performing various kinds of 
simplifications of systems that preserve desirable properties in 
sets such as ordering or similarity. 

If h : X → Y is a homomorphism from (X, R) to (Y, Q) and if 
h is completely specified, one to one and on to then it is called as 
isomorphism. This is effectively a translation or direct relabeling 
of elements of the set X into elements of the set Y that preserves 
all the properties of R in Q. If Y ⊆ X then h is called an 
endomorphism. A function that is both an isomorphism and an 
endomorphism is called an automorphism. In this case the 
function maps the set X to itself and the relation R and Q are 
equal. Each of these terms applies without modification to fuzzy 
homomorphisms.  

Now we just recall the notions of Sup-i-compositions of 
fuzzy relations. Sup-i compositions of binary fuzzy relations 
where i refers to a t-norm generalizes the standard max-min 
composition. The need to study these generalizations concepts 
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from some applications such as approximate reasoning and fuzzy 
control. Given a particular t-norm i and two fuzzy relations P (X, 
Y) and Q (Y, Z), the Sup-i-composition of P and Q is a fuzzy 

relation Pi ° Q on X, Y,  Z defined by  
 

{Pi ° Q} (x, z) = 
Yy

Sup
∈

i [P(x, y), Q(y,z)] 

for all x ∈ X, z ∈ Z. When i is chosen to be the min operator P o
i Q 

becomes the standard composition P ° Q. 
Given fuzzy relations P(X, Y), Pj(X, Y), Q(Y, Z), Qj(Y, Z) 

and R(Z, V) where j takes values in an index set J, the following 
are basic properties of the Sup-i composition under the standard 
fuzzy union and intersections. 

 
(P 

o
i  Q) o

i  R = P o
i  (Q o

i  R) 

P o
i  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∈
U

Jj
jQ  = U

Jj
jo

QiP
∈

)(  

P II
Jj

j
oJj

j
o

QiPQi
∈∈

⊆
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
)(  

UU
Jj oj

Jj oj QiPQiP
∈∈

= )(  

I I
Jj Jj ojoj QiPQiP

∈ ∈

⊆ )(  

(P 
o
i Q)-1 = Q-1 

o
i  P-1

. 

These properties follow directly from the corresponding 
properties of t-norms and their verification is left for the reader. 

Sup i composition is also monotonic increasing that is for any 
fuzzy relation P(X, Y), Q, (Y, Z), Q2 (Y, Z) and R(Z, V) if Q1 ⊂ 
Q then  

P 
o
i Q1 ⊆ P 

o
i Q2 

Q1 
o
i  R ⊆ Q2 

o
i  R. 

 
The set of all binary fuzzy relations on X2 forms a complete 

lattice ordered monoid (ℑ(X2), ∩, ∪ 
o
i ) where ∩ and ∪ represent 
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the meet and join of the lattice respectively and 
o
i  represents, the 

semi group operation of the monoid. The identity of 
o
i  is defined 

by the relations  

E (x, y) = 
⎩
⎨
⎧

≠
=

yxwhen
yxwhen

0
1

. 

 
The concept of transitivity of a fuzzy relation, which is 

introduced in terms of the max-min composition can be 
generalized in terms of the Sup-i-compositions for the various t-
norms i. We say the relation R on X2 is i-transitive if and only if 
 

R(x, z) ≥ i[R(x, y), R(y, z)] 
 

for all x, y, z ∈ X. It is easy to show that a fuzzy relation R on X2 
is i-transitive if and only if R 

o
i R ⊆ R which may be used as an 

alternative definition of i-transitivity. 
When a relation R is not i-transitive, we define its i-transitive 

closure as a relation R τ (i) that is the smallest i-transitive relation, 
containing R. To investigate properties of i-transitive closure let 

 
R(n) = R 

o
i R(n – 1) 

n = 2, 3,… where R is a fuzzy relation on X2 and R(1) = R. Using 
this notation the reader is expected to prove the following 
theorem: 
 
THEOREM [43]: For any fuzzy relation R on X2, the fuzzy relation 

R τ (i) = U
∞

=1

)(

n

nR  is the i-transitive closure of R. 

 
Prove if R be a reflexive fuzzy relation on X2, where ⏐X⏐ = n ≥ 2 
then R τ (i) = R(n-1). 

Now we proceed on to recall the notion of inf-w1 
compositions of fuzzy relations. Give a continuous t-norm i, let 
wi(a, b) = sup {x ∈ [0, 1] / i(a, x) ≤ b} for every a, b ∈ [ 0, 1]. 
This operation referred to as operation wi plays an important role 
in fuzzy relation equations. While the t-norm i may be interpreted 
as logical conjunction, the corresponding operation wi may be 
interpreted as logical implication. The following basic properties 
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of wi are left as an exercise for the reader to prove. For any a, aj, 
b, d ∈ [0, 1] where j takes values from an index set J prove wi has 
the following properties: 
 

1. i (a, b) ≤ d   iff   wi(a, d) ≥ b 
2. wi (wi (a, b) ≥ a 
3. wi (i (a, b), d) = wi (a, wi (b, d)) 
4. a ≤ d implies  

          wi (a, d) ≥ wi (b, d) and  
           wi (d, a) ≤ wi (d, b) 
5. i [wi (a, b), wi (b, d)] ≤ wi (a, d) 
6. wi [inf aj, b] ≥ 

Jj∈
sup wi (aj, b) 

7. wi (sup aj, b) = 
Jj∈

inf  wi (aj, b) 

8. wi [b, 
Jj∈

sup  aj] ≥ 
Jj∈

sup  wi (b, aj) 

9. wi (b, 
Jj∈

inf aj) = 
Jj∈

inf wi (b, aj) 

10. i [a, wi (a, b)] ≤ b. 
 
Prove for the fuzzy relations P(X, Y), Q (Y, Z), R(X, Z) and S(Z, 
V) the following are equivalent  

P 
o
i  Q ⊆ R 

Q ⊆ P-1 
o
iw  R 

P ⊆ (Q 
o
iw R-1)-1 

Prove P 
o
iw (Q

o
iw S) = (P

o
iw Q) 

o
iw S. 

Let P (X, Y), Pj (X, Y), Q(Y, Z) and Qj (Y, Z) be fuzzy 
relations where j takes values in an index set J then prove. 

 

IU
Jj o

ij
o
i

Jj
j QwPQwP

∈∈
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
 

UI
Jj o

ij
o
i

Jj
j QwPQwP

∈∈

⊇=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
 

P II
Jj

j
o
i

Jj
j

o
i QwPQw

∈∈

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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j
Jj o

i
Jj

j
o
i QwPQwP UU

∈∈

⊇ . 

 
Let P (X, Y), Q1(Y, Z), Q2 (Y, Z) and R (Z, V) be fuzzy relations. 
If Q1 ⊆ Q2 then prove.  

P
o
iw Q1 ⊆ P 

o
iw  Q2 and 

Q1 
o
iw R ⊇ Q2 

o
iw  R. 

Now if P (X, Y), Q (Y, Z) and R (X, Z) be fuzzy relations prove 
 

P-1 
o
i  (P 

o
iw Q) ⊆ Q 

R ⊆ P 
o
iw  (P-1 

o
i  R) 

P ⊆ (P 
o
iw Q) 

o
iw Q-1 

R ⊆ (R 
o
iw  Q-1) 

o
iw  Q. 

 
 

1.4  Optimization Of FRE with Max-Product Composition  
 
Jiranut Loelamonphing and Shu Cheng Fang [58] in their paper 
“optimization of fuzzy relation equation with max-product 
composition” (2001) has studied the solution set of fuzzy relation 
equations with max product composition and an optimization 
problem with a linear objective function subject to such FRE. By 
identifying the special properties of the feasible domain they 
determine an optimal solution without explicitly generating the 
whole set of minimal solutions. 

The notion of FRE based upon the max-min composition was 
first investigated by [84]. He studied conditions and theoretical 
methods to resolve fuzzy relations on fuzzy sets defined as 
mappings from sets into complete Brouwerian lattices. Some 
theorems for existence and determination of solutions of certain 
basic fuzzy relation equations were presented in his work. 
However, the solution obtained in that work is only the greatest 
element (or the maximum solution) derived from the max-min (or 
min-max) composition of fuzzy relations. 

Sanchez’s work [84] has shed some light on this important 
subject. Since then, researchers have been trying to explore the 
problem and develop solution procedures [1, 11, 16, 24, 30, 82]. 
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The “max-min” composition [117] is commonly used when a 
system requires conservative solutions in the sense that the 
goodness of one value cannot compensate the badness of another 
value. In reality, there are situations that allow compensatability 
among the values of a solution vector. In this case, the min 
operator is not the best choice for the intersection of fuzzy sets. 
Instead, the “max-product” composition is preferred since it can 
yield better, or at least equivalent, results. Note that when the 
intersection connector acts non-interactively, it can be uniquely 
defined by the min connector, but when the connector is 
interactive, it is application dependent and cannot be defined 
universally. Some outlines for selecting an appropriate connector 
has been provided by [112, 113]. 

Recently, researchers extended the study of an inverse 
solution of a system of FRE with max-product composition. They 
provided theoretical results for determining the complete solution 
sets as well as the conditions for the existence of resolutions. 
Their results showed that such complete solution sets can be 
characterized by one maximum solution and a number of minimal 
solutions. Since the total number of minimal solutions has a 
combinatorial nature in terms of the problem size, an efficient 
solution procedure is always in demand. 

Motivated by the work of [24], we are interested in studying 
the optimization problem with a linear objective function subject 
to a system of FRE with the “max-product” composition. 

Let A = [aij], 0 ≤ aij ≤ 1, be an (m × n) – dimensional fuzzy 
matrix, b = (b1, …, bn), 0 ≤ bj ≤ 1, be an n-dimensional vector, I = 
{1, 2, …, m} and J = {1, 2, …, n}. A system of FRE defined by A 
and b is denoted by 
 

X o A = b,       (1) 
 
where “o” represents the max-product composition. The 
resolution of (1) is a set of solution vectors x = (x1,…, xm), 0 ≤ xj 
≤ 1, such that 
 

Ii∈
max  {xi . aij} = bj for j ∈ J   (2) 

 
Let c = (c1,…, cm) ∈ Rm be an m-dimensional vector where ci 

represents the weight (or cost) associated with variable xi, for            
i ∈ I. The optimization problem we are interested in has the 
following form: 
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Minimize   

Z = ∑
=

m

i
ii xc

1
       (3) 

 
Subject to x o A = b,    

  0 ≤ xj ≤ 1. 
 
Note that the characteristics of the solution sets obtained by 

using the max-min operator and the max-product operator are 
similar, i.e., when the solution set is not empty, it can be 
completely determined by a unique maximum solution and a finite 
number of minimal solutions [11, 34]. Since the solution set can 
be non-convex, traditional linear programming methods, such as 
the simplex and interior-point algorithms, cannot be applied to 
this problem. 

[58] denote the solution set of problem (1) by X (A, b) = 
{(x1,…, xm) ⏐xi ∈ [0, 1], i ∈ I, and x o A = b}. Define X = [0, 1]m. 
For x1, x2 ∈ X, we say x1 ≤ x2 if and only if Ii,xx 2

i
1
i ∈∀≤ . In 

this way, the operator “≤” forms a partial order relation on X and 
(X, ≤) becomes a lattice. 

x̂ ∈ X (A, b) is called a maximum solution if x ≤ x̂  for 
all x ∈ X (A, b). Also x(  ∈ X (A, b) is called minimal solution if 
x ≤ x( , for any x ∈ X (A, b) implies x = x( . When X (A, b) is not 
empty, it can be completely determined by a unique maximum 
solution and a finite number of minimal solutions [11, 34]. 

The maximum solution can be obtained by applying the 
following operation [58]: 
 

x̂  = A Θ b = 
Ii

jij

n

1j
)ba(

∈
= ⎥

⎦

⎤
⎢
⎣

⎡
ΘΛ    (4) 

where 

aij Θ bj = 
⎩
⎨
⎧

>
≤

jijijj

jij

baifab
baif

/
1

    (5) 

 
a ∧ b = min (a, b). 

 
Denote the set of all minimal solutions by X

(
(A, b), the complete 

set of solution, X (A, b), is obtained by  
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X (A, b) = U((

(

),(

}ˆ|{
bAXx

xxxXx
∈

≤≤∈    (6) 

 
DEFINITION 1.4.1: For a solution x ∈X (A, b), we call 

0i
x  a 

binding variable if 
0i

x . ji0
a = bj for i0 ∈ I and xi aij ≤ bj, for all i 

∈ I. 
When the solution set of (1) is not empty, i.e., X (A, b) ≠φ, we 
define 
 

Ij = { i ∈ I.| ix̂ , aij = bj}, ∀ j ∈ J,   (7) 
Λ = I1 × I2 ×…× In.      (8) 

 
Here Ij corresponds to a set of xi’s that can satisfy constraint j of 
the fuzzy relation equations. And, the set Λ represents all 
combinations of the binding variables such that every 
combination can satisfy every fuzzy relation constraint. Let each 
combination be represented by f = (f1, f2, …, fn) ∈ Λ, with fj ∈ Ij, 
∀ j ∈ J. 
 
The optimization problem (3) can be decomposed into two 
problems, namely 

Minimize  ∑
=

=
m

1i
ii x'c'Z       (9) 

 
Subject to  x o A = b, 

     0 ≤ xi ≤ 1 
 
and  

Minimize  ∑
=

=
m

1i
ii x"c''Z    (10) 

 
Subject to  x o A = b,  

     0 ≤ xi ≤ 1 
 
where c’ = (c’1, c’2,…, c’m) and c” = (c”1, c”2,…, c”m) are defined 
such that , ∀i∈I. 
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⎩
⎨
⎧

<
≥

=
,00
,0

'
i

ii
i cif

cifc
c  

            (11) 

⎩
⎨
⎧

<
≥

=
.0
,00

"
ii

i
i cifc

cif
c  

 
Apparently, the cost vector c = c’ + c” and the objective value Z’ 
= Z’ + Z”. Intuitively, when all the costs are non-positive, since 
xi’s are non-negative and the problem is to minimize the objective 
value, we should make xi as large as possible. 

Taking advantage of the special structure studied in the 
previous section, we now introduce some procedures to reduce the 
size of the original problem so that the effort to solve the problem 
is minimized. The key idea behind these reduction procedures is 
that some of the xi’s can be determined immediately without 
solving the problem but just by identifying the special 
characteristic of the problem. Special cases which we can 
eliminate from consideration are as follows: 
 
Case I: ci ≤ 0. 
 
We know that x*

I = ix̂ , if ci ≤ 0. Hence, we can take any part that 
are associated with these ix̂ ’s out of consideration.  

 
Here we define: 

 
Î  = {i ∈ I | ci ≤ 0},      (12) 
 
Ĵ  = {j ∈ J | ix̂ , aij = bj, ∀ i ∈ Î }.   (13) 

 
In other words, Ĵ  is a set of indices of constraints which can 

be satisfied by a set of ix̂ ’s for i ∈ Î . Having defined Ĵ  and Î , 

we now eliminate row i, i ∈ Î  and j, j ∈ Ĵ  from matrix A as well 
as the jth element j ∈ Ĵ , from vector b.  

Let A’ and b’ be the updated fuzzy matrix and fuzzy vector, 
respectively.  

Define J’ = J \ Ĵ , J’ represents a reduced set of constraints. 
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Case II : Ij has only one element. 
 
Consider constraint j ∈ J’. If Ij contains only one element, it 
means that only one xi, i ∈ Ij, can satisfy the jth constraint. We 
have xi = bj/aij. 
 
Define 

}';1|{ JjIIiI jj ∈=∈=    (14) 

};.|'{ IibaxJjJ jiji ∈=∈= .   (15) 
 

Again, we can eliminate row i, i ∈ I , and column j, j ∈ J , 
from the updated fuzzy matrix A’ as well as the jth element j ∈ J , 
from the updated vector b’. Let A” and b” be the reduced fuzzy 
matrix and fuzzy vector corresponding to A’ and b’ respectively. 
We also need to update Λ. Define J”= J’\ J , J” is an index set of 
constraints which need to be solved later by the branch-and-bound 
(B&B) method. The updated A” = Πj∈J” Ij. 

The branch-and-bounded algorithm will be performed on 
these A” and b”. If b” is empty, then all constraints have been 
taken care of. Therefore, in order to minimize the objective value, 
since we are now left with positive ci’s, we can assign the 
minimum value, i.e. zero, to all xi’s whose values have not been 
assigned yet. When b” is not empty, we need to proceed further. 
Details will be discussed in the following: 

In order to identity whether the problem is decomposable, 
consider a set of constraints, say B, which can be satisfied by a 
certain set of variables, say XB. If the decision to choose which 
variable in the set XB to satisfy a constraint in B does not impact 
the decision on the rest of the problem, then we can extract this 
part from the whole problem. 
Let k be the number of sub-problems, 1 ≤ k ≤ "J . 
Define 

Ω = {Ij⏐j ∈ J”},      (16) 

Ω1 = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

φ≠
∈
I

"Jj
jj II , l = 1,…, k,  (17) 

 
Ω1 ∩ Ω1’ = φ, l ≠ l’,     (18) 
 
Ω = Ω1 ∪ Ω2 ∪…∪ Ωk,     (19) 
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Λl = ∏

Ω∈ 1jI
jI ,       (20) 

I(1) = { i⏐i∈ Ij, Ij ∈Ω1},    (21) 
 

J(1) = {j ⏐ Ij ∈Ω1}.     (22) 
 

In this way, Ω1 contains sets of Ij’s which have some 
element(s) in common and we can decompose the original 
problem into k sub-problems. I(1) and J(1) correspond to sets of 
indices of variables and constraints, respectively, on which the 
B&B method is performed for sub-problem l [58]. 
 
Problem (9) can be transformed into the following 0-1 integer-
programming problem  
 

minimize ∑
= ∈ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
m

1i
ij

ij

i
Jj

i x,
a
bmax'c'Z     (23) 

subject to Jj1x
m

1i
ij ∈∀=∑

=

 

 
xij = 0 or 1 ∀ i ∈ I, j ∈ J. 
xij = 0 ∀ i, j with i ∈ j. 
 
 
ALGORITHM 1 (ALGORITHM FOR FINDING AN OPTIMAL 
SOLUTION) 
 
Step 1: Find the maximum solution of (1). 
Compute [ ]Iijij

n
j babAx ∈= ⊗Λ=⊗= )](ˆ 1  according to (4). 

 
Step 2: Check feasibility. 
If x̂  o A = b, continue. Otherwise, stop! X (A, b) = φ and problem 
(3) has no feasible solution. 
 
Step 3: Compute index sets. 
Compute Ij = { }jiji baxIi =∈ .ˆ , ∀ j ∈ J, which represents a set 

of xi’s that can satisfy constraint j of the FRE. 
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Step 4: Arrange cost vector. 
Define c’ and c’ according to (11). 
 
Step 5: Perform problem reduction. 
Compute }0{ˆ ≤∈= icIiI  and }ˆ;.ˆ{ˆ IibaxJjJ jiji ∈=∈= . 

Eliminate row i ∈ Î , and column j, j ∈ Ĵ , from matrix A to 
obtain A’. Also eliminate the jth element, j ∈ Ĵ , from vector b to 
obtain b’. Assign an optimal value x*

i = ix̂ , for i ∈ Î . If b’ is 

empty, assign zero to unassigned x*
i = ix̂ , for i ∈ Î . If b’ is empty 

assign zero to unassigned x*
i and go to Step 11. Otherwise, 

compute J’ = J\ Ĵ  and proceed to the next step. 
 
Step 6: Find singleton Ij. 
Compute }';1|{ JjIIiI jj ∈=∈=  and J  = {j ∈ J’ | xi. aij = 

bj; i ∈ I }. Eliminate row i, i ∈ I  and column j, j ∈ J  from 
matrix A’ to obtain A”. Also, eliminate the jth element, j ∈ J , 
from vector b’ to obtain b”. Assign x*

I = bj / aij, for i ∈ I  and i ∈ 
Ij. If b” is empty assign zero to unassigned x*

I and go to Step 11. 
Otherwise, compute J” = J’\ J  and proceed to the next step. 
 
Step 7: Decompose the problem. 
Decompose the problem by computing equations (16-22). 
 
Step 8: Define sub-problems. 
For each sub-problem l, define problem (11) and its 
corresponding 0-1 inter program using (23). 
 
Step 9: Solve the integer program(s). 
Solve each integer program by using the branch-and-bound 
method. 
 
Step 10: Generate an optimal solution of sub-problem. 
For each sub-problem l, define f 1 = (fj), j ∈ J(1) with fj = i if xij = 
1. Generate F (f*) via formula (10). Define *x(  = ( )**

1 ,..., mxx ((  with 
*
ix(  = Fi (f*). 

 
Step 11: Generate an optimal solution. 
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Combine *x(  with the solution obtained from (5) and (6) to yield 
an optimal solution of problem (3). 
 
For more refer [58]. 
 
 
1.5  Composite FRE-resolution based on Archimedean triangular 
norms 
 
The resolution problem of FRE is one of the most important and 
widely studied problems in the field of fuzzy sets and fuzzy 
systems. The first step for the resolution of a FRE is to establish 
the existence of the solution. If the equation is solvable the 
solution set contains a maximum solution and possibly several 
minimum solutions. It has been proved that the finding of these 
solutions suffices for the finding of solution set. 

[92] present sup t FREs. They prove in most practical cases 
the solution set of sup t FREs is non-empty and provide some new 
criteria for checking the existence of the solution.  

Introducing  the ‘solution matrices’ formulation of the 
problem, we find an “if and only if” condition for the solution 
existence. Then, after a brief description of the most convenient 
algorithm for solving sup-t FREs proposed by [9], a fast algorithm 
is given for determining the solution set of sup-t FREs, where t is 
an Archimedean t-norm.  

Let X, Y, Z be discrete crisp sets with cardinalities n, m and 
k, respectively, and A(X, Y), R(Y, Z), B(X, Z) be three binary 
fuzzy relations constraining its other with the relationship. 
 

A ot R = B,      (1) 
 
where ot is the well-known sup-t composition (t is a triangular 
norm). Eq. (1) can be written in the matrix form 
 

A ot R = B,      (2) 
 
where An x m, Rm x k, Bn x k are the matrix representations of A, R, 
B, respectively. Eq. (2) is the typical form of a fuzzy relation 
equation (FRE) for which the following problems arise: 
 

(i) the resolution of (2) for R, when A and B are 
known, and  
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(ii) the resolution of (2) for A, when R and B are known 
(inverse problem). 

 
It is remarked that if we have a method for solving the first 

problem, using the same method for the equation R-1 ot A-1 = B-1 
that employs transposed matrices, the second problem could be 
solved. Thus, without loss generality, we consider only the first 
problem. Moreover, (2) is actually a set of k simpler fuzzy 
relation equations that can be solved independently and so it 
suffices to consider only the equation 
 

A ot r = b,      (3) 
 
Where rm ×1 and bn ×1 are column vectors of R and B, respectively. 
Clearly, (3) is a system of n equations of the form 
 

a ot r = b,      (4) 
 
where a is a row vector of A. One can easily see that (3) has 
solution for r if and only if (iff) all the n equations of form (4) 
have at least one common solution for r. 

Let S (A, b) be the solution set of (3), i.e. S(A, b) = {r :  
A ot r = b}. It is well known that if S(A, b) ≠ φ, then it contains a 
unique maximal solution r)  and may contain several minimal 
solutions r(  [43]. The solution set is the union of all the lattices 
[ r( , r) ] between each minimal and the maximum solution.  

 

In  Figure 1.5.1, a view of the solution set is illustrated. We 
define the mean solution, as the minimal element of the 

MAXIMUM SOLUTION 

MEAN SOLUTION

MINIMAL SOLUTION 
Figure: 1.5.1 
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intersection of the lattices [ r( , r) ]. Obviously, the mean solution 
always exists (since r)  always belongs to the intersection of the 
lattices [ r( , r) ]) and it is unique. 

The maximum, the mean and the minimum solutions of (2) 
come from the respective solutions of (3) with the aid of the 
following: 
 
(i) The maximum solution is the m × k matrix 

 
[ r) 1 r) 2… r) k],      (5) 

   
where ir

) (i = 1,2,…,k) is the maximum solution of the ith equation 
of form (3). 
 
(ii) The mean solution is the m × k matrix 
 

  [ ]k21 rrr L ,       (6) 
 
where ir  (i = 1,2,…k) is the mean solution of the ith equation of 
form (3). 
 
(iii) The minimum solutions are the m × k matrices 

 
[ r( 1 r( 2… r( k],      (7) 

 
where r( i ∈ iS

(
 (i = 1,2,…, k) and iS

(
 is the minimal solutions set 

of the ith equation of form (3). 
The basis on which equations of form (3) can be solved is the 

simple equation of the form. 
 

t (a, x) = b       (8) 
 
where a and b are given Eq. (8) is actually a special case of (3), 
for n = m = 1. Our purpose in this section is the study of (8). 
 
A function t = [0, 1] × [0, 1] → [0, 1] is a t-norm iff ∀a, b, d ∈ [0, 
1] it satisfies the following four axioms (axiomatic skeleton for t-
norms): 
 
Axiom 1: t (a, 1) = a and t (a, 0)  = 0 
(boundary condition). 
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Axiom 2: b ≤ d implies t (a, b)  ≤  t (a, d) 
(monotonicity). 
 
Axiom 3: t (a, b) = t (b, a) 
(commutativity). 
 
Axiom 4: t (a, t (b, d)) = t (t (a, b), d) 
(associativity). 
 
A  t-norm t is called Archimedean iff  
 
Axiom 5: t is a continuous function. 
 
Axiom 6: t (a, a) < a, ∀a ∈ (0, 1) 
(subidempotency). 
 
The class of t-norms has been widely studied by many 
researchers. It is proved in [43] that min (a, b) is the only 
idempotent t-norm. On the other hand, for any t-norm t it is true 
that [43] 
 

t (a, b) ≤ min (a, b). 
 
Thus, the only continuous t-norm that is not Archimedean is the 
min (a, b). This is a very interesting result, since it suggests a 
separate study of (3) when t is an Archimedean t-norm and when t 
is the min (a, b). 

Equations of the form (8) do not always have a solution and 
when they do have one, it may not be unique. The following 
proposition can be easily proved. 
 
Proposition 1.5.1: Let t be a continuous t-norm and a, b, x ∈ [0, 
1]. The equation t(A, x) = b has a solution for x iff a ≥ b. 
 
Let a t⊗

)
b and a t⊗

(
b denote the maximal and the minimal, 

respectively, solution of (8) (if they exist), i.e. 
 

a t⊗
)

 b = sup {x ∈ [0, 1]: t (a, x) = b}, 
a t⊗
(

 b = inf {x ∈ [0, 1]: t (a, x) = b}. 
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If the solution is unique, it is denoted by a ⊗t b. Based on the 
above notations, the maximal solution operator (max-SO) tω

)  and 
the minimal solution operator. (min-SO) tω

(  are defined as 
follows:  
 

tω
)  (a, b) =  

⎩
⎨
⎧

≥⊗
<

,,
,,1

baba
ba

t)         (9) 

tω
( (a, b) = 

⎩
⎨
⎧

≥⊗
<

,,
,,0

baba
ba

t(     (10) 

 
when (8) has a unique solution, min-SO and max-SO take the 
form 
 

tω
)  (a, b) =  

⎩
⎨
⎧

≥⊗
<

,,
,,1

baba
ba

t  

 

tω
( (a, b) = 

⎩
⎨
⎧

≥⊗
<

,,
,,0

baba
ba

t  

 
Max-SO and min-SO are extensions of the α and the σ operators 
defined by Sanchez [84] for the min t-norm. The max-SO 
extension for any t-norm has been proposed by Di Nola et al [17]. 
[9] proposed the min-SO extension. The definition of max-SO 
given in [43] is 
 

tω
)  (a, b) = sup {x ∈ [0, 1]: t (a, x) ≤ b}.  (11) 

 
For any a, b ∈ [0, 1], it is aba ≤ω ),(min

( and minω
(  (a, b) ≤ b. 

For any a, b, d ∈ [0, 1] with a < b , it is ),(),( minmin dbba ω≤ω
(( . 

For any a, b ∈ [0, 1] and any continuous t-norm t it is                            
t (a tω

( (a, b)) ≤ b. 
For any a, b ∈ [0, 1] and any continuous t-norm t it is tω

)  (a, b) ≥ 

tω
( (a, b). 

 Here the resolution of (3) is studied. First, some conditions 
for the existence of the solution are given and then a resolution  
method is described. [9] has originally proposed the method. It is 
formulated in a different way, based on the solution matrices, in 
order to be more comprehensive. Moreover, some new results are 
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given on the form of the solution matrices as well as on the 
solution of existence problem that help to clear up the underlying 
mechanism of the resolution process of FREs. 
 Let us first proceed with the solution existence problem. Eq. 
(3) has a solution iff all its equations of form (4) have a common 
solution. The following lemma can be established. 

Let a ot r = b a FRE of form (4). We have S (a, b) ≠φ iff there 
exists j ∈ Nm such that aj ≥ b.  

Let A ot r = b be FRE of form (3) with m ≥ n. If for any i ∈ 
Nn there exists j ∈ Nm such that Aij ≥ bi and Akj ≤ bk, ∀k ∈ Nn – 
{I}, then S (A, b) ≠ φ. 

Let t be a continuous t-norm and A ot r = b be a FRE of form 
(3). The matrix mxnΓ  is the mean solution matrix (mean –SM) of 
the FRE, where 
 

ijΓ
)

 = tω
(  (Aji, bj),  ∀i ∈ Nm, j ∈ Nn, 

 
The matrix Γ

)
 is the maximal solution matrix (max-SM) of the 

FRM, where 
 

ijΓ
(

 = tω
(  (Aji, bj),  ∀i ∈ Nm, j ∈ Nn, 

The matrix Γ
)

 is the minimal solution matrix (min-SM) of the 
FRM, where 
 

ijΓ
(

 = tω
)  (Aji, bj),  ∀i ∈ Nm, j ∈ Nn, 

 
The matrix Γ

(
 is the minimal solution matrix (min-SM) of the 

FRE, where 
 

ijΓ
(

 = ⎟
⎠
⎞

⎜
⎝
⎛ ΓΓω

∈
ijikNk n

,infmin
)) , ∀i ∈ Nm, j ∈ Nn, 

 
Let t be a continuous t-norm and A ot r = b be a FRE of form (3). 
If S (Aj•, bj) ≠ φ for any  j ∈ Nn, then 

 

njjj NjbAS ∈∀∈Γ •• ),,(
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where Γ
)

and Γ  is the min-SM and the mean-SM of the equation, 
respectively. 
Let A ot r = b be a FRE of form (3), where t is a continuous t-
norm. The following propositions are equivalent: 
 

(i) S (A, b) = φ; 
(ii) There exists j ∈ Nn, such that j•Γ

(
 = 0 and bj ≠ 0. 

 
Algorithm 1 
 
Step 1: Write down the pseudo-polynomial form of min-SM: 
 

P = C
(

0≠
∈ ∈

∑
Γ

j

n m
b

Nj Ni

iij

i
       (12) 

If ijΓ
(

 = 0, it is omitted from (12). All the operations involved in 
(12) (summation, multiplication, division) are symbolic. 
 
Step 2: Calculate P according to the polynomial multiplication in 
symbolic form. 
 
Step 3: Simplify P by multiplication and then summation. 
Multiply the terms of the sum using the formula 

 

⎪⎩

⎪
⎨
⎧

≠

==
.,

,),(max
,

klunchanged

kl
l

ba

k
b

l
a      (13) 

 
Sum among the terms using the formula 
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Step 4: Suppose that after the Step 3, P has s terms. Then (3) has s 
minimal solutions. They are computed using the following 
equation: 
 

( ))()(
2

)(
1

)( ,...,, i
m

iii rrrr (((( =       (15) 
 
where )()( s

j
i

j cr =( , j = 1, 2, …, m, i = 1, 2,…, s. 
Here some theoretical results are provided that lead to the 

simplification of the method described in the above whenever t is 
an Archimedean t-norm. Note that we have mentioned that the 
only continuous t-norm that is not Archimedean is the 
“minimum”. 

Let us first proceed with some issues on Archimedean                    
t-norms. A very important way for generating Archimedean                
t-norms is based on the so-called decreasing generators. A 
decreasing generator is a continuous and strictly decreasing 
function  f : [0, 1] → R such f (1) = 0. 

The pseudo-inverse of f is a function f 
(–1) : R → [0, 1] defined 

as 
 

f  (-1) (a) = 
⎪
⎩

⎪
⎨

⎧
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)),0((,0
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  (16) 

 
where f –1 is the classical inverse of f. 

A binary operator t : [0, 1] × [0, 1] → [0, 1] is an 
Archimedean t-norm iff there exists a decreasing generator f such 
that t(a, b) = f (–1) (f (a) + f(b)), ∀a, b ∈ [0, 1]. 

Let t be an Archimedean t-norm and a, b, x ∈ [0,1]. The 
equation t(a, x) = b has a solution for x iff a ≥ b. If b ∈(0, 1) the 
solution x0 is unique and x0∈ (0,1]. Left as an exercise for the 
reader to prove.  
 
Algorithm 2 
 
Step 1: Write done the pseudo-polynomial form of Γ: 
 

P =  C
)0≠

∈
=Γ

∈
∑

j

n

jij

m

b
Nj

r
Nj

j      (17) 
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Step 2: Calculate P according to the polynomial multiplication in 
symbolic form. 
 
Step 3: Simplify P by multiplication and then summation. 
 Multiply the sum using the formula 
 

l.k = 
⎩
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klkl
kll

,.
,,
.     (18) 

 
Sum among the terms using the formula 

 
l1. l2…l p + k1.k2…k p 
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Step 4: Suppose that after 3, P has s terms, then (3) has s minimal 
solutions, computed by 
 

⎩
⎨
⎧

∈
=

= .0
,

m
j

j Nj
otherwise

ljr
r(            (20) 

 
We will now show the credibility of the above method. 
       The column vector r)  computed is the maximum solution of 
(3), when t is an Archimedean t-norm. 
 
The column vector r)  so found  is the mean solution of (3), when t 
is an Archimedean t-norm. 
 
Algorithm 2 computes the minimal solution set of (3), if t is an 
Archimedean t-norm. 
 
 
1.6  Solving non-linear optimization problem with FRE constraints  
 
J.Lu, S.C. Fang [61] have used fuzzy relation equation constraints 
to study the non-linear optimization problems. They have 
presented an optimization model with a nonlinear objective 
function subject to a system of fuzzy relation equations. 

The study of the fuzzy relation equations 
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x o A = b     (1) 

 
where A = (aij

 )m × n , 0  ≤  aij  ≤  1 is a fuzzy matrix 1b = (b1,…, 
bn), 0 ≤ bj ≤ 1 is an n-dimensional vector and ‘0’ is the max-min 
composition [117]. 

The resolution of the equation x o A = b is an interesting and 
on-going research topic. [61] in this paper instead of finding all 
solution of x o A = b, let f(x) be the user’s criterion function, they 
solve the following non linear programming model with fuzzy 
relation constrains   

 
min f(x) s.t x o A = b   (2) 

 
A minimizer of Eq. (2) will provide a “best” solution to the 

user based on the objective function f(x). some related 
applications of this model with different objective functions can 
be found in [107] for medical diagnosis, and in [60] for 
telecommunication equipment module test. 

Contrary to the traditional optimization problems [62], 
problem (2) subjects to fuzzy relation constraints. From [34], we 
know that when the solution set of the fuzzy relation equations (1) 
is not empty, it is in general a non-convex set that can be 
completely determined by one maximum solution and a finite 
number of minimal solutions. Since the solution set is non-
convex, conventional optimization methods [60] may not be 
directly employed to solve the problem (2). Recently, [24] studied 
problem (2) with a linear objective function subject to a system of 
FREs and presented a branch and bound procedure to find an 
optimal solution. Here, we focus on problem (2) with a nonlinear 
objective function and call it a nonlinear optimization problem 
with fuzzy relation constraints (NFRC). A genetic algorithm is 
proposed for solving MFRC. It is designed to be domain specific 
by taking advantage of the structure of the solution set of FREs. 
The individuals from the initial population are chosen from the 
feasible solution set. The genetic operations such as mutation and 
crossover are also kept within the feasible region. It is the beauty 
of this genetic algorithm to keep the search inside of the feasible 
solution set. The well-maintained feasibility of the population 
makes the search more efficient. 

Genetic algorithms (GAs) are built upon the mechanism of 
the natural evolution of genetics. GAs emulate the biological 
evolutionary theory to solve optimization problems. In general, 
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GAs start with a randomly generated population and progress to 
improve solutions by using genetic operators such as crossover 
and mutation operators. In each interaction (generation), based on 
their performance (fitness) and some selection criteria, the 
relatively good solutions are retained and the relatively bad 
solutions are replaced by some newly generated off springs. An 
evaluation criterion (objective) usually guides the selection. 

In the past few years, several methods were proposed to 
handle the constrained optimization problem using genetic 
algorithms. Although there was some variation in details among 
these algorithms, most of them used the penalty or barrier method 
[38, 41]. [64-66] introduced some special genetic operators to 
handle the constrained optimization problem, but those operators 
only work for the problems with a convex domain. A genetic 
algorithm for optimization problem with fuzzy relation constraints 
(GAOFRC) was proposed by them. 

Unlike a general-purpose genetic algorithm, the proposed 
GAOFRC is designed specially for solving nonlinear optimization 
problem with fuzzy relation equations is non-convex in general, 
and the feasible domain is only a small portion of the convex hull 
of it, no existing method is readily available for solving NFRC, 
with the structure inside its feasible domain. 

The proposed GAOFRC uses floating-point representation for 
individuals. Instead of randomly generating a population, the 
initialization process generates a feasible population utilizing the 
structure of fuzzy relation equation. The genetic operators are 
then designed to keep the feasibility of the individuals while they 
evolve. Those solutions with better objective function values will 
have higher opportunities to survive in the procedure. The 
algorithm terminates after it takes a pre-determined number of 
generations. 

In GAOFRC, we use the floating point representation in 
which each gene or variable xi in an individual x = (x1, x2,…, xm) 
is real number from the interval [0 1] since the solution of fuzzy 
relation equations are nonnegative numbers that are less than one. 
More specifically individual x → (x1, …, xm) where xi ∈ [0, 1],            
i = 1, 2, …, m.    

Compared to the GAs which have no feasibility requirement, 
GAOFRC’s feasibility of individuals limits the search process to a 
much smaller space.  

In general, a GA initializes the population randomly. It works 
well when dealing with unconstrained optimization problems. 
However, for a constrained optimization problem, randomly 
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generated solutions may not be feasible. Since GAOFRC intends 
to keep the solutions (Chromosomes) feasible, we present an 
initialization module to initialize a population by randomly 
generating the individuals inside the feasible domain. 

Since some elements will never play a role in determining the  
solutions to fuzzy relation equations. Therefore, we can modify 
the fuzzy relation matrix by identifying those elements and 
changing their values to us with the hope of easing the procedure 
of fining a new solution. To make it clear, we define some 
“equivalence operators”. 
 
DEFINITION 1.6.1: If a value-changing in the element(s) of a 
given fuzzy relation matrix A has no effect on the solutions of 
fuzzy relation equations (1). This value changing is called an 
equivalence operation. 
 
Lemma 1.6.1: For j1, j2 ∈ {1, 2,…,n}, if 

2121
, jijjj babb ≥> and 

22 jij ba > for some i, then “resetting 
1ija  to zero” is an 

equivalence operation. 
 

Based on this idea, the initialization module originates a 
population consisting of a given number of randomly generated 
feasible solutions. The algorithm for initializing is described as 
follows: 
 

• Get the matrix A, b, and size of population Psize. 
• Compute the potential maximum solution x̂  as follows:  

xm
jij

n

j
babAx

11
)@()@(ˆ ⎥
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aij @ bj = 
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jijj

jij

baifb
baif

 

 
• If x̂ o A = b, continue. Otherwise, stop, the problem is 

infeasible. 
• Simplify matrix A by the equivalence operations. 
• For each element aij of A, 

Initialize a lower bound parameter lb(i,j) = 0. 
• For i = 1, …, m, j = 1, …, n 
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If aij ≥ bj, set lb (i,j) = bj; 
• For i = 1, …, m, 

Set the maximal lower bound LBmax(i) = maxn
j=1 lb(i, j). 

• Set k = 1. 
• WHILE (k < Psize) 

For i = 1,…,m, 
 Generate a random number pop (k, i) in the interval 
 [LBmax(i), x̂  (i)] 
       Set k ← k + 1. 

• Output matrix [pop 
msizePik

×
)],( as the initial population 

of size Psize. 
 
Basically, we took up each individual equation and obtained the 
lower bound for the solutions for each variable xi. Then, we 
compute the maximal lower bound for each xi. [LBmax(i), x̂ (i)]  is 
usually an interval. The collection of these intervals we can 
generate a random number in the interval [LBmax(i), x̂ (i)] for 
each xi. 

P(Select the rth individual) = q1 (1-q)(r-1), 
 
where q is the probability of selecting the best individual, r is the 
rank of the individual, q’ = q/(1- ),)1( sizePq−  and Psize is the 
population size. 

Because GAOFRC would like to stay feasible, we cannot 
mutate the chromosomes randomly. Although various mutation 
operators handling the constrained optimization problems have 
been proposed in the literature [38, 41, 61, 65], they are all 
designed for the convex problems. There seldom is any mutation 
operator available.  
 
Table 1 
Elements for each columns such that aij ≥ bj 
 

Column 1  Column 2   Column 3    Column 4   Column 5 
a21, a31       a32                           a43               a14, a24, a54,      a45 
 
for the non-convex problem. In what follows, we present a 

mutation operator for GAOFRC whose feasible domain is non-
convex. 
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Note that a chromosome in GAOFRC is represented by a 1 × 
m vector x = (x1, x2,…, xm). For a given chromosome x1 = 
( )11

2
1
1 ,,, mxxx L , we define a feasible mutation operator that 

mutates the chromosome by randomly choosing i0 from 1, 2,…,m 
and decreasing 1

0ix to a random number between [0, 1
0ix ], while 

this operation may make the chromosome x1 infeasible we can 
adjust other x1

j. i ≠ i0, to make x1 feasible. In fact, the adjustment 
of making the infeasible solution become feasible in nothing but a 
process of finding a new solution. When the changing of 1

0ix pulls 
the x1 outside of the convex hull of the feasible domain, 
decreasing 1

0ix results in an infeasible solution no matter how 
other x1

i s are adjusted. In this case, GAOFRC will neglect this 
decreasing operation and find another x1

i to decrease. Since both 
the choosing of x1

i and the extent of decreasing are randomly 
done, it is guaranteed that a feasible mutation is eventually 
attainable. We present a feasible mutation operation as follows: 
 

1. Get the simplified matrix A, b and x = (x1, x2,…, xm). 
 

2. Find the decrease set D, a subset of {1, 2,…,n}, such that 
there are more than  one aij at column j of A satisfying 
that aij ≥ bj, for i∈D. 

 
3. Randomly choose an element k from D; generate a 

random number x’k from the interval [0, xk], set x ← (x1, 
x2,.., x’k,…,xm). 

 

4. If ∨
=

m

i 1
 (xi Λ aij) = bj, ∀j, go to step 7; otherwise, go to 

next step. 
 

5. Generate the increase set N = D – {k}. 
 

6. For an equation j in which x is not satisfied, randomly 
choose an element xl from the increase set N such that xl 
< bj and alj  ≥ bj. Set x1 = bj, go to step 4. 

 
7. Go to crossover operation. 
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However, since the feasible domain of FRE is non-convex, the 
linear combination of two feasible individuals will very likely 
result in an infeasible one. Notice that the feasible domain of FRE 
is comprised of several connected convex sets that have a 
common maximum point (solution). We can take advantage of 
this special structure and call the maximal solution a “super” 
point. 
 
DEFINITION 1.6.2: If a non-convex set is a union of a number of 
connected, convex subsets and the intersection S0 of these subsets 
is not empty, then any point s of S0 is called a superpoint. 
 
From this definition, the maximum point of the feasible domain of 
FRE is a superpoint. In a connected set, S, for any two points of S, 
a linear contraction and extraction can be defined. 
 
DEFINITION 1.6.3: Given a connected set S and any two points x1, 
x2 of S, 0 ≤ λ ≤ 1, γ ≥ 1, 
(i) A linear contraction of x1 supervised by x2 is defined by 
  

x1 ← λx1 + (1- λ)x2. 
 
(ii) A linear extraction of x1 supervised by x2 is defined by 
 

x1 ← γx1 – (γ -1)x2. 
 
Once the linear contraction and linear extraction are defined, we 
can present a “three-point crossover operator. Unlike most of the 
crossover found in the literature [4, 10, 12, 18, 38, 41, 61, 65, 
111], the three-point crossover performs several operations for a 
point (parent). The operations on a parent will be both supervised 
by a superpoint and supervised by another parent. 

Since the existing theory of genetic algorithms cannot 
provide measurement for the performance empirical 
computational testing is necessary. Test problems for 
computational experiments usually come from three different 
sources: 
 

1. Published examples. 
2. Problems taken from real world applications. 
3. Randomly generated test problems. 
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Since the NFRC problem is in its early research, no published 
example is available. In this section, we propose a method for 
constructing test problems for NFRC. 

To characterize the system of fuzzy relation equations (1), we 
introduce a pseudo-characteristic matrix P. 
 
DEFINITION 1.6.4: Given a system of fuzzy relation equations (1), 
a pseudo-characteristic matrix P = (pij)mxn is defined as 
 

Pij = 
⎪
⎩

⎪
⎨

⎧

<−
=
>

,1
,0
,1

jij

jij

jij

baf
baf
baif

 

 
With the help of p-matrix, we have: 
 
THEOREM 1.6.5: (Sufficient conditions for existence of solutions). 
For each column j of matrix A, if  
 

(i) there is at least one pij ≠-1, and 
(ii) pij = 1 and bj’ > bj implies that pij’ ≠ 1, 

 
then X (A, b) ≠ φ. 
 
For more about the proof please refer [61]. 
 
 
1.7  Method of Solution to FRE in a complete Brouwerian lattice 
 
Wang, X. [109] has given a method of solution to FRE in a 
complete Brouwerian  lattice. Di Nola et al [17, 19] point out the 
problem of solving a FRE in a complete Brouwerian  lattice. 

Unfortunately, how to solve a FRE in a complete Brouwerian 
lattice is still an open problem [17]. To this problem, although 
[84] has given the sufficient and necessary condition to 
distinguish whether a FRE has a solution, and got the greatest 
solution in its solution set when it has a solution in [84], whether 
there exists a minimal element in the solution set and the 
determination of the minimal elements (if they exist) remain open 
in the finite case as well as in the infinite case. Here, we first 
show that there exists a minimal element in the solution set of a 
fuzzy relation equation A ʘ X = b (where A = (a1, a2,…, an) and b 
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are known, and X = (x1, x2,…, xn)T are unknown) when its 
solution set is nonempty and b has an irredundant finite join-
decomposition. By the way, we give the method to solve A ʘ X = 
b in a complete Brouwerian lattice under the same conditions. 
Finally, a method to solve a more general FRE in a complete 
Brouwerian lattice when its solution set is nonempty is also given 
under similar conditions. All the works are completed in the case 
of finite domains. 

It is assumed that L = 〈L, ≤, ∨, ∧〉 is a complete Brouwerian 
lattice with universal bounds 0 and 1, where a ∨ b = sup {1, b},    
a ∧ b = inf {a, b},”≤” stands for the partial ordering of L. The 
formulas a ≤/  b and b ≥/  a both mean that a ≤ b does not hold. We 
also assume that X and Y are two finite sets. A mapping A : X → 
L is called a fuzzy set of X. A mapping R : X × Y → L is called a 
fuzzy relation between X and Y. Let X = {x1, x2,…, xn}, Y = {y1, 
y2,…, ym}, n  = {1, 2,…n}, m  = {1, 2,…m}, k  = {1, 2,…k}, 
then a fuzzy set A of X can be denoted by a row vector A = (a1, 
a2,…, an) or a column vector A = (a1, a2,…, an)T (the sign “T” 
denotes the “transpose”), where ai ∈L, i ∈ n . 
 
DEFINITION 1.7.1 [17]: Let R = (rij)n× m and A =  (a1, a2,…, am)T, 
we define the max-min composition of R and A to be the fuzzy set 

B = (b1, b2,…bn)T, in symbols B =  R ʘ A, given by bi = ∨
=

m

j 1
 (rij  ∧ 

aj) for any i ∈ n . 
 
We propose three problems: 
 
(q1)  Given R and B, determine X = (x1, x2,…, xm)

T such that 
 
B =  R ʘ X    (1) 

 
holds. The solution set of (1) is denoted by ℵ1. 

 
(q2)  Given A and B determine X = (xij)nxm  such that  

 
B =  X ʘ A    (2) 

 
holds. The solution set of (2) is denoted by ℵ2. 
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(q3)  Given b ∈ L and A = (a1, a2,…, an), determine X = (x1, x2,…, 
xn)T such that 

b = A ʘ X 
 
holds. The solution set of (3) is denoted by ℵ3. Such fuzzy 
relation equations are called fuzzy elementary equations. 
 
Proposition 1.7.1: ℵ3 ≠ φ iff (if and only if) (A α b)T ∈ ℵ3. 
Further, (A α b)T ≥ X for any X ∈ ℵ3. 
 
THEOREM 1.7.2: If ℵ3 ≠ φ, then ℵ3 has minimal elements. 
 
 
1.8  Multi objective optimization problems with FRE constraints  
 
[59] have studied a new class of optimization problems which 
have multiple objective functions subject to a set of FRE since the 
feasible domain of such a problem is in general non convex and 
the objective functions are not necessarily linear, traditional 
optimization methods become ineffective and inefficient. 

Taking advantage of the special structure of the solution set, a 
reduction procedure is developed to simplify a given problem. 
Moreover, a genetic-based algorithm is proposed to find the 
“Pareto optimal solutions”. 

Let X = [0,1]m, I = {1, 2,…, m} and J = {1, 2,…, n}. Also, let 
A be an m × n matrix, [aij]m×n, and b be an n-dimensional vector 
[bj]1xn, such that aij ∈ [0, 1], for all i∈I and j∈J. Given A and b, a 
system FRE is defined by 
 

x o A = b     (1) 
 
where “o” represents the max-min composition [117]. A solution 
to (1) is a vector x = (x1,…,xm), 0 ≤ xi ≤ 1, such that 
 

Ii∈
max [min(xi, aij)] = bj, ∀ j ∈ J.   (2) 

 
In other words, the optimization problem we are interested in has 
the following form: 
 
Minimize {f1(x), f2(x),…,fk(x)}.     (3) 
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Such that  
x o A = b  
0 ≤ xi ≤ 1, i ∈ I 

 
where fk(x) is an objective function, k ∈ K = {1, … , p}. 
 
This problem was first studied in [108] for medical applications, 
with fk being linear, for k∈K. The properties of efficient points 
were investigated and some necessary and sufficient conditions 
for identifying efficient points were provided. To facilitate 
decision making, a procedure was presented to transform the 
efficient point in an “interval-valued decision space” into a 
“constant-valued decision space” with a given level of confidence. 
This transformed problem becomes a multi-attribute decision 
making problem that can be evaluated by Yagar’s method [112] to 
find an optimal alternative. Unfortunately, the work requires the 
objective functions to be linear and it also requires the knowledge 
of all minimal solutions of system (1), which is not trivial at all. 

Here, fk is no longer required to be linear and the information 
of minimal solutions may be absent. A genetic algorithm (GA) is 
proposed to solve multi-objective optimization problems with 
FRE constraints. It is a stochastic searching method which 
explores the solution space by evaluating the population at hand 
and evolving the current population to a new one. Since each 
objective may not be commensurable, it is desirable to achieve a 
set of non-dominated criterion vectors. 

For problem (3), let X be the feasible domain, i.e. X = {x 
∈Rm⏐x o A = b, 0 ≤ xi ≤ 1, ∀i}. For each x ∈ X, we say x is a 
solution vector and define z = (f1(x), f2(x),…,fp(x)) to be its 
criterion vector. Moreover, we define Z = {z ∈Rp ⏐Z = (f1(x), 
f2(x),…,fp(x)), for some x ∈ X. 
 
DEFINITION 1.8.1: A point x ∈ X is an efficient or a Pareto 
optimal solution to problem (3) if and only if there does not exist 
any x ∈ X such fk(x) ≤ fk ( x ),∀k∈K, and fk(x) < fk ( x ) for at least 
one k, otherwise, x is an inefficient solution. 
 
DEFINITION 1.8.2: Let z1, z2 ∈ Z be two criterion vectors. Then, z1 
dominates z2 if and only if z1 ≤ z2 and z1 ≠ z2. That is , 2

k
1
k zz ≤  ∀ 

k ∈ K, and 2
k

1
k zz <  for at least one k. 
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DEFINITION 1.8.3: Let ∈z Z. Then, z  is non-dominated if and 
only if there does not exist any z∈ Z that dominates, z  is a 
dominated criterion vector. 
 
The idea of dominance is applied to the criterion vectors whereas 
the idea of efficiency is applied to the solution vectors. A point 
x ∈ X is efficient if its criterion vector is non-dominated in Z. 
That is, from an efficient point, it is not possible to move feasibly 
so as to decrease one of the objectives without necessarily 
increasing any other objective. The set of all efficient points is 
called the efficient set or Pareto optimal set. Also, the set of all 
non-dominated criterion vectors is called the non-dominated set. 
In the absence of a mathematical specification of the decision 
maker’s utility function, we can only provide the decision maker 
with the Pareto optimal set for further analysis. For a problem 
with multiple linear objective functions, the concept of cones and 
related properties were used by [93] to characterize the Parato 
optimal solutions. [108] also used that concept to identify the 
efficient set. 

A system of FRE may be manipulated in a way such that the 
required computational effort of the proposed genetic algorithm is 
reduced. Due to the requirement of x o A = b, some components 
of every solution vector may have to assume a specific value. 
These components can therefore be set aside from the problem. 
The genetic operators are then applied to this reduced problem. 

Without loss of generality, we assume that the components of 
vector b are ordered in a decreasing fashion, i.e., b1 ≥ b2 ≥… ≥ bn. 
And, matrix A is rearranged correspondingly. Notice that the 
maximum solution x̂  can be obtained by the following formula 
[34]: 
 

Ii
jij

n

j
babAx

∈
= ⎥

⎦

⎤
⎢
⎣

⎡
∧== )@(@ˆ

1
    (4) 

 
where “∧” is the min operator and  
 

aij @ bj = 
⎩
⎨
⎧

>
≤

.

1

jijj

jij

baifb
baif

.    (5) 

 
This x̂  can then be used to check whether the feasible domain is 
empty. If 
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Ii∈
max [min( ix̂ , aij)] = bj, ∀ j ∈ J   (6) 

 
then x̂  is the maximum solution of (1). Otherwise, problem (3) is 
infeasible. For detection of zero procedure please refer [59].  

Some of the elements in A play no role in the determination 
of solutions. These elements if used as a part of constraint 
satisfaction for some constraint may lead to the violation of 
another constraint. We shall detect such elements and modify 
them accordingly. 
 
DEFINITION 1.8.4: If a value-change in some element(s) of a 
given fuzzy relation matrix A has no effect on the solutions of the 
corresponding fuzzy relation equations, this value-change is 
called an equivalence operation. 
 
The reader is expected to prove the following lemma:  
 
Lemma 1.8.1: For j1, j2 ∈ J, if 

1jb > 
2jb , and for some i∈I, 

11 jij ba ≥ and 
22 jij ba > , then changing 

1ija to be zero is an 
equivalence operation [61]. 
 
We now determine which components of every solution vector 
can assume only a specific value in order to satisfy system (1) to 
further simplify the system of FRE. The concept of “pseudo-
characteristic matrix” [51] will be employed to detect such 
components. Notice that for constraint j, j∈J, if there exists only 
one aij that is greater than or equal to bj, then only the ith 
component of solution vectors can satisfy this constraint. In this 
case, the value of the ith component depends upon the value of aij. 
If aij > bj, then xi can assume only a single value, bj. If this is the 
case, the ith component of any solution vector has to be fixed and 
can be eliminated from the problem. 
 
DEFINITION 1.8.5: Given a system of FRE (1), a “pseudo-
characteristic matrix” P = [Pij]mxn is defined as 
 

Pij = 
⎪
⎩

⎪
⎨

⎧
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=
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jij

jij

jij
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This pseudo-characteristic matrix will be referred to as a p-
matrix. 
 
DEFINITION 1.8.6: Given the maximum solution x̂ , if there exists 
some i∈ I and some j∈ J such that ix̂  ∧ aij = bj, then the 

corresponding aij of matrix A is called a critical element for x̂ . 
 
Lemma 1.8.2: If aij is a critical element, then pij  ≥  0. 
 
It is left for the reader to supply proofs for the following lemmas:  
 
Lemmas 1.8.3: For column, j if there is only one i ∈ I such that 
pij = 1 and pi’j = – 1 ∀ i’ ≠ i,  then ix̂  = ix(  = bj. 
 

Let C be the desired number of regions for containing 
efficient solutions and let P be the size of the efficient set E. To 
divide data points into C regions or clusters, we apply the concept 
of fuzzy clustering [4]. The idea is to find the degree of belonging 
of each data point to each cluster. Data points that belong to the 
same cluster should be “close” to each other. This closeness is 
measured by the membership value which is calculated from the 
distance of the current point from the centre of the cluster 
compared with those of other points. Given the membership value 
with respect to that cluster is the maximum value as compared to 
its membership values with respect to other clusters. 
 
DEFINITION 1.8.7: The matrix U~ =[µcp] is called a fuzzy c-
partition if it satisfies the following conditions [4]. 
 

1. µcp ∈ [0, 1]. 1 ≤ c ≤ C, 1 ≤ p ≤ P, 
2. ∑ =

=µ
C
c cp1

,1 1 ≤ p ≤ P, 

3. 0 < ∑ =
µ

p
p cp1

 < P, 1 ≤ c ≤ C. 

 
The fuzzy c-partition matrix, U~ , is a matrix of degrees of 
belonging to clusters of solutions, µcp represents the membership 
value to cluster c of solution p.  
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The location of a cluster is represented by its cluster center 
( ) qc

q
cc R∈υυ=υ ,...,1 , c = 1, …, C around which the data 

points are concentrated. Q is the number of dimensions of 
solutions. 
 

To determine the fuzzy c-partition matrix, U, we need to find 
the centers of clusters which can be obtained by using different 
methods. One of the frequently used criterion to identify the 
clusters in the so-called variance criterion [117]. The variance 
criterion measures the dissimilarity between points in a cluster 
and its cluster center by the Euclidean distance. This distance, dcp 
is calculated by [4] 
 

dcp   =  d(xp, νc) 
=  cpx ν−  

=  ( )
2

1

1

2
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⎡
ν−∑

=

q

j

c
j

p
jx .   (9) 

 
The variance criterion for fuzzy partitions corresponds to 

solving the following problem. 
 

(*) Min z (U~ , ν) = ∑∑
= =
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c = 1,…, C,          (8) 
where µcp is determined by  
 

µcp = ,
)/1(

/1

)1/(12

1

)1/(12
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c = 1,…, C; p = 1,…, P and m > 1 is given. 
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The system of (*) cannot be solved analytically. However, 
there exist some iterative algorithms, which approximate the 
optimal solution by starting from a given solution. One of the 
best-known algorithms for the fuzzy clustering problem is the 
fuzzy c-means algorithm [4]. For each m ∈ (1, ∞), a fuzzy c-
means algorithm iteratively solves the necessary conditions (8) as 
well as (9), and converges to a local optimum. It can be described 
as follows: 

A goal of multi-objective optimization is to obtain the Pareto 
optimal set. We tested some optimization problems with both 
linear and nonlinear objective functions. For the linear case, we 
can theoretically obtain the Pareto optimal set given that the 
feasible domain is known. The theoretical Pareto optimal set is 
then used to compare with the results from the proposed genetic 
algorithm. For the non-linear case, we consider problems whose 
Pareto optimal sets can be identified. This allows us to precisely 
analyze the results. We show that our genetic algorithm is capable 
of finding the Pareto optimal set quite efficiently. 

The Pareto optimal set may contain only one solution, a finite 
number of solutions, or an infinite number of solutions. This 
depends on the objective functions under consideration. Given 
different locations of the Pareto optimal set, we wish to 
investigate whether the proposed genetic algorithm can locate this 
set. For a problem with multiple linear objective functions, the 
concept of cones and their properties given by Steuer [93] and the 
results from Wang [108] will be used to identify the efficiency 
set. 
 
 
1.9  Neural fuzzy relational system with a new learning algorithm  
 
[92] has given to neural fuzzy relational systems a new learning 
algorithm. Fuzzy relational systems can represent symbolic 
knowledge in a formal numerical frame work with the aid of FRE. 

It is actually a single layer of generalized neurons 
(compositional neurons) that perform the sup-t-norm composition. 
An on-line learning algorithm adapting the weights of its 
interconnections is incorporated into the neural network. These 
weights are actually the elements of the fuzzy relation 
representing the fuzzy relational system. 

Fuzzy inference systems are extensions of crisp point-to-
point into set-to-set mappings, i.e. mappings from the set of all the 
fuzzy subsets of the input space to the set of all the fuzzy subsets 
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of the output space [43]. One of the widely used ways of 
constructing fuzzy inference systems is the method of 
approximate reasoning which can be implemented on the basis of 
compositional rule of inference. Different criteria have been 
proposed for the approximate reasoning to satisfy relevant 
conditions. The most useful is that of the perfect recall. Fuzzy 
inference systems that satisfy the perfect recall criterion can be 
implemented with the aid of max-min fuzzy relation equations 
(FREs) [17]. 

The need for more general research [3, 31-33, 37] lead to the 
representation of fuzzy inference systems on the basis of 
generalized sup-t-norm FREs [17, 91, 92]. A t-norm (triangular 
norm) is a function t: [0,1] x [0,1] → [0, 1] satisfying for any a, b, 
c, d ∈ [0, 1] the next four conditions: 
 

1. t(a, 1) = a and t(a, 0) = 0. 
2. b ≤ d implies t(a, b) ≤ t(a, d). 
3. t(a, b) = t (b, a). 
4. t(a, t(b, d)) = t(t(a, b), d). 

 
Moreover, it is called Archimedean iff 
 

1. t is a continuous function. 
2. t(a,t (a, a) < a, ∀a ∈(0, 1). 

 
The class of t-norms has been studied by many researchers [32, 
40, 92]. Their results are useful in the theory of FREs. 

As previously explained, the union-intersection composition 
of fuzzy relations is one of the key issues of fuzzy set theory. In 
[91-92] a type of neuron that implements this operation is 
proposed. This type of neuron is referred to as compositional 
neuron. Pedrycz [79] and Wang [106] have proposed similar types 
of neurons, for the sup-min and the sup-product composition, 
respectively.  

The general structure of a conventional neuron can be shown 
in Figure 1.9.1. The equation that describes this kind of neuron is 
as follows: 
 

y = a ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂+∑

=

n

k
ii xw

1
     (1) 
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where a is a non-linearity, ∂ is a threshold and wi are weights that 

can change on-line with the aid of a learning process. 
The compositional neuron has the same structure with the 

neuron of Eq. (1) (Figure 1.9.1), but it can be described by the 
equation: 
 

y = a ⎟
⎠
⎞

⎜
⎝
⎛

∈
),( iiNj

wxS
n

     (2) 

 
where S is a fuzzy union operator (an s-norm), t is a fuzzy 
intersection operator (a t-norm) and a is the activation function: 
 

   a (x)  =  
⎪
⎩

⎪
⎨

⎧

∞+∈
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−∞∈

),0(,1
],1,0[,
),0,(,0
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xx
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which is widely used in neural networks, From Eqs. (1) and (2), a 
similarity between the two neurons can be shown, since 
multiplication is a special case of an intersection operator and 
addition is a special case of a union operator. Compositional 
neurons can be used in more than one ways in order to construct a 
neural fuzzy system.  

There are two different ways to use compositional neurons. 
Firstly, a general inference system that implements the relational 
equation of the approximate reasoning and secondly a general 
neural fuzzy system of arbitrary level of fuzziness implementing 
the interpolation method, are proposed. Here a single-layer neural 
network of compositional neurons is provided for the 
representation (identification) of a generalized fuzzy inference 

x1 
 
x2 
 

. 

. 

. 
 

xm 

u  a(u) 

w1 

w2 

w3 
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Figure: 1.9.1 
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system. We first provide the reader with the formal problem 
statement. 

Let X = {x1, x2,…, xm} and Y = {y1, y2,…,yk} be two finite 
crisp sets and let D = {Ai, Bi}, i∈Nn} be a set of input-output data 
with Ai ∈ F (X) and Bi ∈ F (Y), given sequentially and randomly 
to the system (some of them are allowed to reiterate before the 
first appearance of some others). The data sequence is described 
as (A(υ), B(υ)  ), ν∈N, where (A(υ), B(υ)  ), ∈D. The main problem 
that arise is the finding of the fuzzy relation R (the fuzzy system) 
for which the following equation holds: 
 

Ai ot R = Bi for each i ∈ Nn   (3) 
 
where t is a continuous t-norm. 

In order to construct an efficient learning algorithm, the total 
error has to be determined. For this reason Pedrycz proposed [75-
80] the maximization of an equality index F(υ) (y) of the network 
output compared with the desired output B(υ). The problem solved 
by Pedrycz has some differences with the problem solved here, 
since all the data is assumed to be known before the beginning of 
the training process. Our case is more difficult, since the data are 
unknown before the beginning of the training. On the other hand, 
we suppose that the respective FRE is solvable. The equality 
index is defined by: 
 

Figure: 1.9.2 
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F(υ) (yi) ≡ B(υ) (yi)] = 
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The instant error is defined by: 
 

)]()([1 )()()(
iii yByFE υυυ ≡−=       (6) 

 
which is actually the Hamming distance. We try to minimize the 
total error 
 

∑ υυ =
i

iEE )()(           (7) 

 
at any time. 
 
 
1.10  Unattainable Solution of FRE 
 
[35] have obtained a necessary and sufficient condition for the 
existence of a partially attainable and an unattainable solution. 

Let U and V be nonempty sets, and let L(U), L(V), and L(U × 
V) be the collections of fuzzy sets of U, V and U × V, 
respectively. Then an equation  

 
X o A = B       (1) 

 
is called a FRE, where A ∈ L (U × V) and B ∈ L (V) are given 
and X ∈ L (U) is unknown, and o denotes the ∧-∨ composition. A 
fuzzy set X satisfying the equation above is called a solution of 
the equation. If µx: U → I, µA : U × V → I, and µB: V → I are 
their membership functions where I denotes the closed interval [0, 
1] Eq. (1) is as follows: 
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⎟
⎠
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)(µ)),u(µ)u(µ(V)V( BAX

U
. 

 
The solution set of FRE has been investigated by many 
researchers [34, 36, 39, 44, 46, 62, 68, 71, 84, 105], and several 
important properties are shown. Especially, in the case that U and 
V are both finite sets, it is shown that the solution set is 
completely determined by the greatest solution and the set of 
minimal solutions. However, when the cardinality of either U of 
V is infinite, a few properties about the solution set are 
investigated [39, 62, 105]. Here we use the concept of attainability 
to clarify some properties of the solution set of Eq. (1). 
 
DEFINITION 1.10.1: Let µX and µY be membership functions of 
fuzzy set X, Y ∈ L(U), respectively. Then, the partial order ≤, the 
join ∨, and the meet ∧, are defined as follows: 
 

µX ≤ µY ⇔ (∀u∈U) (µX(u) ≤ µY (u)), 
µX ∨ µY: U ∋ u a µX (u) ∨ µY (u) ∈ I, 
µX ∧ µY: U ∋ u a µX (u) ∧ µY (u) ∈ I, 

 
Note that µX ≤ µY is equivalent to X ⊂ Y for X, Y ∈ L(U). 
 
DEFINITION 1.10.2: Let ℵ  ⊂ L(U) be the solution set of Eq. (1). 
The greatest solution of Eq. (1) is an element G ∈ ℵ such that µX 
≤ µG (that is X, ⊂ G) for all X ∈ ℵ. A minimal solution of Eq. (1) 
is an element M ∈ ℵ such that µX < µM (that is, X ℵM) for no X ∈ 
ℵ. Moreover, ℵo denotes the set of minimal solutions. 
 
DEFINITION 1.10.3: For a, b ∈ [0, 1] 
 

a α  b ∆ 
⎩
⎨
⎧ ≤

otherwiseb
baif ,1

. 

 
Attainability of a solution 
 
When X ∈ L(U) is a solution of Eq. (1)  
 

(∀υ∈V) (∀u∈U) (µx(u) ∧ µA (u, υ) ≤ µB (υ)) 
 
holds. Moreover, when U and V are both finite sets,  



 

 69

 
(∀υ∈V) (∃ uυ∈U) (µX (uυ) ∧ µA (uυ,υ) = µB (υ)) 

 
holds. Thus, we introduce the concepts of attainability and 
unattainability of a solution. 
  
DEFINITION 1.10.4: Let X ∈ L (U) be a solution of Eq. (1), and let 
V1 be a nonvoid subset of V, then 
 
X is attainable for V1 

 
⇔ ( ) ( ) ( ) ( )( ))(, 1111 111

υµ=υµ∧∈∃∈υ∀ υυ BAuX uuµUuV  
 
X is unattainable for V1 
 

⇔ ( ) ( ) ( ) ( )( ))(, 1111 υµ<υµ∧∈∀∈υ∀ BAX uuµUuV . 
 
Moreover, the set of solutions which is attainable for V1 ⊂ V is 
denoted by )(

1

+
υℵ  and the set of solutions which is unattainable for 

V1 ⊂ V is denoted by )(
1

−
υℵ . 

 
Note that when the set U and V are both finite, all solutions are 
attainable for V, that is, 

ℵ = )(
1

+
υℵ . 

 
DEFINITION 1.10.5: Let X ∈ L(U) be a solution of Eq. (1), and let 
V1 and V2 be a nonvoid subsets of V satisfying V1 ∩ V2 = φ and   
V1 ∪ V2 = V, then  
X is an attainable solution ⇔ X ∈ )(

1

+
υℵ  

 
X is a partially attainable solution 

 
⇔ X ∈ )(

1

+
υℵ  ∩ )(

2

−
υℵ  

 
X is an unattainable solution ⇔ X ∈ )(

2

−
υℵ . 
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In [73], attainability is used for consideration about the extension 
principle for fuzzy sets. In a FRE the following properties about 
the set of attainable solutions are known. 
 
THEOREM 1.10.6 [62]: Let X̂  be the greatest solution given in 
Theorem 1, then, 
 

)(
1

+
υℵ  ≠ φ ⇔ X̂ ∈ )(

1

+
υℵ . 

 
THEOREM 1.10.7 [62]: 

 
X ∈ )(

1

+
υℵ  ⇔ (∃Xg ∈ )(

1

+
υℵ )µX ≤ µX ≤ X̂µ ). 

 
A fuzzy set Xg in Theorem 5 is called the reachable quasi-
minimum solution of Eq. (1). 
 
THEOREM 1.10.8 [39]: If V is a finite set, then, X̂ ∈ )(

1

+
υℵ  ⇔ ℵo 

≠ φ. 
 
Some properties of the set of partially attainable and unattainable 
solutions, here, we show some properties about a partially 
attainable solution and an unattainable one. The following 
definition is useful for characterizing such kinds of solutions. 
 
DEFINITION 1.10.9: For a, b ∈ I, we define β-operator as follows: 
 

  
⎩
⎨
⎧ <

∆βα
.

,1
otherwiseb

baif
b  

 
Note that for a, b ∈ I, 

 
a α b = sup {x∈ [0, 1] a ∧ x ≤ b}    

and  
a β b = sup {x∈ [0, 1] a ∧ x < b}.    

 
 
1.11  Specificity shift in solving FRE 
 
The specificity shift method can be classified as an approach 
situated in between analytical and numerical methods of solving 
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FRE. It relies on the original structure of the solution originating 
from the theory and simultaneously takes advantage of some 
optimization mechanisms available in the format of the parametric 
specificity shift affecting the relational constraints forming the 
FRE to be solved.  

In this sense the optimal threshold values of the 
transformation functions provide with a better insight into the 
character of the data to be handled especially when it comes to 
their overall consistency level. In this study we are concerned 
with an important category of FRE with the max-t composition. 
 

X □ R = y,    (1) 
 

where “t” is assumed to be a continuous t-norm while X, y and R 
are viewed as fuzzy sets and a fuzzy relation defined in finite 
universes of discourse. The problem of analytical solutions to 
these equations has been pursued in the depth; refer e.g. of the 
monograph by Di Nola et al. [17] as helpful source for the most 
extensive coverage of the area; see also [13]. On the applied side, 
these equations call for approximate solutions as quite often no 
analytical solutions can be generated. This pursuit has been 
handled with the aid of various techniques. 
 
The approach introduced here falls under the category of data 
preprocessing by proposing the use to the well-known theoretical 
results to carefully preprocessed data (relational constraints). The 
emerging essence is what can be called a specificity shift of 
relational constraints being aimed at the higher solvability of the 
resulting FRE.  

The problem is stated accordingly: Given is a collection of 
fuzzy data (treated as vectors in two finite unit hypercubes ) (x(1), 
y(1)), (x(2), y(2)),…,, (x(N), y(N)) where x (k) ∈ [0, 1]n and y (k) 
∈ [0, 1]m. Determine a fuzzy relation R satisfying the collection of 
the relational constraints (fuzzy relational equations) 
 

x (k) □ R = y(k).   (2) 
 
Expressing (2) in terms of the corresponding membership 
functions of x(k), y(k) and R we derive  
 

yj (k) = ],)([
1

iji

n

i
trkxV

=
  (3) 
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where k = 1, 2, … , N, j = 1, 2, …, m. The emerging problem can 
be essentially classified as an interpolation task where the fuzzy 
relation R needs to go through all the already specified 
interpolation points (fuzzy sets).  

Assuming that there exists a solution to (2), the theory [17] 
provides us with the solution to the fuzzy interpolation problem 
given in the form of the maximal fuzzy relation with the 
membership function equal to 
 

R = I
N

k
kykx

1
))()((

=

→ .  (4) 

 
Note that the computations involve an intersection of the 
individual fuzzy relations determined via a psuedocomplement 
(residuation) associated with the t-norm standing in the original 
system of equations (2), namely  

 
a → b = sup {c ∈ [0, 1] | at c ≤ b}.  
 

The main advantage lies in the simplicity, theoretical 
soundness, well-articulated properties and compactness of this 
solution. The major drawback originates from the fact that the 
determined result holds under a rather strong preliminary 
assumption about the existence of any solution to (2).  

Now, if this assumption is evidently violated, the quality of 
the obtained solution could be very low. This is additionally 
aggravated by the fact that the derived solution is extremal 
(maximal) so that even a single relational constraint may 
contribute to the deterioration of the final aggregate result. The 
use of the optimization methods leads to better approximate 
solutions yet the entire procedure could be quite often time 
consuming.  
 
Furthermore, as there could be a multiplicity of solutions, such 
approaches usually identify only one of them leaving the rest of 
them unknown. 

In the investigated setting we are interested in making some 
repairs to the original relational constraints thus converting the 
original interpolation nodes into more feasible ones, meaning that 
there is a higher likelihood of finding a fuzzy relation capable of 
doing the interpolation of the modified constraints.  
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Figure 1.11.1 depicts the determination of a fuzzy relation (i) 
original data (x(k), y(k)) and (ii) modified data. 

Affecting the data and changing their membership values. To 
contrast the scheme of direct computation of R as implied by the 
theory refer to Figure 1.11.1 where both ϕ (x) and ψ(y) denote the 
membership functions resulting from these nonlinear 
transformations of the original fuzzy sets forming the 
interpolation nodes of the initial problem. 

Thus, instead of (4), one proceeds with the following 
expression: 
 

R = I
N

k
kykx

1
)])([)]([(

=

ψ→ϕ    (5) 

 
where both ϕ(x) and ψ(y) are defined point wise meaning that 
 

ϕ(x) = [ϕ(x1) ϕ (x2) …ϕ(xn)] 
and  

ψ(x) = [ψ (x1) ψ (x2) …ψ (xm)]. 
 
There are two types of the transformation functions applied to the 
input and output data. The first one concerning the input fuzzy 
sets (x) is defined as a continuous mapping 

ϕ: [0, 1] → [0, 1] 
such that 

- ϕ is an increasing function of its argument,  
- ϕ (1) = 1, 
- ϕ(u) ≤ u. 

 

Rx(k) y(k)
(i)

ϕ[x(k)] Ψ[x(k)] 

(ii) 

R 

Figure: 1.11.1 
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The second operation of interest in this method applies to the 
output fuzzy sets (y) and is introduced as a continuous mapping 

 
ψ: [0, 1] → [0, 1] 

 
such that 

- ψ is an increasing function of its argument,  
- ψ (1) = 1, 
- ψ (u) ≥ u. 

 
The algorithm combines the theory of the FRE with the heuristics 
of specificity shift applied to the input-output data (relational 
constraints). Let us briefly summarize the procedure: 
 

1. select cut-off parameters of ϕ and ψ, 
2. transform data into a series of pairs (ϕ(x(k)), ψ (y(k)), 
3. compute the fuzzy relation with use of (3), 
4. verify the quality of the solution, e.g., by calculating a 

sum of squared distances (MSE criterion) between y(k) 
and x(k) □ R. 

 
The entire process can be iterated with respect to the values 

of the cutoff parameters and these could be optimized so that they 
imply a minimal value of the MSE criterion. 

Additionally, the obtained fuzzy relation can be viewed as a 
sound starting point for any finer optimization techniques, 
especially those relying on gradient-based mechanisms. Instead of 
being initialized from random fuzzy relations, one can start off the 
method from the fuzzy relation already known. 

The numerical studies were completed to explore the 
efficiency of the introduced mechanism of specificity shift of the 
relational constraints. Let us emphasize that the choice of the 
cutoff parameters need to be carried out experimentally as such 
values are definitely problem-dependent. In general, the higher 
the values of α and the lower the values of β, the lower the 
specificity of the computed fuzzy relation. In a limit case where α 
= 0 and β = 1 the fuzzy relation becomes meaningless (R = 1). In 
this sense it satisfies all modified relational constraints but fails 
totally on the original data. As clearly emerges from the two 
boundary conditions, there are some plausible values of the 
threshold levels situated somewhere in-between.  

Two possible ways of their determination could be sought: 
one forms an optimization problem involving α and β or 
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enumerates the values of the performance index being viewed 
now as a function of these two unknown parameters. Owing to a 
low dimensionality of the problem, the latter method sound 
realistic enough and it will be pursued in all the experiments 
reported below. Furthermore, to study the simplest possible 
scenario, the t-norm is specified as the minimum operation. Then 
the implication operator is a Godelian one governed by the 
formula 
 

a → b = 
⎩
⎨
⎧ ≤

otherwiseb
baif ,1

 

a, b ∈ [0, 1]. 
 
 
1.12  FRE with defuzzification algorithm for the largest solution 
 
Kagei [42] has provided an algorithm for solving a new fuzzy 
relational equation including defuzzification. An input fuzzy set is 
first transformed into an internal fuzzy set by a fuzzy relation. 
That is the internal fuzzy relation is obtained from fuzzy input and 
defuzzified output. He classifies these problems into two types 
called type I and type II. There exists nontrivial largest solution 
for type I problem. For type II the largest solution is trivial. In 
addition when unique outputs are required there does not exist the 
largest solution for the set of solution is not closed set i.e. the 
supremum of the solutions does not give unique output. 

Kagei [42] writes the simultaneous fuzzy relational equations 
as 

 
qλ = pλ o R    (1) 

 
where pλ and qλ are fuzzy sets on X and Y, respectively (λ is an 
index of the equation), R is a fuzzy relation from X to Y to be 
solved and o is a fuzzy composition operator. When the fuzzy set 
is defined as a mapping from a nonempty set to a complete 
Brouwerian lattice, the largest solution of R in Eq. (1) was solved 
by Sanchez [84] in 1976. After that, many works have been done 
on the fuzzy relational equations both in theory and in 
applications (for example, see [17]). The reported works use the 
fuzzy sets qλ as output data. However, some systems output 
defuzzified data (for example, refer to [95, 96]). We discuss how 
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to solve the fuzzy relation R when the system includes 
defuzzification processes. 
 In these systems, membership values have to be compared 
with each other for the defuzzification of internal fuzzy sets. 
Therefore, a complete totally ordered set (a complete chain) 
should be used, instead of a complete Brouwerian lattice, as the 
range of membership functions. Such a set which appears in 
practical problems, like a closed interval and a finite set of real 
numbers, may be embedded into the unit interval [0, 1] with the 
order of real numbers. Although we employ a subset of the unit 
interval as the range of membership functions, the argument here 
can be applied to any complete totally ordered set which is 
isomorphic to a complete subset of the unit interval with the usual 
order. 

Let U be a complete subset of the unit interval [0, 1] as a 
complete totally ordered set with the least element 0 and the 
greatest element 1. A totally ordered set is a lattice, where the 
min- and max-operations (meet and join) are given as a ∧ b = a 
and a ∨ b = b for a ≤ b. The existence of least upper bound is 
assured by the completeness. Here a fuzzy set is defined as a 
mapping from a nonempty set into U. Let p and q be fuzzy sets on 
nonempty sets X and Y, respectively, and R be a fuzzy relation 
between X and Y, respectively, R be a fuzzy relation between X 
and Y (i.e., a fuzzy set on X × Y). An input fuzzy set p is 
transformed to an internal fuzzy set q by the fuzzy relation R in 
the following two steps: 
 
(1) For each y in Y, the fuzzy set on X is obtained as  

 
µp(x) ∧ µR (x, y).        (2) 

 
(2) The least upper bound operation ∨ is taken over X. 
 

µq(y) = { }),()( yxµxµ RpXx
∧∨

∈
  (3) 

 
On the other hand, defuzzification is to select an element with the 
largest membership value from the support set. Since the 
defuzzification process is the last step in ordinary systems, we can 
consider two types of systems including the fuzzy relation and the 
defuzzification process: (i) defuzzification of p ∩ R in Eq. (2), 
and (ii) defuzzification of q in Eq. (3). 
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1.12.1 Defuzzification of Eq. (2) 
 
Assume that, for each y in Y. µR (x) ∧ µR (x, y) takes a largest 
value at x = x* and the element x* is output to the input fuzzy set 
p. Then, x* satisfies the following equations: 
 

Xx∈
∨  {µp (x) ∧ µR (x, y)} = µp (x*) ∧ µR (x*, y)  (4) 

 
for each y in Y. 

Note that, since x* depends on y, mapping x* (y) from Y to 
X is output for an input p. The problem is to find the fuzzy 
relation µR(x, y) to satisfy the above equation from the input fuzzy 
set p and the defuzzified output x*(y). Generally, there exist many 
pairs of inputs p and outputs x*. Each instance is distinguished by 
the suffix λ. Like as pλ and xλ* (a set of λ is finite in engineering 
application, but this restriction is not needed in theoretical 
treatment). Since Eq. (4) can be solved in a same way for each y, 
it is a sufficient to solve the following problem for a fuzzy set R(y) 
on X, called type I problem, where R(y) is a fuzzy set on X whose 
membership values are  

 
µR(x, y), i.e., ≡)()( xµ yR µR(x, y). 

 
Type I problem: For various pairs (pλ, xλ*) of input fuzzy sets pλ 
on X and defuzzified outputs xλ* in X, obtain )()( xµ yR  such that 

 

Xx∈
∨  {

λ
µ p  (x) ∧ )( yRµ (x, y)} = 

λ
µ p ( xλ*) ∧ )( yRµ ( xλ*)  (5) 

 
for all λ. 

The superscript of R(y) is omitted in this section. It should be 
noted that R is regarded as fuzzy set on X for type I problem. 
 
 
1.12.2 Defuzzification of Eq. (3) 
 
Defuzzification is performed for µq(y) in Eq.(3). The output y* is 
an element of Y which gives the largest value of µq(y) for all y in 
Y. For many pairs of inputs and outputs, we reach the following 
type II problem: 
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Type II problem: For various pairs of input fuzzy sets pλ on X and 
defuzzified outputs yλ* in Y, obtain µR (x, y) such that 
 

{ }⎟
⎠
⎞⎜

⎝
⎛ µ∧µ∨∨ λ

∈∈
),()( yxx RpXxYy

= { }),()( *
λ

∈
µ∧µ∨ λ yxx RpYy

  

for all λ.     (6) 
 

Figure 1.12.1(a) shows block diagrams for these systems. In 
this figure, the defuzzification process receives a fuzzy set, selects 
the element with the largest membership value, and outputs it.  

In Figure 1.12.1(b), type I problem is solved for each y, pλ ∩ 
R(y) is a fuzzy set on X whose membership values are given as 

)( yRp ∩λ
µ (x) = ),()( yxx Rp µ∧µ

λ
. 

 

 
 
 

 R(1) 

R(2) 

R(y) 

M  

M  

 defuzzification 
process 

 defuzzification 
process 

 defuzzification 
process 

pλ ∩ R(1) 

pλ ∩ R(2) 

pλ ∩ R(y) 

)1(*
λx

)2(*
λx

)(* yxλ

M M

M M

pλ  

(a) 

R  defuzzification 
process 

pλ o  R 
*
λy

    (b)

pλ 

Figure: 1.12.1 (a) and (b) 
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1.12.3 Unique output 
 
According to Eqs. (5) and (6), it is possible that the defuzzified 
output is not uniquely determined by R, i.e., the membership 
value may be the largest at more than one elements. When all 
defuzzified outputs are uniquely determined, Eqs. (5) and (6) 
should be replaced as follows: 
 
For Type I problem, instead of Eq. (5) 
 

*)(*)()()( λλ ∧µ<∧µ
λλ

xµxxµx RpRp  
 
for all x ≠ xλ* and for all λ.      (7) 
 
For Type II problem, instead of Eq. (6) 

 
{ } { }*),()(),()( λ∈∈

µ∧µ∨<µ∧µ∨
λλ

yxxyxx RpXxRpXx
 

 
for all y ≠ yλ* for all λ.       (8) 
 
If fuzzy relations Rξ satisfy Eq. (5) (ξ is an index for 
distinguishing the solutions), the Uξ Rξ also satisfies Eq. (5). 
 
There exists the largest solution for type I problem.  
 
For a fuzzy set p and an element x* of X, the largest solution R+ 
of Eq. (5) is given as  

 
*)()()( xxµx ppR µα=µ +    (9) 

 
where α operation is defined as (refer to [84]) 

 

⎩
⎨
⎧

>
≤

=α
.
,1

baifb
baif

ba  

 
Assume that 0 ≤ µR (x) ≤ Mx for all x in X, where Mx’s are 
constants for each x such that 0 < Mx ≤ 1 (Mx depends on x but 
does not on µR (x)). The largest solution R+ of type I problem for a 
single pair (p, x*) is given as 
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{ }( ) .*)()()( ** xxppR MMxxx ∧∧µαµ=µ +   (10) 
 
In this subsection we assume that the support set has finite 
elements and the number of pairs (the number of λ) is also finite. 
 
Let R+ be the largest solution of Type I problem. For all pairs of 
(pλ, xλ*), we put 

 

λ
∧=µ + )(xR  { }.*)()( λλλ µαµ xx pp     (11) 

 
Algorithm 1. The largest solution of Type I problem: 
 
Step 1: Set µR(x) = 1 for all x ∈ X. 
 
Step 2: Repeat the Steps 2.1 and 2.2 for all pairs (pλ, xλ*). 
Step 2.1: Set b = *)(*)( λλλ µ∧µ xx Rp  . 

Step 2.2: For all x not equal to xλ*, 
If )x()x( Rp µµ λ ∧ > b  then set µR (x) = b. 

Step 3: When no alternation of µR (x) in Step 2.2 occurs in a 
single repetition of Step 2, then stop, otherwise, repeat Step 2. 
 

 

Set pλ and x*
λ for all λ 

µR(x) ← 1 for all x 
check  ← 0 

for all λ 

for all x ≠ x*
λ

Y N
µR(x) ← b 

check  ← 1 
until check = 0 

Print µR(x) for all x 

b ← µpλ (x*
λ) ∧ µR(x*

λ) 

µpλ(x) ∧µR(x) > b  

skip

St
ep

 2
.2
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A quasi-largest solution R ‡ is defined as a solution expressed 
with the above symbols such that R ⊆ R ‡ (i.e., µR (x) ≤ µR**(x) 
for all x) for any solution R. 
 
Algorithm 2. The quasi-largest solution of type II problem with 
unique outputs: 
 
Step 1: Set µR(x, y) = 1 for all x ∈ X and all y ∈ Y. 
 
Step 2: Repeat following Steps 2.1 and 2.2 for all pairs (pλ, yλ*). 
Step 2.1: Set b = Vx’∈X *)},'()'({ λλ µ∧µ yxx Rp . 

Step 2.2: For all x and all y not equal to yλ*, 
If .),()( byxx Rp ≥µ∧µ λ  
Then set µR(x, y) = (b). 
 
Step 3: When no alternation of µR (x, y) in Step 2.2 occurs in a 
single repetition of Step 2, then stop. Otherwise, repeat Step 2. 
 
 
1.13  Solvability and Unique solvability of max-min fuzzy equations 
 
Gavalec [27] has given a necessary and sufficient condition for 
the problem of solvability and for the problem of unique 
solvability of a fuzzy relation equation in an arbitrary max-min 
algebra.  

By a max-min fuzzy algebra B we mean any linearly ordered 
set (B, ≤) with the binary operations of maximum and minimum, 
denoted by ⊕ and ⊗. For any natural n > 0, B (n) denotes the set 
of all n-dimensional column vectors over B, and B (m, n) denotes 
the set of all matrices of type m × n over B. For x, y ∈ B (n), we 
write x ≤ y, if xi ≤ yi holds for all i ∈ N, and we write x< y, if x ≤ 
y and x ≠ y. The matrix operations over B are defined with respect 
⊕, ⊗ formally in the same manner as the matrix operations over 
any field.  

A ⊗ x = b,    (1) 
 
where the matrix A ∈ B (m, n) and the vector b ∈ B (m) are given, 
and the vector x ∈ B (n) is unknown. As matrices over B 
correspond to finite fuzzy relations, in the last section we apply 
our results to a FRE 
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A ⊗ X = B,    (2) 
 
where A ∈ B (m, n), B ∈ B (m, p) are given fuzzy relations and 
the relation X ∈ B (n, p) is unknown. 

An important special case of max-min algebra is Godel 
algebra, in which the underlying set is the closed unit interval 
with natural ordering of real numbers. This max-min algebra will 
be denoted by BG. An implication operator in BG is defined by ϕG 
(x, y): = 1 for x ≤ y and ϕG (x, y): = y, for x > y. 

Here, B is supposed to be a general linearly ordered set which 
need not be dense nor bounded. An extension B* is defined as the 
bounded algebra created from B by adding the least element, or 
the greatest element (or both), if necessary. If B itself is bounded, 
then B = B*. The least element in B* will be denoted by O, the 
greatest one by I. To avoid the trivial case, we assume O < I. 

Let a matrix A ∈ B (m, n) and a vector b ∈ B (m) be fixed. 
We shall use the notation M = {1, 2,…, m}, N = {1, 2,…,n}. 
Further, we denote the solution sets. 

 
S* (A, b): = {x ∈ B* (n); A ⊗x = b}, 
S (A, b): = { x ∈ B (n); A ⊗x = b}, 
i.e. S(A, b) : = S* (A, b) ∩ B (n). 

 
The proofs of the following theorems are left as an exercise for 
the reader and also one can get the proof from [27].  
 
THEOREM 1.13.1: Let A ∈ B (m, n), b∈ B (m). Equation A ⊗ x = 
b has a solution x ∈ B (n) if and only if x  (A, b) is a solution in 
the extension B* , i.e. if x  (A, b) ∈ S* (A, b). 
 
The following notation will be useful in this section.  
For i ∈ M, j ∈ N we denote 

 
Fij: = {x ∈ S  (A, b); aij ⊗ xj = bi}. 

 
If x ∈ Fij, then we say that xj fulfills the ith equation in A ⊗ x = b. 
Of course, it does not mean that x is a solution. 
 
Lemma 1.13.1: Let i ∈ M, j ∈ N. If x ∈ S  (A, b)-Fij, then aij ⊗ xj 
< bi. 
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Lemma 1.13.2: Let x ∈ S  (A, b). Then the following statements 
are equivalent: 
 

(i) x ∈ S (A, b) 
(ii) (∃ϕ: M →N) (∀i∈ M) x ∈ Fiϕ(i). 

 
Lemma 1.13.3: Let i ∈ M, j ∈ N. Then 
 

(i) Fij = {x ∈ S  (A, b); xj = jx }, for every i ∈ Ij,  

(ii) Fij = {x ∈ S  (A, b); bi ≤ xj ≤ jx }, for every i ∈ Kj, 

(iii) Fij = Ø, for every i ∈ M – (Ij ∪ Kj). 
 

For proof refer [27].  
 

Unique solvability can conveniently be characterized using 
the notion of minimal covering. If S is a set and C’⊆ P(S) is a set 
of subsets of S, we say that ** is a covering of S, if UC’ = S, and 
we say that a covering C’ of S is minimal, if U(C’ - {C}) ≠ S 
holds for every C ∈ C’. In [8], a necessary condition for unique 
solvability is presented under assumption that max-min algebra B 
is bounded. 

 
THEOREM 1.13.2:[8] Let A ∈ B (m, n), b ∈ B (m), let B be 
bounded. If equation A ⊗ x = b has a unique solution x ∈ B (n), 
then the system {Ij ∪ Kj ,  j ∈ N} is a minimal covering of M. 
 
THEOREM 1.13.3: Let A ∈ B (m, n), b ∈ B (m). The equation A ⊗ 
x = b has a unique solution x∈ B (n), if and only if the system I   is 
a minimal covering of the set M –UK .  
 
THEOREM 1.13.4: Let A ∈ B (m, n), b ∈ B (m). Then  
 

(i) |S (A, b)| ≥ 1 ⇔ M = U  (I ∪κ), 
(ii) |S (A, b)| ≤ 1 ⇔ (∀j∈ N) M ≠ U ((I  – {Ij}) ∪ κ), 

 
THEOREM 1.13.5: Let A ∈ B(m, n), b ∈ B(m). Both questions, 
whether equation A ⊗ x = b is solvable, or uniquely solvable, 
respectively, can be answered in O(mn) time. 
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THEOREM 1.13.6: Let A ∈ B (m, n), b ∈ B (m). Then the greatest 
solution in S(A, b) exists if and only if S(A, x) ≠ 0/  and x  (A, b) ∈ 
B(n). If this is the case, then x = x (A, b) is the greatest solution. 
 
Lemma 1.13.4: Let x ∈ S(A, b), then xx ≤ . 
 
THEOREM 1.13.7: Let A ∈ B (m, n), b ∈ B (m). Then the least 
solution in S(A, b) exists if and only if x (A, b) ∈ S(A, b). If this is 
the case then x  = x (A, b) is the least solution. 
 
The results of the previous sections can be applied to fuzzy 
relation equations of the form 

 
A ⊗ X = B     (3) 

 
where A ∈ B (m, n), B ∈ B (m, p) and X ∈ B (n, p). The relation 
equation (3) is equivalent to a set of p linear systems of the form 
(1). The systems use the columns of the matrix B as right-hand 
side vectors and their solutions form the column of the unknown 
matrix X. Thus, the results of the previous sections can be easily 
transferred to the case of (3). We bring here only the basic 
notation and formulation of theorems, without repeating any 
proofs. 

 
In the notation M = {1, 2, …, m}, N = {1, 2, …, n}, P = {1, 
2,…,p}, we define a matrix X ∈ B* (n, p) by putting, for every     
j ∈ N, k ∈ P, 

 
Mjk: = {i ∈ M; aij > bik}, 

:jkx };{min
B jkik Mib ∈

 ∗
. 

 
THEOREM 1.13.8: Let A ∈ B (m, n), B ∈ B (m, p). The equation   
A ⊗ X = B has a solution X ∈ B (n, p) if and only if the 
corresponding matrix X ∈ B*(n, p) fulfills A ⊗ X  = B. If, 
moreover, X ∈ B (n,p), then X  is the maximum solution, 
otherwise, there is no maximum solution in B (n, p). 
 
Further we define, for every j ∈ N, k ∈ P, 
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Ijk = {i∈ M; aij ≥ bik = jkx }, 

IK : = {Ijk ; j ∈ N}, 
Kjk : { i∈ M; aij = bik < jkx }, 

Kk : {Kjk: j ∈ N}. 
 
THEOREM 1.13.9: Let A ∈ B (m, n), B ∈ B (m, p), the equation     
A ⊗ X = B has a unique solution X ∈ B (n, p), if and only if, for 
every k ∈ P, the system Ik is a minimal covering of the set             
M –UKk . 
 
THEOREM 1.13.10: Let A ∈ B (m, n), B ∈ B (m, p). Both 
questions, whether the equation A ⊗ X = B is solvable, or 
uniquely solvable, respectively, can be answered in O(mnp) time. 
 
 
1.14  New algorithms for solving FRE 
 
[63] have given a new algorithm to solve the fuzzy relation 
equation  

P o Q = R    (1) 
 

with max-min composition and max-product composition. This 
algorithm operates systematically and graphically on a matrix 
pattern to get all the solutions of P. 
 
DEFINITION 1.14.1:   If  p(Q, r) denotes the set of all solutions of 
p o Q = r, we call ∈p  p(Q, r) the maximum solution of  p(Q, r)  
if p ≤ p  for all p ∈  p(Q, r). Meanwhile, p ∈  p(Q, r) is called a 

minimal  solution  of   p(Q, r), if  p ≤ p   implies  p  = p  for  all  

p ∈ p (Q, r). The set of all minimal solutions of p(Q, r) is denoted 
by p (Q, r) [34]. 
 
THEOREM 1.14.2:  p( p , p ) { ∈∆ p)  p| }ppp ≤≤ ) for each p ∈ 

p, p ( p ) { ∈∆ p p| }pp ≤  and p0 denote the set of all minimal 
elements of p, then 
 

1. p(Q, r) = p∪ p ( p , p ), where p ∈ p  (Q, r). 

2. p(Q, r) ≠ 0 ⇔ p  (Q, r) ≠ 0,  
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 p (Q, r) ≠ 0 ⇔ p ∈  p(Q, r),  
 p(Q, r) ≠ 0 ⇔ p  is the maximum solution of Eq. (1) i.e. 
 p  = max p(Q, r). 

3. p0 ⊂ p) ⊂ p ⇔ p (Q, r) = ( p) ∩ p( p ))0, where ( p) ∩ p( p ))0 
denotes the set of all minimal elements of ( p)  ∩ p( p ))[34]. 

 
Main results 
 
Following are the main algorithms for solving (1) with max-min 
(or max-product) composition: 
 
Step 1: Check the existence of the solution refer [34, 43]. 
Step 2: Rank the elements of r with decreasing order and find the 
maximum solution p  [34, 43]. 
Step 3: Build the table M = [mjk], j = 1, 2, …, m; k = 1, 2, …, n, 
where mjk ∆ ( p j, qjk). This matrix M is called “matrix pattern”. 
Step 4: Mark mjk, which satisfies min ( p j, qjk) = rk (or pj. qjk = rk), 
and then let the marked mjk be denoted by jkm . 

Step 5: If k1 is the smallest k in all marked jkm , then set 
1j

p to be 

the smaller one of the two elements in 
11kjm  (or set 

1j
p  to be 

1jp ). 
Step 6. Delete the j1th row and the kith the column of M, and then 
delete all the columns that contain marked kjm

1
, where k ≠ k1. 

Step 7: In all remained and marked jkm , find the smallest k and 

set it to be k2 , then let 
2j

p  be the smaller one of the two 

elements in 
22kjm (or let 2jp  be 

2jp ). 
Step 8: Delete the j2th row and the k2th column of M, and then 
delete all columns that contain marked kjm

2
, where k ≠ k2. 

Step 9: Repeat steps 7 and 8 until no marked jkm  is remained. 

Step 10: The other 
j

p , which are not set in steps 5-8, are set to be 

zero. 
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Lemma 1.14.1: If the FRE is the form as (1), for giving m × n 
matrix Q and 1 × n vector r, the minimum solutions set p  can be 
obtained by the above algorithm. Please refer [63] for proof.  
  
1.15  Novel neural algorithms based on fuzzy S-rules for FRE 
 
X. Li and D. Ruan [53, 54, 55] have given 3 papers in the years 
1997, 1999 and 2000 as three parts on the same title. Their work 
is a commendable piece of work in the study of FRE and 
providing a novel neural algorithm based on fuzzy S-rules. In the 
year 1997 they have given a series of learning algorithm for max-
min operator networks and max-min operator networks. These 
algorithms can be used to solve FRE and their performance and 
property which are strictly analyzed and proved better by 
mathematicians. An insight into their work is provided. For more 
please refer [53]. 

Any fuzzy system can be represented by a FRE system as 
 

A o W = B,    (1) 
 
where A and B are input and output, respectively, and the 
compositional operator o is generally a combination t-co-norm/t-
norm. In addition to conventional methods [14, 15, 29, 84, 86], a 
new methodology to solve FRE using fuzzy neural networks [15, 
33, 54, 55] is emerging. Since neural architectures were 
incorporated into the fuzzy field, it has been reasonable for us to 
think of using neural network architectures to find a solution of 
FRE.  

 

Figure: 1.15.1 
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A typical network architecture is shown in Figure 1.15.1, which 
contains an input layer, an output layer and some weighted 
connections. Its operation is to map an input vector (or pattern) A 
= (a1, a2, …, an) to an output vector (or pattern) B = (b1, b2, …, 
bm), which can be expressed as the following formula: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
θ−= ∑

=

n

i
ijij wafb

1
    (2) 

 
where W = (wij)n × m is the weight matrix of the network and θ is 
the threshold value of output neurons, and f is the output 
transform functions [33]. If we omit the transform function f and 
the threshold value θ, which is reasonable (see the analysis by [6]) 
in fact for our fuzzy neural network discussed later, formula (2) 
will become formula (3): 
 

AW = B       (3) 
 
Still further if we change the operation (+ , . ) between A and W 
to a fuzzy operation e.g. (∨, ∧) and confine all data to [0, 1] in  
Eq. (1). One main characteristic of neural networks is to be able to 
learn to generate the weighted connection matrix mentioned 
above from some known patterns which are often called sample 
data. This process corresponds naturally to that of solving FRE 
and implicates a new approach. In this case, a lot of researchers 
studied it [6, 53-55]. The most widely applied learning algorithm 
of neural networks is the error-based back propagation (BP). A 
BP algorithm to a two-layered network as shown in Fig.1.15.1 is 
the so-called δ rule which requires that the square of difference 
between the desired output Tj and the actual output Oj is derivable 
to each wij. So the key problem in realizing the new approach is 
how to efficiently fuzzify the δ rule. However a fuzzy system 
cannot guarantee the previous derivatives to exist. In order to 
obtain the derivatives, some ideas were proposed. A very 
representative work is in [6]. Blanco [6] limited the fuzzy operator 
to o = (∨, ∧). His main idea was to define derivatives at those 
points where they do not exist originally, and he called his method 
“smooth derivative”. Although he succeeded in getting a fuzzy δ 
rule, there are still some problems in this method: 
 

• He made a table which contains some experiment result 
of the comparison between his method and Pedrycz’s 
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[78]. In this comparison, he said he used the “best 
learning rate” in each case [6]. But why this is the best 
learning rate and how to decide it? No report. 

 
• One conclusion of [6] is that “the weight matrix after the 

training is a possible solution for R”. If a fuzzy relation 
equation has solutions, does this method guarantee to 
converge to a solution after training? No theoretical 
results and proofs exists. 

 
• All training data in [6] were constructed by generating 

random inputs first and computing corresponding outputs 
then according to a known matrix R. It implicates that 
solutions do exist. But in practice we usually have 
training data pairs but do not know if a solution exist or 
not? In this case, could the method in [6] tell us whether 
a fuzzy relation equation has solution? No. 

 
Due to the complexity in fact these problems exist not only in [6] 
but also in most other related fuzzy δ rules. 
 
We describe the max-min operator networks and fuzzy δ rule 
 
The objective 
 
Assume the fuzzy relation equation is the following (4): 
 

A o W  =  B,     (4) 
 
where o = (∨, ∧) and 
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It implies that we have a set of examples (a1, b1), (a2, b2),…, 

(ap, bp) where ai = (ai1, ai2,…, ain) and bi = (bi1, bi2,…,bim) = (i = 1, 
2,…, p) are fuzzy vectors. Our objective is to use a neural network 
to solve the equation by training with these examples. Of course, 
our training algorithm should be different from any others and 
should offer strict theoretic results. 
 
Net topology 
 
The net topology in this section is same as that in [6]. 

A max-min operator neuron is founded by replacing the 
operator (+, •) of the traditional neuron with (∨, ∧), and a network 
composed of such max-min operator neurons is called a max-min 
operator network. The inputs and weights of the max-min 
operator network are generally in [0,1], the output transform 
function is often f(x) = x and the threshold θ = 0 or we may 
consider no output transform function and no threshold value at 
all for all output neurons. 

With a two-layered max-min operator network which has the 
same architecture as shown in Fig.1.15.1, we call it a fuzzy 
perceptron, whose every node in the input layer connects every 
node in the output layer. Here if we say a max-min operator 
network we always mean a two-layered max-min operator 
network. If input vector is (a1, a2,…, an), output vector is (b1, 
b2,…, bm) and elements of the W matrix are wij, the outputs are 
obtained such that 

bj = )(
1 iji

n

i
wa ∧∨

=
, j = 1, 2, …, m  (5) 

 
Learning with fuzzy δ rule 
 
Main idea 
 
The goal of training the network is to adjust the weights so that 
the application of set of inputs produces the desired set of outputs. 
This is driven by minimizing E, the square of the difference 
between the desired output bi and the actual outputs b’I for all the 
examples. Usually, a gradient descent method is used, which 
requires that δE / δwij exists in (0, 1). However, this necessary 
condition is seldom satisfied in a fuzzy system. So we cannot 
directly move a conventional training method to our fuzzy neural 
network. But our fuzzy system possesses some following features: 
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•   All elements of W are confined to [0, 1], so the greatest 

possible solution is a matrix with all elements of 1. This 
implies that if we expect to find the greatest solution of 
fuzzy relation equation we may initialize all weights to 
1. This is very different from any other’s methods 
which always initialize weights to random small 
positive real numbers. 

•   The solutions of Eq. (4) is the intersection of the 
solutions of the following sub equations: 

 
ai o W = bi  (i = 1, 2, …, p)   (6) 

 
If we have a training algorithm to be able to find the greatest 
solution of any equation with the form of (6) but no bigger than 
the initial weight matrix, we may first obtain the greatest solution 
of ai o W = b1 by initializing all weights to 1 and training the 
network with first example pair (a1, b1), and then obtain the 
greatest a2 o W = b2 but no more than the first solution by training 
the same network with the second example pair (a2, b2), and so on, 
we will get the greatest solution of ap o W = bp but no more than 
the (p – 1) the solution by training the same network with the pth 
example pair (ap, bp). We will prove later that the last solution will 
be the greatest solution of Eq. (4). 
 

• From (5) we know that not all inputs and their weights 
play an important role to an output but only one or more 
that ai ∧ wij are the biggest which decide the last output. 
Therefore we need to adjust this weight or these weights 
if the actual output is bigger than the desired output. On 
the other hand, obviously those weights with ai ∧ wij > bj 
should also be decreased. 

 
Based on these features and ideas, now we present a training 
algorithm which we call fuzzy δ rule. 
 
Fuzzy δ rule 
 
Step 1: Initializing Wij = 1 for ∀i, j. 
 
Step 2: Applying inputs and outputs (ai1, ai2,…, ain) is an input 
pattern, and (bi1, bi2,…, bim) is an output pattern. 
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Step 3: Calculating the actual outputs   

(bij)’ = )(
1 ikkj

n

k
aw ∧∨

=
, j = 1, 2, …, m,  (7) 

 
where (bij)’ represents the actual output of the jth node when the 
ith data pair is being trained, and wkj is a connection weight from 
the kth input node to the jth output node, ak is the kth component 
of the input pattern. 
 
Step 4: Adjusting weights. Let 

δij = (bij)’ – bij,       (8) 
then 
 

⎩
⎨
⎧

=+
>∧ηδ−=+

,)()1(
)()()1(

elsetwtw
batwiftwtw

kjkj

ijikkjijkjkj  (9) 

where η is a scale factor or a coefficient of step size, and 0 <η≤ 1. 
 
Step 5: Return to Step 3, until wkj (t + 1) = wkj (t) for ∀k, j. 
 
Step 6: Repeat Step 2. 
 
Obviously, this algorithm fully reflects the features mentioned 
above. 
 
The proofs of the following theorem can be had from [53].  
 
THEOREM 1.15.1. If {W (t)} is a weight sequence of the fuzzy δ 
rule, then it is a monotone decreasing sequence. 
 
THEOREM 1.15.2: The fuzzy δ rule is surely convergent. 
 
Lemma 1.15.1. If ∃ a fuzzy vector w = (w1, w2,…, wn ) satisfying 

 
a o w = b,    (10) 

 
where a = (a1, a2,…, an ) is a fuzzy vector, 0 ≤ b ≤ 1. Then the 
fuzzy δ rule may converge to w which is the maximum solution of 
Eq.(10). 
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Lemma 1.15.2. Suppose the fuzzy matrix W is a solution of a o W 
= b, and W is another fuzzy matrix, W ⊇ W. Let W  be the initial 
weight matrix of the fuzzy δ rule then the fuzzy δ-rule may 
converge toW , where W is the maximum solution which is 
smaller than or equal to W . 
 
THEOREM 1.15.3. If ∃ W makes the following equation tenable 
 

A o W = B,    (11) 
 

The fuzzy δ rule may converge to the maximum solution W* of this 
equation, where 

A = 
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⎟
⎟
⎟

⎠
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1

, B = 
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. 

 
THEOREM 1.15.4. If Eq. (11) is solvable, the extended fuzzy δ rule 
B will converge to the maximum solution. If Eq. (11) has no 
solutions, the extended fuzzy δ rule B will converge to the 
maximum solution of A o W ⊂ B. 
 
THEOREM 1.15.5. The convergence matrix of the extended fuzzy δ 
rule B is 
 

wkj = { }ijikiji
bab >Λ |     (12) 

(appoint ∧ϕ = 1, ϕ is the null set). The number of iteration steps is p 
which is the number of samples. 
 
THEOREM 1.15.6. For a fuzzy relation equation 
 

X o R = S,        (13) 
 

where R ∈ ℑ (V × W) and S ∈ ℑ (U × W) are known fuzzy 
relations, and X ∈ ℑ (U × V) is an unknown fuzzy relation. Let 
 

)},(),(|)(),( wuRwuSWUSuX
W

<×∧∆υ    (14) 
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(appoint ∧ϕ = 1), then equation (13) is compatible if and only if 
X oR = S, that is, )),((),()),(),(( wuwuSwRuX

V
∀=υ∧υ∨

∈υ
 

and X is the maximum solution of the equation. 
 
THEOREM 1.15.7. For Eq. (11), the extended fuzzy δ rule B is 
equivalent to the solution method in Theorem 1.15.6. 
 
 
1.16  Novel neural network part I 
 
In the year 1999 [53, 54, 55] have presented an extended fuzzy 
neuron and fuzzy neural network and a training algorithm which 
can be used to resolve some fuzzy relation equation. Their 
simulation results show if the equation has at least one solution 
the algorithm will converge to a solution; if an equation does not 
have a solution at all it can still converge to a matrix which most 
meets the equation. 
 
DEFINITION 1.16.1: (Fuzzy neuron operators). Suppose +̂ and •̂  
are a pair of binary operators defined on R2 → R and for ∀a, b, 
a’, b’, c ∈ R, the following are satisfied: 
 
1. Monotonicity: 

a +̂ b ≤ a’ +̂ b’, a •̂ b ≤ a’ •̂ b’ 
if a ≤ a’ and b ≤ b’. 
2. Commutativity: 

a +̂ b = b +̂ a,   a •̂ b = b •̂ a 
3. Associativity: 

(a +̂ b) +̂ c = a +̂ (b +̂ c), (a •̂ b) •̂ c = a •̂ (b •̂ c). 
4. Zero absorption of •̂ : 

a •̂  0 = 0. 
Then ( +̂ , •̂ ) are called a pair of fuzzy neuron operators. 
 
For example, (+, •), (Λ, •), (∨, •), (+, Λ), (Λ, Λ) (∨, Λ) are all 
fuzzy neuron operators.  
 
DEFINITION 1.16.2: (Extended fuzzy neutron). An extended fuzzy 
neuron is a memory system such as the following: 
 

Y = f ),)ˆ(1 θ−•+ = ii
n
i xw
)

 i = 1, 2,…, n.   (1) 
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where ( +̂ , •̂ ) are called a pair of fuzzy neuron operators. xi ∈ [0, 
1], i = 1, 2,…, n, are inputs, wi ∈ [0, 1], i = 1, 2,…, n, are weights 
corresponding to the inputs. θ is a threshold, generally a positive 
real number or zero. ƒ is an output transform function and its 
range is [0, 1]. 

 
Figure 1.16.1 is a diagram of an extended fuzzy neuron without θ 
and ƒ. The original reason to define the fuzzy neuron operators is 
based on some “axiomatic” assumptions of neurons. For example, 
for a neuron with n inputs we assume: (1) the more each input is, 
the more the total amount of activation is, and this corresponds to 
the monotonicity; (2) no input has priority in any order, that is, 
indifferent to the order in which the inputs to be combined are 
considered, and this corresponds to the commutativity and 
associativity of +̂ ; (3) the contribution of an input without a 
weight is zero, this corresponds to the zero absorption of •̂ . 
 

. . . x1 x2 xn

w1 w2
wn

output = n
i 1ˆ =+  (wi •̂ xi) 

Figure 1.16.1 

Figure: 1.16.2 

. . . 

. . . 

bi1 bi2 bim

ai1 ai2 ain

F1 

F2 

W 

output layer

input layer
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We will however pay our attention on a two-layer network as 
shown in Figure 1.16.2. Input nodes have no computation and just 
for input, and all output neurons are the extended fuzzy neurons 
mentioned above without any transform function and threshold. 
We call this network an extended fuzzy neural network. It can be 
used to solve such fuzzy relation equations as the following: 
 

A o W = B     (2) 
 
where 
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As we know, Eq. (2) may be resolved by first solving m sub-
equations as the following and then intersecting all solutions of a 
sub-equations. 
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   (3) 

 
where i = 1, 2,…, m. So our task is to resolve equations of the 
form of Eq. (3). In order to simplify formulas, we let the right part 
of Eq. (3) be B = (bi, bi,…, bp)T. Then we may use a simple 
network, which is a part of the extended fuzzy neural network in 
Figure 1.16.2 and called an extended fuzzy perceptron as shown 
in Figure 1.16.3 to resolve this fuzzy relation equation. In fact, if 
we regard (ai1, ai2,…ain) and bi (i = 1, 2,…, p) as pair of sample 
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patterns, we can find an appropriate W by training the perceptron. 

The problem is what the training algorithm is. 
Before we discuss the algorithm, we will explain the 

relationship between fuzzy neuron operators and t-norm and t-co-
norm. 

According to [43], a t-norm /fuzzy intersection i is a 
binary operation on the unit interval that satisfies at least the 
following axioms for all a, b, d ∈ [0, 1]: 
 

1. i(a, 1) = a (boundary condition), 
2. b ≤ d implies i(a, b) ≤ i(a, d) (monotonicity), 
3. i(a, b) = i(b, a) (commutativity), 
4. i(a, i(b, d) = i(i(a, b), d) (associativity). 

 
If a t-norm i is a continuous function (continuity), then we call 

it a continuous t-norm. 
The following are examples of some t-norms that are 

frequently used as fuzzy intersections (each defined for all a, b ∈ 
[0, 1]). 

 
Standard intersection :   i(a, b) = min (a, b) = a Λb. 
Algebraic product  :   i(a, b) = ab. 
Bounded difference  :   i(a, b) = max(0, a + b – 1). 
Drastic intersection : 

 

i(a, b) = 
⎪
⎩

⎪
⎨

⎧
=
=

.0
1
,1
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awhenb
bwhena

 

 

Figure: 1.16.3 
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A t-co-norm / fuzzy union u is a binary operation on the unit 
interval that satisfies at least the following axioms for all a, b, d ∈ 
[0, 1], 
 

1. u (a, 0) = a (boundary condition), 
2. b ≤ d implies u (a, b) ≤ u (a, d) (monotonicity), 
3. u (a, b) = u(b, a) commutativity), 
4. u (a, u(b, d)) = u(u (a, b), d) (associativity). 

 
If a t-co-norm u is a continuous function (continuity), then we 

call it a continuous t-co-norm. 
The following are examples of some t-co-norms that are 

frequently used as fuzzy unions (each defined for all a, b∈ [0, 1]). 
 

Standard union  :  u(a, b) = max (a, b) = a ∨b. 
Algebraic sum  :  u(a, b) = a + b –  ab. 
Bounded sum  :  u(a, b) = min(1, a + b). 
Drastic intersection : 

 

u(a, b) = 
⎪
⎩

⎪
⎨

⎧
=
=

.1
0
,0

otherwise
awhenb
bwhena

 

 
By comparison, we know most properties of t-norm or t-co-norm 
are same as those of fuzzy neuron operators, except that the 
boundary condition of t-norm or t-co-norm is different from the 
zero absorption of fuzzy neuron operators. In the following we 
will explain any neuron operators. In the following we will 
explain any combination of t-norm and t-norm or of t-co-norm 
and t-norm is a pair of fuzzy neuron operators. 

For a t-norm i, we have i (0, 1) = 0 (boundary condition). 
Also from monotonicity and commutativity, we know i (a, 0)             
≤ i (1, 0) = i (0, 1), therefore i (a, 0) = 0 (zero absorption). So,      
t-norm belongs to •̂  of fuzzy neuron operators. Of course, t-norm 
also belongs to +̂ . t-co-norm doesn’t belong to •̂  of fuzzy neuron 
operators because its boundary condition is u(a, 1) = a and we 
cannot derive u (a, 0) = 0 (zero absorption). However, it definitely 
belongs to +̂ of fuzzy neuron operators. 

Why not just define the fuzzy neuron operators as a 
combination of t-co-norm and t-norm? It is possible, but the 
problem is that this definition is too narrow, for example, in this 
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case (+, •) will be out of fuzzy neuron operators, and this is not 
what we have expected. 

This section will give a training algorithm as the following: 
 
Step 1. Initialization. 
Let t = 0, and wi (t) = wi(0) = 1.0, for i = 1, 2,…, n. 

T
pbbbB )ˆ,...ˆ,ˆ(ˆ

21= = AW (0) and δ ),ˆ(1 ii
p
i bb −∨ =  where it should 

be noted that ib̂  >1,  (i = 1, 2, … , p) often occurs when +̂  = +, 
but it does not affect solving Eq. (3). If δ ≤ ε, where ε is a given 
very small positive real number, then W (0) is a solution of (1), 
and go to Step 5. 
 
Step 2. Calculation. 
For i = 1, 2,…, n, let 
Wi  =  (w1(t), …, wi–1(t), wi(t) – ηδ. 
  wi+1(t), …, wn(t))T, 
where η is a step coefficient, 0 < η ≤ 1: 
B’I = AWi, where B’I = T

ipii bbb ),...,,( ''
2

'
1  

δji = b’ij – bj, 
Eji = b”

j – b’
ij 

for j = 1, 2, …, p, where b”
j = bj (t) 

and 

ji

p

ji δ∨=δ
=1

 ∑
=

δ=∆
p

j
jii

1
 

i

n

i
δ∧=δ

=1min   i

n

i
∆∧=∆

=1min , 

 

E = ∑∑
= =

p

j

n

i
jiE

1 1
. 

 
Step 3. Judgment and weight regulation. 
 
Case 1: (δmin > ε) is true. If E = 0, then let wi (t + 1) = wi (t) - ηδ, 
for i = 1, 2, …, n, and B” = (b”1, …, b”

p) = AW (t +1), δ = 
)''(1 ii

p
i bb −∨ =  

If E ≠ 0, then compute 
Cos (B’I – B, B̂ – B) 
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   = 
( ) ( )

BBBB

BBBB

i

i

−−

−−
ˆ

ˆ
'

'
 (i = 1, 2,…, n),   (4) 

 
and find an index k that makes 

 

cos ( ) ( )BBBBBBBB i

n

i
k −−=−−

=
ˆ,cosmaxˆ, '

1

'   (5) 

 
(if the number of the index k satisfying the above equation is more 
than one, then the k which satisfies the following equation will be 
chosen, 

δk = δmin; 
 
if the number of index k is still more than one, then the k which 
satisfies the following equation will be chosen, 
 

∆k = ∆min. 
 
Normally, only one index k will remain. Otherwise, anyone is 
chosen randomly) and adjust weights with the following formula: 
 

⎩
⎨
⎧
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elsetwtw
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ii

ii  

 
Case 2: (δmin > ε) is false. Find a index k that makes δmin = n

i 1=Λ δI 
= δk, and let W = Wk. W is a solution we ask. Go to Step 5. 
 
Step 4: Let t = t + 1 and return to Step 3. 
 
Step 5: End. 
 
It seems very hard to understand this algorithm. In fact, if we 
analyze it in a fuzzy n-cube space, we will find that the above 
algorithm is very easy to understand. When we decrease W 
gradually from the top of the n-cube that is the greatest possible 
solution W = (1, 1,…,1), we observe the right part of (3), i.e., the 
output of the fuzzy perception in Figure 1.16.3, also decreases 
gradually from B̂ . When the output is near to B in time t, W(t) 
should be near to a solution of (3) too, because ( +̂ , •̂ ) possesses 
monotonicity. After a while we will find simulation results 
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support such a conclusion that if Eq. (3) has a solution at least the 
above algorithm many converge to a solution of Eq. (3). 
 
 
1.17  Novel neural network part II 
 

In 2000 [Li and Ruan [55]] have extended the fuzzy δ rule 
from (∨, ∧) to (∨, *) in which * is a general t-norm that is the 
fuzzy δ-rules J and K. A convergence theorem and an equivalence 
theorem point out respectively that the fuzzy δ-rule J can 
converge to the maximum solution and fuzzy δ-rule K is 
equivalent to the fuzzy method. 

A general fuzzy relational equation systems may be 
expressed as 

 
A o W = B,    (1) 

 
where A and B are input and output, respectively, W is an 
unknown matrix, and o is a compositional operator which 
generally is a combination of t-co-norm/t-norm. In addition to 
conventional methods [67, 84, 86], a new methodology to solve 
fuzzy relation equations using fuzzy neural networks [7, 33] is 
emerging. 

A typical network architecture, as shown in Figure 1.17.1, 
contains an input layer, an output layer, and some weighted 
connections. Its operation is to map an input vector (or pattern) A 
= (a1, a2, …, an) to an output vector (or pattern) B = (b1, b2,…, 
bm), which can be expressed as  
 

Figure: 1.17.1 
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bj  =  ƒ ⎟
⎟
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where W = (wij)nxm is the weight matrix of the network and θ is 
the threshold value of output neurons, and f is the output 
transform functions (see [33] in detail). If we omit both f and θ 
which is reasonable (see the analysis by [6]) then  formula (2) will 
become formula (3): 
 

AW    =  B      (3) 
 
if we change the operation (+,.) between A and W by a fuzzy 
operation e.g. (∨, ∧) and confine all data to [0, 1], then Eq. (3) 
which will become a typical FRE like equation (1). Actually, we 
have discussed the cases when the compositional operator               
o  = (∨, ∧) and o = (∨, •). Here we will extend o to a more general 
form, that is, o = (∨, *), where * is a t-norm. In the following 
sections, we will first give a training algorithm for the max-* 
operator networks and then give its convergence theorem.  

Next, we will prove the neural method proposed here is 
equivalent to the fuzzy solving method in [17]. Afterwards, we 
will report some simulation and verify that its result is same as 
that of the old method in [17]. Finally, we will conclude this result 
and point out our future direction. 
 
The objective 
 
Assume the fuzzy relational equation  

 
A o W = B,     (4) 

 
where o = (∨, *), in which * is a t-norm, and 
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B = 
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We have set of pairs (a1, b1) (a2, b2),…, (ap, bp), where ai = (ai1, 
ai2,…, ain) and bi = (bi1, bi2,…, bim) (i = 1, 2,…, p) are fuzzy 
vectors. Our objective is to use a neural network to solve the 
equation by training with the above set of pairs. 
 
Net topology 
 
A max-* operator neuron is founded by replacing the operator        
(+, •) of the traditional neuron with (∨, *), and the related network 
is called max-* operator network. The inputs and weights of the 
max-* operator network are generally in [0, 1], the output 
transform function is often ƒ (x) = x and the threshold θ = 0 or we 
may consider no output transform function and no threshold value 
for all output neurons. 

With a two-layered max-* operator network, which has the 
same architecture as shown in Figure 1.17.1, we call it a fuzzy 
perceptron, in which every node in the input layer connects every 
node in the output layer. Here for a max-* operator network we 
always mean a two-layered max-* operator network. If the input 
vector is (a1, a2,…, an), the output vector is (b1, b2,…, bm), and the 
elements of the W matrix are wij, then 

 

bj = )*(
1 iji

n

i
wa

=
∨ ,  j = 1, 2, …, m.  (5) 

 
Main idea 
 
The goal of training the network is to adjust the weight so that the 
application of a set of inputs produces the desired set of outputs. 
This is driven by minimizing E, the square of the difference 
between the desired output bi and the actual output b’i for all the 
pairs. Usually, a gradient descent method is used, which requires 
that ∂E/∂wij exists in (0, 1).  
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However this necessary condition is seldom satisfied in a fuzzy 
system. So we cannot directly move a conventional training 
method in our fuzzy neural network.  
 
But our fuzzy system possesses the following features: 
 

1. All elements of W are confined to [0, 1], so the greatest 
possible solution is a matrix whose all elements are 1. 
This implicates that, if we expect to find the greatest 
solution of the fuzzy relation equation, we may initialize 
all weights to 1. This is very different from any other 
methods which always initialize weights to random small 
positive real numbers. 

 
2. The solutions of Eq. (4) is the intersection of the 

solutions of the following sub-equations: 
 

Ai o W = bi (i = 1, 2,…, p).  (6) 
 

3. If we have a training algorithm to be able to find the 
greatest solution of any equation with the form of (6) but 
no bigger than the initial weight matrix, we may first 
obtain the greatest solution of ai o W = b1 by initializing 
all weights to 1 and training the network with first 
example pair (a1, b1), and then obtain the greatest 
solution of a2 o W = b2 but no more than the first solution 
by training the same network with the second pair          
(a2, b2), and so on, we will get the greatest solution of        
ap o W = bp but no more than the (p – 1)the solution by 
training the same network with the pth example pair        
(ap, bp). We will prove later that the last solution will be 
the greatest solution of Eq. (4). 

 
4. From (5) we know that not all inputs and their weights 

play an important role to an output but only one or more 
that ai * wij are the biggest decide the last output. 
Therefore, we need to adjust this weight or these weights 
if the actual output is bigger than the desired output. On 
the other hand, obviously those weights with ai * wij > bj 
should also be decreased. 
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Fuzzy δ rule J 
 
Following fuzzy δ rules A, B,…, I in [53], we have now the 
following new training algorithm called fuzzy δ rule J for the (∨, 
*) operator network. 
 
Step 1. Initializing 
wij = 1 for ∀I, j. 
 
Step 2. Applying inputs and outputs: (ai1, ai2,…, ain ) is an input 
pattern and (bi1, bi2,…, bim ) is an output pattern. 
 
Step 3. Calculating the actual outputs: 

(bij)’ = )*(
1 ikkj

n

k
aw

=
∨ ,  j = 1, 2, …, m  (7) 

where (bij)’ represents the actual output of the jth node when the 
ith data pair is being trained, and wkj is a connection weight from 
the kth input node to the jth output node, and aik is the kth 
component of the input pattern. 
 
Step 4. Adjusting weights: Let 
 

δij = (bij)’ – bij.        (8) 
then 
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+
>

ηδ−=+

,

)()1(
*)(

)()1(

else

twtw
batwif

twtw

kjkj

ijikkj

ijkjkj

     (9) 

where η is a scale factor or coefficient of step size, and 0 < η ≤ 1. 
 
Step 5: Return to Step 3, until wkj (t + 1) = wkj (t) for ∀k, j. 
 
Step 6: Repeat Step 2. 
 
The proof of the following theorem are left as an exercise for the 
reader if need be refer [55].  
 
THEOREM 1.17.1: If {W(t)} is a weight sequence of the fuzzy δ 
rule J, then it is a monotone decreasing sequence. 
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THEOREM 1.17.2.The fuzzy δ rule J is convergent. 
 
Lemma 1.17.1. If ∃ a fuzzy vector w = (w1, w2,…, wn) satisfying 

 
a o W = b,      (10) 

 
where a = (a1, a2,…, an) is a fuzzy vector, 0 ≤ b ≤ 1 and o = (∨, *), 
and a given η is small enough, then the fuzzy δ-rule J will 
converge to W which is the maximum solution of Eq.(8). 
 
Corollary 1.17.1: If ∃ a fuzzy matrix W satisfying 
 

a o W = b,      
 
where a = (a1, a2,…, an) and b = (b1, b2,…, bm) are fuzzy vectors, 
then the fuzzy δ rule J will converge to the maximum solution 
W of (10) if η is small enough. 
 
Lemma 1.17.2: Suppose the fuzzy matrix W is a solution of Eq. 
(9), and W is another fuzzy matrix, W ⊇ W. Let W  be the initial 
weight matrix of the fuzzy δ rule J, then the fuzzy δ rule J will 
converge to W , if η is small enough, where W is the maximum 
solution which is smaller than or equal to W . 
 
THEOREM 1.17.3: If ∃W which makes the following equation 
tenable: 

A o W = B     (11) 
 
The fuzzy δ rule J will converge to the maximum solution W* of 
this equation if η is small enough, 
where 
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In this situation, the convergence value is W = W(t) which is little 
smaller than the maximum solution. However, if η is too small, 
the maximum solution will be pledged to get, but the training time 
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will be increased too. How to get the maximum solution in the 
shortest time? Or how to decide “the best learning rate” η? This is 
a dilemma. Although we cannot decide what is “the best learning 
rate”, may look for the lowest time cost. For example, we 
discover in the previous proof whatever η is, the goal is to make 
wkj which satisfies wkj * ak > bj closer to bj. So the method with 
the fastest speed is to seek for a wkj such that  

 
wkj * ak = bj.     (12) 

 
Clearly, such wkj may not be unique, but according to the previous 
algorithm, we always choose the biggest one, that is, 
 

∨ {wkj | wkj * ak = bj}.     (13) 
 
Consequently, we have the following improved algorithm, which 
is called fuzzy δ rule K: 
 
Fuzzy δ rule K 
 
This algorithm is almost same to the fuzzy δ rule J, except that the 
Step 4 is changed to:  
 
Step 4: Adjusting weights: 
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=+
>

==+

.

)()1(
*)(

}*|{)1(

else

twtw
batwif

bawwVtw

kjkj

ijikkj

ijikkjkjkj

  (14)  

 
If η in the fuzzy δ rule J is not a constant but a variable parameter, 
by letting 
 

ij

jkkjkjkj bawwVtw
δ

=−
=η

})*|{()(
 (15) 

 
formula (10) will be equal to Eq. (14). In this case we can say η is 
the best learning rate. The fuzzy δ rule K is the fastest method and 
each sample pattern is trained only once. With this algorithm we 
have 
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THEOREM 1.17.4: If Eq. (11) is solvable, the fuzzy δ rule K will 
converge to the maximum solution. 
 
THEOREM 1.17.5: If R ≠ 0/ ,  it is 

 

)(
1

1
ii

n

i
TQTQ ψΛ=ψ

=

− ,    (16) 

 
where R is the set of solution, 0/ is the empty set, Q –1 ψ T is the 
maximum solution, and ψ is a defined composition operation of 
two fuzzy sets (see below). 
 
THEOREM 1.17.6: If fuzzy relation equation (11) is solvable, then 
is maximum solution W  can be obtained as follows: 

 

   W  = )(
1 ii

n

i
ba ψ∧

=
.    (17) 

 
THEOREM 1.17.7: The fuzzy δ rule K is equivalent to the method 
of Theorem 1.17.5. 
 
 
1.18  Simple Fuzzy control and fuzzy control based on FRE 
 
Vladimir P and Dusan Petro have studied fuzzy controllers based 
on fuzzy relational equations in the case when fuzzy controllers 
inputs are exact. Fuzzy relational equation with sup-t-composition 
results in plausible control and adjoint equation results in simple 
fuzzy control. 

Fuzzy logic control is one of the expanding application fields 
of fuzzy set theory. Recent applications of fuzzy logic control 
spread over various areas of automatic control, particularly in 
process control [49-50, 94, 117]. Fuzzy logic controller (FLC) is 
used whenever conventional control methods are difficult to apply 
or show limitations in the performances, for example, due to 
complex system structure [74]. FLC allows simple and more 
human approach to a control design due to its ability to determine 
outputs for a given set of inputs without using conventional, 
mathematical models. FLC follows the general strategy of control 
worked out by a human being. Using set of control rules and 
membership functions, FLC converts linguistic variables into 
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numeric values required in most applications. A typical closed-
loop system with FLC is shown in Figure 1.18.1. 
 

 
A typical FLC is composed of three basic parts: an input signal 
fuzzification where continuous input signals are transformed into 
linguistic variables, a fuzzy engine that handles rule inference, 
and a defuzzification part that ensures exact and physically 
interpretable values for control variables. The design of FLC may 
include: the definition of input and output variables, the selection 
data manipulation method, the membership functions design and 
the rule (control) base design. 

The main source of knowledge to construct a set of control 
rules (control base) comes from the control protocol of the human 
operator. The protocol consists of a set of conditional “if-then” 
statements, where the first part (if) contains condition and the 
second part (then) deals with an action (control) that is to be 
taken. It conveys the human strategy, expressing which control is 
to be applied when a certain state of the process controlled is 
matched. For the reasons of simplicity, the following form of the 
control base is observed here. 
 

IF Xi THEN Ui, i = 1,…, n.    (1) 
 
Conditions Xi are expressed by membership functions µ(Xi(x)), 
where x belongs to the space [X]. Control variables Ui are 
expressed by membership functions µ(Ui(u)), where u belongs to 
the space [U]. Statements like else or or are easy to incorporate in 
conditional part of control base (1). 

The most frequently used data manipulation method is “min-
max gravity” method (simple fuzzy control). This Mamdani-type 
controller assumes min-max inference operators and centre of 
gravity defuzzification [117]. However, any t-norm and t-co-norm 
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can be used as inference operators. Some properties of FLC using 
different inference operators can be found in [26, 70]. 

Simple control is a reasoning procedure based on modus 
ponens (A ∧ (A ⇒ B) ) ⇒ B tautology [117]. Modus ponens 
tautology reads: 
 

Implication  :  if A then B 
Premise  :  A is true 
Conclusion  :  B is true 

 
where A and B are fuzzy statements or propositions. 

Approximate reasoning based on another tautologies, such as 
modus tolens, syllogism or generalized modus ponens, which give 
(A ⇒ (A ⇒ B)) ⇒ B [117], was also suggested [70, 115, 116]. 
Plausible control is observed here. Fuzzy control is plausible if it 
fulfills features given by F1-F4. Plausible control reads: 
 
With implication if A then B 

 
F1 Premise  A is true conclusion B is true  
F2 Premise  A is not true conclusion B is unknown 
F3 Premise  A is more fuzzy conclusion B is more fuzzy 
F4 Premise  A is less fuzzy conclusion B is B 

 
where feature F1 describes modus ponens tautology. 

Inference methods can also be obtained by utilizing fuzzy 
relational equations with different implication functions. Fuzzy 
sets and fuzzy relations, calculated for the simple control, satisfy 
neither fuzzy relational equation with sup-t composition nor 
adjoint equation. Therefore, simple control is not “mathematically 
correct”. However, solutions of fuzzy relational equations are not 
unique, because ϕ-operator and t-norm [26, 117] are not unique. It 
can be shown that combinations of different implication functions 
(ϕ-operator) and t-norms give plausible control. Here Godelian 
implication for ϕ-operator and minimum function (intersection) 
for t-norm are considered. 
 
Simple fuzzy control 
 
Using fuzzy relation notation and control base (1), simple fuzzy 
control is given by [76]. 
 

Ri = Xi * Ui,  i = 1,…, n 
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R = ii
R∪ , 

U = X ʘ R,    (2) 

where * denotes Cartesian product operator, ʘ denotes sup-t (here 
sup-min) composition and ∪ denotes maximum (union) function 
[76, 117]. Controller input (condition-value obtained from the 
system), defined over space [X], is denoted by X(x). Calculated 
fuzzy control, defined over [U], is denoted U(u). Defuzzification 
(here centre to gravity [76, 117] is later applied to obtain exact 
control value. 

Fuzzy relations Ri are defined over product space [X, U] 
and are calculated as [76, 117] 
 

Ri (x, u) = Xi(x) * Ui (u) = min {Xi (x), Ui(u)}   (3) 
 

for all x ∈ [X] and u ∈ [U], where Xi(x) and Ui(u) are expressed 
by their membership functions. Relating to sup-min composition 
[76, 117] fuzzy control is 

 
U(u) = X(x) ʘ R (x, u) = 

][
sup

Xx∈
{min {X(x), R(x, u)}}. (4) 

 
Subject to (3), this can be rewritten as  
 

U(u) = 
][

sup
Xx∈

 {min {X(x),
i
URi (x, u)}}.    (5) 

 
Sup-min composition is distributed with respect to union [76, 
117]: 
 

U(u) = 
][

sup
Xx∈

{
i
U  min {X (x), R (x, u)}.    (6) 

 
Subject to (3) 
 

U(u) =
][

sup
Xx∈

{
i
Umin{X (x), Xi (x) * Ui (u)}.   (7) 

 
Subject to associativity this can be rewritten as  
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U(u) = {
i
U  

][
sup

Xx∈
min {X (x), Xi (x) * Ui (u)}   

 =  
i
U  ∧I * Ui(u),       (8) 

where ∧I is a scalar value, called possibility of X with respect to 
Xi [76], defined by 
 

][
sup)/(

Xx
ii XX

∈
=Π=∧ {min {X(x), Xi (x)}}    (9) 

 
In simple fuzzy control, ΛI is a scalar value even in he case when 
controller input is fuzzy. However, a particular case, when X(x) is 
nonfuzzy, is observed here, which means 
 

X (x) = 
⎩
⎨
⎧ =

otherwise
xx

,0
,,1 0          (10) 

 
In that case, Λi is calculated as 
 
      ∧i = sup{min{1, Xi (x0)}, min{0, Xi (x)}} = Xi (x0).      (11) 
 
Fuzzy control based on fuzzy relational equation with sup-t composition 
 
Using fuzzy relation notation and control base (1) this type of 
fuzzy control is given by [76] 
 

Ri = Xi ϕ Ui,           (12) 
 
where     i = 1, …, n,  

R = 
i
IRi,  

U = X ʘ R, 
where ∩ denotes minimum (intersection) function [117]. Operator 
ϕ represents implication function (here Godelian implication) 
[76]. 
 
(X ϕ Y) (x, y) =    X(x) ϕ Y(y) 

 

  =  
⎩
⎨
⎧

>µµ
≤µ

)).(())(()),((
)),(())((,1

yYµxXxX
yYµxX

      (13) 
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From (4) and (12) fuzzy control is 
 

U(u) = 
][

sup
Xx∈

 {min {X(x),
i
IRi (x, u)}}    (14) 

 
Sup-min composition is not distributed with respect to 
intersection [1]: 
 

X ʘ (Y ∩Z) ⇐ (X ʘ Y) ∩ (X ʘ Z)    (15) 
 
Therefore, obtaining fuzzy control U(u) in (14), demands 
calculating fuzzy relation R (x, u) 
 
THEOREM 1.18.1: In the case when FLC input is exact (10), fuzzy 
control based on fuzzy relational equation with sup-t composition 
(14) can be obtained without calculation of fuzzy relation (12). 
 
In view of (1), this fuzzy control is given by [76].  

 
Ri = Xi * Ui,  i = 1,…, n,    

where      
R = 

i
U  Ri, 

U = X ϕ R,      (16) 
 
where operators * and ∪ are already defined. Operator ϕ in (18) 
denotes Godelian implication between fuzzy set and fuzzy relation 
[76]. 

U(u) = 
][

inf
Xx∈

{X(x) ϕ R (x, u)}.   (17) 

 
THEOREM 1.18.2: In the case when FLC input is nonfuzzy (10), 
fuzzy control based on adjoint fuzzy relational equation (17) gives 
the same control algorithm as a simple fuzzy control (8). 
 
The proofs of the above theorem is left as an exercise for the 
reader. 
 
1.19  A FRE in dynamic fuzzy systems 
 
For a dynamic fuzzy system the fundamental method is to analyze 
its recursive relation of the fuzzy states. M. Kurano et al [47] gave 
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the existence and the uniqueness of solution of a fuzzy relational 
equation. 

We use the notations in [46]. Let X be a compact metric 
space. We denote by 2X the collection of all subsets of X, and 
denote by ζ (X) the collection of all closed subsets of X. Let ρ be 
the Hausdorff metric on 2X. Then it is well-known [48] that (ζ(X), 
ρ) is a compact metric space. Let ζ(X) be the set of all fuzzy sets 
s : X →[0, 1] which are upper semi-continuous and satisfy supx∈X 

s (x) = 1. Let q : X × X → [0, 1] be a continuous fuzzy relation 
on X such that q (x,.) ∈ ζ(X) for x ∈ X. 

Here, we consider the existence and uniqueness of solution 
p  ∈ ζ (X) in the following fuzzy relation equation (1) for a given 

continuous fuzzy relation q  on X (see [46]): 
 

p (y) = { },),()(sup yxqxp
Xx

Λ
∈

y ∈ X,    (1) 

 
where a ∧ b: = min {a, b} for real numbers a and b. We define a 
map αq~ : 2X → 2X (α ∈[0, 1] ) by  
 

αq~ (D):=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

φ=≤α≤
φ≠∈=α

∈>
φ≠∈≠

∈α≥

,,10
,,2,0

}0),(~|{
,,2,0

}),(~|{

DforX
DDfor

Dxsomeforyxqycl
DDxfor

Dxsomeforyxqy

X

X

   (2) 

 
where cl denotes the closure of a set. Especially, we put αq~ (x) : = 

αq~ ({x}) for x ∈ X. We note that αq~ : ζ (X) → ζ(X). 

For α ∈ [0, 1] and x ∈ X, a sequence { } ,...1,0)(~
=α k

k xq is defined 
iteratively by  

:)(~0 xqα = {x},  :)(~1 xqα = )(~ xqα  and 

)(~ 1 xq k+
α := αq~ )(~ xq k

α ) for k = 1, 2,… . 
 
Then, let Gα (x) : = )(~

1 xq k
k α
∞

=U  and  
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Fα (x): =U
∞

=
α

0
)(~

k

k xq  = {x} ∪ Gα (x)   (3) 

 
We now consider a class of invariant points for this iteration 
procedure, that is, x ∈ Gα (x). So put 
 

Rα : = {x ∈ X⏐x∈Gα(x)} for α ∈ [0, 1].  (4) 
  
Each state of Rα is called as an “α-recurrent” state. The following 
properties (i) and (ii) hold clearly: 

(i) αq~  (Fα(z)) = Gα(z) for α ∈ [0, 1] and x ∈ X; 
(ii) Rα ⊂ Rα’ for 0 ≤ α’ < α ≤ 1. 

 
Lemma 1.19.1: If z ∈ R1, the following (i)-(ii) hold: 
 

i. αq~  (Fα (z)) = Fα (z) for α ∈ [0, 1].: 
ii. Fα (z) ⊂ 'αF (z) for 0 ≤ α’ < α ≤ 1; 

 
Lemma 1.19.2: If z ∈ R1, the following (i)-(iii) hold: 
 

i. αq~  ( αF̂ (z)) = αF̂ (z) for α ∈ [0, 1].: 

ii. αF̂ (z) ⊂ '
ˆ
αF (z) for 0 ≤ α’ < α ≤ 1; 

iii. αF̂ (z) = limα’↑α '
ˆ
αF (z) for α ≠ 0. 

 
THEOREM 1.19.1:  
 

i. If R1 ≠ 0/ , then there exists a solution of (1). 
ii. Let z ∈ R1. Define a fuzzy state 

{ })(1sup:)( )(ˆ
]1,0[

xxs zF
x

z
z

∧α=
∈

, x ∈ X, 

Then zs ∈  ℑ(X) satisfies (1). 
 
Lemma 1.19.3: For z1, z2 ∈ R1, 
 

z1 ~ z2 if and only if Fα(z1) = Fα(z2) 
 
for all x ∈ [0, 1]. 
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THEOREM 1.19.2: Let kp~ ∈ P (k = 1, 2, …, 1). Then: 
(i)  Put  
  p~ (x): = 

lk ,...,2,1
max
=

 kp~ (x) for x ∈ X. 

Then p~ ∈ P. 
 
(ii)  Let {α k ∈ [0, 1] | k = 1, 2, …, l} satisfy maxk =1, 2, …, l α k = 1. 

Put 
 

p~ (x): 
lk ,...,2,1

max
=

 { })}(~ xp kk ∧α  for x ∈ X. 

Then p~ ∈ P. 
 

Let B be a convex subset of an n-dimensional Euclidean 
space ℜn and Cc(B) the class of all closed and convex subsets of 
B. Throughout this section, we assume that the state space X is a 
convex and compact subset of ℜn. The fuzzy set s ∈ ℑ(X) is 
called convex if its α-cut s~ α is convex for each α ∈ [0, 1]. Let    
ℑc(X): = { s~ ∈ ℑ (X) | s~ is convex}. 

By applying Kakutani’s fixed point theorem [23], we have 
the following: 
 
Lemma 1.19.4. Let α ∈ [0, 1] and αq~ (x) is convex for each x ∈ 

X. Then, for any A ∈ Cc (X) with A = αq~ (A), there exists an x ∈ 
X such that q  (x, x) ≥ α. 
 
Proposition 1.19.1. Let p ∈ ℑc(X) be a solution of (1). Then, for 
each α ∈ [0, 1], there exists an x ∈ pα with q~  (x, x) ≥α. 
 
Assumption A. The following A1-A3 hold. 
 
A1.   The set U1 is a one-point set, say u. That is, U1 = {u}. 
 
A2.   Uα ⊂ Fα (u) for each α ∈ [0, 1], where u is given by A1 
  and Fα (u) is defined by (3). 
 
A3.   Let α ∈ [0, 1] and A ∈ Cc(X). If A = αq~ (A), then 

  A = U
IU Ax

xF
∈

α )(  
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THEOREM 1.19.3: Under Assumption A, Eq. (1) has a unique 
solution in ℑc(X). 
 
 
1.20  Solving FRE with a linear objective function 
 
Fang and Li [24] has given an optimization model with a linear 
objective function subject to a system of fuzzy relational 
equations is present. Due to the non convexity of its feasible 
domain defined by fuzzy relation equations designing an efficient 
solution procedure for solving such problems is not a trivial job. 
Here they present a solution procedure. 

Let A = [aij], 0 ≤ aij ≤1, be an (m × n)-dimensional fuzzy 
matrix and b = (b1,…, bn)T, 0 ≤ bij ≤1, be an n-dimensional vector, 
then the following system of fuzzy relation equations is defined 
by A and b: 

x o A = b,    (1) 
 
where “o” denotes the commonly used max-min composition 
[117]. In other words, we try to find a solution vector x = (x1,…, 
xm)T, with 0 ≤ xi ≤1, such that 
 

mi ,...,2,1
max

=
 min (xi, aij) = bj for j = 1,…, n.  (2) 

 
The resolution of fuzzy relation equations (1) is an interesting and 
on-going research topic [1, 2, 11, 17, 30, 34, 52, 82, 84, 106]. 
Here, we study a variant of such problem. 

Let c = (c1,…, cm)T ∈ Rm be an m-dimensional vector where 
ci represents the weight (or cost) associated with variable xi for i = 
1,…, m. We consider the following optimization problem: 
 

Minimize     ∑
=

=
m

i
ii xcZ

1
     (3) 

such that       x o A = b, 
0 ≤ xi ≤1. 

 
Compared to the regular linear programming problems [25], this 
linear optimization problem subject to fuzzy relation equations 
has very different nature. 
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Note that the feasible domain of problem (3) is the solution 
set of system (1). We denote it by X (A, b) = {x = (x1,…,xm)T ∈ 
Rm| x o A = b, xi ∈ [0, 1]}. 

To characterize X (A, b), we define I = {1, 2, …, m}, J = {1, 
2, …, n}, and X = {x ∈ Rm | 0 ≤ xi ≤ 1, ∀i∈I}. For x1, x2 ∈ X, we 
say x1 ≤ x2 if and only if Iixx ii ∈∀≤ ,21 . In this way, “≤” forms a 
partial order relation on X and (X, ≤) becomes a lattice. 
Moreover, we call x̂ ∈ X (A, b) a maximum solution, if x ≤ x̂ , 
∀x∈X (A, b). Similarly, x̂ ∈ X (A, b) is called a minimum 
solution, if x ≤ x̂  implies x = x̂ , ∀ x ∈ X(A, b). According to 
[11, 34], when X (A, b) ≠ 0/ , it can be completely determined by 
one maximum solution and a finite number of minimum solutions. 
The maximum solution can be obtained by assigning. 
 

  x̂  =  A @ b = 
Ii

jij

n

j
ba

∈
= ⎥

⎦

⎤
⎢
⎣

⎡
Λ )@(

1
  (4) 

 
where 

aij @ bj = 
⎩
⎨
⎧

>
≤

.
1 ,

jijj

jij

baifb
bifa

   (5) 

Moreover, if we denote the set of all minimum solutions by       
X
(

 (A, b), then 
 

X (A, b) = }|{
),(

xxxXx
bAXx

((
U((

≤≤∈
∈

.  (6) 

 
Now, we take a close look at X (A, b). 
 
For proof of the following result please refer [24]. 
 
Lemma 1.20.1: If x ∈ X (A, b), then for each j ∈ J there exists      
i0 ∈ I such that xio ∧ aioj = bj and xi ∧ aij ≤ bj, ∀i∈I. 
 
Lemma 1.20.2. If X (A, b) ≠ 0/ , then Ij ≠ 0/  , ∀ j ∈ J.  
 
Lemma 1.20.3: If X (A, b) ≠ 0/ then  Λ ≠ 0/ . 
 
THEOREM 1.20.1. Given that X (A, b) ≠ 0/ . 
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1. If f ∈ Λ, then F(f) ∈ X (A, b). 
2. For any x ∈ X (A, b), there exists f ∈ Λ, such 

that F(f) ≤ x. 
 
Lemma 1.20.4: If ci ≤ 0, ∀ i ∈ I, then x̂  an optimal solution of 
problem (3). 
 
Lemma 1.20.5: If ci ≥ 0, ∀ i ∈ I, then one of the minimum 
solutions is an optimal solution of problem (3). 
 
THEOREM 1.20.2: If X (A, b) is non-empty and x* is defined 
according to  

⎪⎩

⎪
⎨
⎧

<

≥
=

,0
,0*ˆ

*
ii

ii

cifx
cifxx (   ∀  i ∈ I.  

 
then x* is an optimal solution of problem (3) with an optimal 
value  

Z* = cTx* = ( )∑ =
+

m
i iii xcxc

1
'" *ˆ ( . 

 
Since X

(
(A, b) ⊂ F (Λ) is implied by 

 
  X

(
(A, b) ⊂ F (Λ) ⊂ X(A, b) 

 
when 0' ≥ic , i = 1, …, m, solving  

minimize Z = ∑
=

m

i
ii xc

1

'  

subject to x o A = b     (7) 
   xi ∈ [0, 1] 

 
becomes equivalent to finding an f*∈ Λ such that  
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑∑
== Λ∈

m

i
ii

m

i fii fFcfFc
1

'

1

' )(min*)( .    (8) 

 
Remembering the definition of Ij  = {i ∈ I / ix̂  ∧ aij = bj} for all     
j ∈ J, we define variables 
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xij = 
⎩
⎨
⎧

,0
1

otherwise
Ifromchosenisiif j  ∀ i ∈ I, j ∈ J,  (9) 

 
and consider the following 0-1 integer programming problem: 
 

minimize Z = ∑
= ∈

⎟
⎠
⎞

⎜
⎝
⎛m

i
ijj

Jj
i xbc

1

' }{max  

subject to  ∑
=

=
m

i
ijx

1
,1 ∀ j ∈ J,    (10)  

   xij = 0 or 1, ∀ i ∈ I, j ∈ J, 
   xij = 0, ∀ I, j with i ∉ Ii. 

 
Note that the constraints of the above problem require that ∀ j ∈ 
J, there exists exactly one i ∈ Ij, such that xij = 1. In this case, if 
we define f = (f1,…, fn ) with fj = i whenever xij = 1, then f∈ Λ. On 
the other hand, for any f∈ Λ, by definition (9), we know that it 
corresponds to a feasible solution of problem (10). Moreover, 
from the definition of F, for any given f∈ Λ, we have one feasible 

solution xij of problem (10). Obviously, ∑∑ =
=

=
m
i i

m

i
ii cfFc

1
'

1

' *)(  

maxj∈J {bjxij}. Therefore, solving problem (10) is equivalent to 
finding an f *∈ Λ for problem (8) via the relation defined by (9). 
In other words, solving problem (7) is equivalent to solving the 0-
1 integer programming problem (10). 

While there are many different methods for solving integer 
programming problems, here we apply the commonly used 
branch-and-bound concept to solve problem (10). A branch-and-
bound method implicitly enumerates all possible solutions to an 
integer programming problem. For our application, in the 
beginning, we choose one constraint to branch the original 
problem into several subproblems. Each subproblem is 
represented by one node. Then branching at each node is done by 
adding one additional constraint. New subproblems are created 
and represented by new nodes. Note that the more constraints 
added to a subproblem, the smaller feasible domain it has and, 
consequently, the larger optimal objective value Z it achieves. 

Based on the theory we built in previous sections, we propose 
an algorithm for finding an optimal solution of problem (3). 
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Step1:  
Find the maximum solution of system (1). Compute x̂  = A @ b = 
[ ]

Iijij
n
j ba

∈=Λ )@(1  according to (4). 

 
Step 2:  
Check feasibility. 
If x̂  o A = b, continue. Otherwise, stop! X(A, b) ≠ 0/  and 
problem (3) has no feasible solution. 
 
Step 3:  
Compute index sets. 
Compute Ij = { }jiji baxIi =∧∈ ˆ| , ∀ j ∈ J. 
 
Step 4:  
Arrange cost vector. 
Define c’ and c” according to  

⎩
⎨
⎧

<
≥

=
,00
,0

'
i

ii
i cif

cifc
c  

⎩
⎨
⎧

<
≥

=
,0
,00

''
ii

i
i cifc

cif
c  

 and define problem (7). 
 
Step 5:  
Define 0-1 integer program. 
Define problem (10) via relation (9). 
 
Step 6:  
Solve integer program. 
Use the branch-and-bound concept to solve (10). 
 
Step 7: 
Define f = (f1,…, fn) with fi = I if xij = 1. 
Generate F(f) via formula  
 

⎪
⎩

⎪
⎨

⎧

∈∀φ=

φ≠
= ∈

.0

max
)(

IiJif

Jifb
fF

i
f

i
fj

Jj
i

i
f  
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Define ( ) ***
1

* ,..., i
T

m xwithxxx (((( =  = Fi (f), then *x(  is an optimal 
solution of problem (7). 
 
Step 8: Output. 
 

1. Here, we have studied a linear optimization problem 
subject to a system of fuzzy relation equations and 
presented a procedure to find an optimal solution. 

 
2. Due to the non-convexity nature of its feasible domain, 

we tend to believe that there is no polynomial-time 
algorithm for this problem. The best we can do here is 
that, after analyzing the properties of its feasible 
domain, we convert the original problem into a 0-1 
integer programming problem, then apply the well-
known branch-and-bound method to find one solution. 
The question of how to generate the whole optimal 
solution set is yet to be investigated. 

 
3. From the analysis of Theorem 1.20.2, it is clearly seen 

that if all minimum solutions of a given system of 
fuzzy relation equations can be found, then an optimal 
solution of the optimization problem defined by (3) can 
be constructed. Therefore, solving this optimization 
problem is no harder than solving this optimization 
problem is no harder than solving a system of fuzzy 
relation equations for all minimum solution. Although 
it is not known whether these two problems are 
essentially equivalent or not, the basic concepts 
introduced have been further developed for solving 
fuzzy relation equations [52]. 

 
4. When a system of fuzzy relation equation (3) is derived 

for a particular application, such as the medical 
diagnosis [2], it is relatively easy to check if X(A, b) ≠ 
0/ by taking the first two steps of the proposed 
algorithm. A liner function may not truly reflect the 
associate cost objective, but it can serve as an 
approximation. Extension to other types of objective 
functions is under investigation. 
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For more about these properties and proofs of the results please 
refer [24].  
 
 
1.21  Some properties of minimal solution for a FRE 
 
Fuzzy relation equation occurs in practical problems for example 
in fuzzy reasoning. Therefore it is necessary to investigate 
properties of the set of solutions. Here [39] have given a 
necessary and sufficient condition for existence of a minimal 
solution of a fuzzy relation equation defined on infinite index sets. 

Let I and J be the index sets, and let A = (aij) be a coefficient 
matrix, b = (bj) be a constant vector where i ∈ I, j ∈ J. Then an 
equation 

x o A = b,    (1) 
 
or, 

jiji
Ii

baxV =∧
∈

)(  for all j ∈ J.   (1) 

 
X is called a fuzzy relation equation, where o denotes the sup-

min composition, and all xi , bj, aij’s are in the interval [0, 1]. An x 
which satisfies Eq. (1) is called a solution of Eq. (1). Fuzzy 
relation equation occurs in practice. For example, in fuzzy 
reasoning [70], when the inference rule and the consequences are 
known, a problem to determine antecedents to be used reduces to 
one of solving a FRE. 
 
DEFINITION 1.21.1: Let (P, ≤) be a partially ordered set (poset) 
and X ⊂ P. A minimal element of X is an element p ∈ X such that 
x < p for x ∈ X. The greatest element of X is an element g ∈ X 
such x ≤ g for all x ∈ X. 
 
DEFINITION 1.21.2: Let a = (ai) and b = (bi) be vectors. Then the 
partial order ≤, the join ∨, and the meet ∧ are defined as follows: 
 

a ≤ b ⇔ ai ≤ bi  for all i∈ I 
a ∨ b ∆  (ai ∨ bi),  a ∧ b ∆  (ai ∧ bi). 

 
DEFINITION 1.21.3: Let ([0, 1] 

l, ≤) be a poset with the partial 
order defined in Definition 1.21.2., and let ℵ ⊂ [0, 1] l be the 
solution set of Eq. (1). The greatest element of ℵ, a minimal 
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element of ℵ, and ℵ 0 are called the greatest solution, a minimal 
solution, and a set of minimal solutions of Eq. (1), respectively, 
 
DEFINITION 1.21.4: For a, b ∈ [0, 1] 

a α  b ∆  
⎩
⎨
⎧ ≤

otherwiseb
baif

,
,,1
 

Moreover 

A @  b-1 ∆  ⎥⎦
⎤

⎢⎣
⎡ αΛ

∈
jijJj

ba , 

 
where b-1 denotes the transposition of vector b. 
 
THEOREM 1.21.5 [84] : 

ℵ ≠ 0/   ⇔ A @  b-1 ∈ ℵ 
and then, A @  b-1 is the greatest solution of Eq. (1). 
 
THEOREM 1.21.6 [34]: When the index sets I and J are both finite 
ℵ ≠ 0/  implies ℵ ≠ 0/ , and then  

x ∈ ℵ ⇔ (∃ x(∈ ℵ) ( x(  ≤ x ≤ x) ). 
 
THEOREM 1.21.7 [104]: Let the index set I be a metric compact 
space, and  

ℵ ∆  { x ∈ ℵ | x is upper semicontinuous on I}. 
If ℵ use  ≠ 0/  holds, then ℵuse ≠ 0/ , and for all x ∈  ℵ, there exists 

xusc ∈  ℵ 0
use with xusc ≤ x. 

 
DEFINITION 1.21.8: The solution x = (xi) ∈ ℵ is attainable for j ∈ 
J if there exists Ij ∈ such that xi ∧ ai,j = bj, and the solution x = (xi) 
∈ ℵ is unattainable for j∈ J if xi ∧ ai,j < bj for all i∈ I . 
 
DEFINITION 1.21.9: The solution x ∈ ℵ is called an attainable 
solution if x is attainable for j ∈ J, the solution x ∈ ℵ is called an 
unattainable solution if x is ℵ )(−

j  for all j ∈ J, and the solution x 

∈ ℵ is called a partially attainable solution if x∈ ℵ is neither an 
attainable solution nor an unattainable solution. In other words 
 
x ∈ ℵ is an attainable solution ⇔ x ∈ ℵ )(+

j , 

x ∈ ℵ is an unattainable solution ⇔ x ∈ ℵ )(−
j , 
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x ∈ ℵ, is a partially attainable solution 
⇔ x ∈  ℵ – ℵ )(+

j  – ℵ )(−
j . 

 
The set of all partially attainable solutions is denoted by ℵ (*)

j . 
 
Remark 1.21.1: It should be noticed that  
 

ℵ = ℵ )(+
j  ∪  ℵ )(−

j ∪ ℵ (*)
j  

ℵ )(+
j  ∩ ℵ )(−

j =  ℵ )(−
j  ∩ ℵ (*)

j  = ℵ (*)
j  ∩ ℵ )(+

j   = 0/  

J1 ⊂ J2 ⇒  ℵ )(+
j  ⊃ ℵ )(+

j . 
 
Note that when the index sets I and J are both finite, all solutions 
are attainable solutions, that is ℵ )(−

j  = ℵ (*)
j  = 0/ . 

 
Remark 1.21.2 [69]: Let x be the element of ℵ, then      

(∃ j ∈ J) (bj = 0) ⇒ x ∈ℵ )(+
j . 

 
Lemma 1.21.1: Let x and y be the element of ℵ 
 

i. x ≤ y and x ∈ ℵ )(+
j  ⇒ y ∈ ℵ )(+

j  

ii. x ≥ y and x ∈ ℵ )(−
j  ⇒ y ∈ ℵ )(−

j  

iii. x ≤ y and x ∈ ℵ (*)
j  ⇒ y ∈ ℵ (*)

j  ∪ ℵ )(+
j  

iv. x ≥ y and x ∈ ℵ (*)
j  ⇒ y ∈ ℵ (*)

j  ∪ ℵ )(−
j . 

 
THEOREM 1.21.10: Let x̂  be the greatest solution of Eq. (1) 
defined in Theorem 1.21.5. If J is finite set, 

x̂  ∈ ℵ )(+
j  ⇔ ℵ 0 ≠ 0/ . 

 
DEFINITION 1.21.11: 
 

}.|{

},|{},|{
3

21

jijj

jijjjijj

baIiI

baIiIbaIiI

<∈∆

=∈∆>∈∆
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Lemma 1.21.2.    
ℵ )(+

j = U
(

21

ˆ),([
jj IIk

jj xkx
∪∈

 

where jx̂ = )ˆ( jix and ))(()( kxkx jij
(( =  are defined as follows: 

 

⎪⎩

⎪
⎨
⎧

∪∈

∈
=

,,1
,,

ˆ 32

1

jj

jj
ji IIiif

Iiifb
x  

⎩
⎨
⎧

≠
=

=
.,0
,,

)(
kiif
kiifb

kx j
ji
(  

 
Lemma 1.21.3 [5]: A finite poset has at least a minimal element. 
 
Lemma 1.21.4: If J is a finite set and ℵ )(+

j  is a nonvoid set, there 

exists at least one minimal solution x0 = (x0i) ∈ ℵ )(+
j . Moreover, 

the cardinality of {i ∈ | xoi > 0} is finite. 
 
Lemma 1.21.5: If x is the element of ℵ (–), there exists y ∈ ℵ (–) 
with x > y. 
 
For proof please refer [39]. Each of these proofs can be taken up 
as an exercise by studious students.  
 
 
1.22  Fuzzy relation equations and causal reasoning 
 
D. Dubois and H. Prade have analyzed the fuzzy set approach to 
diagnosis problems and proposed a new model, more expressive 
for representing the available information, and where the intended 
meaning of the membership degrees has been clarified here, they 
pertain to uncertainty. 

They have applied their model to a fault diagnosis problem in 
satellites. However this model have several limitation. They 
mention two of them. 

The relational model given by them associates directly 
disorders and manifestations. This model is not capable of 
capturing the most general kind of incomplete information. 
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Reasoning in diagnosis problems: the completely informed case 
 
Let S be a system whose current state is described by means of an 
n-tuple of binary attributes (a1,…, ai,…, an ). When ai = 1 the 
manifestation mi is said to be present; when ai = 0, it means that 
mi is absent. When there is no manifestation present, S is said to 
be in its normal state and this state is described by the n-tuple 
(0,…, 0,…, 0). Let M denote the set of the n possible 
manifestations {m1,…, mi,…, mn }. Let D be a set of possible 
disorders {d1,…, dj,…, dk }. A disorder can be present or absent. 
To each di is associated the set M(di) of manifestations which are 
entailed, or preferably, caused, produced, by the presence of dj 
alone. The completely informed case is first considered, where all 
the present manifestations are observed and where the set of 
manifestations which appear when a disorder is present is 
perfectly known. Thus if mi ∉ M(dj) it means that mi is not caused 
by d j. A relation R on D × M is thus defined by (dj, mi) ∈ R ⇔         
mi ∈ M(dj), which associates manifestations and disorders. 

Given a set M+ of present manifestations which are observed, 
the problem is to find what disorder (s) may have produced the 
manifestations in M+. It is supposed that the set M– = M – M+ = 

+M is the set of manifestations which are absent, i.e. all 
manifestations which are present are observed. While deductive 
reasoning enables us to predict the presence of manifestations(s) 
from the presence of disorder(s), adductive reasoning looks for 
possible cause(s) of observed effects. In other words, one looks 
for plausible explanations (in terms of disorders) of an observed 
situation. Clearly while it is at least theoretically possible to find 
out all the possible causes which may have led to a given state of 
system S, the ordering of the possible solutions according to some 
levels of plausibility is out of the scope of logical reasoning, 
strictly speaking.  

However one may for instance prefer the solutions which 
involve a small number of disorders, and especially the ones, if 
any, which rely on only one disorder. This is called the principle 
of parsimony. In case several disorders may be jointly present, the 
set of manifestations produced by the presence of a pair of 
disorders {di, dj} alone has to be defined, and more generally by a 
tuple of disorders. In the hypothesis that effect can be added and 
do not interfere, it holds that  

 
M ({di, dj}) = M(di) ∪ M(dj)  (1) 
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and consequently  
 

)()(}),({ jiji dMdMddM ∪= , 
 
i.e. the manifestations which are absent are those which are not 
produced by di or dj separately. If this hypothesis is not 
acceptable, a subset M(D) of entailed manifestations should be 
prescribed for each subset D ⊆ D of disorders which can be 
jointly present. Under this new hypothesis, situations where 
disorder di followed by dj has not the same effects in terms of 
manifestations as dj followed by di are excluded. Since the set            
{di, dj} is not ordered. In other words, a relation on 2D × M is 
used, rather than on D × M. If some disorders can never be jointly 
present, 2D should be replaced by the appropriate set A of 
associations of disorders which indeed make sense. 

In the completely informed case described above, the 
following properties hold: 

(i) M+ = −M , i.e. all present manifestations are observed, 
and equivalently all the manifestations which are not 
observed are indeed absent; 

 
(ii) ∀d, M(d) = M(d)+ = −)(dM , where M(d)+ (resp. M(d)–) 

is the set of manifestations which are certainly present 
(resp. certainly absent) when disorder d alone is a event. 
When M(D) ≠ ∪d∈D M(d), this condition is supposed to 
hold ∀ D∈2 in the completely informed case (and not only 
for D = {d}). 

The potential set D̂  of all disorders which can individually be 
responsible for M+ is given by   
 

D̂ = {d ∈ D, M(d) = M+}.    (2) 
 
Note that M(d) = M+ ⇔ )(dM  = M–. Namely no disorder outside 

D̂  can cause (M+, M–). Clearly, if D̂ ≠ 0/ , one must check for the 
set DD

))
 of groups of disorders D, which together may have 

caused M+,  
DD
))

= {D ∈ A ⊆ 2D, M(D) = M+}  (3) 
 
Using the principle of parsimony, one might consider that the 
smaller the cardinality of D the more plausible it is. If M(D) can 
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be obtained as ∪d∈D M(d), then the set D0 of disorders which 
alone partially explains M+,  

 
D0 = {d ∈ D, M(d) ⊆ M+},    (4) 

 
may be of interest for building elements of DD

))
. Clearly D0 ⊇ D̂ . 

Now consider the case where information about the relation 
disorder–manifestation is still complete (∀ d ∈ D, M(d)= M(d)+ = 

−)(dM ), but where the present manifestations are not necessarily 
completely observed. When not all the information is available, 
the set M+ of manifestations which are certainly present and the 
set M– of manifestations which are certainly absent no longer 
form a partition of M: indeed M+ ∩ M– ≠ Ø but M+ ∪ M– ≠ M, or 
, equivalently, there exists a non–empty set M0 = M – (M+ ∪ M–) 
of manifestations, the presence or absence of which are 
completely unknown. In other words, one may be unaware of the 
presence of some manifestations, and, perhaps, only a subset of 
the absent manifestations are known to be absent. Then (2) is 
changed into 
 
 D̂  = {d ∈ D, M+ ⊆ M(d) ⊆ −M }    (5) 

 
since it is only known that the set of manifestations which are 
indeed present is lower bounded by the set M+ and upper bounded 

by the set −M . Eq. (5) also writes 
 
D̂ = {d ∈ D, M(d) ∩ M– ≠ φ and −)(dM ∩ M+ ≠ φ}.  (6) 
 
The generalization of (5) – (6) to subsets D of joint disorders is 
straightforward. 

Another particular case of incomplete information is when 
observations are complete (M+ = −M ), but some manifestations 
may sometimes be present or absent with a given disorder, i.e. for 
some d, it is sometimes not known if a manifestation m follows or 
not form d; in that case m ∉ M(d)+ and m ∉ M(d)–.  

In other words, the union of the set M(d)+ of manifestations 
which are certainly produced by d alone and the set M(d)– of 
manifestations which certainly cannot be caused by d alone, no 
longer covers M, i.e. ∃d, M(d)+ ∪ M(d)– ≠ M, but M(d)+ ∩ M(d)– 
≠ 0/  always holds. Denoting M(d)0 = M (M+(d) ∪ M– (d)), m ∈ 
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M(d)0 means that m is only a possible manifestation of d. In 
particular m may be absent or present when d is present. An 
unknown disorder can always be introduced, i.e., d0 such that 
M(d0)0 = M, i.e. whose manifestations are unknown. Hence it is 
not a closed–world model. Then, the set D̂  of potential disorders 
which alone can explain M+ = −M  is given by 
 

D̂  = {d ∈ D, M(d)+ ⊆ M+ and M(d) = ⊆ M–}.  (7) 
 

Obviously, when M(d)+ = −)(dM  = M(d), (2) is recovered. 
Besides, (7) can be easily generalized over to a subset of joint 
disorders. 

In the general case, both the information pertaining to the 
manifestations and the information relative to the association 
between disorders and manifestations is incomplete. Then d 
belongs to the set D̂  of potential disorders each of which can 
alone explain both M+ and M– if and only if d does not produce 
with certainty any manifestation which is certainly absent in the 
evidence, and no observed manifestations are ruled out by d. 
Formally,  
 

D̂  = {d ∈ D, M(d)+ ⊆ −M  and M(d)– ⊆ +M }. (8) 
 
This also writes 

 
D̂  = {d ∈ D, M(d)+ ∩ M– = φ and M(d)– ∩ M+ = φ}. (9) 

 
Clearly, (8) reduces to (2) in the completely informed case, since 

then −M  = M+ and M(d)– = +)(dM . More generally, it is worth 

noticing that D̂  gathers all the manifestations in D which cannot 
be ruled out by the observations. If M– ≠ φ and M(d)– ≠ φ i.e. no 
information is available on the manifestations certainly absent, it 
can be verified that D̂  = D and the whole set of possible 
disorders is obtained. 

The unknown disorder d0 whose manifestations are unknown 
is such that M(d0)+ = φ = M(d0)–.  Hence d 0 ∈ D̂ , i.e. d 0 can be 
always considered as potentially responsible for observed 
manifestations. The membership test (8) is thus very permissive, 
i.e. D̂  can be very large, and contains what may look like 
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irrelevant causes, since they cannot be ruled out. Namely a 
disorder d may belong to D̂  defined by (8) – (9) even if M(d)+ ∩ 
M+ = φ and M(d)– ∩ M– = φ. Indeed, in this case, nothing forbids 
M(d)+ ∪ M(d)– ⊆ M0. This means that D̂  includes disorders, no 
sure manifestations of which are observed, and no forbidden 
manifestations are for sure absent. Such disorders, no sure 
manifestations of which are observed, and no forbidden 
manifestations are for sure absent. Such disorders may still be 
present when M+ and M– are observed, since all the sure 
information we have about them pertains to manifestations in M0 
about which no observation is available (this is true for the 
unknown disorder d0). 

In other words, (9) achieves a consistency-based diagnosis 
only, that is, only the disorders which are incompatible with 
manifestations observed as present or absent are rejected. In order 
to be more selective, one may turn to adductive reasoning. First, 
among the disorders in D̂ , consider those, if any, which have at 
least a weak relevance to the observations, namely the subset D̂ * 
of D̂ , defined by  
 
D̂ * = {d∈ D̂ , M(d)+ ∩ M+ ≠ 0/ or M(d)– ∩ M– ≠ 0/ }.  (10) 
 
This eliminates the disorders such that M(d)+ ∪ M(d)– ⊆ M0, i.e. 
the disorders which are not suggested by the observations while 
not being ruled out by them either (and d0 particularly). It is worth 
noticing that the refinement of D̂  by D̂ * makes sense only in the 
general case of incomplete information. Indeed, D̂ = D̂ *, when 
D̂  is defined by (5) (if M+ ≠ 0/  or M– ≠ 0/ ) or (7) (if M(d)+ ≠ 0/  
or M(d)– ≠ 0/ }. Obviously, one may still refine D̂ * by 
strengthening the requirements on d, by asking for a conjunction 
rather than a disjunction in (10) or by replacing the conditions by 
more demanding ones like M(d)+ ⊆ M+ (all sure manifestations of 
d are observed) or M(d)+ ⊇ M+ (all observed manifestations are 
among the ones which certainly accompany d), and similar 
conditions for the subsets pertaining to the absence of 
manifestations. In particular, the subset D̂ ** of D̂ defined by 
 

D̂ ** = {d ∈ D̂ , M(d)+ ⊇ M+ and M(d)– ⊇ M–}  (11) 
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gathers the disorders, if any, which offer a complete coverage of 
the observations, but which may also have some sure effects or 
sure absence of effects which have remained unobserved (i.e. 
which are in M0). A genuine abductive task is performed by (11). 

When D̂  ≠ 0/ , one can look for explanations in terms of 
subsets of disorders which are not singletons. Eq. (3) is then 
extended by 
 
DD  = {D ∈ DD  ⊆ 2D, M(D)+ ⊆ −M and ⊆ M(D)– ⊆ +M       (12) 
 
for the subsets of disorders which jointly may explain M+ and M–. 
DD can obviously be refined by extending the counterparts of 
(10) or (11) for defining “relevant” subsets of disorders; for 
instance (10) is generalized by  
 
DD  = {D∈ DD M(d)+ ∩ M+ ≠ 0/  or M(d)– ∩ M– ≠ 0/ }.       (13) 
 
As expected, what is present and what is absent play symmetrical 
roles, exchanging + and – in (8) – (12). 

Note that if M– ≠ 0/  i.e. if only manifestations which are 
certainly present are known, (9) (or(12)) may yield a result D̂ ≠ D 

(or DD  ≠ A) provided that −)(dM ≠ M, i.e. we have non–trivial 

information on the set of manifestations −)(dM (or −)(DM which 
may be produced by a disorder d (or a subset of disorders D) 
alone; indeed −)(dM ⊇ M(d)+), (resp. −)(dM ⊇ M(D)+), and 

thus −)(dM  (resp. −)(DM  gathers the manifestations in M(d)+ 
(resp. M(D)+} which are certainly produced by d (resp.D) and the 
manifestations for which we do not know if they can or cannot 
follow from d (resp.D). For M– ≠ 0/ , (9) and (12) write 

 
D̂  = {d∈ D, −)(dM ⊇ M+}         (14) 

 
   DD

))
 = {D ∈ * ⊆ 2D, −)(dM ⊇ M+}.       (15) 

 
In the non–completely informed case, the hypothesis (1) that 
effects can be added and do not interfere writes {for two 
disorders) 

M({di, dj})+ = M(di) + ∪M(dj)+         (16a) 
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and   M({di, dj})– = M(di)– ∩ M(dj)–.   (16b) 
 
Clearly, (16) reduces to (1) in he completely informed case. Note 
that the second equality of (16) still writes  
 

−−− ∪= )()(}),({ jiji dMdMddM  
which says that the possible manifestations of two simultaneous 
disorders gather the manifestations possibly produced by each 
disorder, as for certain manifestations. 

According to the interpretation we have in mind, it will lead 
to different models with different interpretations of the results. 

In this framework, modeling a quantifier like “most” comes 
down to assigning a high degree of importance to k 
manifestations, arbitrarily chosen in M+, with k “close to” the 
number of observed effects in M+ (this can be defined as a fuzzy 
set defined on the set of integers). In order to estimate to what 
extent the disorder dj explains “most” of the effects in M+ we 
compute the maximum of −D̂µ (dj) on all permutations σ of [1, 
n], i.e. we compute 

 
)],())(,[min(minmax )( ijRiMii

mdµmµw →+σ
σ

, 

 
where wσ(i) = 1 if σ (i) ∈ [ 1, k] and wσ(i) = 0 otherwise; we get 
the set of causes which alone explain at least k manifestations in 
M+. This readily extends to subsets of causes of a given 
cardinality. In the general case, the weights where wσ(i) may lie in 
[0, 1] and capture the idea of taking k as a fuzzy number. The 
analogy between this quantification problem and the one 
addressed by Yager’s [113] OWA is worth noticing. 

The modeling of uncertainty remains qualitative in the above 
approach. Indeed, we could use a finite completely ordered chain  
of  levels  of  certainly  ranging  between 0 and 1, i.e. l1  =  0 < l2  

< … < l n = 1 instead of [0, 1], with ,min ( li , lk ) = li and max ( li , 
lk ) = l k if i ≤ k, and 1 – l i = l n+1–i, and l i → l k = 1 if              l i  ≤  
l k , li  → l k = l k if  li  > l k. Taking into account the incomplete 
nature of the information about the presence or absence of 
manifestations decreases the discrimination power when going 
from the completely informed case (Eq. (2)) to the incomplete 
information case (Eqs. (8) or (9)), since then the number of 
possible disorders in D̂  increases. This is due to the fact that now 
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there are manifestations which are neither certain nor impossible 
and consequences of the presence of a given disorder d which are 
only possible, as picture in Figure 1.22.2., while M(d)+ = M(d) 
and M(d)– = )(dM  in Figure 122.1. (Similar figures can be drawn 
for M+ and M–). 

 

This suggests that in order to improve the discrimination 
power of the model, we have to refine the non–fuzzy model in 
such a way that consequences (resp. manifestations) previously 
expressed as certain (resp. certainly present) and impossible (resp. 
certainly absent) remain classified in the same way and where 
some possible consequences (resp. possibly present 
manifestations) are now allowed to be either somewhat certain 
(resp. somewhat certainly present) or somewhat impossible (resp. 
somewhat certainly absent); see Figure 1.22.3. 
 
 
1.23 Identification of FRE of fuzzy neural networks  
 
Blanco and et al [6] have established that any fuzzy system 
described by a max-min fuzzy relational equation may be 
identified by using a max-min fuzzy neural network. 

0 

  impossible 

1 
   certain 

M 

M(d) M(d) 

Figure 1.22.1 

0 

impossible 
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M(d)– M(d)+

possible 

Figure 1.22.2 

0 

1 

M 

M~ (d)– M~ (d)+

Figure 1.22.3 
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The introduction of the smooth derivative by the authors have 
improved the effectiveness of the training process their method 
not only identifies the system but also solves the associated fuzzy 
relational equation. Any fuzzy system can be represented by a 
fuzzy relational equations system, and thus to identify, it forces us 
to solve equations like X ⊕ R = Y, where X and Y are inputs and 
outputs, respectively, and where the composition operation ⊕ is 
generally a combination t-co-norm / t-norm. 
 
Identification of FRE by fuzzy networks without activation 
function 
 
The problem 
Our objective is to identify a fuzzy system through solving a 
fuzzy relational equation by a max-min fuzzy neural network. We 
will assume the fuzzy relational equation is X ⊕ R = Y, X ∈ [0, 
1]’, Y∈ [0, 1]’, R ∈ [0, 1]rxs. We will limit ourselves to the case ⊕ 
= max-min. We also suppose that we have a set of examples [Xi, 
Yi = i = 1,…, p] to solve R, and we will use a neural max-min for 
the identification (by using these examples, to train the neural 
network).The problem is to design the neural network (its 
topology) and the learning method. 
 
Net topology 
We are going to consider a fuzzy network with the following 
topology: The input-out pairs are (x1,…, xi,…, xr) and (Out1,…, 
Outj, …, Outs), where Outj is determined by Outj = max[min (xi, 
wij)], the wij being the elements of the weight matrix W that 
assesses the synaptic connection (see Figure 1.23.1). 

M M

x1 

x2 

xr 

w11 

w12 
w1s 
w21 

w22 

w2s 

wr1 
wr2 

wrs 

Out1

Out2

Out3

Figure: 1.23.1
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Let us observe that no activation function is considered here. 
The objective of the activation function in an artificial neural is 
twice: 

i To adapt the output to prefix range. 
ii To fix a threshold. 

 
In our case, we use the max-min operation, and obviously, the 
output range is fixed by the operation, it is [0, 1], so the first 
objective is reached. 

On the other hand, the operation min is a threshold function, 
for each input xj and each weight wij, which represents the 
saturation level. 

min (xj, wij) = 
⎩
⎨
⎧

>
≤

.
,

ijiij

ijij

wxifw
wxifx

 

Thus, use of any activation function is not needed afterwards 
to apply max-min to the input, since it is underlying in its own 
process. So, we are considering a neural network without a hidden 
layer, where the inputs are the values X ∈ [0, 1]’ and the outputs 
Y ∈ [0, 1]’ are obtained by Y = max(min (W, X)), W being the 
weight matrix. If X = (x1, x2,…, xr), Y = (Out1,…, Out2, …, Outs) 
and the elements of the W matrix are wij, the outputs are obtained 
such that 
 

Out1 = max [min (x1, w11), min (x2, w21),…, min (xr, wr1)], 
   M  

Outs = max [min (x1, w1s), min (x2, w2s),…, min (xr, wrs)], 
 
The objective of training the network is to adjust the weights so 
that the application of a set of inputs produces the desired set of 
outputs. This is driven by minimizing the square of the difference 
between the desired output Tj and the actual Oj, for all the patterns 
to be learnt, E = ½ Σ(Tj – Oj)2, where Oj = maxi (min (xi, wij)). 

 
It is well known that 

 

ij

j

jij w
O

O
E

w
E

∂

∂

∂
∂

=
∂
∂ *       (1) 

 
in any interval where the derivatives are defined. 

 
Let us expand the second factor of (1): 
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Let us recall that the functions Min (y, p), Max (y, p) are 

derivable into the open intervals y < p and y > p but their 
derivative is not defined in y = p (see Figure 1.23.2). 
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As it is usual  we will assign in any case the value in y = p equal 
to the left or right derivative, respectively, that is, finally we will 
assume 
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Figure: 1.23.2
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According to these ideas 
 

P1 = 
⎪⎩

⎪
⎨
⎧

<

≥
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≠
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P2 = 
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By combining P1 and P2 we will obtain the value of (2): 
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So, the value of (2), say C, will be 0 in the cases C1, C2 or C4 and 
1 in C3. 

Now we are going to expand the first factor of (1), for 
that we will denote - ∂E/∂Oj by δj ∂E/∂Oj = - (Tj – Oj). 

Therefore, ∂E/∂wij = δjC. Finally, the changes for the 
weights will be obtained from a δ-rule with expression: ∆wij = 
µδjC, where δj = (Tj – Oj). 

Thus, the learning algorithm is similar to the classical 
back propagation but C is defined equal to C1 – C3 or C4 
according to the values of input-output pairs. 

By applying this learning process, it is not guaranteed 
that the network will learn, obviously because the value of C is 
null in three of the four cases C1-C4. 

To improve this behavior we will develop a new 
procedure, the so-called “smooth derivative” which is based on 
the following idea. 

⎩
⎨
⎧

>
≤

=
∂

∂
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,1),(

pyif
pyif

y
pyMin  

 
is just the “crisp” truth value of the proposition “y is less than or 
equal to p”. In the same way 
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⎩
⎨
⎧

<
≥

=
∂

∂
,0
,1),(

pyif
pyif

y
pyMax  

 
is the “crisp” truth value of the proposition “y is greater than or, 
equal to p”. 

Thus, to improve the performance of the learning process, we 
are interested in changing this “crisp” behavior by one “fuzzy” 
being able to capture the real meaning of (y ≤ p) or (y ≥ p) in a 
vague context. Taking into account that we are measuring the 
relative position of y with respect to p, we propose to measure for 
each y the inclusion degree p in y, which we will denote by 

yp ⊂ . 
In turn, we can apply any implication function to assess the 

inclusion degree, taking into account that when p ≤ y then p ⊆ y 
with degree equal to 1, whereas when p > y it is reasonable to 
consider the inclusion degree of p into y to be equal to y, it 
intuitively results that Godel implication is the most suitable one. 
The experiences have confirmed this intuition. So, we will 
consider 

=⎯→⎯=⊂ ypyp G

⎩
⎨
⎧

>
≤

.
,1

ypify
ypif

 

On the other hand, similar to before when dealing with      
max {a, b,…, c}, if we denote “max 1 = max {a, b,…, c}” and 
“max 2 = max {{a, b,…, c} – {max 1}}”. We are interested in 
knowing the inclusion degree of max 1 in max 2, 

2max1max ⊂ . 
 

⎩
⎨
⎧

>
≤

=

⎯→⎯=⊂

.2max1max2max
2max1max1

2max1max2max1max

if
if
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So, when we use the inclusion degree, P1 and P2 not only have 
the values 0 or 1 but a value in [0, 1].  We observe that P2 in zero 
when xs, < wsj, but using the inclusion degree of wsj in xs xw ⊂ , 
a new value of P2 is obtained to be 
 

P2 = 
⎩
⎨
⎧

>
≤

,
,1

xwifx
xwif

      (A) 
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We can treat the case for P1 similarly. Denoting max 2 = maxi ≠ s 
(Min (xi, wij)), note that P1 is obviously zero when min (xs, wsj) < 
max 2. We take the inclusion degree of max 2 in min (xs , wsj): 
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Finally, we obtain the P1 value: 
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By combining (A) and (B), we will obtain 
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Obviously, the values obtained from ∂Oj / ∂wij depend on the 
implications chosen. We have made several trials with all the 
implications, except with those, which give us an inclusion degree 
of null. 
 
 
1.24 Equations in classes of fuzzy relations 
 
Drewniak [20] explains the problem of existence of concrete 
solutions and brings information about bounds of the family of all 
such solutions. 

Fuzzy relation equations were introduced by Sanchez [84], 
[94] and have been investigated by many authors. We ask for the 
existence of solutions which belong to a concrete class of fuzzy 
relations [20, 21, 115]. The description of the family of all such 
solutions is also needed. 

Let us consider the lattice L = ([0, 1], ∨, ∧, →), where 
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a ∨ b = max (a, b), a ∧ b = min (a, b), a →b = 
⎩
⎨
⎧

>
≤

.
,1

baifb
baif

 (1) 

 
We deal with fuzzy relations R, S, T, U : X × X → L on a 

finite set X = {x1,…, xn} with sup-inf composition: 
 

(RS) (x, z) = forzySyxR
Xy

)),(),(( ∧∨
∈

x, z ∈ X. (2) 

Relation composition (2) is isotone, associative and  
 

R(T ∨ U) = RT ∨ RU,     (3) 
R(T ∧ U) ≤ RT ∧ RU.     (4) 

 
It has the identity element I, 

 
IR = RI = R.       (5) 

 

I(x, y) = 
⎩
⎨
⎧

≠
=

⎩
⎨
⎧

=
≠
=

.1
,0

),('
,0
,1

yxif
yxif

yxI
yxif
yxif

   (6) 

 
And the null element φ, 

 
  φR = Rφ = φ, φ (x, y) = 0.      (7) 

 
The existence of solution of the relation equation  
 

RU = T       (8) 
 

(with unknown relation U) was characterized by Sanchez [84]: 
 
THEOREM 1.24.1: Eq. (8) has solution iff RU* = T, where 

 
U* (x, z) = .,)),(),(( XzxforzyTxyR

Xy
∈→Λ

∈
  (9) 

 
If Eq. (8) has solutions, then the above formula gives the greatest 
one. In general, we always have  
 

RU* ≤ T.          (10) 
 

A description of the family of all solutions of (8) is more 
complicated  [11, 15, 20, 34]: 
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THEOREM 1.24.2: If Eq. (8) has solutions, then there exist m ∈ N 
and solutions U1, U2,…, Um such that for any solution U there 
exist k ≤ m fulfilling 

Uk ≤ U ≤ U*. 
 
The family of all solutions of (8) has the form 

 
U (R, T) = 

mk≤≤1
U [Uk, U*],     (11) 

 
where [Uk, U*] is a lattice interval of relations. 
 
In examples and proofs the fuzzy relation R will appear as a 
square matrix R = [ri,k], where  

 
ri,k = R(xi, xk) for i, k = 1,…, n. 

 
Matrix R will also be described as a sequence of columns: 

 

R = (r1,…, rn),  rk = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

kn

k

r

r

,

,1

M , k = 1, 2,…, n. 

 
Lemma 1.24.1: If Eq. (8) has reflexive solutions, then U* is 
reflexive.  
 
Lemma 1.24.2: U* is reflexive iff R ≤ T. 
 
THEOREM 1.24.3: The solvable Eq. (8) has reflexive solutions iff 
R ≤ T. 
 
Lemma 1.24.3: If R ≤ T, then 

R ≤ RU* ≤ T.    (12) 
 
THEOREM 1.24.4: If R = T, then Eq. (8) is solvable and [I, U*] is 
the set of all the reflexive solutions of (8). 
 
Lemma 1.24.4: If R ≤ T and U is a solution of (8), then I ∨ U is a 
reflexive solution of (8). 
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THEOREM 1.24.5: If Eq. (8) is solvable and R ≤ T, then the 
minimal reflexive solutions of (8) belong to the set {U1 ∨ I, …, Um 
∨ I} and the family of all the reflexive solutions has the form 
 

mk≤≤1
U  [Uk ∨ I, U*]. 

 
COROLLARY: If all the minimal solutions Ui are reflexive, then 
any solution of (8) is reflexive. 
 
Lemma 1.24.5: If the relation U is irreflexive, then any solution 
of Eq. (8) is irreflexive. 
 
Lemma 1.24.6: The relation U* is irreflexive iff 
 

YyXx ∈∈
∃∀ (R (y, x) ≠ 0, T (y, x) = 0).   (13) 

 
THEOREM 1.24.6: If Eq. (8) is solvable and relations R, T fulfill 
condition (13), then all the solutions are irreflexive. 
 
Lemma 1.24.7: If the fuzzy relation R in Eq. (8) is reflexive, then  
U* ≤ T. 
 
THEOREM 1.24.7: If the fuzzy relation R in (8) is reflexive and T 
is irreflexive, then any solution of (8) is irreflexive. 
 
Lemma 1.24.8: For any fuzzy relation U, the relation I’ ∧ U is 
irreflexive. 
 
Lemma 1.24.9: If U is an irreflexive solution of (8), then the 
relation Uir = I’ ∧ U* is also an irreflexive solution and U ≤ Uir. 
 
THEOREM 1.24.8: Eq. (8) has irreflexive solutions iff the relation 
Uir is a solution of (8). Moreover, if Eq.(8) has irreflexive 
solutions, then the solution Uir is the greatest one. 
 
A fuzzy relation R is symmetric iff R – 1 = R, where 
 

R – 1(x, y) = R (y, x) for x, y ∈ X.   (14) 
 
Directly from (14) we get: 
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Lemma 1.24.10: For any fuzzy relation U, relations U ∨ U–1 and 
U ∧ U–1 are symmetric. 
 
THEOREM 1.24.9: Eq. (8) has symmetric solutions iff the relation 
 

U s = U* ∧ (U*) – 1     (15) 
 
is a solution of (8). Moreover, if Eq. (8) has symmetric solutions, 
then formula (15) gives the greatest one. 
 
THEOREM 1.24.10: If Eq. (8) has symmetric solutions, then for 
any solution U ≤ U*, the fuzzy relation U ∨ U – 1 is a symmetric 
solution. In particular, any minimal symmetric solution of (8) 
belongs to the set 
 

{U1 ∨ (U1)-1,…, Um ∨ (Um)-1}. 
 
Lemma 1.24.11: If the relation U is anti-symmetric (asymmetric), 
then any relation R ≤ V is also anti-symmetric (asymmetric). 
 
THEOREM 1.24.11: Eq. (8) has anti-symmetric (asymmetric) 
solutions iff at least one of the minimal solutions is anti-symmetric 
(asymmetric). Moreover, if U* is antisymmetric (asymmetric), 
then any solution of (8) is anti-symmetric (asymmetric). 
 
Using Lemmas 4.1. and 2.3, we get: 
 
THEOREM 1.24.12: If the fuzzy relation R in (8) is reflexive and T 
is anti-symmetric (asymmetric), then any solution of (8) is anti-
symmetric (asymmetric). 
 
THEOREM 1.24.13: If Eq. (8) has anti-symmetric (asymmetric) 
solutions, then there exist p ∈ N and maximal anti-symmetric 
(asymmetric) solutions *...,*,1 pUU  of (8) such that any anti-
symmetric (asymmetric) solution U is bounded from above by 
some solution *kU , k ∈ {1, 2, …p}. 
 
Lemma 1.24.12: If Eq. (8) has complete (strongly complete) 
solutions, then U* is complete (strongly complete). 
 
Lemma 1.24.13: U* is complete iff 
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nki ≤≠≤
∀

1
(ri ≤ tk or rk ≤ ti)    (16) 

and strongly complete iff 
 

nki ≤≤
∀
,1

(ri ≤ tk or rk ≤ ti)    (17) 

 
THEOREM 1.24.14: The solvable Eq. (8) has complete (strongly 
complete) solutions iff relations R and T fulfill condition (16) 
(condition (17)). 
 
THEOREM 1.24.15: If Eq. (8) has complete (strongly complete) 
solutions, then there exist q ∈ N and minimal complete (strongly 
complete) solutions c

q
c UU ,...,1  of (8). The family of all the 

complete solutions of (8) has the form ∪1 ≤ k ≤ q [ ]*, UU c
k . 

 
Lemma 1.24.14: For any fuzzy relation R, the least transitive 
relation R∨ containing R is given by the formula  

 
R∨ = 

nk ≤≤
∨

1
 Rk

. 

 
Now we need a useful notation from formula (9) (cf. [6]: R →T = 
U*. 
 
Lemma 1.24.15: (cf. Wagenknecht [105]). For any fuzzy relation 
R, the relation R → R is transitive. 
 
Lemma 1.24.16: If Eq. (8) has transitive (idempotent) solution U, 
then 

U ≤ T → T. 
 
Lemma 1.24.17: If Eq. (8) has transitive solutions, then the 
relation 

Ut = (T → T) ∧ U*      (18) 
 
is also a transitive solution. 
 
THEOREM 1.24.16: Eq. (8) has transitive solutions iff the relation 
(18) is a solution of (8). If Eq. (8) has transitive solutions, then 
formula (18) gives the greatest transitive solution. 
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THEOREM 1.24.17: If R ≤ T then Eq. (8) has transitive solutions 
iff the relation T→ T is a solution of (8). 
 
THEOREM 1.24.18: If Eq. (8) has transitive solutions, then the 
minimal transitive solutions belong to the set 

 
{(U1)∨, (U2)∨,…, (Um)∨}. 

 
The reader is expected to prove the above theorem. For more 
about these properties please refer [21]. 
 
 
1.25 Approximate solutions and FRE and a characterization of         
t-norms that define metrics for fuzzy sets. 
 
Gottwald [29] gives a necessary and sufficient condition, which 
characterizes all those t-norms, which yield a particular metric for 
fuzzy sets. 

One of the basic relations for fuzzy sets A, B ∈ F (ℵ) over a 
given universe of discourse ℵ is their inclusion relation. 

 
A ⊆ B ⇔ µA (x) ≤ µB (x) for all x ∈ ℵ.  (1) 

 
Using some ideas from many-valued logic it is quite natural 

to extend that relation to a fuzzified, i.e., graded inclusion relation 
⊆ for fuzzy sets, based, e.g., on the Lukasiewicz implication. 
Having done this, it again is natural to extend this fuzzification of 
inclusion between fuzzy sets to the equality of fuzzy sets and to 
define a fuzzified, i.e. graded equality ≡ for fuzzy sets. 

We assume that a fixed universe of discourse ℵ is given 
which contains at least two elements. Each fuzzy set A over ℵ, 
i.e. each A ∈ F (ℵ) is characterized by its membership function  

 
µA : ℵ → [0, 1]. 

 
The union of two fuzzy sets A, B is denoted A ∪ B and as 

usual characterized by the maximum of the respective 
membership degrees, the usual intersection is A ∩ B and defined 
using the min-operator, and the usual complement is denoted A . 
For each a ∈ ℵ and each u ∈ [0, 1] the fuzzy u-singleton of a , 
denoted by: 〈〈a〉〉 is the fuzzy set C with membership function: 
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C : = 〈〈a〉〉 u : µC(x) = 
⎩
⎨
⎧ =

.0
,

otherwise
axifu

   (2) 

The membership degrees µA(x) are considered as truth 
degrees of a generalized, i.e. many-valued membership predicate 
ε . For membership of a point a ∈ ℵ in a fuzzy set A ∈ F (ℵ) we 
then write   

a ε A,     (3) 
 
but, as usual in formal logic, now have to distinguish between the 
well-formed formula (3) and its truth degree [[ a ε A ]] which is 
nothing else than the usual membership degree. 
 

[[ ]]Aaε  ∈ A = defµA (a).   (4) 
 

This notation [[ … ]] for the truth degree will also be used in case 
… is a more complex expression than simply (3). 

As basic tools to build up more complex expressions 
than (3), connectives for conjunction, implication, negation and a 
quantifier for generalization are used. As usual, those logical 
operators are characterized by the way they operate on the truth 
degrees, i.e., by their truth functions. The simplest case is the 
negation operator ¬, which is determined by 

 
[[ ¬H ]] = def 1 - [[ H ]]    (5) 

 
if H is any well-formed formula of the set theoretic languages we 
just are constituting. Quite standard, too, is the understanding of 
the generalization quantifier ∀ for which generalization ∀x with 
respect to all x ∈ ℵ means to consider the infimum of the 
corresponding truth degrees: 
 

[[ ∀xH(x) ]] = def 
*

inf
∈x

[[ H(x) ]]   (6) 

 
A wide variety of possibilities exists to interpret the 

conjunction connective ∧. We will allow any t-norm to be used as 
truth function for ∧. By a t-norm, we understand a binary 
operation t in the set [0, 1] of membership degrees, i.e. a function 
t : [0, 1]2 → [0, 1] which is commutative, associative, 
monotonically nondecreasing, and has 1 as a neutral and 0 as zero 
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element: that means each such t-norm r fulfills for all u, υ, w ∈ 
[0, 1]: 

(T1)  utυ = utυ and ut(υtw) = (utυ)tw, 
(T2)  u ≤ υ ⇒ utw ≤ utw, 
(T3)  1tu = t(1, u) = u and  0tu = t(0, u) = 0; 

 
cf. also [75]. 

We write ∧t to indicate, that t is the truth function which 
characterizes ∧t. Hence one always has  

 
[[ H1∧t H2 ]] = def [[ H1 ]] t  [[ H2 ]].    (7) 

 
There is a special case, the so-called Lukasiewicz conjunction and 
characterized via (7) using the t-norm tL  
 

tL (u, υ) = def max {0, u + υ - 1}.   (8) 
 
For t-norms a partial ordering ≦ is considered which is pointwise 
defined by t 

t1 ≦ t2 =def t1 (u,υ) ≦ t2 (u,υ) for all u,υ ∈ [0, 1]. (9) 
 

Among the t-norms the left-continuous ones are of special 
interest. With them by the definition 

 
uϕt υ =def sup {w⏐utw ≤ υ} for all u,υ ∈ [0, 1]. (10) 

 
a ϕ-operator ϕt is connected which is the truth function of a 
suitable implication connective →t to be considered together with 
∧t; cf. [28, 29]. The left continuous t-norms t also have another 
important property. 
 

uϕt υ =1 ⇔ u ≤ υ  for all u,υ ∈ [0, 1]  (11) 
 
which becomes crucial for some results mentioned later on. 

For the t-norm tL the corresponding ϕ-operator ϕL is the well-
known Likasiewicz implication:  
 

uϕL υ = min {1, 1 – u + υ}.   (12) 
 

And for the t-norm t = tG = min the corresponding ϕ-operator is 
the Godel implication 
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uϕL υ = 
⎩
⎨
⎧

υ>υ
υ≤

.
,1

uif
uif

   (13) 

 
With those preliminaries the fuzzified inclusion is defined in 
essentially the same way as in classical set theory by 

 
A ⊆t B = def ∀x (x εA→t x ε B),  (14) 

 
which means in more traditional notation 
 
[[ A⊆t B ]] = 

Xx∈
inf sup {w [[ x ε A ]] tw ≤ [[ x ε B ]]  (15) 

 
and thus especially for t = tL 
 

[[ A⊆t B ]] = 
Xx∈

inf  ( [[ x ε A ]] ϕL [[ x ε B ]] 
        

  = 
Xx∈

inf  min {1, [[ x ε/ A ]]  + [[ x ε B ]]}.  

 
And the fuzzified identity is defined as  

 
A ≡t B = def A ⊆t B ∧t B ⊆t A.    (16) 

 
Introducing also the notation |= for (generalized) logical validity 
as in [28, 29] by 

 
|= A ≡t A.     (17) 

 
Whose proof partly uses property (11), of symmetry 
 

|= A ≡t B →t B ≡t A,   (18) 
and of transitivity 
 

|= A ≡t B ∧t B ≡t C →t A ≡t C,  (19) 
 
cf. [28, 29]. Additionally, again using (11), here in an essential 
way, one has 
 

A = B ⇔ |= A ≡t B ⇔ |= A ≡t B.  (20) 
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To see how these definitions work let us look at the t-norms tG = 
min and tL. For a readable formulation of the following results we 
use besides the support: 
 

Supp(A) = {x∈ ℵ ⏐µA(x) > 0} = {x ∈ ℵ | [[ x ε A ]] ≠ 0} 
 
of A∈ F (ℵ) for any fuzzy sets A, B ∈ F (ℵ) also the crisp sets  

 
{A > B = def {x ∈ℵ | [[ x ε A ]] >  [[ x ε B ]]},  (21) 
{A ≠ B} = def {x ∈ ℵ| [[ x ε A ]] ≠ [[ x ε B ]]}.  (22) 

 
These sets generalize the support in the sense that  
 

Supp (A) = {A > 0/ } = {A ≠ 0/ }. 
 

Holds true for each A ∈ F (ℵ). 
Straightforward calculations give for tG = min the results with 

inf over empty set is 1 and sup over empty set is 0.  
 

[[ A
Gt⊆ B ]]  = 

}{
inf

BAx >∈
[[ x ε B ]]   (23) 

 
with the corollary 

 
supp (A)\supp (B) ≠ 0/  ⇒ [[ A

Gt⊆ B ]] = 0.   (24) 
 

Then immediately one also has by definition (16) 
 

[[ A
Gt

≡ B ]]  = 
}{

inf
BAx ≠∈

min [[ x ε A ]], [[ x ε B ]] 
= 

}{
inf

BAx ≠∈
[[ x ε A ∩ B ]]   (25) 

 
now with the corollary 

 
supp (A) ≠ supp (B) ⇒ [[ A

Gt
≡ B ]] = 0,   (26) 

 
which indicates that 

Gt
≡  is quite a strong fuzzified equality. 

The other case t = tL again by elementary calculations first 
gives 
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[[ A
1t⊆ B ]]  = 1 –

}{
sup

BAx >∈
( [[ x ε A ]] – [[ x ε B ]])  (27) 

 
and therefore with the auxiliary notation 

 
∆ (A, B) = def

}{
sup

BAx >∈
 ( [[ x ε A ]] – [[ x ε B ]]) 

quite directly 
 

[[ A ≡t B ]] = max {0, 1 – ∆ (A, B) + ∆ (B, A))}. (28) 
 

This time, contrary to the results (24) and (26), both of the claims 
  

[[ A
1t⊆ B ]] ≠ 0 and supp (A) ⊈ supp (B) 

 
as well as both of the claims 
 

[[ A
1t≡ B ]] ≠ 0 and supp (A) ≠ supp (B), 

can be true at once. 
 

To some extent therefore 
Lt⊆ and 

Lt≡ better meet the 

intuition behind the fuzzified inclusion and equality than 
Gt⊆  and 

Gt≡ , namely the intuition that “small” deviations from the “true”, 
i.e. complete inclusion or equality do not completely falsify the 
generalized inclusion or equality. In addition, deviations from 
supp (A) ⊆ supp (B) and supp (B) should surely count as “small” 
as long as combined with small differences in the membership 
degrees over the “critical” regions supp (A) \ supp (B) and 
supp(A) ∆ supp (B)2. 

Finally, we need the notion of a metric in F(ℵ). A dyadic 
function Q from F(ℵ) into the nonnegative reals R+ is a metric iff 
for all A, B, C ∈ F(ℵ) the following conditions hold true: 
 
(M1) Q (A, B) = 0 iff A = B   (identity property), 
(M2) Q (A, B) = Q (B, A)    (symmetry), 
(M3) Q (A, C) + Q (C, B) ≥ Q (A, B) (triangle inequality). 
 

Sometimes the identity condition (M1) is weakened to the 
condition 
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(M1p)  Q(A, A) = 0. 
 
By a pseudo-metric Q then a function is meant that fulfills 
conditions (M1p), M2), (M3) . 

In a general setting, in referring to a fuzzy (relational) 
equation one quite often has in mind an equation describing a 
relationship between fuzzy sets in two (possibly different) 
“space”, i.e. universes of discourse. Such a form of relationship is 
supposed to be represented by a fuzzy relation between the 
elements of those “spaces” i.e., over the (crisp) Cartesian product 
of those universe of discourse. More precisely, let be given two 
fuzzy sets A ∈ F(ℵ) and B ∈ F(℘) as well as a fuzzy relation R 
∈ F(ℵ × ℘). Then a fuzzy relational equation can be written 
down in a general form as 

 
Θ (R, A) = B,   (29) 

 
where Θ is a suitable operator producing a fuzzy set B out of a 
fuzzy set A and a fuzzy relation R. And the case of a system. 

 
Θ (R, Ai) = Bi, i = 1,…, n   (30) 

 
of fuzzy relational equations fits into those considerations as well. 

Even more general, of course, is to consider Θ as an operator 
(of some finite parity) which maps fuzzy sets and relations onto 
fuzzy sets or fuzzy relations – and for which some of the 
arguments has (have) to be determined. We will not discuss the 
problem of fuzzy equations in this generality here.  
The standard examples of fuzzy equations are fuzzy relational 
equations like 

R” A = B, i.e. AotR = B 
 

for given fuzzy sets A, B or “pure” relational equations like 
 

RotS = T 
 

for given fuzzy relations S, T, both with an unknown fuzzy 
relation. But also again fuzzy set equations  

 
R” A = A, i.e. A ot R = A 

 
for an unknown fuzzy set A, cf. [84], or even fuzzy arithmetical 
equations for given fuzzy numbers A, B like  
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A ⊕ X = B, 
A ⊗ X = B. 

 
With an unknown fuzzy number X; cf. [28, 29]. 

Our strategy toward discussing the solvability behavior of 
fuzzy (relational) equations essentially is that one of a “many-
valued translation” – we change, with respect to some t-norm t, 
from traditional equations like (29): B = Θ (R, A) which are to be 
solved for R or A to their many-valued counterparts B ≡t Θ (R, A) 
which – for lower semicontinuous t-norms t- have the property 
that always. 

[[ Θ (R, A) ≡t B ]] = 1 ⇔ Θ (R, A) = B. 
 

What we reach to different levels of satisfaction are 
characterizations of the truth degrees [[ ∃ X(Θ (R, X) ≡t B ]] and 
[[ ∃ X(Θ (X, A) ≡t B ]] which do not involve the variable X, i.e. 
which are built up using only the “given data” R, B or A, B, 
respectively. 

For system of fuzzy equations the situation is almost the 
same: only the truth degree to be determined now is e.g., of the 
form 

[[ ∃ X
n

i 1=
Π (Θ (X, Ai) ≡t Bi) ]], 

i.e. has to be taken as the truth degree of the sentence. The system 
of fuzzy equations 
 

Θ (X, Ai) ≡t Bi , i = 1,…, n 
has a solution. 

Instead of discussing directly the problem of solvability of 
fuzzy relational Eqs. (29) or of systems (30) of such equations we 
consider the truth degrees which we just mentioned as solvability 
degrees indicating the solvability behavior of our (systems of) 
fuzzy equations. 
 
DEFINITION 1.25.1: For each one of the fuzzy (relational Eqs. 
(29) and of the systems (30) of such equations, which are 
supposed to be solved with respect to the fuzzy relation R, their 
solvability degree is the truth degree 
 

ξ0 = def [[ ∃X(Θ (X, Ai) ≡t Bi) ]], 
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in the case of one equation, and it is in the case of system of 
equations the truth degree 
 

ξ0 = def [[ ∃ X
n

i 1=
Π (Θ (X, Ai) ≡t Bi) ]]. 

 
COROLLARY 1.25.1: For all A, Ai ∈ F (ℵ) and B, Bi∈ F (℘) the 
solvability degree ξ0 of equation (29) and the solvability degree ξ 
of the system (30) of equations are 
 

ξ0 = sup { [[ Θ (R, A) ≡t B ]]| R∈ F (ℵ × ℘)}, 

ξ = sup {
n

i
T

1=
[[ Θ (R, Ai) ≡t Bi ]]| R∈ F (ℵ × ℘)}. 

 
Proposition 1.25.1: If a fuzzy equation (29) or a system (30) of 
such equations has a solution then its solvability degree is = 1. 

Given a continuous t-norm t and finite t-clan L, for all A, Ai 
∈ FL(ℵ) and B, Bi ∈ FL(℘) we consider also the relative 
solvability degrees 
 

)(
0
Lξ = def sup { [[ Θ (R, A) ≡t B ]]| R∈ FL (ℵ × ℘)}, 

ξ(L) = def sup {
n

i
T

1=
[[ Θ (R, Ai) ≡t Bi ]] | R∈ FL (ℵ × ℘)}, 

 
of course, using bounded quantification and writing ℜ = FL (ℵ × 
℘) one has  
 

)(
0
Lξ = [[ ∃ℜX(Θ (X, A) ≡t B) ]], 

ξ(L) = [[ ∃ℜX
n

i 1=
Π (Θ (X, Ai) ≡t Bi) ]]. 

 
Proposition 1.25.2: Suppose that L is finite t-clan with respect to 
a continuous t-norm t. Then one has  

 
)(

0
Lξ  ≤ ξ0 and ξ(L) ≤ ξ 

 
for all such (systems of) fuzzy equations with A, Ai ∈ FL(ℵ) and . 
B, Bi ∈ FL(℘). 
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Proposition 1.25.3: Suppose that L is finite t-clan with respect to 
a continuous t-norm t and that )L(

0ξ  = 1 or ξ(L) = 1 for some 
(system of fuzzy equation(s). Then this fuzzy equation or this 
system of fuzzy equations has a solution. 

Given a left continuous t-norm t, a binary “distinguishability” 
function Qt is defined on F(ℵ) by  

 
Qt(A, B) = def 1 - [[ A ≡t B ]]   ( * ) 

 
i.e. by always putting Qt (A, B) = [[ ¬(A ≡t B) ]]. 
For fuzzy sets A, B ∈ F(ℵ) in case of the t-norm tG = min one 
gets, using the Godel implication (13), by simple calculations the 
corresponding “distinguishability” function QG as 

 
QG = 

BxAx
x

ε≠ε
ℵ∈

sup  (1 – [[ x ε A ∩ B ]]) 

       = 

BxAx
x

ε≠ε
ℵ∈

sup  ( [[ x ε B∩A ]]) 

 
and in the case of the t-norm t = tL one gets, using the Lukasieqicz 
implication (12), after some elementary transformations 
 
QL(A,B) = min {1, max {0,

Xx∈
sup ( [[ x ε A ]] – [[ x ε B ]] + max {0, 

Xx∈
sup ( [[ x ε B ]] – [[ x ε A ]]}}. 

This function QL (A, B) is loosely related to the Cebysev distance 
of the membership functions µA, µB defined as  

 
dC (µA, µB) = 

Xx∈
sup | µA(x) - µB(x)|. 

In the sense that one always has  
dC (µA, µB) ≤ QL (A, B) ≤ 2. dC (µA, µB) 

and especially 
(|= A 

Lt⊆ B) ⇒ QL (A, B) = dC (µA, µB), 
 

which means, using the original crisp implication relation ⊆ for 
fuzzy sets as mentioned in (1), 

A ⊆ B ⇒ QL (A, B) = dC (µA, µB). 
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As mentioned in the introduction, the fuzzified identity ≡t is 
considered as a kind of graded indistinguishability or similarity. 
Indeed, each graded relation ≡t is reflexive in the sense of (17), it 
is symmetric in the sense of (18) and it is sup-t-transitive in the 
sense of property (19). 

The main problem of the present section is to find a necessary 
and sufficient condition for t to yield via (*) a metric with 
properties (M1),…, (M3) as distinguishability function Qt. 
As simple consequences of the definitions (2) and (14), (15) first 
notice that for all a ∈χ and u,υ∈ [0, 1] one has 
 

[[ 〈〈a〉〉u ⊆t〈〈a〉〉v ]] = u ϕt υ = sup {w ⏐utw ≤ υ} 
 

and hence especially for u = 1: 
[[ 〈〈a〉〉  1 ⊆t  〈〈a〉〉  v ]]  = v. 

 
Now we can formulate and prove our characterization result. 
 
THEOREM 1.25.2: Suppose t is a left continuous t-norm. Then the 
function Qt of (36) is a metric in F(χ) iff t ≧ tL, i.e. iff for all u, υ∈ 
[0, 1]: 

Max {0, u + υ - 1} ≤ utυ. 
 
For more please refer [29].  
 
 
1.26 Solvability criteria for systems of fuzzy relation equations 
 
Dorte Neundorf and Rolf Bohm [72] have given a solvability 
criteria for a system of relational equations with two different 
composition methods. They have proved under certain conditions 
the system of relational equations is always solvable. 

The motivation here is to obtain fuzzy relation models of real 
processes [84]. A set of rules is created, which describes the 
behavior of the process. The rules have the format “IF Ai THEN 
Bi (i = 1,…, n)”, with Ai and Bi as fuzzy numbers. Ai and Bi are 
called the premise of a rule and the conclusion, respectively. Each 
rule can be transformed into a relation equation “Bi = Ai o Ri” . Ri 
is also fuzzy number, the relation. The relation performs a 
mapping form Ai to Bi. It describes the “transformation” that is 
the meaning of the ith rule. The operator “o” is a symbol for any 
kind of evaluation that may be useful. It will be specified later. 
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The idea is to get a particular Ri as the description or model 
of the subprocess described by the rule with index i. Ri is a 
solution of the relation equation Bi = Ai o Ri. The solution of a 
system of relation equations (and hence the model of the entire 
process) is a fuzzy number R that fulfills every relation equation 
of the given set. In some cases more than one solution can be 
determined. 

It will be determined which parts of the membership 
functions Ai and Bi may be changed by the solution process 
without changing the resulting relation Ri. A combination of these 
conditions for all existing rules will result in intersection 
conditions for the membership functions that can still be tested 
easily. Different composition possibilities are included. The first 
step will be to look at these problems using a general expression 
for the t -norm. A detailed analysis for a specific t -norm, the 
minimum (u t υ = min {u, υ}), is added. 

To ease the reading of the text, the term “relation equation” 
will be abbreviated by RE and the term “system of REs” by SRE, 
when it is helpful. The expression “supp A” means the support of 
function A. The support is the subset of the domain, where A does 
not vanish. The possibilities to interpret and solve a system of 
fuzzy relation equations vary with the method to calculate the 
operator “o”. More detailed analysis is given in [84]. The 
necessary definitions are given here. 
 
DEFINITION 1.26.1 ( t -NORM): A mapping t  is t -norm, if the 
following properties hold: t :[0, 1] → [0, 1] with  
commutativity:   u t  v = v t  u  
associativity:   u t  (v t w) = (u t  v) t  w 
monotonicity:   w ≤ u ∧ z ≤ u ⇒  w t  z ≤ u t  v  
neural element:   u t  1t = u,  
zero element:   u t  0t  = 0. 
 
DEFINITION 1.26.2 (DUAL t  -CONORM) : ts  is the dual t -co-

norm of t if u s  v := 1 – (1 – u) t  (1 – v). 
 
DEFINITION 1.26.3 ( ρ -OPERATOR): The operator ρ is defined as u 

ρ  w: = sup {z ∈ [0, 1]| u t  z ≤ w}. 
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DEFINITION 1.26.4 (INTERSECTION AND UNION): Intersection and 
union are defined by the t -norm: 
D: = A ∩t B ⇔ µD(x) := µA(x) t  µB (x) ∀ x  
C: = A ∩t B ⇔ µC(x) : = µA(x) ts  µB (x) ∀ x. 
 
The first step is to discuss a general system of relation equations 
that is composed with sup ts -algorithm. Proposing the relation 

equation B = A ° R to describe a rule, the membership function of 
R can be written as  

 
µR (x, y)  =  µA (x) ρ µB (y) 

=  sup {z ∈ [0, 1] | µA (x) t  z ≤ µB(y)} 
 
Refer table given below  
 

Types and solutions for RE and SRE [2] 
 

Type of equation 
Solution of single 

RE 
In case of solvability 

Solution of SRE 
In case of 
solvability 

Sup t -composition 
Bi = Ai °t Ri 

µB(y) = sup {µA(x) 
t  µR(x, y)} 

Ri = Ai ρ Bi 
Greatest solution in 

the sense of 
inclusion 

R = ∩(Ai ρ Bi) 
= ∩ sup Ri. 

inf t -composition 
Bi = Ai ρ Ri 

µB(y) = inf {µA(x) ρ 
µR(x, y)} 

Ri = Ai t Bi 
smallest solution in 

the sense of 
inclusion 

R = ∪ (Ai t  Bi) 
= ∪ inf Ri. 

 
On the other hand, starting with A and R, B can be calculated as  
 
µB (y) = 

x
sup µA(x) t  µR(x, y) 

= 
⎭
⎬
⎫

⎩
⎨
⎧

µµµµ
∈∉

y) (x, t (x)sup y), (x, t (x)supmax RA
Apsupx

RA
Apsupx
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=  
⎭
⎬
⎫

⎩
⎨
⎧

µµ
∈

y) (x, t (x)sup  0,max RA
Apsupx

 

=  y) (x, t (x)sup RA
Apsupx

µµ
∈

.      (+) 

 
Because of the definition of µR(x, y) in above given table, the 
latter is always smaller than or equal to µB (y),. If µA (x) < µB (y), 
µR (x, y) is equal to one, so that 

µA (x) t  µR(x, y) = µA(x) < µB(y). 
 
It is obvious the supremum is an element of the set {(x, y)| 

µA(x) ≥ µB(y)}. That is why the membership function µR(x, y) 
may be decreased in the set {(x, y)| µA(x) < µB(y)} without any 
influence on µ B(y).  

Hence it is possible to identify parts of the support of R, 
where any changes of the membership function of R affect the 
result – in the sequel titled as fixed parts, in all other regions R 
may be decreased without any effect on the result. Figure 1 gives 
an example for the fixed parts of one rule with trapezoidal 
membership functions on a one-dimensional domain.  

The application of a relation on a given input membership 
function is a supremum process over the support of A. Because of 
the monotonicity of the t -norm it will be possible to decrease the 
relation even in the area {(x, y)| µA(x) ≥ µB(y)} without modifying 
the resulting B, if the maximum values of this set are not 
influenced.  
 

B

A
x

y

Figure 1.26.1
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The supremum process in (+) is applied on a line, which is 

parallel to the x-axis. Its elongation meets the fixed y and its end 
are fixed by the border of the fixed parts of the relation equation 
(the grey area for the example givcen in Figure 1.26.1). On this 
line the values of the relation may only be changed in a way that 
the supremum of the t -norms of these values is not touched.  

In case of continuous premises with finite support, some 
additional information can be given: 
 

∀ c ∈ [0, 1]: ∃ x1, x2: [µA(x1) =  µA(x2) = c] 
∧ [c = maxx µA (x) ∨ x1 ≠ x2]. 

 
Figure 1.26.2 illustrates these ideas for a triangular premise: the 
maximum c2 is only reached once. On the contrary, c1 is not a 
maximum; because of the continuity of the premise membership 
function it will be reached once “on the way up” and “once on the 
way down”.  

For x1 and x2 A(x1) is equal to A(x2).y is constant, so the 
relation R is identical for x1 and x2. To reproduce B correctly we 
will only need one of these two points if the other value is not 
allowed to increase.  In other words, the relation must remain 
unchanged at least on an area that covers the codomain of A once.  
 

 
If the membership function is convex on a connected support 

(this holds e.g. for trapezoidal premises), the support can be 
divided in an increasing and decreasing part. Then it is sufficient 
to keep the relation on one of these parts. Then it is sufficient to 
keep the relation on one of these parts. All other parts of the 
membership function may be decreased at all points. Of course, 
there is more than one possibility to choose the fixed parts.  

 

c1 

x2x1

c2 

Figure 1.26.2 
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For a SRE the solutions of the REs are composed by a 
minimum process. An application of this composition can only 
result in decreasing, which has been shown not to change the 
result, if it does not occur on fixed parts.  
 
THEOREM 1.26.5 (SOLVABILITY CRITERIA FOR GENERAL SRE 
USING SUP- t -COMPOSITION ): A system of relation equations 
 

Bi = Ai °t Ri, i = 1, …, n 
 
evaluated by using the sup- t - composition, is solvable if for every 
Ai there is a subset S ⊂ supp Ai with Ai(S) = codomain (Ai) and 
Aj(s) = 0 for all s ∈ S and j = 1, …, n and j ≠ i.  
 
THEOREM 1.26.6 (SOLVABILITY CRITERIA FOR GENERAL SRE 
USING INF-ρ-COMPOSITION): A system of relation equations  
 

Bi = Ai °t Ri, i = 1, …, n 
 
evaluated by using the inf -ρ- composition, is solvable if for every 
Ai there is a point s ∈ supp Ai with Aj(s) = 0 for all s ∈ S and j = 
1, …, n and j ≠ i.  
 
THEOREM 1.26.7 (SOLVABILITY CRITERIA FOR SRE USING SUP- t -
COMPOSITION AND t  = MIN). A system of relation equations 
 

Bi = Ai °t Ri, i = 1, …, n 
 
evaluated by using the sup- t -composition with t  = min, is 
solvable if for every Ai there is a subset S ⊂ supp Ai with Aj(s) = 0 
for all s ∈ S and j = 1, …, n and j ≠ i.  
 
THEOREM 1.26.8 (SOLVABILITY CRITERIA FOR GENERAL SRE 
USING INF-ρ-COMPOSITION AND t  = MIN): A system of relation 
equations  
 

Bi = Ai °t Ri, i = 1, …, n 
 
evaluated by using the inf -ρ- composition, with t = min is always 
solvable.   
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1.27 Infinite FRE to a complete Brouwerian lattice  
 
Wang [109] have proved and obtained a method to construct a 
minimal solution from any given solution with in finite steps.  

Let I and J be index sets, and let A = (aij)I x J be a coefficient 
matrix, B  = (bi)i∈I be a constant column vector. Then an equation. 
 

A  X = B   (1) 
or 

ijij
Jj

bxaV =∧
∈

)(  

for all i ∈ I 
 
is called a fuzzy relational equation assigned on a complete 
Brouwerian  lattice L, where  denote the sup-inf composite 
operation, and all xj, bi, aij’s are in L. An X which satisfies (1) is 
called a solution of (1), the solution set of (1) is denoted by ℵ = 
{X : A  X = B}. A special case of (1) is as follows: 
 

A  X = b    (2) 
or 

ijij
Jj

bxaV =∧
∈

)( , 

 
where b ∈ L, A = (ai)i∈J is a row vector. The solution set of (2) is 
denoted by ℵ = {X : A  X = b}. 
 
DEFINITION 1.27.1 [5]: In a distributive lattice L, if p is join-
irreducible if b ∨ c = a implies b = a or c = a. 
 
PROPOSITION 1.27.1 [5]: In a distributive lattice L, if p is join-
irreducible, then  

p ≤ i
k

i xV 1=  
implies p ≤ xi for some i. 
 
DEFINITION 1.27.2: For an element a of a lattice L, if there are 
join-irreducible elements p1, p2,…, pn such that a i

n
i pV 1= , we say 

that a has a finite join-decomposition.  
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Further, if for any j ∈ {1, 2,…,n}, we have moreover a ≠ 
n

jiiV ≠= ,1 pi, then  the decomposition is called  irredundant, and we 
say that a has an irredundant finite join-decomposition. 
 
DEFINITION 1.27.3 [5]: A Brouwerian lattice is a lattice L in 
which, for any given elements a and b, the set of all x ∈ L such 
that a ∧ x ≤ b contains a greatest elements, denoted by  
a α b, the relative pseudo-complement of a in b. 
 
Remark 1.27.1 [84]. If L = [0, 1], then it is easy to see that for any 
given a, b ∈ L,  

aαb = 
⎩
⎨
⎧

>
≤

.
,1
bab

ba
 

 
PROPOSITION 1.27.2 [5]: Any Brouwerian lattice L is distributive  
 
DEFINITION 1.27.4 [5]: Let (P, ≤) be a partially ordered set and X 
⊆ P. A minimal element of X is an element p ∈ X such that there 
exists no x ∈ X with x < p. The greatest element of X is an element 
g ∈ X such that x ≤ g for all x ∈ X. 
 
DEFINITION 1.27.5 (SANCHEZ [11]): Let A = (Aij)I x J and B =  
(bij)I xJ be two matrices. Then the partial order ≤, the join ∨, and 
the meet ∧ are defined as follows: 
 

A ≤ B if and only if aij ≤ bij for all i∈I, j∈J, 
A ∨ B = (aij ∨ bij)I x J, A ∧ B = (aij ∧ bij)I xJ. 

 
PROPOSITION 1.27.3: For each i∈I, let Ai = (aij)j∈J be a row 
vector, and ℵ2 be the solution set of bi = Ai  X, then: 
 
(a) ℵ1 ≠ φ if and only if Ii∈I ℵi2 ≠ φ. Further ℵ1 Ii∈I ℵ2 

 
(b) If ℵ1 ≠φ, then X* = AT α B is the greatest solution of (1), 
where AT is the transpose of A, AT α B = ( )

JjiijIi ba
∈∈ α∧ )(  is a 

column vector. 
 
DEFINITION 1.27.6: An element a in a complete lattice L is called 
compact if whenever a ≤ ∨ S there exists a finite subset T ⊆ S with 
a ≤∨ T. 
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Lemma 1.27. 1: Let J be a finite index set. If ℵ2 ≠ φ, and b has an 
irredundant finite join-decomposition, then for each X ∈ ℵ2, there 
exists a minimal element X* of ℵ2 such that X* ≤ X. 
 
PROPOSITION 1.27.4: If ℵ2 ≠ φ, and X* = (xj*)j∈J is a minimal 
element of ℵ2, then b = V j∈J xj

*. 
 
THEOREM 1.27.7: If ℵ2 ≠ φ, then for each X ∈ ℵ2, there exists a 
minimal element X* of ℵ2 such that X* ≤ X if and only if there is a 
subset B of L with B satisfying: 
 

(i) ∨B = b; 
(ii) For each p∈B, if p ≠ 0, then b ≠ V (B \ {p}); 
(iii) For each X = (xj ) j∈J ∈ ℵ2 and each p∈B there is j∈ 

J such that p ≤ aj ∧ xj 
 
THEOREM 1.27.8: If ℵ1 ≠ φ, I is a finite index set, and every 
component bi, i ∈ I, of B is a compact element and for each bi, i ∈ 
I, there exists a subset Bi of L such that  
 

i. VBi = bi; 
ii. For each pit∈Bi, if pit ≠ 0, then bi ≠ V (Bi \ {pit}); 
iii. For each X = (xj ) j∈ J ∈ ℵi2 and each pit ∈ Bi there is 

j∈J such pit ≤ aij ∧ xj 
iv. For each p ∈ Ii∈U  Bi, if p ≠ 0, then there is no 

subset Q of Ii∈U  Bi such that p ≤ V (Q \ {p}). 
 
Then for each X ∈ ℵ1, there exists a minimal element X* of ℵ1 
such that X* ≤ X.                
 
For  proof please refer [109]. 
 
 
1.28 Semantics of implication operators and fuzzy relational product  
 
After a brief discussion of the need for fuzzy relation theory in 
practical systems work, here we explain the new triangle products 
of relations and the sort of results to be expected from them, 
starting from a crisp situation. The asymmetry of these products, 
in contrast to correlation, is noted as essential to the investigation 
of hierarchical dependencies. The panoply of multi-valued 
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implication operators, with which the fuzzification of these 
products can be accomplished, is presented, and a few of their 
properties noted.  

For checklist paradigm please refer [43]. Using a well-known 
psychological test in an actual situation, so that the finer structure 
is in fact available, a comparison is made between a checklist 
measure and several of the operator values, showing the 
interrelationship concretely. Finally, some products and their 
interpretations are presented, using further real-world data. 

The difficulties of saying anything meaningful about a system 
increase enormously with its complexity. The vogue for, and 
success of, statistical methods are evidence of one way of doing 
this. Here we are concerned with quite another, the possibilistic 
[43], rather than the probabilistic way. 

In any real-world situation our information about a system is 
too voluminous and intricate, and needs to be summarized; or it is 
approximate from the very beginning. A scientist, attempting to 
analyze such a system, implicitly asserts his belief that a number 
of significant things can be said about the system – could they 
only be found! In his attempt to analyze a real-world system, he is 
working with a model of its, simplified so as to be manageable 
and comprehensible. The danger of the assumption that this model 
can always be deterministic has been demonstrated in [43].  
 In general, it can be said that unwarranted structural 
assumptions imposed on the working model can lead to dangerous 
artifacts that do not reflect anything that is contained in the real-
world data; this leads consequently to totally meaningless result of 
the analysis masquerading as “scientific truth”.  

On the other hand, rejecting such strong unwarranted 
assumptions, we may still be able to provide some meaningful 
answers to our questions such as: What structural relationships 
between the individual items of the analyzed data must exist? 
Which cannot exist? Which may exist perhaps if …? These modal 
terms in which we all think, but which we usually rule out in our 
“scientific discourse”, are in fact the proper terms for possibilistic 
systems. 
 Possibility theory can be crisp; any given structure, say, may 
be utterly (1) or not at all (0) contained in another structure. More 
attractive and more consonant with summarized data from the real 
world, however, is fuzzy possibilistic theory: here the degree to 
which X can be contained in Y is (estimated as) some number 
from 0 to 1 inclusive. This may sound like a probability, but it is 
not. The quickest way to see this is from the fact that entirely 
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different operations are performed on these fuzzy degrees than are 
performed on probabilities; this reflects, of course, a deeper 
semantic and epistemological difference, on which there is a large 
literature, of which Zadeh [115, 116] are particularly illuminating. 
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Chapter Two 

 
 
SOME APPLICATIONS OF FUZZY 
RELATIONAL EQUATIONS 
 
 
 
In this chapter we give several of the applications of fuzzy 
relational equations in studies like chemical engineering, 
transportation, medicine etc. The fuzzy relational equations 
happen to be a seemingly simple method but in reality it can be 
used to solve many complicated problems, problems that even do 
not have solutions by using linear equations. This chapter is 
completely devoted to the applications of fuzzy relational 
equations.  There are 11 sections in this chapter, which gives how 
FREs are applied to special problem. [81, 85, 100-101,111, 114]  
 
 
2.1  Use of FRE in chemical engineering 
 
The use of fuzzy relational equations (FRE) for the first time has 
been used in the study of flow rates in chemical plants. They have 
only used the concept of linear algebraic equations to study this 
problem and have shown that use of linear equations does not 
always guarantee them with solutions. Thus we are not only 
justified in using fuzzy relational equation but we are happy to 
state by adaptation of FRE we are guaranteed of solutions to the 
problem. We have adapted the fuzzy relational equations to the 
problem of estimation of flow rates in a chemical plant, flow rates 
in a pipe network and use of FRE in a 3 stage counter current 
exaction unit [99]. 

Experimental study of chemical plants is time consuming 
expensive and need intensive labor, researchers and engineers 
prefer only theoretical approach, which is inexpensive and 
effective. Only linear equations have been used to study: (1). A 
typical chemical plant having several inter-linked units (2). Flow 
distribution in a pipe network and (3). A three stage counter 
current extraction unit. Here, we tackle these problems in 2 stages. 



 

 168

At the first stage we use FRE to obtain a solution. This is done by 
the method of partitioning the matrix as rows. If no solution exists 
by this method we as the second stage adopt Fuzzy Neural 
Networks by giving weightages. We by varying the weights arrive 
at a solution which is very close to the predicted value or the 
difference between the estimated value and the predicted value is 
zero. Thus by using fuzzy approach we see that we are guaranteed 
of a solution which is close to the predicted value, unlike the 
linear algebraic equation in which we may get a solution and even 
granted we get a solution it may or may not concur with the 
predicted value.  

To attain both solution and accuracy we tackle the problems 
using Fuzzy relational equations at the first stage and if no 
solution is possible by this method we adopt neural networks at 
the second stage and arrive at a solution.  

Consider the binary relation P(X, Y), Q(Y, Z) and R(X, Z) 
which are defined on the sets X = {xi / i ∈ I} Y = {yi / j ∈ J} and 
Z{zk /  k ∈ K} where we assume that I = Nn, J = Nr and K = Ns. 
Let the membership matrices of P, Q and R be denoted by P = 
[pij], Q = [qik] and R = [rik] respectively, where pij = P(xi, yj), qik = 
Q(yj, zk) and rik = R(xi, zk) for i ∈ I (= Nn), j ∈ J (= Nm) and k ∈ K 
(= Ns). Entries in P, Q and R are taken from the interval [0, 1]. 
The three matrices constrain each other by the equation  
 

P o Q = R     (1) 
 
(where o denotes the max-min composition) known as the fuzzy 
relation equation (FRE) which represents the set of equation  
 

Max pijqjk = rik    (2) 
 
 for all i ∈ Nn, k ∈ Ns. If after partitioning the matrix and solving 
the equation (1) yields maximum of qjk < rik for some qjk, then this 
set of equation has no solution. So at this stage to solve the 
equation 2, we use feed-forward neural networks of one layer with 
n-neurons with m inputs shown in Figure 2.1.1.  

Inputs of the neuron are associated with real numbers Wij 
referred as weights. The linear activation function f is defined by  
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The output yi = f(max Wijxj), for all i∈Nn and j∈Nm. Solution to 
(1) is obtained by varying the weights Wij so that the difference 
between the predicted value and the calculated value is zero.  
 
FRE to estimate flow rates in a chemical plants  
 
A typical chemical plant consists of several interlinked units. 
These units act as nodes. The flowsheet is given in Figure 2.1.2.  
 

 
An experimental approach would involve measuring the nine 

flow-rates to describe the state of the plant which would involve 
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more money and labor. While studying this problem in practice 
researchers have has neglected density variations across each 
stream. The mass balance equations across each node at steady 
state can be written as  

F3 – F2 = F1, 
F2 – F4 = F5,  
F4 – F7 = F6,  
F2 + F8 = F5,  
F8 = F9 – F6.     (3) 

 
Here Fi represents the volumetric flow rate of the ith stream. 

In equation (3) at least four variables have to be specified or 
determined experimentally. The remaining five can then be 
estimated from the equation (3), which is generated by applying 
the principle of conservation of mass to each unit. We assume F1, 
F5, F6 and F9 are experimentally measured, equation (3) reads with 
known values on the right-hand side as follows: 
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P o Q = R     (5)  

 
where, P, Q and R are explained. Using principle of conservation 
of mass balanced equation we estimate the flow rates of the five 
liquid stream. We in this problem aim to minimize the errors 
between the measured and the predicted value. We do this by 
giving suitable membership grades pij ∈ [0, 1] and estimate the 
flow rates by using these pij’s in the equation 3. Now the equation 
4 reads as follows: 
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where   P = (pij),  

Q = (qik) = [F2 F3 F4 F7 F8]t and  
R = (rik) = [F1 F5 F6 F5 F9 – F6]t.  

 
We now apply the partitioning method of solution to equation 

(6). The partitioning of P correspondingly partitions R, which is 
give by a set of give subsets as follows:  
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Suppose the subsets satisfies the condition max qik < rik then it has 
no solution. If it does not satisfy, this condition, then it has a final 
solution. If we have no solution we proceed to the second stage of 
solving the problem using Fuzzy Neural Networks.  
 
NEURAL NETWORKS TO ESTIMATE THE FLOW RATES IN A 
CHEMICAL PLANT 
 
When the FRE has no solution by the partition method, we solve 
these FRE using neural networks. This is done by giving 
weightages of zero elements as 0 and the modified FRE now reads 
as  
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The linear activation function f defined earlier gives the output yi 
= f (max Wij xj) (i ∈ Nn) we calculate max Wijxj as follows: 
 
1. W11x1 = 0.02F2, W12x2 = 0F2, W13x3 = 0F2 W14x4 = 0.045F2, 
W15x5 = 0F2 
  y1 = f (maxj∈Nm Wijxj) = f (0.02F2, 0F2, 0.045F2, 0F2) 
 
2. W21x1 = 0.04F3, W22x2 = 0.045F3, W23x3 = 0F3, W24x4 = 0.0F3, 
W15x5 = 0F3 
  y2 = f (maxj∈Nm Wijxj) = f (0.04F3, 0.045F3, 0F3, 0.0F3, 0F3) 
 
3. W31x1 = 0.0F4, W32x2 = 0.085F4, W33x3 = 0.15F4, W34x4 = 0.0F4 
W35x5 = 0F4 
  y3 = f (maxj∈Nm Wijxj) = f (0F4, 0.085F4, 0.15F4, 0F4, 0F4) 
 
4. W41x1 = 0.0F7, W42x2 = 0F7, W43x3 = 0.2F7, W44x4 = 0.0F7, 
W45x5 = 0F7 
  y4 = f (maxj∈Nm Wijxj) = f (0F7, 0F7, 0.2F7, 0.0F7,  0F7) 
 
5. W51x1 = 0.0F8, W52x2 = 0F8, W53x3 = 0F8, W54x4 = 0.45F8, 
W55x5 = 0.5F8 
  y5 = f (maxj∈Nm Wijxj) = f (0F8, 0F8, 0F8, 0.45F8, 0.5F8) 
 
shown in Figure 2.1.2. Suppose the error does not reach 0 we 
change the weights till the error reaches 0. We continue the 
process again and again until the error reaches to zero.  
 
Thus to reach the value zero we may have to go on giving 
different weightages (finite number of time) till say sth stage Ps o 
Qs whose linear activation function f, makes the predicted value to 
be equal to the calculated value. Thus by this method, we are 
guaranteed of a solution which coincides with the predicted value.  
 
FUZZY NEURAL NETWORKS TO ESTIMATE VELOCITY OF FLOW 
DISTRIBUTION IN A PIPE NETWORK  
 
In flow distribution in a pipe network of a chemical plant, we 
consider liquid entering into a pipe of length T and diameter D at 
a fixed pressure Pi, The flow distributes itself into two pipes each 
of length T1(T2) and diameter D1(D2) given in Figure 2.1.3.  
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The linear equation is based on Ohm’s law, the drop in 

voltage V across a resistor R is given by the linear relation V = iR 
(Ohm’s law). The hydrodynamic analogue to the mean velocity v 
for laminar flow in a pipe is given by ∇p = v (32µT/D2). This is 
classical-Poiseulle equation. In flow distribution in a pipe 
network, neglecting pressure losses at the junction and assuming 
the flow is laminar in each pipe, the macroscopic momentum 
balance and the mass balance at the junction yields,  

 
P1 – Pa = (32µT/D2)v + (32µT1D1

2)v1,  
Pi – Pa = (32µT/D2)v + 32µT/D2

2)v2,  
D2v = D1

2v1 + v2D2
2 .       (7) 

 
Hence Pa is the pressure at which the fluid leaves the system at the 
two outlets. The set of three equation in (7) can be solved and we 
estimate v, v1, v2 for a fixed (Pi – Pa). The system reads as  
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We transform this equation into a fuzzy relation equation. We use 
a similar procedure described earlier and obtain the result by 
fuzzy relation equation. We get max (0.2v, 0.025v, 0.03v), max 
(0.035v, 0v1, 0.04v1), max (0v2, 0.04v2, 0.045v2) by using neural 
networks for fuzzy relation equation described in section 3. 
Suppose the error does not reach to 0, we change the weights till 
the error reaches 0. We continue the process again and again till 
the error reaches zero.  

T

Pa, D1, V1 

Pa, D2, V2 

Figure: 2.1.3 
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FUZZY NEURAL NETWORKS TO ESTIMATE THREE STAGE 
COUNTER CURRENT EXTRACTION UNIT 
 
Three-stage counter extraction unit is shown in Figure 2.1.4. The 
components A present in phase E (extract) along with a 
nondiffusing substance as being mixture.  
 

 
It is extracted into R by a nondiffusing solvent. The 3 extraction 
stage is given by the three equation.  
 

EsY4 + RsXs = RsX3 + EsY3,  
EsY3 + RsX1 = Es + RsX2,  
EsY2 + RsX0 = EsY1 + RsX1   (8) 

 
Yi(Xi) = moles of A, The flow of each stage is denoted by Es(Rs) 
and this constant does not vary between the different stages. The 
assumption of a linear equilibrium relationship for the 
compositions leaving the ith stage equations  
 

Yi = KXi      (9)  
 
for i = 1, 2, 3 reads as  
 

Stage 1 Stage 2 Stage 3 

X3 (R)

Y4 (E)

X0 

Y1 

Figure: 2.1.4 



 

 175

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

−
−

0

0
0
0

10000
000

00100
00

00001
000

4

0

3

3

2

2

1

1

2 YE

XR

Y
X
Y
X
Y
X

K
ERR

K
EERR

K
EER

s

s

ss

ssss

sss

 

 
where {X1, Y1, X2, Y2, X3, Y3} can be obtained for a given Es, Rs 
and K. Since use of linear algebraic equation does not result in the 
closeness of the measured and predicted value, we use neural 
networks for fuzzy relation equations to estimate the flow-rates of 
the stream, moles of the three-stage counter extraction unit and 
velocity of the flow distribution in a pipe network. As neural 
networks is a method to reduce the errors between the measured 
value and the predicted value. This allows varying degrees of set 
membership (weightages) based on a membership function 
defined over the range of value. The (weightages) membership 
function usually varies from 0 to 1. We use the similar modified 
procedure described earlier and get result by fuzzy relation 
equation. We get max (0.2X1, 0.25X1, 0.3X1, 0X1, 0X1, 0X1), max 
(0.35Y1, 0.4Y1, 0Y1, 0Y1, 0Y1, 0Y1) max (0X2, 0X2, 0.45X2, 
0.5X2, 0.55X2, 0X2), max (0.6Y2, 0Y2, 0.65Y5, 0.7Y2, 0Y2, 0Y2) 
max (0X3, 0X3, 0X3, 0X3, 0.75X3, 0.8X3), max (0Y3, 0Y3, 0.85Y3, 
0Y3, 0.9Y3, 0.95Y3) by neural networks for fuzzy relation 
equation. We continue this process until the error reaches zero or 
very near to zero.  
 
Thus we see that when we replace algebraic linear equations by 
fuzzy methods to the problems described we are not only 
guaranteed of a solution, but our solution is very close to the 
predicted value.  
 
 
2.2  New FRE to estimate the peak hours of the day for transport 
system 
 
In this section we just recall the notion of new fuzzy relational 
equations and study the estimation of the peak hour problem for 
transport systems using it we have also compared our results with 
the paper of W.B.Vasantha Kandasamy and V. Indra where FCMs 
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are used. We establish in our study which yields results, which are 
non over lapping and unique solutions. 
 
MODIFIED FUZZY RELATION EQUATION HAS BEEN DERIVED FOR 
ANALYZING PASSENGER PREFERENCE FOR A PARTICULAR HOUR IN 
A DAY  
 
Since any transport or any private concern which plys the buses 
may not in general have only one peak hour in day, for; the peak 
hours are ones where there is the maximum number of passengers 
traveling in that hour. The passengers can be broadly classified as 
college students, school going children, office going people, 
vendors etc. Each category will choose a different hour according 
to their own convenience. For example the vendor group may go 
for buying good in the early morning hours and the school going 
children may prefer to travel from 7.00 a.m. to 8 a.m., college 
students may prefer to travel from 8 a.m. to 9 a.m. and the office 
going people may prefer to travel from 9.00 a.m. to 10.00 a.m. 
and the returning hours to correspond to the peak hours as the 
school going children may return home at about 3.00 p.m. to 4.00 
p.m., college students may return home at about 2.00 p.m. to 3.30 
p.m. and the office going people may return home at about 5.00 
p.m. to 6.00 p.m. Thus the peak hours of a day cannot be achieved 
by solving the one equation P o Q = R. So we reformulate this 
fuzzy relation equation in what follows by partitioning Qi’s. This 
in turn partition the number of preferences depending on the set Q 
which correspondingly partitions R also. Thus the fuzzy relation 
equation say P o Q = R reduces to a set of fuzzy relations 
equations P1 o Q1 = R1, P2 o Q2 = R2, …, Ps o Qs = Rs where Q = 
Q1 ∪ Q2 ∪ … ∪ Qs such that Qi ∩ Qj = φ for i ≠ j. Hence by our 
method we get s preferences. This is important for we need at 
least 4 to 5 peak hours of a day. Here we give a new method by 
which we adopt the feed forward neural network to the 
transportation problem.  

We briefly describe the modified or the new fuzzy relation 
equation used here. We know the fuzzy relation equation can be 
represented by neural network. We restrict our study to the form  

 
P o Q = R     (1) 

 
where o is the max-product composition; where P = [pij], Q = [qjk] 
and R = [rik], with i ∈ Nn, j ∈ Nm and k ∈ Ks. We want to 
determine P. Equation (1) represents the set of equations.  
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mJj∈
max pij qjk = τik      (2) 

 
for all i ∈ Nn and k ∈ Ns. 

To solve equation (2) for Pij (i ∈ Nn, j ∈ Nm), we use the feed 
forward neural network with m inputs and only one layer with n 
neurons.  
 First, the activation function employed by the neurons is not 
the sigmoid function, but the so-called linear activation function f 
defined for all a ∈ R by  
 

⎪
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⎪
⎨
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Second, the output yi of neuron i is defined by  
 

( )njijNji NiXWfy ∈⎟
⎠
⎞

⎜
⎝
⎛=

∈
max . 

 
 Given equation 1, the training set of columns qk of matrix Q 
as input (xj = qik for each j ∈ Nm, k ∈ Ns) and columns rk of 
matrix R as expected output (yi = rjk for each i ∈ Nn and k ∈ Ns

). 
Applying this training set to the feed forward neutral network, we 
obtain a solution to equation 1, when the error function reaches 
zero. The solution is then expressed by the weight wij as pij = wij 
for all i ∈ Nn and j ∈ Nm. Thus p = (wij) is a n × n matrix.  

It is already known that the fuzzy relation equation is in the 
dominant stage and there is lot of scope in doing research in this 
area, further it is to be also tested in real data. 
 Here we are transforming the single equation P o Q = R into a 
collection of equations. When the word preference is said, there 
should be many preferences. If only one choice is given or the 
equation results in one solution, it cannot be called as the 
preference. Further, when we do some experiment in the real data, 
we may have too many solutions of preferences. For a unique 
solution sought out cannot or may not be available in reality, so to 
satisfy all the conditions described above, we are forced to 
reformulate the equation P o Q = R. We partition the set Q into 
number of partition depending on the number preferences. When 
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Q is partitioned, correspondingly R also gets partitioned, hence 
the one equation is transformed into the preferred number of 
equations. 
 Thus Q and R are given and P is to be determined. We 
partition Q into s sets, say Q1, Q2, …, Qs such that Q = Q1 ∪ Q2 ∪ 
… ∪ Qs, correspondingly R will be partitioned as R = R1 ∪ R2 ∪ 
… ∪ Rs. Now the resulting modified fuzzy equat6ions are P1 o Q1 
= R1, P2 o Q2 = R2, …, Ps o Qs = Rs respectively. Hence by our 
method, we obtain s preferences.  
 Since in reality it is difficult to make the error function Ep to 
be exactly zero, we in our new fuzzy relation equation accept for 
the error function Ep to be very close to zero. This is a deviation 
of the formula. Also we do not accept many stages in the arriving 
of the result. So once a proper guess is made even at the first stage 
we can get the desired solution by making Ep very close to zero.  
 We are to find the passenger preference for a particular hour. 
The passenger preference problem for a particular hour reduces to 
finding the peak hours of the day (by peak hours of the day, we 
mean the number of passengers traveling in that hour is the 
maximum). Since the very term, preference by a passenger for a 
particular hour is an attribute, we felt it would be interesting if we 
adopt the modified fuzzy relation equation to this problem  
 So in our problem, we use the fuzzy relation equation P o Q = 
R, where P denotes the preference of a passenger to a particular 
hour, Q denotes the specific hour under study say hi, i = 1, 2, …, 
17 where hi denotes the hour ending at 6 a.m., h2 denotes the hour 
ending at 7 a.m., …, h17 denotes the hour ending at 10 p.m. and Ri 
denotes the number of passengers traveling during that particular 
hour hi, for i = 1, 2, …, 17.  
 Here we use the fuzzy relation equation to determine P. We 
formulate the problem as follows:  
 If hi, for i = 1, 2, …, n are the n-hour endings, Ri, for i = 1, 2, 
…, n denote the number of passengers traveling during hour hi, 
for i = 1, 2, …, n. We denote by R the set {R1, R2, …, Rn} and Q 
= {h1, h2, …, hn}. To calculate the preference of a passenger to a 
particular hour we associative with each Ri, a weight wi. Since Ri 
correspond to the number of passenger traveling in that hour hi, is 
a positive value and hence comparison between any two Ri and 
Rj’s always exist. Therefore, if Ri < Rj, then we associate a weight 
wi to Ri and wj to Rj such that wi < wj, where wi and wj take values 
in the interval [0, 1].  
 Now we solve the matrix relation equation P o Q = R and 
obtain the preference of the passenger P for a particular time 
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period, which is nothing but the maximum number of passengers 
traveling in that hour.  
 If we wish to obtain only one peak hour for the day, we take 
all the n elements and form a matrix equation,  
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and find the n × n matrix P = (wij) using the method described in 
the beginning. We choose in several steps the weight function w1, 
w2, …, wn so that the error function Ep reaches very near to zero. 
It is pertinent to mention here for our passengers preference 
problem we accept a value other than zero but which is very close 
to zero as limit which gives us the desired preference.  
 If we wish to have two peaks hours, we partition Q into Q1 
and Q2 so that correspondingly R gets partitioned in R1 and R2 and 
obtain the two peak hours using the two equations P1 o Q1 = R1 

and P2 o Q2 = R2 respectively. Clearly P1 = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ijw
1

 the weights 

associated with the set R1 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ijw
P

2
2  the weights associated 

with the set R2.  
 
 If we wish to have a peak hours, s < n, then we partition hi for 
i = 1, 2, …, n into s disjoint sets and find the s peak hours of the 
day. This method of partitioning the fuzzy relation equation can 
be used to any real world data problem, though we have described 
in the context of the transportation problem.  
 We have tested our hypothesis in the real data got from 
Pallavan Transport Corporation.  
 
Hour ending Q; 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22. 
 
Passengers per hour R: 96, 71, 222, 269, 300, 220, 241, 265, 249, 
114, 381, 288, 356, 189, 376, 182, 67. 
 
We have partitioned the 17 hours of the day Q.  
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i) by partitioning Q into three elements each so as to 

get five preferences,  
ii) by partitioning Q into five elements each so as to get 

three preferences and  
iii) by arbitrarily partitioning Q into for classes so as to 

get four preferences.  
 

In all cases from these real data, our predicated value 
coincides with the real preference value.  

Since all the concepts are to be realized as fuzzy concepts, we 
at the first state make the entries of Q and R to lie between 0 and 
1. This is done by multiplying Q by 10-2 and R by 10-4 
respectively.  

We partition Q into three elements each by taking only the 
first 15 elements from the table. That is Q = Q1 ∪ Q2 ∪ Q3 ∪ Q4 
∪ Q5 and the corresponding R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5. 

 
For  Q1 = xi  R1 = rik 
 

 
08.0
07.0
06.0

  
0222.0
0071.0
0096.0

. 

The fuzzy relation equation is  
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We employ the same method described earlier, where, the linear 
activation function f is defined by  
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for all a ∈ R and output yi of the neuron i is defined by  
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calculate 
mNj∈

max  Wij  Xj as follows:  

 
(i)  w11x1 = 0.03 × 0.06  =  0.0018 
 w12x2 = 0.0221875 × 0.07 =  0.001553125 
 w13x3 = 0.069375 × 0.08 =  0.00555 
 ∴ Max (0.0018, 0.001553125, 0.00555) = 0.00555 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f (0.00555) = 0.00555 (Since 0.00555∈[0, 1]) 

  ∴ y1 = 0.00555.  
 
(ii)  w21x1  =  0.06 × 0.06  =  0.0036 
 w22x2  =  0.044375 × 0.07 =  0.00310625 
 w23x3  =  0.13875 × 0.08 =  0.0111 
 ∴ Max (0.0036, 0.00310625, 0.0111) = 0.0111 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f (0.0111) = 0.0111 (Since 0.0111∈[0, 1]) 

 ∴ y2 = 0.0111 
 
(iii)  w31x1 =  0.12 × 0.06  =  0.0072 
 w32x2 =  0.08875 × 0.07 =  0.0062125 
 w33x3 =  0.2775 × 0.08 =  0.0222 
∴ Max (0.0072, 0.0062125, 0.0222) = 0.0222 (Since 0.0222 ∈ [0, 
1] 
∴ y3 = 0.0222 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f (0.0222) = 0.0222 (Since 0.0222∈[0, 1]) 

  ∴ y3 = 0.0222. 
 
Feed Forward Neural Network representing the solution is shown 
above.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∴

2775.013875.0069375.0
08875.0044375.00221875.0

12.006.003.0

1P . 

 
Verification: 
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Consider, P o Q = R 
that is  ikjkij

Nj
rqp

m

=
∈

max  

∴  Max (0.0018, 0.0042, 0.0096)    =  0.0096 
 Max (0.00133125, 0.00310625, 0.0071) =  0.0071 
 Max (0.0041625, 0.0097125, 0.0222)  =  0.0222.  
 

Similarly by adopting the above process, we have calculated 
the passenger preferences P2, P3, P4 and P5 for the pairs (Q2, R2), 
(Q3, R3), (Q4, R4) and (Q5, R5).  
 
For  

0220.011.0
0300.010.0
0269.009.0

22 RQ

 we have 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00605.022.011.0
075.03.015.0

06725.0269.01345.0

2P . 

For  

     

0249.014.0
0265.013.0
0241.012.0

33 RQ

we have 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

051875.010375.02075.0
0552.01104.02208.0
0502.01004.02008.0

3P . 

For  

0288.017.0
0381.016.0
0114.015.0

44 RQ

, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

045.018.009.0
05953125.023125.01190625.0
0178125.007125.0035625.0

4P , 

 
and for  

 

0376.020.0
0189.019.0
0356.018.0

55 RQ

 we have 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

188.0094.0047.0
0945.004725.0023625.0
178.0089.00445.0

5P . 

 
 On observing from the table, we see the preference P1, P2, P3, 
P4, and P5 correspond to the peak hours of the day, h3 that is 8 
a.m. with 222 passengers, h5 that is 10 a.m. with 300 passengers, 
h8 that is 1 p.m. with 265 passengers, h11 that is 4 p.m. with 381 
passengers and h15 that is 8 p.m. with 376 passengers. Thus this 
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partition gives us five preferences with coincides with the real 
data as proved by the working.  
 
max (0.003108, 0.00444, 0.00666, 0.0222, 0.01221)  =  0.0222 
max (0.003766, 0.00538, 0.0080694, 0.0269, 0.014795) = 0.0269 
max (0.0042, 0.006, 0.009, 0.03, 0.0165)    =  0.03 
max (0.00308, 0.0044, 0.0065997, 0.0222, 0.0121)  =  0.0222 
 
Similarly we obtain the passenger preference P for the other 
entries using the above method. 
 
For  Q2    R2 

0.12 0.0241 
0.13 0.0265 
0.14 0.0249 
0.15 0.0114 
0.16 0.0381  

 
we have  

P2 = 

⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

238125.01190625.0079375.005953.0047625.0
07125.0035625.002375.00178125.001425.0
155625.00778125.0051875.003890625.0031125.0
165625.00828125.00552083.004140625.0033125.0
150625.00753125.005020833.003765625.0030125.0

  

 
and for   Q3      R3 

0.17 0.0288 
0.18 0.0356 
0.19 0.0189 
0.20 0.0376 
0.21 0.0182 we have 

 
w54 x4  =  0.15 × 0.10  =  0.015 
w55 x5  =  0.11 × 0.11  =  0.0121. 
 
∴Max = (0.002485, 0.00888, 0.012105, 0.015, 0.0121) = 0.015 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f (0.015) = 0.015 (Since 0.015 ∈ [ ]1.0 ) 

 
∴y5  =  0.015. 
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Feed forward neural network representing the solution is shown 
above 
 

∴P1 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11.0220.007333.0055.0044.0
15.03.01.0075.006.0

1345.0269.008966.006725.00538.0
111.0222.0074.00555.00444.0

03555.0071.002366.001775.00142.0

. 

 
Verification : 
Consider, P o Q = R 
that is ikjkij

Nj
rqp

m

=
∈

max  

max (0.000994, 0.00142, 0.0021294, 0.0071, 0.003905) = 0.0071 
 
w24 x4  =  0.075 × 0.10  =  0.0075 
w25 x5  =  0.055 × 0.11  =  0.00605 
∴Max (0.0012425, 0.00444, 0.0060525, 0.0075, 0.00605) = 
0.0075 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max = f (0.0075) = 0.0075 (Since 0.0075 ∈ [ ])1,0  

∴y2 = 0.0075 
 
(iii)  
w31 x1  =  0.02366 × 0.07  =  0.016566 
w32 x2  =  0.074 × 0.08  =  0.00592 
w33 x3  =  0.08966 × 0.09  =  0.00807 
w34 x4  =  0.1 × 0.10   =  0.010 
w35 x5  =  0.07333 × 0.11  =  0.008066 
∴Max (0.016566, 0.00592, 0.00807, 0.010, 0.008066) = 
0.016566 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max = f (0.016566) = 0.016566 (Since 0.016566 ∈ [0, 

1]) 
  ∴y3 = 0.016566 
 
(iv)  
w41 x1  =  0.071 × 0.07  =  0.00497 
w42 x2  =  0.222 × 0.08  =  0.01776 
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w43 x3  =  0.269 × 0.09  =  0.02421 
w44 x4  =  0.3 × 0.10   =  0.03 
w45 x5  =  0.220 × 0.11  =  0.0242 
∴ Max (0.00497, 0.01776, 0.02421, 0.03, 0.0242) = 0.03 
 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f  (0.03) = 0.03 (Since 0.03 ∈ [0, 1]) 

  ∴y4 = 0.03 
 
(v)  
w51 x1  =  0.0355 × 0.07  =  0.002485 
 w52 x2 =  0.111 × 0.08  =  0.00888 
 w53 x3 =  0.1345 × 0.09  =  0.012105. 
 
 Now, we partition Q into five elements each by leaving out 
the first and the last element from the table as Q1 Q2 and Q3 and 
calculate P1, P2 and P3 as in the earlier case: 
 
for     Q1      R1 

0.07 0.0071 
0.08 0.0222 
0.09 0.0269 
0.10 0.0300 
0.11 0.0220. 

 
The fuzzy relation equation is 
 

P1 o 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

11.0
10.0
09.0
08.0
06.0

 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0220.0
0300.0
0269.0
0222.0
0071.0

. 

 
Calculate max wij xj as follows 
  j ∈ Nm 
(i)  
w11 x1  =  0.0142 × 0.07  =  0.000994 
 w12 x2 =  0.0444 × 0.08  =  0.003552  
 w13 x3  =  0.0538 × 0.09  =  0.004842 
 w14 x4  =  0.06 × 0.10   =  0.006 
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 w15 x5  =  0.044 × 0.11   =  0.00484 
 
∴ Max (0.000994, 0.003552, 0.004842, 0.006, 0.00484) = 0.006 

⎟
⎠
⎞

⎜
⎝
⎛

∈
jijNj

XWf
m

max  = f (0.006) = 0.006 (Since 0.006 ∈ [0, 1]) 

  ∴y1 = 0.006 
 
(ii)  
w21 x1  =  0.01775 × 0.07  =  0.0012425 
 w22 x2  =  0.0555 × 0.08  =  0.00444 
 w23 x3  =  0.06725 × 0.09  =  0.0060525 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0455.0091.003033.002275.00182.0
094.00188.006266.0047.00376.0

04725.00945.00315.0023625.00189.0
089.0178.005933.00445.00356.0
072.0149.0048.0036.00288.0

3P . 

 
 On observing from the table, we see the preference P1, P2 and 
P3 correspond to the peak hours of the day, h5 that is 10 a.m. with 
300 passengers, h11 that is 4 p.m. with 381 passengers and h15 that 
is 8 p.m. with 376 number of passengers. Thus this partition gives 
us three preferences, which coincides with the real data as proved 
by the working.  

We now partition Q arbitrarily, that is the number of elements 
in each partition is not the same and by a adopting the above 
method we obtain the following results:  
for   

0222.008.0
0071.007.0
0096.006.0

11 RQ

we have 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2775.013875.0069375.0
08875.0044375.00221875.0

12.006.003.0

1P . 

 
For   Q2     R2 

0.09 0.269 
0.10 0.300 
0.11 0.220 
0.12 0.241 
0.13 0.265   

we have 
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P2 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

06625.008833.0106.017666.01325.0
06025.008033.00964.016066.01205.0
055.00733.0088.014666.011.0
075.01.012.02.015.0

06725.08966.01076.017933.01345.0

. 

 
For  Q3    R3 

0.14 0.0249 
0.15 0.0114   

 

we have  ⎥
⎦

⎤
⎢
⎣

⎡
=

076.0038.0
166.0083.0

3P  

 
and for    Q4      R4 

  0.16    0.0381 
  0.17    0.0288 

0.18 0.0356 
0.19 0.0189 
0.20 0.0376 
0.21 0.0182   

we have  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

001425.0091.00171.00213756.00285.004275.0
0254.0188.003048.00381.00508.00762.0

001575.00945.00189.0023625.00312.04725.0
02411.0178.003193.004111.005322.008233.0
024.0144.00288.0036.0048.0072.0

03175.01905.00381.0047625.00635.009525.0

. 

 
 We obtain in the preferences P1, P2, P3 and P4 by partitioning 
the given data into a set of three elements, a set of five elements, a 
set of two elements and a set of six elements. On observing from 
the table, we see that these preferences correspond to the peak 
hours of the day, h3 that is 8 a.m. with 222 passengers, h5 that is 
10 a.m. with 300 passengers, h9 that is 2 p.m. with 249 number of 
passengers and h11 that is 4 p.m. with 381 number of passengers. 
Thus this partition gives us four preferences which coincides with 
the real data as proved by the working.  
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Thus the Government sector can run more buses at the peak hours 
given and also at the same time restrain the number of buses in the 
non peak hours we derived the following conclusions: 
 
1. The fuzzy relation equation described given by 1 can give 

only one preference function P o Q = R but the partition 
method described by us in this paper can give many number 
of preferences or desired number of preferences.  

2. Since lot of research is needed we feel some other modified 
techniques can be adopted in the FRE P o Q = R.  

3. We have tested our method described in the real data taken 
from Pallavan Transport Corporation and our results 
coincides with the given data.  

4. We see the number of preference is equal to the number of 
the partition of Q.  

5. Instead of partitioning Q, if we arbitrarily take overlapping 
subsets of Q certainly we may get the same preference for 
two or more arbitrary sets.  

 
We see that our method of the fuzzy relation equation can be 

applied to the peak hour problem in a very successful way. Thus 
only partitioning of Q can yield non-overlapping unique solution.  

Finally, in our method we do not force the error function Ep 
to become zero, by using many stages or intermittent steps. We 
accept a value very close to zero for Ep as a preference solution.  

For more please refer [98]. 
 

 
2.3  Study of the proper proportion of Raw material mix in cement 
plants using FRE 
 
By the use of fuzzy relational equations and fuzzy neural network 
for fuzzy relation equation method we study the proper proportion 
of raw material mix to find the best quality of clinker. 

As in other cases we use FRE and when the solution is 
unavailable by the method of FRE we adopt the neural networks 
we give the definition and control algorithm and use to solve the 
problem. We show by our method the cement industries can 
produce a desired quality of clinker. For more refer [102] 
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2.4  The effect of globalization on Silk weavers who are Bonded 
labourers using FRE 
 
The strategies of globalization and the subsequent restructuring of 
economies, including the increased mechanization of labor has 
had stifling effects on the lives of the silk weavers in the famous 
Kancheepuram District in Tamil Nadu, India. Here, we study the 
effects of globalization, privatization and the mechanization of 
labor, and how this has directly affected (and ruined) the lives of 
thousands of silk weavers, who belong to a particular community 
whose tradition occupation is weaving. This research work is 
based on surveys carried out in the Ayyampettai village near 
Kancheepuram. The population of this village is around 200 
families, and almost all of them are involved in the weaving of 
silk saris. They are skilled weavers who don't have knowledge of 
any other trade. Most of them are bond to labor without wages, 
predominantly because they had reeled into debt for sums ranging 
from Rs. 1000 upwards. They barely manage to have a square 
meal a day, and their work patterns are strenuous - they work 
from 6 a.m. to 7 p.m. on all days, expect the new moon day when 
they are forbidden from weaving.  

Interestingly, their children are not sent to school, they are 
forced into joining the parental occupation, or into taking petty 
jobs in order to secure the livelihood. The villagers point to the 
advent of electric looms and reckon that their lives were much 
more bearable before this mechanization, at least they used to get 
better incomes. The wide scale introduction to electric looms / 
textile machines / power looms, has taken away a lot of their job 
opportunities. For instance, the machine can weave three silk saris 
which manually takes fifteen days to weave in just three hours. 
Also, machine woven silk saris are preferred to hand woven silk 
saris as a result of which their life is further shattered. Interviews 
with the weavers revealed the careless and negligent approach of 
the government to their problem. Here, we study their problem 
and the effect of globalization on their lives using Fuzzy 
Relational Equations. We have arrived at interesting conclusions 
to understand and assay this grave problem. 

We have made a sample survey of around 50 families out of 
the 200 families; who are bonded labourers living in Ayyampettai 
near Kancheepuram District in Tamil Nadu; have become bonded 
for Rs.1000 to Rs.2000. They all belong to Hindu community viz. 
weavers or they traditionally call themselves as Mudaliar caste. 
Most of the owners are also Mudaliars. They were interviewed 
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using a linguistic questionnaire. Some of the notable facts about 
their lives are as follows: 
 

1. They do not know any other trade or work but most of 
them like to learn some other work. 

2. They are living now below the poverty line because of 
the advent of electrical or power looms which has 
drastically affected their income. 

3. The whole family works for over 10 hours with only one 
day i.e. new moon day in a month being a holiday. On 
new moon day they don’t weave and they are paid by 
their owners on that day. 

4. Only one had completed his school finals. All others 
have no education for they have to learn the trade while 
very young. 

5. They don’t have even a square meal a day. 
6. Becoming member of Government Society cannot be 

even dreamt for they have to pay Rs.3000/- to Rs.5000 to 
Government and 3 persons should give them surety. So 
out of the 200 families there was only one was a 
Government Society member. After the globalization 
government do not give them any work because 
marketers prefer machine woven saris to hand woven 
ones. 

7. Owners of the bonded labourers are not able to give 
work to these labourers. 

8. Observations shows that female infanticide must be 
prevalent in these families as over 80% of the children 
are only males. 

9. The maximum salary a family of 3 to 4 members is 
around Rs. 2000/- 5% of them alone get this 90% of the 
families get below Rs.2000 p.m.  

10. Paying as rent, electricity, water, etc makes them live 
below poverty line. 

 
The following attributes are taken as the main point for study: 
 
B1 – No knowledge of any other work has made 

them not only bonded but live in penury. 
B2 – Advent of power looms and globalization 

(modern textile machinery) has made them still 
poorer. 

B3  –  Salary they earn in a month. 
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B4 – No savings so they become more and more 
bonded by borrowing from the owners, they live 
in debts. 

B5 – Government interferes and frees them they 
don’t have any work and Government does not 
give them any alternative job. 

B6  –  Hours / days of work. 
 
We have taken these six heads B1, B2, … , B6 related to the 
bonded labourers as the rows of the fuzzy relational matrix.  
The main attributes / heads O1, O2, O3, O4 related to the owners of 
the bonded labourers are :  
 
O1 –  Globalization / introduction of modern textile 

  machines. 
O2   –  Profit or no loss. 
O3  –  Availability of raw goods. 
O4  –  Demand for finished goods. 
 
Using these heads related to owners along columns the fuzzy 
relational equations are formed using the experts opinions. 

The following are the limit sets using the questionnaire : 
 
B1 ≥ 0.5  Means no knowledge of other work hence live 

 in poverty. 
B2 ≥ 0.5 Power loom / other modern textile machinery 

had made their condition from bad to worse. 
B3 ≥ 0.5 Earning is mediocre. (B3 < 0.5 implies the 

earning does not help them to meet both ends). 
B4 ≥ 0.4   No saving no debt. (B4 < 0.4 implies they are in 

  debt). 
B5 ≥ 0.5  Government interference has not helped. (B5 < 

0.5 implies Government Interference have 
helped). 

B6 ≥ 0.4 10 hours of work with no holidays. (B6 < 0.4 
implies less than 10 hours of work). 

 
 
O1 ≥ 0.5 The globalizations / government has affected 

the owners of the bonded labourers drastically 
(O1 < 0.5 implies has no impact on owners). 

O2 ≥ 0.5    Profit or no loss (O2 < 0.5 implies total loss). 
O3 ≥ 0.6  Availability of raw materials. (O3 < 0.6 implies 
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shortage of raw material). 
O4 ≥ 0.5 Just they can meet both ends i.e. demand for 

finished goods and produced goods balance. (O4 
< 0.5 implies no demand for the finished 
product i.e. demand and supply do not balance).  

 
The opinion of the first expert who happens to be a bonded labor 
for the two generations aged in seventies is given vital importance 
and his opinion is transformed into the Fuzzy Relational Equation  
 

           O1   O2   O3   O4 

P = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9.4.4.2.
4.2.1.8.
1.1.1.0
4.3.2.1.
03.3.8.
0008.

6

5

4

3

2

1

B
B
B
B
B
B

. 

 
By considering the profit suppose the owner gives values for Q 
where  QT = [.6, .5, .7, .5]. Now P and Q are known in the fuzzy 
relational equation P o Q = R .  

Using the max-min principle in the equation P o Q = R. 
We get RT = [.6, .6, .4, .1, .6, .5] In the fuzzy relational 

equation P o Q = R, P corresponds to the weightages of the 
expert, Q is the profit the owner expects and R is the calculated or 
the resultant giving the status of the bonded labourers. When we 
assume the owners are badly affected by globalizations, but wants 
to carry out his business with no profit or loss, with moderate or 
good availability of the raw material and they have enough 
demand or demand and supply balance we obtain the following 
attributes related with the bonded labourers. The bonded labourers 
live in acute poverty as they have no other knowledge of any 
other work. The power loom has made their life from bad to 
worst, but the earning is medium with no savings and debts. They 
do not receive any help from the government, but they have to 
labor more than ten hours which is given by [.6, .6, .4, .1, .6, .5]T. 

Using the same matrix P and taking the expected views of the 
bonded labourers R to be as [ .6, .4, .5, .4, .2, .6]T . 

Using the equation PT  o  R = Q. We obtain Q = [.6, .4, .4, 
.6]T. 

The value of Q states the owners are affected by 
globalization. They have no profit but loss. They do not get 
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enough raw materials to give to the bonded labor as the market 
prefers machine woven saris to hand made ones so the demand for 
the finished goods declines. Thus according to this expert, the 
main reason for their poverty is due to globalization i.e. the advent 
of power looms has not only affected them drastically as they do 
not have the knowledge of any other trade but it has also affected 
the lives of their owners. 

A small owner who owns around ten bonded labor families 
opinion is taken as the second experts opinion. The weighted 
matrix P as given by the second expert is: 
 

P = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7.4.2.1.
4.1.09.
1.1.00
3.2.1.0.
03.2.9.
001.7.

. 

 
By considering the profit the owner expects i.e. taking Q = [.6, .5, 
.7, .5]T 

We calculate R using   P  o  QT = R 
 i.e. R = [.6, .6, .3, .1, .6, .5]T.  

 
We obtain the following attributes from R related with the 

bonded labourers. 
They live in below poverty, as they have no other trade but 

the earning is medium with no savings and new debts. They do 
not get any help from the government, but they have to work more 
than 10 hours a day which is given by  
[.6, .6, .3, .1, .6, .5]T . 

Using the same P i.e. the weightages we now find Q giving 
some satisfactory norms for the bonded labourers.  

By taking R = [ .6, .4, .5, .4, .2, .6]T and using the equation PT  

o  R  = Q,  
i.e. Q = [.6, .2, .4, .6]T 

 
which states the owners are badly affected by globalization. They 
have no profit but loss they do not get enough raw materials and 
the demand for the finished goods declines.  

The third expert is a very poor bonded labor. The fuzzy 
relational matrix P given by him is 
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P = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

8.3.3.2.
4.2.2.7.
2.1.00
3.2.2.2.
1.4.3.5.
0009.

. 

 
By considering the profit the owner expects i.e. taking Q = [.6, .5, 
.7, .5]T and using the relational equation P o Q = R, we calculate 
R; 
 
  R =  [.6, .5, .3, .2, .6, .5]T . 
 
We obtain the following attributes from R related with the bonded 
labourers.  

This reveals that the bonded labourers standard of living is in 
a very pathetic condition. They do not have any other source of 
income or job. Their earning is bare minimum with no savings. 
Neither the government comes forward to help them nor redeem 
them from their bondage. In their work spot, they have to slog for 
10 hours per day. 

Using the same P i.e. the weightages we now find Q by 
giving some satisfactory norms for the bonded labourers. 

 
By taking R = [ .6, .4, .5, .4, .2, .6]T and using the equation PT   

o  R = Q, 
i.e. Q = [.6, .3, .4, .6]T. 

 
The value of Q states due to the impact of globalization 

(modern textile machinery), the owners are badly affected. They 
are not able to purchase enough raw materials and thus the out put 
from the industry declines. The owners do not get any profit but 
eventually end up in a great loss. 

The following conclusions are not only derived from the 
three experts described here but all the fifty bonded labourers 
opinions are used and some of the owners whom we have 
interviewed are also ingrained in this analysis. 
 
1. Bonded labourers are doubly affected people for the 

advent of globalization (modern textile machinery) has 



 

 195

denied them small or paltry amount, which they are 
earning in peace as none of them have knowledge of any 
other trade. 

 
2. The government has not taken any steps to give or train 

them on any trade or work or to be more precise they are 
least affected about their living conditions of them. Some 
of them expressed that government is functioning to 
protect the rich and see the rich do not loose anything but 
they do not even have any foresight about the bonded 
labourers or their petty owners by which they are making 
the poor more poorer. 
 

3. Bonded labourers felt government has taken no steps to 
eradicate the unimaginable barrier to become members 
of the government society. They have to pay Rs.3000/- 
and also they should spell out and get the surety of  
3 persons and the three persons demand more than 
Rs.3000/- each so only they are more comfortable in the 
hands of their owners i.e. as bonded labourers were at 
least they exist with some food, though not a square meal 
a day. 

 
4. It is high time government takes steps to revive the life 

of the weavers who work as bonded labourers by training 
and giving them some job opportunities. 

 
5. They felt government was killing the very talent of 

trained weavers by modernization as they have no 
knowledge of any other trade. 

 
6. Child labor is at its best in these places as they cannot 

weave without the help of children. Also none of the 
children go to school and they strongly practice female 
infanticide. 

 
7. Government before introducing these modern textile 

machineries, should have analyzed the problem and 
should have taken steps to rehabilitate these weavers. 
Government has implemented textile machineries 
without foresight. 
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This research work will be published with the coauthor 
T.Narayanamoorthy. 
 
2.5  Study of Bonded Labor Problem Using FRE 
 
As we analyze a sample of over 1000 families of bonded 
labourers living and working in rice mills as bonded labourers in 
and around Red Hills Area, Chennai, India. It is a shocking 
information to see that roughly 1630 children work in the rice mill 
industry of which 40% are in the age group 0-5 years and 50% are 
in the are group 6-14 years and even the basic primary education 
is denied to them. 

They have become bonded labourers for just less than 
Rs.5000/-. The children have become slaves and a possession of 
them in true sense.  

We study the role played by politicians, educationalists, 
social workers, human right workers and above all the legal role 
and other factors to study and eradicate such cruelty. So in this 
analysis we have taken up the problem of Bonded labourers using 
the tool of FREs. We solve the fuzzy relation equation P o Q = R, 
where P, Q and R are matrices with entries from [0, 1]. Several 
interesting conclusions are derived from our study.  
 
 
2.6  Data Compression with FREs 
 
Kaoru Hirota and Witold Pedrycz [35] have studied data 
compression with fuzzy relational equations. They have 
introduced a concept of fuzzy relation calculus to the problems of 
image processing. They have discussed fuzzy relation based on 
data compression. The methodology of data compression hinges 
on the theory of fuzzy relational equations were the solutions to 
the specific class of equations give rise to a reconstructed fuzzy 
relation (image). The main properties of fuzzy relational equations 
were introduced and analyzed with respect to the resulting 
reconstruction and compression capabilities. 
For the entire work please refer [35]. 
 
 
2.7  Applying FRE to Threat Analysis 
 
The threat level posed by various targets in real life depends on 
various factors some are situation dependent and some related to 
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characteristics of the target being analyzed, such are its 
formations, its firing status etc. A great deal of work has been 
done by Institute for simulation and Training (IST) to identify 
there factors Breached et all have in an ingenuous way applied 
fuzzy relation equations to threat analysis. They have presented a 
model to illustrate how to apply a fuzzy relational equation 
algorithm to perform threat analysis in the context of computer 
Generated Forces Systems such Mod SAF (Modular semi 
automated forces) Using fuzzy relational equation the proposed 
algorithm generates the data from the historic information and its 
earlier runs. FREs have been successfully applied to threat 
analysis. 
 
 
2.8  FREs-application to medical diagnosis 
 
Elie Sanchez [84] has studied truth qualification and fuzzy 
relations in natural languages and its applications to medical 
diagnosis. A biomedical application in which medical knowledge 
is expressed in a rule form with AND ed fuzzy propositions in the 
antecedent illustrates the aggregation of these measures for 
medical diagnosis assistance Elie Sanchez has illustrated the 
applications in the field of inflammatory protein variations [84]. 

A pattern of Medical knowledge consists here of a tableau 
with linguistic entries that will be interpreted as fuzzy sets, having 
in mind that different experts might provide somehow different 
characterizations for a same pattern. This medical knowledge is so 
translated into fuzzy propositions. A complete description of the 
problem and its application is found in [84]. 
 
 
2.9  A fuzzy relational identification algorithm and its application to 
predict the behavior to a motor drive system 
 
Fuzzy systems are usually named model free estimators. They 
estimate input-output relations without the need of an analytical 
model of how outputs depend on inputs and encode the sampled 
information in a parallel distributed frame work called fuzzy 
structure.  

Three main types of fuzzy structure are  
 

(1) Rule Based Systems,  
(2) Fuzzy relational systems and  
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(3) Fuzzy functional systems. 
 
Let ‘o’ denote the max-min composition operator. 

nXXX ...,,, 21  denote the input fuzzy sets, Y stands for the 
output fuzzy set and R is the fuzzy relational matrix expressing 
the system’s input-output relationship. 
 

RXXXY n ••••= L21  .    (A) 
 
Fuzzy relational equations A describes multiple - input – single 
output fuzzy systems. From a system theory point of view, the 
following simplified version of (A) can be considered as a single 
input single output fuzzy system 
 

RXY o=        (B) 
 
and (C) is discretised for each instant  
 

kk
k

k RXY o= .      (C) 
 
Equation (C) can also be rewritten as  
 

( )[ ),(),(minsup)( kkkkk
Xx

kk yxRxXyY
k ∈

= . (D) 

 
A fuzzy relation R is written as a set of fuzzy rules with fuzzy sets 
defined on each universe of discourse. For a single-input-single 
output system (B) defined with n fuzzy sets for X  and Y , R is an 
n × n matrix of possibility measures with each element being 
denoted as in 

R (i, j) = pij.     (E) 
  
Each matrix element can be translated as a linguistic simple rule 
like  

[If ], ji YthenX  with possibility bij    (F)  
 

and for each condition iX  there are n simple rules that form a 
compound rule. Having given the main fuzzy set operations one 
can work for the relational identification of a motor drive system 
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and the new fuzzy relational identification algorithm and obtain 
the method of speed signal of a motor drive system. 
 
 
2.10  Application of genetic algorithms in problems in chemicals 
industry 
 
Chemical Industries and Automobiles are extensively contributing 
to the pollution of environment, Carbon monoxide, nitric oxide, 
ozone, etc., are understood as the some of the factors of pollution 
from chemical industries. The maintenance of clean and healthy 
atmosphere makes it necessary to keep the pollution under control 
which is caused by combustion waste gas. The authors have 
suggested theory to control waste gas pollution in environment by 
oil refinery using fuzzy linear programming. To the best of our 
knowledge the authors [97]are the first one to apply fuzzy linear 
programming to control or minimize waste gas in oil refinery. 
 An oil refinery consists of several inter linked units. These 
units act as production units, refinery units and compressors parts. 
These refinery units consume high-purity gas production units. 
But the gas production units produce high-purity gas along with a 
low purity gas. This low purity gas goes as a waste gas flow and 
this waste gas released in the atmosphere causes pollution in the 
environment. But in the oil refinery the quantity of this waste gas 
flow is an uncertainty varying with time and quality of chemicals 
used in the oil refinery. Since a complete eradication of waste gas 
in atmosphere cannot be made; here one aims to minimize the 
waste gas flow so that pollution in environment can be reduced to 
some extent. Generally waste gas flow is determined by linear 
programming method. In the study of minimizing the waste gas 
flow, some times the current state of the refinery may already be 
sufficiently close to the optimum. To over come this situation we 
adopt fuzzy linear programming method. 
 
The fuzzy linear programming is defined by 
 
  Maximize  z = cx 

 Such that  Ax ≤ b 
      x ≤ 0 
 
where the coefficients A, b and c are fuzzy numbers, the 
constraints may be considered as fuzzy inequalities with variables 
x and z. We use fuzzy linear programming to determine 
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uncertainty of waste gas flow in oil refinery which pollutes the 
environment. 
 Oil that comes from the ground is called “Crude oil”. Before 
one can use it, oil has to be purified at a factory called a 
“refinery”, so as to convert into a fuel or a product for use. The 
refineries are high-tech factories, they turn crude oil into useful 
energy products. 
 During the process of purification of crude oil in an oil 
refinery a large amount of waste gas is emitted to atmosphere 
which is dangerous to human life, wildlife and plant life. The 
pollutants can affect the health in various ways, by causing 
diseases such as bronchitis or asthma, contributing to cancer or 
birth defects or perhaps by damaging the body’s immune system 
which makes people more susceptible to a variety of other health 
risks. Mainly, this waste gas affects Ozone Layer. Ozone (or 
Ozone Layer) is 10-50 km above the surface of earth. Ozone 
provides a critical barrier to solar ultraviolet radiation, and 
protection from skin cancers, cataracts, and serious ecological 
disruption. Further sulfur dioxide and nitrogen oxide combine 
with water in the air to form sulfuric acid and nitric acid 
respectively, causing acid rain. It has been estimated that emission 
of 70 percentage of sulfur dioxide and nitrogen oxide are from 
chemical industries. 
 We cannot stop this process of oil refinery, since oil and 
natural gas are the main sources of energy. We cannot close down 
all oil refineries, but we only can try to control the amount of 
pollution to a possible degree. In this paper, the authors use fuzzy 
linear programming to reduce the waste gas from oil refinery. 
 The authors describe the knowledge based system (KBS) that 
is designed and incorporate it in this paper to generate an on-line 
advice for operators regarding the proper distribution of gas 
resources in an oil refinery. In this system, there are many 
different sources of uncertainty including modeling errors, 
operating cost, and different opinions of experts on operating 
strategy. The KBS consists of sub-functions, like first sub-
functions, second sub-functions, etc. Each and every sub-
functions are discussed relative to certain specific problems. 
 For example: The first sub-function is mainly adopted to the 
compressor parts in the oil refineries. Till date they were using 
stochastic programming, flexibility analysis and process design 
problems for linear or non-linear problem to compressor parts in 
oil refinery. Here we adopt the sub function to study the proper 
distribution of gas resources in an oil refinery and also use fuzzy 



 

 201

linear programming (FLP) to minimize the waste gas flow. By the 
term proper distribution of gas we include the study of both the 
production of high-purity gas as well as the amount of waste gas 
flow which causes pollution in environment. 
 In 1965, Lofti Zadeh [115, 116] wrote his famous paper 
formally defining multi-valued, or “fuzzy” set theory. He 
extended traditional set theory by changing the two-values 
indicator functions i.e., 0, 1 or the crisp function into a multi-
valued membership function. The membership function assigns a 
“grade of membership” ranging from 0 to 1 to each object in the 
fuzzy set. Zadeh formally defined fuzzy sets, their properties, and 
various properties of algebraic fuzzy sets. He introduced the 
concept of linguistic variables which have values that are 
linguistic in nature (i.e. pollution by waste gas = {small pollution, 
high pollution, very high pollution}). 
 Fuzzy Linear Programming (FLP): FLP problems with fuzzy 
coefficients and fuzzy inequality relations as a multiple fuzzy 
reasoning scheme, where the past happening of the scheme 
correspond to the constraints of thee FLP problem. We assign 
facts (real data from industries) of the scheme, as the objective of 
the FLP problem. Then the solution process consists of two steps. 
In the fist step, for every decision variable, we compute the 
(fuzzy) value of the objective function via constraints and 
facts/objectives. At the second step an optimal solution to FLP 
problem is obtained at any point, which produces a maximal 
element to the set of objective functions (in the sense of the given 
inequality relation). 
 The Fuzzy Linear Programming (FLP) problem application is 
designed to offer advice to operating personnel regarding the 
distribution of Gas within an oil refinery (Described in Figure 
2.10.1) in a way which would minimize the waste gas in 
environment there by reduce the atmospheric pollution . 
 GPUI, GPU2 and GPU3 are the gas production units and 
GGG consumes high purity gas and vents low purity gas. Gas 
from these production units are sent to some oil refinery units, 
like sulfur, methanol, etc. Any additional gas needs in the oil 
refinery must be met by the gas production unit GPU3. 
 The pressure swing adsorption unit (PSA) separates the 
GPU2 gas into a high purity product stream and a low purity tail 
stream (described in the Figure 2.10.1). C1, C2, C3, C4, C5, are 
compressors. The flow lines that dead –end is an arrow represent 
vent to flare or fuel gas. This is the wasted gas that is to be 
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minimized. Also we want to minimize the letdown flow from the 
high purity to the low purity header  
 

 
 FLP is a method of accounting for uncertainty is used by the 
authors for proper distribution of gas resources, so as to minimize 
the waste gas flow in atmosphere. FLP allows varying degrees of 
set membership based on a membership function defined over a 
range of values. The membership function usually varies from 0 
to 1. FLP allow the representation of many different sources of 
uncertainty in the oil refinery. These sources may (or) may not be 
probabilistic in nature. The uncertainty is represented by 
membership functions describing the parameters in the 
optimization model. A solution is found that either maximizes a 
given feasibility measure and maximizes the wastage of gas flow. 
FLP is used here to characterize the neighborhood of solutions 
that defines the boundaries of acceptable operating states. 
 
 Fuzzy Linear Programming (FLP) can be stated as; 
   

⎥
⎥
⎥

⎦

⎤

≥
≤

=
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Figure: 2.10.1 
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 The coefficients A, b and c are fuzzy numbers, the constraints 
may be considered as fuzzy inequalities. The decision space is 
defined by the constraints with c, x ∈ N, b ∈ Rm and A ∈ Rm, 
where N, Rm, and Rmxn are reals. 
 The optimization model chosen by the knowledge based 
system (KBS) is determined online and is dependent on the 
refinery units. This optimization method is to reduce the amount 
of waste gas in pollution. 
We aim to 
 

1. The gas (GCG2) vent should be minimized. 
2. The let down flow should be minimized and 
3. The make up gas produced by the as production unit 

(GPU3) should be minimized. 
 

Generally the waste gas emitted by the above three ways 
pollute the environment. The objective function can be expressed 
as the sum of the individual gas waste flows. The constrains are 
given by some physical limitations as well as operator entries that 
describe minimum and maximum desired flows.  

The obtained or calculated resultant values of the decision 
variables are interpreted as changes in the pressure swing 
adsorption feed, and the rate that gas is imported to CGG and gas 
production unit (GPU3). But in the optimization model there is 
uncertainty associated with amount of waste gas from oil refinery, 
and also some times the current state of the refinery may already 
be sufficiently close to the optimum. 

For example to illustrate the problem, if the fuzzy constraints 
x1, the objects are taken along the x-axis are shown in the figures 
2 and 3, which represent the expression. 

 
x1 ≤ 8 (with tolerance p = 2)    (1) 
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 The membership function µ are taken along the y-axis i.e. 
µ(x1) lies in [0, 1] this can be interpreted as the confidence with 
which this constraint is satisfied (0 for low and 1 for high). The 
fuzzy inequality constraints can be redefined in terms of their α-
cuts. 

{Sα / α ε [0, 1]}, where Sα = {γ / (µ (γ) ≥ α)}. 
The parameter α is used to turn fuzzy inequalities into crisp 

inequalities. So we can rewrite equation (1) 
 

x1 ≤ 6 + 2 (2) (1– α) 
x1 ≤ 6 + 4 (1 – α) 

 
where α ε [0, 1] expressed in terms of α in this way the fuzzy 
linear programming problem can be solved parametrically. The 
solution is a function on α 

  x* = f(α)     (2) 
 
with the optimal value of the objective function determined by 
substitution in equation (1). 
 

  z* = cx* = g(α).    (3) 
 
This is used to characterize the objective function. The result 
covers all possible solutions to the optimization problem for any 
point in the uncertain interval of the constraints. 

The α-cuts of the fuzzy set describes the region of feasible 
solutions in figures 2 and 3. The extremes (α = 0 and α = 1) are 
associated with the minimum and maximum values of x* 
respectively. The given equation (2) can also be found this, is 
used to characterize the objective function. The result covers all 
possible solutions to the optimization problem for any point in the 
uncertain interval of the constraints. 

Fuzzy Membership Function to Describe Uncertainty: The 
feasibility of any decision (µD) is given by the intersection of the 
fuzzy set describing the objective and the constraints. 

 
µD (x) = µz(x) ^µN (x) 

 
where ^ represents the minimum operator, that is the usual 
operation for fuzzy set intersection. The value of µN can be easily 
found by intersecting the membership values for each of the 
constraints. 
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µN (x) = µ1(x) ^µ2 (x)^…^ µm (x). 
The membership functions for the objective (µz) however is 

not obvious z is defined in (2). Often, predetermined aspiration 
target values are used to define this function. Since reasonable 
values of this kind may not be available, the solution to the FLP 
equation (3) is used to characterize this function. 
 

µz(x) = 

⎢
⎢
⎢
⎢

⎣

⎡

≤

≤≤
−
−

≥

).0()(0

)0()()1(
)1()0(
)1()(

)0()(1

bxzif

bxzbif
bb
bxz

bxzif

  (5) 

 
The result is that the confidence value increases as the value of 
the objective value increases. This is reasonable because the goal 
is to maximize this function the limits on the function defined by 
reasonable value is obtained by extremes of the objective value. 
 

 These are the results generated by the fuzzy linear 
programming. Since both µN and µz have been characterized, now 
our goal is to describe the appropriateness of any operation state. 
Given any operating x, the feasibility can be specified based on 
the objective value, the constraints and the estimated uncertainty 
is got using equation (4). The value of µD are shown as the 
intersection of the two membership functions. 

Defining the decision region based on the intersection we 
describe the variables and constraints of our problem. The 
variable x1 represents the amount of gas fed to pressure swing 
adsorption from the gas production unit. The variable x2 
represents the amount of gas production that is sent to CGG. This 
problem can be represented according to equation (*). The 
constraints on the problem are subjected to some degree of 

Figure: 2.10.4 
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uncertainty often some violation of the constraints within this 
range of uncertainty is tolerable. This problem can be represented 
according to equation (*). Using the given refinery data from the 

chemical plant. 
 

c = [-0.544 3] 
 

A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 1544.0
10
01

, 

 

b  = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

743.4
050.23
652.33

 

 
Using equation (*) we get 
Zc = – 0.544 x1 + 3x2 it represents gas waste flow. The gas waste 
flow is represented by the following three equations: 
 

i. x1 + 0x2 ≤ 33.652 is the total dead – end waste flow gas. 
ii. 0x1 + x2 = 23.050 is the total (GCG2) gas consuming gas 

– treaters waste flow gas. 
iii.  – 0544 x1 + x2 ≤ 4.743 is the total let-down waste flow 

gas.  
 
All flow rates are in million standard cubic feet per day. (i.e. 1 
MMSCFD = 0.3277 m3/s at STP). The value used for may be 
considered to be desired from operator experts opinion. The third 
constraint represents the minimum let-down flow receiving to 

Figure: 2.10.5  
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keep valve from sticking. The value to this limit cannot be given 
an exact value, therefore a certain degree of violation may be 
tolerable. The other constraints may be subject to some 
uncertainty as well as they represent the maximum allowable 
values for x1 and x2. In this problem we are going to express all 
constrains in terms of α, α, ε [0, 1]. We have to chose a value of 
tolerance on the third constraint as p3 = 0.1, then this constraint is 
represented parametrically as  
 

a3 x ≤ (b3 – p3) + 2p3 (1 - α). 
 

For example, if we use crisp optimization problem with the 
tolerance value p = 0.1 we obtain the following result: 

 

 
where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount of 
gas sent to CGG which is taken along the y axis, 
we get x1 = 33.469, when x2 = 23.050 
 

x* = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
469.33

 

 
z = 50.941. Finally we compare this result with our fuzzy linear 
programming method. 

We replace two valued indicator function method by fuzzy 
linear programming. 

Fuzzy Linear Programming is used now to maximize the 
objective function as well as minimize the uncertainty (waste flow 

Figure: 2.10.6 
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gas). For that all of the constraints are expressed in terms of α, α, 
∈ [0, 1]. 

a3 x ≤ (b3 – p3) + 2p3 (1 - α). α ∈ [0, 1] 
 
where a3 is the third row in the matrix A. i.e. = 0.544x1 + x2 ≤ 
4.843 – 0.2 α, when the tolerance p3 = 0.3, we fix the value of α ε 
[0.9,1], when the tolerance p3 = 0.1, we see α ε [0.300, 0.600]. 
 

 
where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount of 
gas that is sent to CGG which is taken along the y axis, 
 
 When x2 = 23.050 and  α = 0.0, we get  x1 = 33.469. 
 When x2 = 23.050 and  α = 0.4, we get  x1 = 33.616 
 
The set (µz) is defined in equation 5. Fuzzy Linear Programming 
solution is  

x* = f(α) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
469.33

 

 
this value is recommended as there is no changes in the operating 
policy. 

So we have to chose the value for α as 0.6 for the tolerance p3 
= 0.1, we get the following graph where x1 represents the amount 
of gas fed to PSA from gas production unit which is taken along 
the x axis, and x2 amount of gas that sent to CGG which is taken 
along the y axis, 

Figure: 2.10.7 
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 when x2 = 23.050 and α = 0.0 we get x1 = 33.469 
  when x2 = 23.050 and α = 0.6 we get x1 = 33.689. 
 
The operating region 

x* = f (0.6) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
689.33

. 

Now if the tolerance on the third constraint is increased to p3 = 
0.2. This results is the region shown in the following graph. As 
expected the region has increased to allow a larger range of 
operating states. 

 
when x2 = 23.050 and α = 0.0 we get  x1 = 33.285 
when x2 = 23.050 and α = 0.9 we get  x1 = 33.947.  

 
The operating region is  
 

Figure: 2.10.8 
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where x1 represents the amount of gas fed to PSA from gas 
production unit which is taken along the x axis, and x2 amount of 
gas that is sent to CGG which is taken along the y axis. 

 

x* = f (0.9) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
947.33

. 

 
The fuzzy linear programming solution is 
 

x* = f (α) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
285.33

 

 
z* = 51.043. 

 
Finally we have to take α ε [0.9, 1.00]. 
Choose α = 0 and when the tolerance p3 = 0.3 we get the 
following graph when x2 = 23.050 we get x1 = 33.101. 
 

 
where x1 represents the amount of gas fed to PSA from gas 
production unit; and x2 amount of gas that is sent to CGG. 
When α = 1 and x2 = 23.050 we get x1 = 34.204. The operating 
region is  
 

x* = f (1.0) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
204.33

. 

 

Figure: 2.10.10 
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The fuzzy linear programming solutions are 
 

x* = f (α) = ⎥
⎦

⎤
⎢
⎣

⎡
050.23
101.33

. 

 
The fuzzy linear programming solutions are 
 

z* = g (α) = 51.143. 
 
We chose maximum value from the Fuzzy Linear Programming 
method i.e. z* = 51.143. 

Thus when we work by giving varying membership functions 
and use fuzzy linear programming we see that we get the 
minimized waste gas flow value as 33.101 in contrast to 33.464 
measured in million standard cubic feet per day and the maximum 
gas waste flow of system is determined to be 51.143 in contrast to 
their result of 50.941 measured in million standard cubic feet per 
day. Since the difference we have obtained is certainly significant, 
this study when applied to any oil refinery will minimize the 
waste gas flow to atmosphere considerably and reduce the 
pollution. 
 
 
2.11  Semantics of implication operators and fuzzy relational 
products  
 

Here, we analyze the data obtained from the HIV/AIDS 
patients in a meaningful and natural way by using fuzzy relational 
operators.  

The result, of the assessment by expert a is a relation R(a) 
given by a matrix of which the (ij)th component Rij(a) is the degree 
to which the symptom Ci is attributed to the patient Pj. The 
inverse R-1(a) of this relation is a relation from patients to 
symptoms where Rjm

-1(a) is the degree to which patient Pj was 
considered to exemplify symptom Cm. Given two such relations 
R-1(a) and R(a') where expert a' may or may not be the same as a, 
we can make two extremely interesting comparisons by forming 
two triangular products of the relations. 

The first of these gives us a relation from patients to patients 
defined as follows: the relation U(a, a')=R-1(a) θ R(a') (Note: we 
use the symbol θ to represent the triangular product of the 
relation) has for its (jm)th component Ujm(a.a') the degree to which 
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the attribution (by expert a) of symptoms to Pj implies their 
attribution (by expert a') to Pm. 

To understand this product, suppose assume that the original 
data is crisp, that is to say binary. Then the attribution by a to Pj of 
symptom Ck implies its attribution by a' to Pm, to the degree 0 or 1 
given by the classical table (table 1) for the material implication 
Rjk

-1(a) → Rkm(a') namely  
  

Table 2.11.1 
 

Rjk
-1(a)/Rkm(a') 0 1 

0 1 1 
1 0 1 

 
The mean value of this over the number of symptoms is 

plausibly to be taken as the degree we seek that is, the degree to 
which attributions by expert a to Pj imply attributions by expert a' 
to Pm. This idea is embodied in the formula 
 

Ujm(a.a') = (R-1(a) θ R(a'))jm  
= (1/Nk) Σk (Rjk

-1(a) → Rkm(a')).   (1) 
 
After finding the Relational Product matrix U, we find the various 
α-cuts of this fuzzy relation U. (Note: For a given fuzzy set A 
defined on a Universal set X and any number α ∈[0,1], the α-cut 
of A is defined as αA = {x / A(x) ≥ α}).  

In our model, we denote Pi as the ith patient i=1,2,…,10 and 
Cj as the jth symptom j=1,2,…,8. we give the raw data in a tabular 
form (table 2). From the raw data we construct the Relational 
matrix R(a) where the row corresponds to the symptoms namely 
disabled (C1), difficult to cope with (C2), dependent (C3), 
apathetic and unconcerned (C4), blaming oneself (C5), very ill 
(C6), depressed (C7), and anxious and worried (C8) and the 
column corresponds to the patients. Also for our study the expert 
a is same as expert a'. 
  

Table 2.11.2 
 

Cj / Pi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Disabled 0 0 1 0 0 0 0 1 0 0 
Difficult to cope 0 0 0 0 0 1 0 0 0 0 
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with 
Dependent 0 0 0 1 0 0 0 0 0 0 

Apathetic and 
Unconcerned 1 1 1 0 1 0 1 0 1 0 

Blaming oneself 0 0 1 0 0 0 1 0 0 0 
Very ill 0 0 0 1 1 0 0 0 0 1 

Depressed 1 0 1 0 1 0 0 1 1 0 
Anxious and 

worried 1 1 0 1 0 0 1 0 0 0 

 
 
The Relational matrix R(a) is as follows: 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0001001011
0110010101
1000011000
0001000100
0101010111
0000001000
0000100000
0010000100

 

 
Now we apply the rule in equation (1) and we get the following 
product matrix U=R-1(a) θ R(a') :  
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

188.88.88.88.1188.88.88.
75.188.88.75.175.188.1
75.88.175.75.88.75.175.88.
63.75.63.163.75.75.88.88.88.
88.88.88.88.188.88.88.88.88.
75.88.75.75.63.175.88.75.88.
75.63.63.75.63.75.163.75.75.
63.75.75.75.5.75.5.163.75.
75.88.75.175.88.88.88.11
63.88.75.88.63.88.75.88.88.1
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 α-cut of U for α = 1. 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1000011000
0100010101
0010000100
0001000000
0000100000
0000010000
0000001000
0000000100
0001000011
0000000001

 

 
 α -cut of U for α =0.88 

 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1111111111
0111010111
0110010101
0001000111
1111111111
0100010101
0000001000
0000000100
0101011111
0101010111

 

 
From the matrix U for α =1, we observe that the patient P2 is 
related to the patients P1 and P7 i.e., all the symptoms which are 
attributed to P2 (C4 and C8) is found in both the patients P1 and P7. 
So if we want to take steps to improve the health condition (both 
physical and mental) of the patients P1 and P2 (or P2 and P7), we 
may find the solutions for the problems of the patient P1 (or P7) 
then the problems of the patient P2 will be solved because the 
symptoms which are found in patient P2 is included in the 
symptoms which are found in the patients P1 and P7. 

Similarly the patient P9 is related to the patients P1, P3, and 
P5. So all the symptoms which are found in patient P9 (C4 and C7) 
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is also found in the patients P1, P3, and P5. So we can say that the 
patient P9 is come under the category of the patients P1, P3, and P5. 
In a similar way we can divide all the patients in to different 
smaller categories so that we can study the problems of the 
patients clearly and properly.  

When we look the matrix U for α =0.88, we observe that the 
patient P1 is related to the patients P2, P3, P5, P7, and P9. So the 
symptoms which are found in patient P1 is also found in the 
patients P2, P3, P5, P7, and P9 with the degree of possibility 0.88. 
We also observe that the patients P6 and P10 are related to every 
other patient. But we have to note that here the degree of the 
possibility is only 0.88 so we cannot say that the patients are 
perfectly related but in the previous case i.e., for α =1 the relation 
between the patients are perfect. Similar analysis is carried out for 
all other patients.  

Here, we give a relation from symptoms to symptoms which 
is a triangle product defined as: 
 

(R(a) θ R-1(a'))ik = (1/Nj) Σj (Rij(a) → Rjk
-1(a')). 

 
The only difference in this relation is that, when we compare 

it with the previous one the implication is in the direction Rjk
-1(a) 

→ Rkm(a') but now the implication is in the reverse order so we 
can find the triangular product R(a) → R-1(a') in a similar way as 
before by just replacing the position of the given matrix and its 
transpose. 

The Relational product matrix V = R(a) θ R-1(a') for this case 
is follows: 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

17.7.7.9.7.6.6.
6.16.6.9.5.5.7.
8.8.17.8.8.7.7.
9.9.8.118.8.9.
7.8.5.6.14.4.5.
19.19.9.19.9.
9.9.9.9.9.9.19.
8.18.9.9.8.8.1

 

 
 α -cut of V for α =1 
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10000000
01000000
00100000
00011000
00001000
10100100
00000010
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 α -cut of V for α =0.9 
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 From the matrix V for α =1, it is clear that the symptom very ill 
(C1) is related to the symptom depressed (C7), so we can say that 
“the patients who are very ill are depressed” i.e., if a patient 
having the symptom C1 then the patient must have the symptom 
C7. Similarly the symptom dependent (C3) is related to the 
symptoms very ill (C6) and anxious and worried (C8). So we can 
say that a patient having the symptom C3 must have the symptoms 
C6 and C8. Similarly the symptom blaming oneself (C5) is related 
to the symptom apathetic and unconcerned (C4), so we can say 
that “the patients who are blaming oneself are apathetic and 
unconcerned”.  

Also from the matrix V for α =0.9, we observe that both the 
symptoms difficult to cope with (C2) and dependent (C3) are 
related to all other symptoms. So a patient having any one of the 
symptoms C2 and C3 then the patient must have all the other 
symptoms, but here we should note that the degree of the 
possibility is only 0.9. Also the symptom disabled (C1) is related 
to the symptoms apathetic and unconcerned (C4), blaming oneself 



 

 217

(C5) and depressed (C7). So we can say that “the patients who are 
disabled are apathetic and unconcerned, blaming oneself and 
depressed” with the degree of possibility 0.9. In a similar way we 
can interpret the other symptoms.  

Here, we analyze the data in a very different way. First, we 
explain the method and then we illustrate it.  

Two observers a and a' (who may or may not be in fact the 
same individual), use checklist (i.e., a list where we enter the data 
of a particular person) for two persons (patients) Pj and Pm (j = m 
or j ≠ m) as follows: 

a uses the list on Pj 
a' uses the list on Pm 

 
α vw = the number of items (symptoms), which a marks v for Pj 
and a' marks w for Pm , where v,w ∈{0,1}. 
 
The “contingency table” is shown in Table 2.11.3: 
 

Table 2.11.3 
 

Pj / Pm 0 1  
0 α 00 α 01 α 00+ α 01=r0 
1 α 10 α 11 α 10+ α 11=r1 
 α 00+ α 10=c0 α 01+ α 11=c1 r0+r1=c0+c1=n 

 
Now we define x=r1/n and y=c1/n and we also define xij = 

value of x corresponding to the contingency table for (ij)th patient. 
Similarly we define yij = value of y corresponding to the 
contingency table for (ij)th patient. Now we define a new 
implication operator namely Kleene-Dienes operator in such a 
way that 

x → y = max (1 – x, y). 
 

Now we define a relation between the patient i and patient j 
in such a way that Pi →Pj=xij → yij = max (1-xij,yij). After finding 
the value of Pi →Pj for all i,j we can construct the relational 
matrix W(a, a') as we have formed in section 2. 

In our problem, we take five patients and the expert’s 
opinion for these patients is shown below in the form of a table 
(table 4)where the row corresponds to the symptoms namely very 
ill (C1), apathetic and unconcerned (C2), depressed (C3), anxious 
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and worried (C4), and disabled (C5) and column corresponds to 
the patients: 

 
Table 2.11.4 

 
 P1 P2 P3 P4 P5 

C1 0 0 0 0 1 
C2 1 1 1 1 1 
C3 1 1 0 0 1 
C4 1 0 1 1 0 
C5 0 1 0 0 0 

 
The number ‘0’ in the first column of the first row represents the 
symptom C1 (very ill) is not found in patient 1 but the first 
element ‘1’ in the second row represents the symptom C2 
(apathetic and unconcerned) is found in patient 1. In a similar way 
we can interpret the other values. Now using the above table, we 
construct twenty five different contingency tables for these five 
patients.  For example the contingency table for the pair (P1,P3) is: 
 

P1 / P3 0 1 
0 2 0 
1 1 2 

 
when we compare the above table with table 3, we observe that 
the corresponding value for α 00 in this table is 2. Since α 00=2, the 
0number of symptoms which expert marks 0 for P1 and for P3 is 2 
i.e., two of the five symptoms are not found in both the patients 
namely C1 and C5. 

Now we have to find the values of xij and yij for every pair 
(Pi,Pj) i,j=1,2,…5. Using these values and using the Kleene-
Dienes operator we can find Pi → Pj for all i,j in such a way that 

 
Pi → Pj = max (1 – xij , yij). 

 
For example, form the contingency table for (P1,P3), we can 

find that r1=3,c1=2,xij=r1/5=0.6, and yij=c1/5=0.4. Then by the 
Kleene-Dienes operator P1 →P3=0.4. In a similar way we can find 
the values for all other pairs (Pi, Pj). So the Relational product 
matrix W for our case is as follows: 
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⎜
⎜
⎜
⎜
⎜

⎝

⎛

6.4.4.6.6.
6.6.6.6.6.
6.6.6.6.6.
6.4.4.6.6.
6.4.4.6.6.

 

 
 α -cut of W for α =0.6 
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⎟
⎟

⎠
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⎜
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⎜
⎜
⎜
⎜

⎝

⎛

10011
11111
11111
10011
10011

 

 
From the above matrix, we observe that the patient P3 is related to 
everyone i.e., the symptoms found in P3 are also found in all other 
persons. Also each patient is related to the patient P2 but the 
patient P2 is related only to the patients P1 and P5 i.e., all the 
symptoms found in each patient also found in P2 but the 
symptoms found in patient P2 is found only in the patients P1 and 
P5 with the degree of possibility 0.6. Also the patient P4 is related 
to everyone but none of the patients is related to the patient P4 
(except P3) with the degree of possibility 0.6. In a similar way we 
can interpret the other patients. 

Here we construct the contingency tables for the symptoms 
by using the table 4 in the section 4, for example the contingency 
table for the pair (C4,C3) is as follows: 
 

C4 / C3 0 1 
 0 1 1 
 1 2 1 

  
when we compare the above table with table 3, we observe that 
the corresponding value for α10 in this table is 2. Since α10=2, out 
of five patients two of them having the symptom anxious and 
worried (C4) but not the symptom depressed (C3) is 2.  

Now by the same method as we have seen in section 4 we can 
find the values of xij and yij for every pair (Ci, Cj) i,j=1,2,…5. 
Using these values and using the Kleene-Dienes operator we can 
find Ci →Cj for all i,j in such a way that 
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Ci → Cj = max (1-xij , yij). 

 
So the Relational product matrix W in this case is as follows: 
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⎟
⎟
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⎟
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⎞

⎜
⎜
⎜
⎜
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⎝
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8.8.8.18.
4.6.6.14.
4.6.6.14.
2.6.6.12.
8.8.8.18.

 

 
 α -cut of W for α =1 
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 α -cut of W for α =0.8 
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From α -cut of W for α =1, we observe that every symptom is 

related to the symptom apathetic and unconcerned (C2) i.e., a 
patient having any one of the symptom Ci i=1,2,…5 should have 
the symptom C2. Since all other entries in the matrix W for α =1 
are zero so we cannot find a perfect relation between other 
symptoms. But from the matrix W for α =0.8, we observe that 
both the symptoms very ill (C1) and disabled (C5) are related to all 
other symptoms with the degree of possibility 0.8 i.e., if a patient 
having any one of the symptoms C1 and C5 then the patient should 
have all other symptoms with the degree of possibility 0.8. So if 
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we decrease the value of α then we get more relations but the 
degree of perfection also decreases. 

To assign a measure to the degree to which expert say “yes” 
to items in the checklist for Pj implies expert’s saying “yes” to 
these same items for Pm: in briefer words, a measure of the 
support these fine data give to the statement “if yes-j then yes-m”.  

In classical logic, “if yes-j then yes-m” is satisfied “by 
performance” whenever yes-j and yes-m occur together, and “by 
default” whenever no-j occurs, regardless of the m-answer. Thus 
all entries in the contingency table (table 2) support the statement 
except for α 10. Thus if we weight all items equally, the 
appropriate classical measure of support for the assertion is m = 1 
– (α10 / n). 

For example, the contingency table corresponding to the pair 
(P2,P3) is: 
 

P2 / P3 0 1 
0 1 1 
1 2 1 

 
So the classical measure of support for this pair is m=1-(2/5) 

= 0.6. So we can interpret that the symptoms which are present 
(not present) in patient P2 is present (not present) in patient P3 
(except present in P2 and not in P3) with the degree of possibility 
0.6.  

This is the only method, which can help the expert compare 
the symptoms in patients and inter-relate the patients. Further 
some of these methods give the interdependence between the 
symptoms in patients. (This research work would be appearing 
with T.Johnson).  
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Chapter Three 
 
 
BASIC NOTIONS AND NEW 
CONCEPTS ON NEUTROSOPHY  
 
 
The analysis of most of the real world problems involves the 
concept of indeterminacy. Here one cannot establish or cannot 
rule out the possibility of some relation but says that cannot 
determine the relation or link; this happens in legal field, medical 
diagnosis even in the construction of chemical flow in industries 
and more chiefly in socio economic problems prevailing in 
various countries. So this chapter defines new concepts which 
paves way for the building of the Neutrosophic relational equation 
(NRE). This chapter has 6 sections each dealing neutrosophic 
concepts. First section gives the basic concepts defined by [87-90, 
57].  
 
3.1  Neutrosophic set   
 
In this section we just recall the concepts about neutrosophic sets 
given by [87-90]. 
 
DEFINITION 3.1.1: Let T, I, F be real standard or non-standard 
subsets of [ -0, 1+ ],  
 
with   sup T = t_sup, inf T = t_inf, 

sup I = i_sup, inf I = i_inf, 
sup F = f_sup, inf F = f_inf, 
 

and    n_sup = t_sup+i_sup+f_sup,  
n_inf = t_inf+i_inf+f_inf. 

 
Let U be a universe of discourse, and M a set included in U. An 
element x from U is noted with respect to the set M as x(T, I, F) 
and belongs to M in the following way: 

It is t% true in the set, i% indeterminate (unknown if it is) in the 
set, and f% false, where t varies in T, i varies in I, f varies in F.  
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Statically T, I, F are subsets, but dynamically T, I, F are functions / 
operators depending on many known or unknown parameters. 
  
Example 3.1.1: Let A and B be two neutrosophic sets. One can say, 
by language abuse, that any element neutrosophically belongs to any 
set, due to the percentages of truth/indeterminacy/falsity involved, 
which varies between 0 and 1 or even less than 0 or greater than 1. 

Thus: x (50, 20, 30) belongs to A (which means, with a 
probability of 50% x is in A, with a probability of 30% x is not in A, 
and the rest is undecidable); or y (0, 0, 100) belongs to A (which 
normally means y is not for sure in A); or z (0, 100, 0) belongs to A 
(which means one does know absolutely nothing about z's affiliation 
with A). 
More general, x ((20-30), (40-45) 4[50-51], {20, 24, 28}) belongs to 
the set A, which means: 
 

1. with a probability in between 20-30% x is in A (one cannot 
find an exact approximate because of various sources 
used); 

2. with a probability of 20% or 24% or 28% x is not in A; 
3. the indeterminacy related to the appurtenance of x to A is 

in between 40-45% or between 50-51% (limits included). 
 
The subsets representing the appurtenance, indeterminacy, and 
falsity may overlap, and n_sup = 30+51+28 > 100 in this case. 
 
Physics Examples  
a) For example the Schrodinger’s Theory says that the quantum state 
of a photon can basically be in more than one place in the same time, 
which translated to the neutrosophic set means that an element 
(quantum state) belongs and does not belong to a set (one place) in 
the same time; or an element (quantum state) belongs to two 
different sets (two different places) in the same time. It is a question 
of “alternative worlds” theory very well represented by the 
neutrosophic set theory. 

In Schroedinger’s Equation on the behavior of electromagnetic 
waves and “matter waves” in quantum theory, the wave function Psi 
which describes the superposition of possible states may be 
simulated by a neutrosophic function, i.e. a function whose values 
are not unique for each argument from the domain of definition (the 
vertical line test fails, intersecting the graph in more points). Don’t 
we better describe, using the attribute “neutrosophic” than “fuzzy” 
or any others, a quantum particle that neither exists nor non-exists? 
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b) How to describe a particle  in the infinite micro-universe that 
belongs to two distinct places P1 and P2 in the same time?  χ P1 
and  ϖ P1 as a true contradiction, or  χ P1 and  χ ⋅P1. 
 
Philosophical Examples  
Or, how to calculate the truth-value of Zen (in Japanese) / Chan (in 
Chinese) doctrine philosophical proposition: the present is eternal 
and comprises in itself the past and the future? 

In Eastern Philosophy the contradictory utterances form the 
core of the Taoism and Zen/Chan (which emerged from Buddhism 
and Taoism) doctrines. 

How to judge the truth-value of a metaphor, or of an ambiguous 
statement, or of a social phenomenon which is positive from a 
standpoint and negative from another standpoint? 

There are many ways to construct them, in terms of the practical 
problem we need to simulate or approach. Below there are 
mentioned the easiest ones: 
 
Application  
A cloud is a neutrosophic set, because its borders are ambiguous, 
and each element (water drop) belongs with a neutrosophic 
probability to the set. (e.g. there are a kind of separated water 
drops, around a compact mass of water drops, that we don't know 
how to consider them: in or out of the cloud).  

Also, we are not sure where the cloud ends nor where it 
begins, neither if some elements are or are not in the set. That's 
why the percent of indeterminacy is required and the neutrosophic 
probability (using subsets - not numbers - as components) should 
be used for better modeling: it is a more organic, smooth, and 
especially accurate estimation. Indeterminacy is the zone of 
ignorance of a proposition’s value, between truth and falsehood. 
 
Neutrosophic Set Operations 
One notes, with respect to the sets A and B over the universe U,  
 x = x(T1, I1, F1) χ A and x = x(T2, I2, F2) χ B, by mentioning x’s 
neutrosophic probability appurtenance. 
And, similarly, y = y(T', I', F') χ B. 
 
1. Complement of A 
If x( T1, I1, F1 ) χ A,  
then x( {1}0T1, {1}0I1, {1}0F1 ) χ C(A). 
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2. Intersection 
If x( T1, I1, F1 ) χ A, x( T2, I2, F2 ) χ B, 
then x( T1?T2, I1?I2, F1?F2 ) χ A 3 B. 
 
3. Union 
If x( T1, I1, F1 ) χ A, x( T2, I2, F2 ) χ B, 
then x( T1/T20T1?T2, I1/I20I1?I2, F1/F20F1?F2 ) χ A 4 B. 
 
4. Difference 
If x( T1, I1, F1 ) χ A, x( T2, I2, F2 ) χ B, 
then x( T10T1?T2, I10I1?I2, F10F1?F2 ) χ A \ B, 
because A \ B = A 3 C(B). 
 
5. Cartesian Product 
If x( T1, I1, F1 ) χ A, y( T', I', F' ) χ B,  
then ( x( T1, I1, F1 ), y( T', I', F' ) ) χ A % B. 
 
6. M is a subset of N  
If x( T1, I1, F1 ) χ M υ x( T2, I2, F2 ) χ N,  
where inf T1 [ inf T2, sup T1 [ sup T2, and inf F1 µ inf F2, sup F1 µ sup 
F2. 
 
We just recall the neutrosophic n-ary Relation: 
 
DEFINITION 3.1.2: Let A1, A2, …, An be arbitrary non-empty sets. A 
Neutrosophic n-ary Relation R on A1 % A2 % … % An is defined as a 
subset of the Cartesian product A1 % A2 % … % An, such that for 
each ordered n-tuple (x1, x2, …, xn)(T, I, F), T represents the degree 
of validity, I the degree of indeterminacy, and F the degree of non-
validity respectively of the relation R.  

 
From the intuitionistic logic, paraconsistent logic, dialetheism, 

fallibilism, paradoxes, pseudoparadoxes, and tautologies we transfer 
the "adjectives" to the sets, i.e. to intuitionistic set (set incompletely 
known), paraconsistent set, dialetheist set, faillibilist set (each 
element has a percentage of indeterminacy), paradoxist set (an 
element may belong and may not belong in the same time to the set), 
pseudoparadoxist set, and tautological set respectively. 
 
Hence, the neutrosophic set generalizes: 
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• the intuitionistic set, which supports incomplete set theories 
(for 0 < n < 1, 0 [ t, i, f [ 1) and incomplete known elements 
belonging to a set; 

• the fuzzy set (for n = 1 and i = 0, and 0 [ t, i, f [ 1); 
• the classical set (for n = 1 and i = 0, with t, f either 0 or 1); 
• the paraconsistent set (for n > 1, with all t, i , f < 1+);  
• the faillibilist set (i  > 0); 
• the dialetheist set, a set M whose at least one of its 

elements also belongs to its complement C(M); thus, the 
intersection of some disjoint sets is not empty; 

• the paradoxist set (t = f = 1); 
• the pseudoparadoxist set (0 < i < 1, t = 1 and f  > 0 or t > 0 

and f = 1); 
• the tautological set (i , f < 0). 

 
Compared with all other types of sets, in the neutrosophic set each 
element has three components which are subsets (not numbers as in 
fuzzy set) and considers a subset, similarly to intuitionistic fuzzy set, 
of "indeterminacy" - due to unexpected parameters hidden in some 
sets, and let the superior limits of the components to even boil over 1 
(over flooded) and the inferior limits of the components to even 
freeze under 0 (under dried).  

For example: an element in some tautological sets may have t > 
1, called "over included". Similarly, an element in a set may be "over 
indeterminate" (for i > 1, in some paradoxist sets), "over excluded" 
(for f > 1, in some unconditionally false appurtenances); or "under 
true" (for t < 0, in some unconditionally false appurtenances), "under 
indeterminate" (for i < 0, in some unconditionally true or false 
appurtenances), "under false" (for f < 0, in some unconditionally true 
appurtenances). 

This is because we should make a distinction between 
unconditionally true (t > 1, and f < 0 or i < 0) and conditionally true 
appurtenances (t [ 1, and f [ 1 or i [ 1).  

In a rough set RS, an element on its boundary-line cannot be 
classified neither as a member of RS nor of its complement with 
certainty. In the neutrosophic set a such element may be 
characterized by x(T, I, F), with corresponding set-values for T, I, F 
[-0, 1+]. 

One first presents the evolution of sets from fuzzy set to 
neutrosophic set. Then one introduces the neutrosophic components 
T, I, F which represent the membership, indeterminacy, and non-
membership values respectively, where ]-0, 1+[ is the non-standard 
unit interval, and thus one defines the neutrosophic set. One gives 
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examples from mathematics, physics, philosophy, and applications 
of the neutrosophic set. Afterwards, one introduces the neutrosophic 
set operations (complement, intersection, union, difference, 
Cartesian product, inclusion, and n-ary relationship), some 
generalizations and comments on them, and finally the distinctions 
between the neutrosophic set and the intuitionistic fuzzy set. 

The fuzzy set (FS) was introduced by L. Zadeh in 1965, where 
each element had a degree of membership.  
The intuitionistic fuzzy set (IFS) on a universe X was introduced by 
K. Atanassov in 1983 as a generalization of FS, where besides the 
degree of membership µA(x) χ[0,1] of each element xχX to a set A 
there was considered a degree of non-membership νA(x)χ[0,1], but 
such that  
 
 … xχX µA(x)+ νA(x)≤1.        (1)  
 
According to Deschrijver & Kerre the vague set defined by Gau and 
Buehrer was proven by Bustine & Burillo (1996) to be the same as 
IFS. 

Atanassov defined the interval-valued intuitionistic fuzzy set 
(IVIFS) on a universe X as an object A such that: 
 

 A= {(x, MA(X), NA(x)), xχX},      (2)  
with  

MA:XτInt([0,1]) and NA:XτInt([0,1])    (3)  
and  

… xχX supMA(x)+ supNA(x)≤1.     (4)  
 
Belnap defined a four-valued logic, with truth (T), false (F), 
unknown (U), and contradiction (C). He used a bilattice where the 
four components were inter-related. 

In 1995, starting from philosophy (when I fretted to distinguish 
between absolute truth and relative truth or between absolute 
falsehood and relative falsehood in logics, and respectively between 
absolute membership and relative membership or absolute non-
membership and relative non-membership in set theory) I began to 
use the non-standard analysis. Also, inspired from the sport games 
(winning, defeating, or tight scores), from votes (pro, contra, 
null/black votes), from positive/negative/zero numbers, from 
yes/no/NA, from decision making and control theory (making a 
decision, not making, or hesitating), from accepted / rejected / 
pending, etc. and guided by the fact that the law of excluded 
middle did not work any longer in the modern logics, I combined the 
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non-standard analysis with a tri-component logic/set/probability 
theory and with philosophy (I was excited by paradoxism in science 
and arts and letters, as well as by paraconsistency and 
incompleteness in knowledge). How to deal with all of them at once, 
is it possible to unity them? 

[87-90] proposed the term "neutrosophic" because 
"neutrosophic" etymologically comes from "neutro-sophy" 
[French neutre < Latin neuter, neutral, and Greek sophia, 
skill/wisdom] which means knowledge of neutral thought, and 
this third/neutral represents the main distinction between "fuzzy" 
and "intuitionistic fuzzy" logic/set, i.e. the included middle 
component (Lupasco-Nicolescu’s logic in philosophy), i.e. the 
neutral / indeterminate / unknown part (besides the "truth" / 
"membership" and "falsehood" / "non-membership" components 
that both appear in fuzzy logic/set). See the Proceedings of the 
First International Conference on Neutrosophic Logic, The 
University of New Mexico, Gallup Campus, 1-3 December 2001, 
at http://www.gallup.unm.edu/~smarandache/FirstNeutConf.htm. 

We need to present these set operations in order to be able to 
introduce the neutrosophic connectors. Let S1 and S2 be two 
(unidimensional) real standard or non-standard subsets included in 
the non-standard interval ]-0, ∞) then one defines: 
 
1.  Addition of classical Sets: 

S1/S2 = {xξx=s1+s2, where s1χS1 and s2χS2},  
with inf S1/S2 = inf S1 + inf S2, sup S1/S2 = sup S1 + sup S2; 
and, as some particular cases, we have 
{a}/S2 = {xξx=a+s2, where s2χS2} 
with inf {a}/S2 = a + inf S2, sup {a}/S2 = a + sup S2. 

 
2. Subtraction of classical Sets: 

S10S2 = {xξx=s1-s2, where s1χS1 and s2χS2}. 
with inf S10S2 = inf S1 - sup S2, sup S10S2 = sup S1 - inf S2; 
and, as some particular cases, we have 
{a}0S2 = {xξx=a-s2, where s2χS2}, 
with inf {a}0S2 = a - sup S2, sup {a}0S2 = a - inf S2; 
also {1+}0S2 = {xξx=1+-s2, where s2χS2}, 
with inf {1+}0S2 = 1+ - sup S2, sup {1+}0S2 = 100 - inf S2. 

 
3.  Multiplication of classical Sets: 

S1?S2 = {xξx=s1∃s2, where s1χS1 and s2χS2}. 
with inf S1?S2 = inf S1 ∃ inf S2, sup S1?S2 = sup S1 ∃ sup S2; 
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and, as some particular cases, we have 
{a}?S2 = {xξx=a∃s2, where s2χS2}, 
with inf {a}?S2 = a * inf S2, sup {a}?S2 = a ∃ sup S2; 
also {1+}?S2 = {xξx=1∃s2, where s2χS2}, 
with inf {1+}?S2 = 1+ ∃ inf S2, sup {1+}?S2 = 1+ ∃ sup S2. 

 
4. Division of a classical Set by a Number: 

Let k χ*, then S12k = {xξx=s1/k, where s1χS1}. 
 
Compared to Belnap’s quadruplet logic, NS and NL do not use 
restrictions among the components – and that’s why the NS/NL have 
a more general form, while the middle component in NS and NL 
(the indeterminacy) can be split in more subcomponents if 
necessarily in various applications. 
 
Differences between Neutrosophic Set (NS) and Intuitionistic 
Fuzzy Set (IFS) 
 
a) Neutrosophic Set can distinguish between absolute membership 
(i.e. membership in all possible worlds; we have extended 
Leibniz’s absolute truth to absolute membership) and relative 
membership (membership in at least one world but not in all), 
because NS(absolute membership element)=1+ while NS(relative 
membership element)=1. This has application in philosophy (see 
the neutrosophy). That’s why the unitary standard interval [0, 1] 
used in IFS has been extended to the unitary non-standard interval 
]-0, 1+[ in NS. 
Similar distinctions for absolute or relative non-membership, and 
absolute or relative indeterminant appurtenance are allowed in 
NS. 
b) In NS there is no restriction on T, I, F other than they are 
subsets of ]-0, 1+[, thus: -0 [ inf T + inf I + inf F [ sup T + sup I + 
sup F [ 3+. 
This non-restriction allows paraconsistent, dialetheist, and 
incomplete information to be characterized in NS {i.e. the sum of 
all three components if they are defined as points, or sum of 
superior limits of all three components if they are defined as 
subsets can be >1 (for paraconsistent information coming from 
different sources), or < 1 for incomplete information}, while that 
information can not be described in IFS because in IFS the 
components T (membership), I (indeterminacy), F (non-
membership) are restricted either to t+i+f=1 or to t2 + f2 [ 1, if T, 
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I, F are all reduced to the points t, i, f respectively, or to sup T + 
sup I + sup F = 1 if T, I, F are subsets of [0, 1].  
Of course, there are cases when paraconsistent and incomplete 
information can be normalized to 1, but this procedure is not 
always suitable.  
c) Relation (3) from interval-valued intuitionistic fuzzy set is 
relaxed in NS, i.e. the intervals do not necessarily belong to 
Int[0,1] but to [0,1], even more general to ]-0, 1+[. 
d) In NS the components T, I, F can also be non-standard subsets 
included in the unitary non-standard interval ]-0, 1+[, not only 
standard subsets included in the unitary standard interval [0, 1] as 
in IFS. 
e) NS, like dialetheism, can describe paradoxist elements, 
NS(paradoxist element) = (1, I, 1), while IFL can not describe a 
paradox because the sum of components should be 1 in IFS. 
f) The connectors in IFS are defined with respect to T and F, i.e. 
membership and non-membership only (hence the Indeterminacy 
is what’s left from 1), while in NS they can be defined with 
respect to any of them (no restriction). 
g) Component “I”, indeterminacy, can be split into more 
subcomponents in order to better catch the vague information we 
work with, and such, for example, one can get more accurate 
answers to the Question-Answering Systems initiated by Zadeh. 
{In Belnap’s four-valued logic (1977) indeterminacy is split into 
Uncertainty (U) and Contradiction (C), but they were inter-
related.} 
 
3.2  Fuzzy neutrosophic sets  
 
The notion of fuzzy neutrosophic sets are introduced in this 
section. The two types of fuzzy neutrosophic sets are crisp fuzzy 
neutrosophic sets and fuzzy neutrosophic sets both are introduced 
and some of their properties are discussed in this section. 

Throughout this book I denotes the indeterminacy. 
 
DEFINITION 3.2.1: Let FN = [0, n I| n ∈ [0, 1]] denotes the fuzzy 
interval of indeterminacy fuzzy interval of neutrosophy.  
 
DEFINITION 3.2.2: Let X be a universal set; the map µ : X → {0, 
1, I} is called the crisp fuzzy neutrosophic set, that is µ maps 
elements of X to the set 0, 1 and I.  
 
µ(x) = 0; for x ∈ X implies x is a non member. 
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µ(x)   = 1; for x ∈ X implies x is a member. 
µ(x) = I; for x ∈ X implies the membership of x is an 
indeterminacy. 
 
We illustrate this by the following example:  
 
Example 3.2.1: Let X be the set of all people in the age group 
from 1 to 25, which includes whites, blacks and browns. If µ: X 
→ {0, 1, I} such that only white have membership and black have 
no membership. Then the browns remain as indeterminate.  
 

µ(x) = 0; implies x is a black. 
µ(x) = 1; implies x is a white. 
µ(x) = I; implies of x is brown. 

 
So the function or the map µ is a crisp neutrosophic set.  
 
DEFINITION 3.2.3: Let X be any set; FN = {[0, nI] | n ∈ [0, 1]}. 
The map µ: X → FN ∪ [0, 1] is said to be the fuzzy neutrosophic 
set of X; clearly µ(x) can belong to [0, 1] for some x ∈ X and µ(x) 
= nI  for n ∈ [0, 1] for some other x. µ need not in general be a 
crisp fuzzy neutrosophic set of X.  
 
Example 3.2.2: X = {set of people suspected for doing a crime} 

µ: X → [0, 1] ∪ FN.  
 
For every x ∈ X the judge cannot say for certain that he had an 
hand in the crime for some x ∈ X, the judge may say his part in 
performing or in participation in the crime is indeterminate he can 
also give degrees of indeterminacy of each x ∈ X. 

Thus fuzzy neutrosophic set gives a method by which the 
degrees of uncertainty is also measured. For instance if we say 
µ(x) = 0.2 it implies that x has involved in the crime with 0.2 very 
less participation in that crime is accepted but if µ(x) = 0.2I, it 
implies that his very involvement is doubtful or indeterminate and 
we suspect him; but we can not claim that he can be a criminal 
with the evidences produced. Thus we see the notion of fuzzy 
neutrosophic sets will certainty find its place in fields like giving 
judgment on some criminal cases, in medicine, and in any field 
where the concept of indeterminacy is involved.  

Now we proceed on to define further algebraic structures on 
these crisp fuzzy neutrosophic sets and fuzzy neutrosophic sets.  
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DEFINITION 3.2.4: Let ∈ [F N ∪ [0, 1]] denote the set of all 
closed intervals of neutrosophic members in F N ∪ [0, 1]. Clearly 
∈ [F N ∪ [0, 1]] ⊂ P [F N ∪ [0, 1]] where P [F N ∪ [0, 1]] 
denotes the set of all neutrosophic subsets and other subsets of 
 FN ∪ [0, 1]. 
 
The neutrosophic subsets of this type are called neutrosophic in 
travel valued neutrosophic set. 
 
Example 3.2.3: Let ζ[FN ∪ [0, 1]] be the set of neutrosophic 
interval valued neutrosophic subsets. [.03I, .7I] ∪ [.5, .7] is 
neutrosophic closed interval in ζ[FN ∪ [0, 1]]. 

We define as in case of fuzzy sets the notion of the most 
important concepts viz. α - cut and its variant a strong α - cut in 
case of neutrosophic sets. We know given a fuzzy set A defined 
on X and any number α ∈ [0 1] the α cut, αA and the strong α - 
cut α+ A are crisp set. 

αA = {x | A (x) ≥ α} 
α+A = {x | A (x) > α}. 

 
That is, the α-cut (or the strong α - cut) of a fuzzy set A, is the 
crisp set αA (or the crisp set α+A) that contains all the elements of 
the universal set X whose membership grades in A are greater 
than or equal to (or only greater than) the specified value of α.  

Now we define for neutrosophic set A defined on X and for 
any value αN ∈ [0, 1] ∪ [F N] the αN – cut ANα and the strong αN 

cut AN
+α as  

ANα  = {x | A (x) ≥ αN} 

AN
+α  = {x | A (x) > αN}. 

 

Clearly when αN ∈ [0 1] ANα  = αA and AN
+α  = A

+α
. We also 

grade the indeterminary as if x, y ∈ F N. say if  
 
x > y (i.e. x = .7I y = .3I ) 
x < y (if x = .2I and y = .6I ) 
if x >/ y if (x. 3I and y = .5I ) 
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>/  not comparable with y. The incomparability occurs only when 
x ∈ F N and y ∈ [ 0 1] not with in the set F N or with in the set [0, 
1]. 

Another important property of both αN – cuts and strong αN – 
cuts are that if the pair αN and α’N ∈ FN or α’

 N and αN ∈ [ 0 1] 
‘or’ in the mutually exclusive sense we have  
if αN < α’N then  

AA NN 'αα ⊇  
if αN ∈ [ 0 1] and α’N ∈ F N or vice versa we cannot say any 
thing about it. Also in case αN and α’N ∈ F N or αN and α’N ∈ [ 0 
1] we have  

AA NN 'αα ∩  = AN'α  

AAA NNN ααα =∪ '  
 
Similar results hold good in case of AN

+α  and AN
+α ' . An obvious 

consequence of this property is that all αN-cuts and all strong αN-
cuts of any neutrosophic set form two distinct families of nested 
crisp sets. 

The 1- cuts 1A is often called the core of A. The I-cut IA is 
often called the Neutrosophic core (N-core) of A. The N-height  
hN (A) ∪ hN (A’) of a neutrosophic set A is the largest membership 
grade obtained by any element in that set ∪ hN (A’).  
 
Formally hN (A) ∪ hN (A’) = 

XxXx
xAxA

∈∈
∪ )('sup)(sup  

where A: X → [0, 1] and  
A’: X → F N 

 
if hN (A’) = φ then the N-height and height coincide otherwise we 
get the N-height as the union of two height one from height and 
other from the neutrosophic set FN. A fuzzy set A is called N – 
normal when hN (A) = 1 or I; it is N-subnormal when hN(A) < 1 (or 
< I ). The N-height of A may also be viewed as the supremum of 
αN for which ANα  ≠ φ. Let R be the set of reals RI = {rI / r ∈ R 
and I be the indeterminacy}. We call this as the set of real 
neutrosophy contrasts with FN the set of fuzzy neutrosophic set. 
We venture to define RI the real neutrosophy to define convexity. 
(RI)n for some n ∈ N is defined similar to Rn. This property is 
viewed as a generalization of the classical concept of convexity of 
crisp sets. 
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In order to make the neutrosophic convexity consistent with 
the classical definition of convexity it is required that αN – cuts of 
a convex neutrosophic set be convex for all αN ∈ (0 1] ∪ FN \ 
{0}, in the classical sense (0 – cut is excluded here since it is 
always equal to (RI )n in this case and this includes - ∞I to ∞I). 

Any property generalized from fuzzy set theory that is 
preserved in all αN -cuts for αN ∈ (0 1] ∪ FN \ {0} in the classical 
sense is called a N-cutworthy property, if it is preserved in all 
strong αN – cuts for α ∈ [0, 1] it is called a N-strong cut worthy 
property. 

The reader is expected to give an example of α - cut worthy 
property and α - strong cutworthy. The N – standard complement 
A of neutrosophic set A with respect to the universal set X is 

defined for all x ∈ X by the equation 
 

∪−= )(1)( xAxAN  I – A(x); 
 
elements of X for which A(x) = )(xAN  are called N-

equilibrium points of A. 
N – standard union and  
N – standard intersection  
are defined for all x ∈ X by equations  
 

(A ∩B)N (x)   =  min {A (x), B (x) | A, B : x → [ 0 1]  
∪  min {AN (x), BN(x) | AN, BN: x → FN}. 

Similarly  
 
(A ∪ B)N (x)  =  max {A (x), B(x) | A, B : X → [ 0 1]} ∪ 

  max {AN (x) BN (x) | AN, BN : X → FN}.  
 

min {A (x) , 1- A (x)]  =  0 | A : X → [ 01]} or  
{min {AN(x), 1 – AN (x)}  =  0 / AN X → FN} 

 
Now as in case of fuzzy subsets we define for neutrosophic subset 
the notion of the degree of n-subset hood SN (AB) where A and B 
are neutrosophic subsets of some universal set X. 
 

SN(A, B) = 
A

xBxAA ∑ −− )}()(,0max{
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SN (A, B) may be defined provided A and B are defined on the 
same interval [0, 1] or FN (‘or’ in the mutually exclusive sense) 
 

0 ≤ SN (A, B) ≤ 1 or 0 ≤ SN (A, B) ≤ I . 
 
SN (A, B) will remain undefined if A and B are in different sets 
i.e., one subset defined over [ 0 1] and the other over F N. It is left 
for the reader as an exercise to prove  

SN (A, B) = 
A

BA ∩
 

where ∩ denotes the standard neutrosophic intersection.  
 
 
3.3  On Neutrosophic lattices 
 
In this section we introduce the notion of neutrosophic lattices and 
give some of its properties. Three types of neutrosophic lattices 
are dealt in this section; viz. integral neutrosophic lattice, 
neutrosophic chain lattice and mixed neutrosophic lattices. Here 
we mainly define them and illustrate with examples. I denotes the 
concept of indeterminacy.  
 
DEFINITION 3.3.1: Let N = L ∪ {I} where L is any lattice and I an 
indeterminate.  
 
Define the max, min operation on N as follows  

Max {x, I} = I for all x ∈ L\ {1} 
Max {1, I} = I  
Min {x, I} = I for all x ∈ L \ {0} 
Min {0, I} = 0  

We know if x, y ∈ L then max and min are well defined in L.  
N is called the integral neutrosophic lattice.  
 

Example 3.3.1: Let N = L ∪ {I} given by the following diagram: 

x y z

1

0

I 
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clearly    Min {x, I } = I for all x ∈ L\ {0} 
Min {0, I } = 0  
Max {x, I } = I for all x ∈ L \ {1} 
Max {1, I } = 0.  

 
We see N is an integral neutrosophic lattice and clearly the order 
of N is 6.  
 
Remark 3.3.1: If L is a lattice of order n and N = L ∪ {I } be an 
integral neutrosophic lattice then order of N is n + 1. 
2. For a integral neutrosophic lattice N also {0} is the minimal 
element and {1} is the maximal element of N. 
 
DEFINITION 3.3.2: Let CI = {nI | n ∈ [0, 1)} ∪ {1} 
CI  can be made into a lattice by defining max and min as follows  

 
Min {0, nI} = 0 for all n ∈ [ 0, 1) 
Max {1, nI} = 1 for all n ∈ [ 0, 1) 
Min {n1I, n2I} = n1I if n1 ≤ n2 for all n1, n2 ∈ ( 0, 1) 
Max {n1I, n2I} = n2I if n1 ≤ n2 for all n1, n2 ∈ (0, 1) 

 
Clearly CI  is a lattice called the neutrosophic chain lattice.  

It is however important to note that we do not have any 
relation between integral neutrosophic lattice and neutrosophic 
chain lattice.  

Next we proceed onto define mixed neutrosophic lattice and 
pure neutrosophic lattice. 
 
DEFINITION 3.3.3: Let N = L1, I ∪ {0, 1} where L1 is any lattice 
L1I = {xI / x ∈ L1 \ {0, 1}}.  
N = L1I ∪ {0, 1} is a lattice under the following min. max 
operations 

Min {x1I, x2 I} = x1 I if and only if  
Min {x1, x2} = x1 
Max {x1I, x2 I} = x2 I if and only if max {x1, x2}= x2 
Min {0, xI} = 0 and  
Max {1, xI} = 1. 

Clearly N is a lattice called the pure neutrosophic lattice. 
 
Remark 3.3.2: All neutrosophic chain lattices are pure 
neutrosophic lattices. Clearly integral neutrosophic lattices are not 
pure neutrosophic lattices. All neutrosophic chain lattices in 
general need not be pure neutrosophic lattices. 
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Example 3.3.2: Consider  

Clearly N = L I ∪ {0, 1} where L  

is a pure neutrosophic lattice but is not a neutrosophic chain 
lattice. 
 
DEFINITION 3.3.4: Let L be a lattice N = L ∪ L I is said to be 
special neutrosophic lattice where LI = {xI / x ∈ L \ {0 1}, if on N 
is defined min and max as follows: 
 

Min {x, xI} = x I for all x ∈L \ {0 1}. 
Max {x, xI} = xI for all x ∈L \ {0 1} 
Min {x1, x2I} = x1 if x1 < x2 
Min {x1, x2I} = x2I if x2 < x1 
Min {x1I, x2I} = x1I iff x1 < x2 
Min {0, xI} = 0 
Max {x1, x2I} = x2 I iff x1 < x2 
Max {x1, x2I} = x1 iff x1 > x2 
Max {x1I, x2I} = x2I iff x1 < x2 
Max {1, xI} = 1. 

Min (x, y} and max {x, y} for all x, y ∈ L is defined in the usual 
way. N with these max-min function is called the special 
neutrosophic lattice.  
 
Next we proceed on to define mixed special neutrosophic lattices. 
 
DEFINITION 3.3.5: Let N = L1 ∪ L2 I where L1 and L2 are two 
distinct lattices. Define max and min on N as follow:. 

 
Min {x1, x2I} = x2I,  x1 ∈ L1 \ {0} x2 ∈ L2 \ {0} 

x1I x2I x3I

1

x4I

x1 x2 x3

1

x4
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Min {x1, 0} = 0 
Min {0, x2I}= 0 
Max {x1, x2I} = x2I 
Max {1, x2I} = 1 
Max {x1, 1} = 1 

Min and max on elements of L1 and L2 are done as in case of 
lattices. Then we call N the mixed special neutrosophic lattice. 
 
Example 3.3.3: Let N = L ∪ L I where L is  

N is a special neutrosophic lattice with 14 elements in it. 
 
Example 3.3.4: Let N = L ∪ L I, where L is  

N is a special neutrosophic lattice with N = {0, 1, aI, bI, a, b} with 
six elements. 
 
Example 3.3.5: Let N = L1 U L2 I where L1 is  

And L2 is  

0

a b

1

d e f

c

0

1

a b

a b c

1

0

d
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N = {0, 1, a, b, c, d, xI, yI, zI} is a mixed special neutrosophic 
lattice with 9 elements in it.  

Now we proceed on to define the notion of types of 
neutrosophic Boolean algebra. 
 
DEFINITION 3.3.6: Let B be a Boolean algebra of order greater 
than 2. N = B ∪ I is defined as the integral neutrosophic Boolean 
algebra. Clearly we do not have the notion of neutrosophic chain 
Boolean algebra. The order of an integral neutrosophic Boolean 
algebra is 2n+1 for all integers n, n ≥ 2. 
 
DEFINITION 3.3.7: Let N = L1 I ∪ {0, 1} be a pure neutrosophic 
lattice, N is called as pure neutrosophic Boolean algebra 
provided L1 is a Boolean algebra of order greater than or equal 
to four. On similar lines if we replace in the definition of the 
special neutrosophic lattice N = L ∪ L I L by a Boolean algebra 
then we call N the special neutrosophic Boolean algebra.  
 
The notion of mixed special neutrosophic Boolean algebra is 
defined in an analogous way. 
 
We can define direct product of neutrosophic lattices as in case of 
direct product of lattices. We know a lattice L is called complete 
if ∧H and ∨H exist for any subset H ⊂ L. We define complete 
integral neutrosophic lattice, complete special neutrosophic lattice 
and complete mixed special neutrosophic lattice as lattices for 
which ∧H and ∨H exist for any subsets of any type of 
neutrosophic lattices. 
 
 
3.4   Neutrosophic notions : Basic concepts  
 
To define the concept of neutrosophic binary relations, 
neutrosophic relational equations and other related concepts we 

0

1

y z

x
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need the basic notion called the neutrosophic function and other 
related neutrosophic concepts. 
 
DEFINITION 3.4.1: A set is defined by a function NA called the 
neutrosophic function, that declares which element of X are 
members of the set, which are not members and which are 
indeterminate. Set A is defined by the neutrosophic function ΝA as 
follows: 
 

ΝA (x) = 
⎪
⎩

⎪
⎨

⎧
∉

∈

decidecannotweifI
Axif

Axif
0
1

 

 
where I denotes the indeterminate symbol. That is the 
neutrosophic function ΝA maps elements of X to elements of the 
set [0, 1] ∪ I which is formally expressed by  
 

ΝA : X → [0, 1] ∪ I. 
 
For each x ∈ X when ΝA(x) = 1,  x is declared to be a member of 
A when When ΝA (x) = 0, x is declared to be a non member of A 
when ΝA (x) = I, x cannot be determined whether it is a member 
of A or a non member of A. 
 
If every member of a set A is also a member of set B (i.e. if x ∈ A 
implies x ∈ B) then A is called a subset of B, and this is written as 
A ⊆ B. 

Every set is a subset of itself, and every set is a subset of the 
universal set. If A ⊆ B and B ⊆ A then A and B contain the same 
members. They are then called equal sets that is denoted by A = 
B. We have the following relation between fuzzy characteristic 
function and neutrosophic function. 
 
THEOREM 3.4.2: Every characteristic function is a neutrosophic 
function. But all neutrosophic functions in general need not be a 
characteristic function. 
 
Proof: Since every characteristic function is obviously 
neutrosophic function with no indeterminate part associated with 
it. On the other hand if ΝA is a neutrosophic function with at least 
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a x ∈ X such that ΝA (x) = I then clearly ΝA is not a characteristic 
function. 

Several fuzzy sets representing linguistic concepts such as 
low, medium high and so on with indeterminates are used to 
define states of a variable. Such a variable is usually called a 
neutrosophic variable. 
 
THEOREM 3.4.3: Every fuzzy variable is always a neutrosophic 
variable, but all neutrosophic variables in general are not fuzzy 
variables. 
 
Proof: By the very definition every fuzzy variable ΝA (x) ≠ I for 
any x in X so is a neutrosophic variable. But in case of a 
neutrosophic variable if we have a x ∈ X such that ΝA(X) = I then 
we see it is not a fuzzy variable. 

Let Ν {[0, 1] ∪ I} denote the set of all neutrosophic sets that 
can be defined within the universal set [0, 1] ∪ I, Ν{[0, 1] ∪ I} is 
called the neutrosophic power set of [0, 1] ∪ I. 

Level 2 neutrosophic sets are those, which have their 
membership functions A : Ν {X} → [0 , 1] ∪ I. where Ν {x} 
denotes the neutrosophic power set of X. (the set of all 
neutrosophic sets of X). 

Level 2 neutrosophic sets are generalized to level 3 fuzzy sets 
by using a universal whose elements are level 2 neutrosophic sets. 
Higher level neutrosophic sets can be obtained recursively in the 
same way. 

A : Ν (X) → Ν {[0, 1] ∪ I } 
other combinations are also possible. 
 
Given a neutrosophic set A defined on X and any value α ∈ [0, 1] 
∪ I, the α - cut αA and the strong α - cut α+A are the neutrosophic 
crisp sets . 

αA = {x | A (x) ≥ α} 
α+A = {x | A (x) > α}. 

 
The neutrosophic crisp sets are crisp set if α∈ [0, 1] if α = I then 
the set is a neutrosophic crisp set. 

The set of all levels α∈ [0, 1] ∪ I that represent distinct α - 
cuts of a given set A is called a neutrosophic level set of A. 
Formally Λ (A) = { α | A (x) = α for some x ∈ X; α ∈ [ 0, 1] ∪ 
I}. where Λ denotes the level set of neutrosophic set A defined on 
X. 
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Unlike in fuzzy sets we cannot in case of neutrosophic sets 
always say for any α1, α2 ∈ [0, 1] ∪ I α1 < α2 (or α2 < α1); for if 
α1 = I and α2 ∈ [0, 1] we cannot compare them. This is a marked 
difference between fuzzy crisp sets with α - cuts and neutrosophic 
sets with α - cuts. 

Now we have to define as usual 1 – cut 1A to be core of A; IA 
to be indeterminate core of A. A neutrosophic set a is called 
normal when h (A) = 1 is called subnormal when h (A) < 1 and 
neutrosophic if h (A) = I where  

h (A) = ;)(sup
Xx

xA
∈

 

A (x) are neutrosophic sets.  
Several results true in case of fuzzy sets can be easily 

extended in case of neutrosophic sets. For more in this direction 
refer [43]. 

The representations of an arbitrary neutrosophic set A in 
terms of the special neutrosophic set is carried out in the 
following way. Let α ∈ [0, 1] ∪ I we convert each of the α - cuts 
to a special neutrosophic set αA defined for each x ∈ X as  

 
αA (x) = α. αA (x) 

if α = I,  IA (x) = I α. A (x). 
 
DEFINITION 3.4.4: We say a crisp function f: X → Y is 
neutrosified when it is extended to act on neutrosophic sets 
defined on X and Y. That is the neutrosified function for which the 
same symbol is usually used has the form  

 
f: Ν (X) → Ν (Y) 

 
and its inverse function f –1, has the form  

 
f –1 : Ν(Y) → Ν (X) 

 
[Here Ν (X) denotes the neutrosophic power set of X]. A principle 
for neutrosifying crisp functions is called an extension principle. 
 
Conventions about neutrosophic sets 
 
Let A, B ∈ Ν (X) i.e.,  

A : X → [0, 1] ∪ I 
B : X → [0, 1] ∪ I 
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(A ∩ B) (x) = min {A (x), B (x) if A (x) = I or B (x) = I 

 
then (A ∩ B) (x) is defined to be I i.e., min {A (x), B (x)) =  
I (A ∪ B) (x) = max {A (x), B (x) if one of A (x) = I or B (x) = I 
then (A ∪ B) (x) = I i.e., max {A (x), B (x)} = I. 

Thus it is pertinent to mention here that if one of A (x) = I or 
B(x) = I then (A ∪ B) (x) = (A ∩ B) x. i.e., is the existence of 
indeterminacy max {A (x), B (x)}= min {A (x), B(x)} = I.  

 
A (x) = 1- A (x); if A (x) = I then A  (x) = A (x) = I. 

 
 
3.5  Neutrosophic matrices and fuzzy neutrosophic matrices 
 
In this section we define the concept of neutrosophic matrices and 
fuzzy neutrosophic matrices and the operations on these matrices 
are also given.  
 
DEFINITION 3.5.1: Let Mnxm = {(aij ) ⏐ aij ∈ K(I)}, where K (I), is 
a neutrosophic field. We call Mnxm to be the neutrosophic matrix. 
 
Example 3.5.1: Let Q(I) = 〈Q ∪ I 〉 be the neutrosophic field.  
 

M4×3 = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

013
21
042

10

I
I
I

I

 

 
is the neutrosophic matrix, with entries from rationals and the 
indeterminacy I. We define product of two neutrosophic matrices 
whenever the product is defined as follows: 
 
Let  

A = 
3203

21

×
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
I

I
 and  B = 

43325
201
421

xII
I

I

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−
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AB  = 
42212632

324126

xIII
IIII

⎥
⎦

⎤
⎢
⎣

⎡
++−

−−+−+−
 

 
(we use the fact I2 = I). 
 
Now we proceed onto define the notion of fuzzy integral 
neutrosophic matrices and operations on them, for more about 
these refer [103].  
 
DEFINITION 3.5.2: Let N = [0, 1] ∪ I where I is the 
indeterminacy. The m × n matrices Mm×n = {(aij) / aij ∈ [0, 1] ∪ I} 
is called the fuzzy integral neutrosophic matrices. Clearly the 
class of m × n matrices is contained in the class of fuzzy integral 
neutrosophic matrices.  
 

Example 3.5.2: Let  A = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
I

I
19.0

01.0
. 

A is a 2 × 3 integral fuzzy neutrosophic matrix.  
 
We define operation on these matrices. An integral fuzzy 
neutrosophic row vector is a 1 × n integral fuzzy neutrosophic 
matrix. Similarly an integral fuzzy neutrosophic column vector is 
a m × 1 integral fuzzy neutrosophic matrix.  
 
Example 3.5.3: A = (0.1, 0.3, 1, 0, 0, 0.7, I, 0.002, 0.01, I, 1, 0.12) 
is a integral row vector or a 1 × 11, integral fuzzy neutrosophic 
matrix.  
 
Example 3.5.4: B = (1, 0.2, 0.111, I, 0.32, 0.001, I, 0, 1)T is an 
integral neutrosophic column vector or B is a 9 × 1 integral fuzzy 
neutrosophic matrix.  

We would be using the concept of fuzzy neutrosophic column 
or row vector in our study.  
 
DEFINITION 3.5.3: Let P = (pij) be a m × n integral fuzzy 
neutrosophic matrix and Q = (qij) be a n × p integral fuzzy 
neutrosophic matrix. The composition map P • Q is defined by R 
= (rij) which is a m × p matrix where rij = )min(max kjik

k
qp  with 

the assumption max(pij, I) = I and min(pij, I) = I where pij ∈ [0, 1]. 
min (0, I) = 0 and max(1, I) = 1.  
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Example 3.5.5: Let  

P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4.007.0
2.09.00

13.0 I
,  Q = (0.1, I, 0)T 

 
be two integral fuzzy neutrosophic matrices.  
 

P • Q = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4.007.0
2.09.00

13.0 I
 • 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

1.0
I  = (I, I, 0.1). 

 
Example 3.5.6: Let  

P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

4.08.0
13.0

0 I
  

and   

Q = ⎥
⎦

⎤
⎢
⎣

⎡
012.09.00

012.01.0 I
. 

 
One can define the max-min operation for any pair of integral 
fuzzy neutrosophic matrices with compatible operation.  

Now we proceed onto define the notion of fuzzy neutrosophic 
matrices. Let Ns = [0, 1] ∪ nI / n ∈ (0, 1]}; we call the set Ns to be 
the fuzzy neutrosophic set. 
 
DEFINITION 3.5.3: Let Ns

 be the fuzzy neutrosophic set. Mn×m= 
{(aij ) / aij ∈ Ns} we call the matrices with entries from Ns to be the 
fuzzy neutrosophic matrices.  
 
Example 3.5.6: Let Ns= [0,1] ∪ {nI/ n ∈ (0,1]} be the set  
 

P = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1.0153.031.0
07.001.0

31.02.00

II
II

II
 

P is a 3 × 4 fuzzy neutrosophic matrix.  
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Example 3.5.7: Let Ns = [0, 1] ∪ {nI / n ∈ (0, 1]} be the fuzzy 
neutrosophic matrix. A = [0, 0.12I, I, 1, 0.31] is the fuzzy 
neutrosophic row vector: 
 

B = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−1
0
I
11.0

I5.0

 

 
is the fuzzy neutrosophic column vector.  

Now we proceed on to define operations on these fuzzy 
neutrosophic matrices.  

Let M = (mij) and N = (nij) be two m × n and n × p fuzzy 
neutrosophic matrices. M • N = R = (rij) where the entries in the 
fuzzy neutrosophic matrices are fuzzy indeterminates i.e. the 
indeterminates have degrees from 0 to 1 i.e. even if some factor is 
an indeterminate we try to give it a degree to which it is 
indeterminate for instance 0.9I denotes the indeterminacy rate is 
high where as 0.01I denotes the low indeterminacy rate. Thus 
neutrosophic matrices have only the notion of degrees of 
indeterminacy. Any other type of operations can be defined on the 
neutrosophic matrices and fuzzy neutrosophic matrices. The 
notion of these matrices will be used to define neutrosophic 
relational equations and fuzzy neutrosophic relational equations.  
 
 
3.6  Characteristics and significance of the newer Paradigm Shift 
using indeterminacy  
 
The concept of a scientific paradigm was introduced by Thomas 
Kuhn ion his important highly influential book. The Structure of 
Scientific Revolutions [45] it is defined as a art of theories, 
standards principles and methods that are taken for granted by the 
scientific community in a given field. Using this concept Kuhn 
characterizes scientific paradigm as a process of normal science, 
based upon a particular paradigm, are interwoven with periods of 
paradigm shifts which are referred to by Kuhn as scientific 
revolutions. 

In his book Kuhn illustrates the notion of a paradigm shift by 
many well – documented examples from the history of Science. 
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Some of the most visible paradigm shifts are associated with the 
names of Copernicus (astronomy), Newton (mechanics), 
Lavoisier (chemistry) Darwin (biology), Maxwell 
(electromagnetism), Einstein (mechanics) and Godel 
(mathematics). 

Although paradigm shifts vary from one another in their 
scope pace and other features they share a few general 
characteristics. Each paradigm shift is initiated by emerging 
problems that are difficult or impossible to deal with the current 
paradigm (paradoxes, anomalies etc.). Each paradigm when 
proposed is initially rejected in various forms (it is ignored 
ridiculed, attacked etc) by most scientists in the given field. Those 
who usually support the new paradigm are either very young or 
very new to the field and consequently not very influential. Since 
the paradigm is initially not well developed the position of its 
proponents is weak. The paradigm eventually gains its status on 
pragmatic grounds by demonstrating that it is more successful 
than the existing paradigm in dealing with problems that are 
generally recognized as acute. As a rule, the greater the scope of a 
paradigm shift the longer it takes for the new paradigm to be 
generally accepted. 

The same need was expressed by Zadeh [1962] three years 
before he actually proposed the new paradigm of mathematics 
based upon the concept of a fuzzy set. When the new paradigm 
was proposed by Zadeh the usual process of a paradigm shift 
began. The concept of a fuzzy set which underlies this new 
paradigm was initially ignored ridiculed or attacked by many, 
while it was supported only by a few, mostly young and not 
influential. In spite of the initial lack of interest skepticism or 
even open hostility. The new paradigm persevered with virtually 
no support in the 1960’s matured significantly and gained some 
support in 1970s and began to demonstrate its superior pragmatic 
utility in the 1980s. 

The paradigm shift is still ongoing and it will likely take 
much longer than usual to complete it. This is not surprising since 
the scope of the paradigm shift is enormous. The new paradigm 
does not affect any particular field of science but the very 
foundation of science. In fact it challenges the most sacred 
element of the foundations. The Aristotelian two valued logic, 
which for millennia has been taken for granted and viewed as 
inviolable. The acceptance of such a radical challenge is surely 
difficult for most scientists, it requires an open mind, enough 
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time, and considerable effort to properly comprehend the meaning 
and significance of the paradigm shift involved. 

At this time we can recognize at least four features that make 
the new paradigm superior to the classical paradigm. 

The new paradigm allows us to express irreducible 
observation and measurement uncertainties in their various 
manifestation and make these uncertainties intrinsic to empirical 
data. Such data which are based on graded distinctions among 
states of relevant variables are usually called fuzzy data. When 
fuzzy data is processed their intrinsic uncertainties their by the 
results are more meaningful. 
 This new paradigm offers for greater resources for managing 
complexity and controlling computational cost. This new 
paradigm has considerably greater expressive power consequently 
it can effectively deal with a broader class of problems. This has 
greater capability to capture human common sense reasoning 
decision making and other aspects of human cognition. 

Now still new concept is the neutrosophy, the neutrosophic 
set and the related concept. This still newer paradigm allows us to 
express the indeterminacies involved in the analysis of empirical 
data. Indeterminacy is more powerful in a way than uncertainties. 
When neutrosophic data are processed their indeterminacies are 
processed as well and the consequent results are more meaningful. 

Further this newer paradigm offers far greater resources for 
managing indeterminacy for in any study be it scientific or 
otherwise the role played by the indeterminacy factor is 
significant but till date we have been ignoring this factor. The 
newer paradigm has greater power in analyzing the indeterminacy 
present it several human problems be it legal, medical, chemical 
or industrial. The newer paradigm has a greater capability to 
capture the reality for in reality a lot of indeterminacy is involved. 
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Chapter Four 

 
 
NEUTROSOPHIC RELATIONAL 
EQUATIONS AND ITS 
APPLICATIONS  
 
 
We have introduced several properties about neutrosophic 
concepts in the earlier chapter. Study of neutrosophic relational 
equations (NREs) will find its applications whenever 
indeterminacy plays a vital role. Thus in problems which involves 
indeterminacy certainly NREs would be more appropriate than 
FREs. 

This chapter has eleven sections which introduces and applies 
NRE to several real world problems as well analyses and studies 
for the first time; optimization of NRE using max product 
composition; solution using lattices and so on.  
 
 
4.1  Binary neutrosophic Relation and their properties 
 
In this section we introduce the notion of neutrosophic relational 
equations and fuzzy neutrosophic relational equations and analyze 
and apply them to real-world problems, which are abundant with 
the concept of indeterminacy. We also mention that most of the 
unsupervised data also involve at least to certain degrees the 
notion of indeterminacy.  

Throughout this section by a neutrosophic matrix we mean a 
matrix whose entries are from the set N = [0, 1] ∪ I and by a 
fuzzy neutrosophic matrix we mean a matrix whose entries are 
from N’ = [0, 1] ∪ {nI / n ∈ (0,1]}. 

Now we proceed on to define binary neutrosophic relations 
and binary neutrosophic fuzzy relation.  

A binary neutrosophic relation RN(x, y) may assign to each 
element of X two or more elements of Y or the indeterminate I. 
Some basic operations on functions such as the inverse and 
composition are applicable to binary relations as well. Given a 
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neutrosophic relation RN(X, Y) its domain is a neutrosophic set on 
X ∪ I domain R whose membership function is defined by  
domR(x) = )y,x(Rmax N

IXy ∪∈
 for each x ∈ X ∪ I.  

That is each element of set X ∪ I belongs to the domain of R 
to the degree equal to the strength of its strongest relation to any 
member of set Y ∪ I. The degree may be an indeterminate I also. 
Thus this is one of the marked difference between the binary 
fuzzy relation and the binary neutrosophic relation. The range of 
RN(X,Y) is a neutrosophic relation on Y, ran R whose 
membership is defined by ran R(y) = )y,x(Rmax N

Xx∈
for each y ∈ 

Y, that is the strength of the strongest relation that each element of 
Y has to an element of X is equal to the degree of that element’s 
membership in the range of R or it can be an indeterminate I.  

The height of a neutrosophic relation RN(x, y) is a number 
h(R) or an indeterminate I defined by hN(R) = 

IXxIYy
maxmax

∪∈∪∈
RN(x, 

y). That is hN(R) is the largest membership grade attained by any 
pair (x, y) in R or the indeterminate I.  

 A convenient representation of the neutrosophic binary 
relation RN(X, Y) are membership matrices R = [γxy] where γxy ∈ 
RN(x, y). Another useful representation of a binary neutrosophic 
relation is a neutrosophic sagittal diagram. Each of the sets X, Y 
represented by a set of nodes in the diagram, nodes corresponding 
to one set are clearly distinguished from nodes representing the 
other set. Elements of X’ × Y’ with non-zero membership grades 
in RN(X, Y) are represented in the diagram by lines connecting the 
respective nodes. These lines are labeled with the values of the 
membership grades.  

FIGURE: 4.1.1

x1 

x2 

x3 

x4 

x5 
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.4 
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.5 
.7 

y1

y2

y3

y4
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An example of the neutrosophic sagittal diagram is a binary 
neutrosophic relation RN(X, Y) together with the membership 
neutrosophic matrix is given below.  
 

        y1       y2       y3       y4 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7.05.000
000
2.0001

04.003.0
5.000

5

4

3

2

1

I

I

x
x
x
x
x

 

 
The inverse of a neutrosophic relation RN(X, Y) = R(x, y) for 

all x ∈ X and all y ∈ Y. A neutrosophic membership matrix R–1 = 
[ 1

yxr− ] representing 1
NR − (Y, X) is the transpose of the matrix R for 

RN(X, Y) which means that the rows of R-1 equal the columns of 
R and the columns of R-1 equal rows of R. Clearly (R-1)-1 = R for 
any binary neutrosophic relation.  

Consider any two binary neutrosophic relation PN(X, Y) and 
QN(Y, Z) with a common set Y. The standard composition of 
these relations which is denoted by PN(X, Y) • QN(Y, Z) produces 
a binary neutrosophic relation RN(X, Z) on X × Z defined by 
RN(x, z) = [P • Q]N(x, z) = 

Yy
max

∈
min[PN(x, y), QN(x, y)] for all x∈ 

X and all z ∈ Z.  
This composition which is based on the standard tN-norm and 

tN-co-norm, is often referred to as the max-min composition. It 
can be easily verified that even in the case of binary neutrosophic 
relations [PN(X, Y) • QN(Y, Z)]-1 = 1

NQ− (Z, Y) • 1
NP− (Y, X). 

[PN(X, Y) • QN(Y, Z)] • RN(Z, W) = PN(X, Y) • [QN(Y, Z) • 
RN(Z, W)], that is, the standard (or max-min) composition is 
associative and its inverse is equal to the reverse composition of 
the inverse relation. However, the standard composition is not 
commutative, because QN(Y, Z) • PN(X, Y) is not well defined 
when X ≠ Z. Even if X = Z and QN (Y, Z) ° PN (X, Y) are well 
defined still we can have PN (X, Y) ° Q (Y, Z) ≠ Q (Y, Z) ° P (X, 
Y). 
 Compositions of binary neutrosophic relation can the 
performed conveniently in terms of membership matrices of the 
relations. Let P = [pik], Q = [qkj ] and R = [rij] be membership 
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matrices of binary relations such that R = P ° Q. We write this 
using matrix notation  

[rij] = [pik] o [qkj] 
where rij = minmax

k
(pik, qkj). 

 A similar operation on two binary relations, which differs 
from the composition in that it yields triples instead of pairs, is 
known as the relational join. For neutrosophic relation PN (X, Y) 
and QN (Y, Z) the relational join P * Q corresponding to the 
neutrosophic standard max-min composition is a ternary relation 
RN (X, Y, Z) defined by RN (x, y, z) = [P * Q]N (x, y, z) = min [PN 
(x, y), QN (y, z)] for each x ∈ X, y ∈ Y and z ∈ Z. 
 
This is illustrated by the following Figure 4.1.2. 

In addition to defining a neutrosophic binary relation there exists 
between two different sets, it is also possible to define 
neutrosophic binary relation among the elements of a single set X. 

A neutrosophic binary relation of this type is denoted by 
RN(X, X) or RN (X2) and is a subset of X × X = X2. 

These relations are often referred to as neutrosophic directed 
graphs or neutrosophic digraphs. [103] 

Neutrosophic binary relations RN (X, X) can be expressed by 
the same forms as general neutrosophic binary relations. However 
they can be conveniently expressed in terms of simple diagrams 
with the following properties. 
 

I. Each element of the set X is represented by a single 
node in the diagram.  

FIGURE: 4.1.2

x1 
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x5 
x6 
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II. Directed connections between nodes indicate pairs 
of elements of X for which the grade of membership 
in R is non zero or indeterminate.  

III. Each connection in the diagram is labeled by the 
actual membership grade of the corresponding pair 
in R or in indeterminacy of the relationship between 
those pairs.  

The neutrosophic membership matrix and the neutrosophic 
sagittal diagram is as follows for any set X = {a, b, c, d, e}. 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2.000
3.06.0

0002.
3.001
02.3.0

I
I

I
I

I

 

 
 
Neutrosophic membership matrix for x is given above and the 
neutrosophic sagittal diagram is given below. 

Neutrosophic diagram or graph is left for the reader as an 
exercise. 

The notion of reflexivity, symmetry and transitivity can be 
extended for neutrosophic relations RN (X, Y) by defining them in 
terms of the membership functions or indeterminacy relation.  
 
Thus RN (X, X) is reflexive if and only if RN (x, x) = 1 for all x ∈ X. 
If this is not the case for some x ∈ X the relation is irreflexive.  

Figure: 4.1.3 
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e
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e
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A weaker form of reflexivity, if for no x in X; RN(x, x) = 1 then we 
call the relation to be anti-reflexive referred to as ∈-reflexivity,   
is sometimes defined by requiring that   

  RN (x, x) ≥ ∈ where 0 < ∈ < 1. 
 
A fuzzy relation is symmetric if and only if  

RN (x, y) = RN (y, x) for all x, y, ∈ X. 
 
Whenever this relation is not true for some x, y ∈ X the relation is 
called asymmetric. Furthermore when RN (x, y) > 0 and RN (y, x) 
> 0 implies that x = y for all x, y ∈ X the relation R is called anti-
symmetric. 

A fuzzy relation RN (X, X) is transitive (or more specifically 
max-min transitive) if  

 
RN (x, z) ≥ 

Yy∈
max min [RN (x, y), RN (y, z)] 

 
is satisfied for each pair (x, z) ∈ X2. A relation failing to satisfy 
the above inequality for some members of X is called non-
transitive and if RN (x, x) < 

Yy∈
max min [RN(x, y), RN(y, z)] for all 

(x, x) ∈ X2, then the relation is called anti-transitive  
Given a relation RN(X, X) its transitive closure R NT (x, X) 

can be analyzed in the following way. 
The transitive closure on a crisp relation RN (X, X) is defined 

as the relation that is transitive, contains  
 

RN (X, X) < 
Yy

max
∈

 min [RN (x, y) RN (y, z)] 

 
for all (x, x) ∈ X2, then the relation is called anti-transitive. Given 
a relation RN (x, x) its transitive closure NTR (X, X) can be 
analyzed in the following way. 

The transitive closure on a crisp relation RN (X, X) is defined 
as the relation that is transitive, contains RN and has the fewest 
possible members. For neutrosophic relations the last requirement 
is generalized such that the elements of transitive closure have the 
smallest possible membership grades, that still allow the first two 
requirements to be met. 

Given a relation RN (X, X) its transitive closure NTR (X, X) 
can be determined by a simple algorithm. 
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Now we proceed on to define the notion of neutrosophic 
equivalence relation. 
 
DEFINITION 4.1.1: A crisp neutrosophic relation RN(X, X) that is 
reflexive, symmetric and transitive is called an neutrosophic 
equivalence relation. For each element x in X, we can define a 
crisp neutrosophic set Ax which contains all the elements of X that 
are related to x by the neutrosophic equivalence relation. 
 
Formally Ax = [ y | (x, y) ∈ RN (X, X)}. Ax is clearly a subset of X. 
The element x is itself contained in Ax, due to the reflexivity of R 
because R is transitive and symmetric each member of Ax is 
related to all other members of Ax. Further no member of Ax is 
related to any element of X not included in Ax. This set Ax is 
clearly referred to as an neutrosophic equivalence class of RN (X, 
x) with respect to x. The members of each neutrosophic 
equivalence class can be considered neutrosophic equivalent to 
each other and only to each other under the relation R. 
 But here it is pertinent to mention that in some X; (a, b) may 
not be related at all to be more precise there may be an element a 
∈ X which is such that its relation with several or some elements 
in X \ {a} is an indeterminate. The elements which cannot 
determine its relation with other elements will be put in as 
separate set. 

A neutrosophic binary relation that is reflexive, symmetric 
and transitive is known as a neutrosophic equivalence relation. 

Now we proceed on to define Neutrosophic intersections 
neutrosophic t – norms (tN – norms) 
 Let A and B be any two neutrosophic sets, the intersection of 
A and B is specified in general by a neutrosophic binary operation 
on the set N = [0, 1] ∪ I, that is a function of the form  
 

iN: N × N → N. 
For each element x of the universal set, this function takes as its 
argument the pair consisting of the elements membership grades 
in set A and in set B, and yield the membership grade of the 
element in the set constituting the intersection of A and B. Thus,  

 
(A ∩ B) (x) = iN [A(x), B(x)] for all x ∈ X. 

 
 In order for the function iN of this form to qualify as a fuzzy 
intersection, it must possess appropriate properties, which ensure 
that neutrosophic sets produced by iN are intuitively acceptable as 
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meaningful fuzzy intersections of any given pair of neutrosophic 
sets. It turns out that functions known as tN- norms, will be 
introduced and analyzed in this section. In fact the class of tN- 
norms is now accepted as equivalent to the class of neutrosophic 
fuzzy intersection. We will use the terms tN – norms and 
neutrosophic intersections inter changeably. 
 Given a tN – norm, iN and neutrosophic sets A and B we have 
to apply:  

(A ∩B) (x) = iN [A (x) , B (x)] 
 
for each x ∈ X, to determine the intersection of A and B based 
upon iN. 

However the function iN is totally independent of x, it 
depends only on the values A (x) and B(x). Thus we may ignore x 
and assume that the arguments of iN are arbitrary numbers  
a, b ∈ [0, 1] ∪ I = N in the following examination of formal 
properties of tN-norm.  

A neutrosophic intersection/ tN-norm iN is a binary operation 
on the unit interval that satisfies at least the following axioms for 
all a, b, c, d ∈ N = [0, 1] ∪ I. 
 

1N   iN (a, 1) = a 
2N   iN (a, I) = I 
3N   b ≤ d implies 

iN (a, b) ≤ iN (a, d) 
4N   iN (a, b) = iN (b, a) 
5N   iN (a, iN(b, d)) = iN (a, b), d). 

 
We call the conditions 1N to 5N as the axiomatic skeleton for 
neutrosophic intersections / tN – norms. Clearly iN is a continuous 
function on N \ I and iN (a, a) < a ∀a ∈ N \ I  

 
iN (I I) = I. 

 
If a1 < a2 and b1 < b2 implies iN (a1, b1) < iN (a2, b2). Several 
properties in this direction can be derived as in case of t-norms.  
 
The following are some examples of tN –norms  
 
1.  iN (a, b) = min (a, b) 
 iN (a, I) = min (a, I) = I will be called as standard 

neutrosophic intersection. 
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2. iN (a, b) = ab for a, b ∈ N \ I and iN (a, b)  = I for a, b ∈ N 
where a = I or b = I will be called as the neutrosophic 
algebraic product. 

3. Bounded neutrosophic difference. 
 iN (a, b) = max (0, a + b – 1) for a, b ∈ I  
 iN (a, I) = I is yet another example of tN – norm. 

4. Drastic neutrosophic intersection  
5.  

iN (a, b) = 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

==
=

=
=
=

otherwise
Ibaor

Ibor
IawhenI

awhenb
bwhena

0

1
1

 

 
As I is an indeterminate adjoined in tN – norms. It is not easy to 
give then the graphs of neutrosophic intersections. Here also we 
leave the analysis and study of these tN – norms (i.e. neutrosophic 
intersections) to the reader. 

The notion of neutrosophic unions closely parallels that of 
neutrosophic intersections. Like neutrosophic intersection the 
general neutrosophic union of two neutrosophic sets A and B is 
specified by a function  

µN: N × N → N where N = [0, 1] ∪ I. 
 
 The argument of this function is the pair consisting of the 
membership grade of some element x in the neutrosophic set A 
and the membership grade of that some element in the 
neutrosophic set B, (here by membership grade we mean not only 
the membership grade in the unit interval [0, 1] but also the 
indeterminacy of the membership). The function returns the 
membership grade of the element in the set A ∪ B.  

Thus (A ∪ B) (x) = µN [A (x), B(x)] for all x ∈ X. Properties 
that a function µN must satisfy to be initiatively acceptable as 
neutrosophic union are exactly the same as properties of functions 
that are known. Thus neutrosophic union will be called as 
neutrosophic t-co-norm; denoted by tN – co-norm. 

A neutrosophic union / tN – co-norm µN is a binary operation 
on the unit interval that satisfies at least the following conditions 
for all a, b, c, d ∈ N = [0, 1] ∪ I 
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C1   µN (a, 0) = a 
C2   µN (a, I) = I 
C3   b ≤ d implies 

µN (a, b) ≤ µN (a, d) 
C4   µN (a, b) = µN (b, a) 
C5   µN (a, µN (b, d)) 

= µN (µN (a, b), d). 
 
Since the above set of conditions are essentially neutrosophic 
unions we call it the axiomatic skeleton for neutrosophic unions / 
tN-co-norms. The addition requirements for neutrosophic unions 
are  

i. µN is a continuous functions on N \ {I} 
ii. µN (a, a) > a. 
iii. a1 < a2 and b1 < b2 implies µN (a1. b1) < µN (a2, b2); 

a1, a2, b1, b2 ∈ N \ {I} 
 
We give some basic neutrosophic unions. 
Let µN : [0, 1] × [0, 1] → [0, 1] 
 

µN (a, b) = max (a, b) 
µN (a, I) = I is called as the standard   
      neutrosophic union. 
µN (a, b) = a + b – ab and  
µN (a, I) = I . 

 
This function will be called as the neutrosophic algebraic sum. 

 
µN (a, b) = min (1, a + b) and µN (a, I) = I 

 
will be called as the neutrosophic bounded sum. We define the 
notion of neutrosophic drastic unions  

 

µN (a, b) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪
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=
=
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=
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Now we proceed on to define the notion of neutrosophic 
Aggregation operators. Neutrosophic aggregation operators on 
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neutrosophic sets are operations by which several neutrosophic 
sets are combined in a desirable way to produce a single 
neutrosophic set. 
 Any neutrosophic aggregation operation on n neutrosophic 
sets (n ≥ 2) is defined by a function hN: Nn → N where N = [0, 1] 
∪ I and Nn = 

43421
timesn

NN
−

×× ... when applied to neutrosophic sets A1, 

A2,…, An defined on X the function hN produces an aggregate 
neutrosophic set A by operating on the membership grades of 
these sets for each x ∈ X (Here also by the term membership 
grades we mean not only the membership grades from the unit 
interval [0, 1] but also the indeterminacy I for some x ∈ X are 
included). Thus  

AN (x) = hN (A1 (x), A2 (x),…, An(x)) 
for each x ∈ X. 
 
 
4.2  Optimization of NRE with max-product composition 
 
The study of the neutrosophic relational equations  
 

x o A = b 
 
where A = (aij)m x n neutrosophic matrix with entries from [0 1] ∪ 
FN, b = (b1, …, bn) bi ∈ [0 1] ∪ F N and ‘o’ is the max-min 
composition.  

Even in case of fuzzy relation equation the resolution of the 
equation x o A = b is an interesting on going research topic. [61] 
instead of finding all solutions of x o A = b, they assume f (x) to 
be the user criterion function they solve the non linear 
programming model with fuzzy relation constraints  

 
Min f(x)  

such that   x o A = b    (1) 
 
A minimizer will be the best solution. At this juncture when we 
seek to transform this model in to a neutrosophic model we are 
not fully aware of how the solution looks like will we get one best 
solution or several such solutions. All these are suggested as 
problems in chapter 5. Thus contrary to fuzzy relation constrains 
our problem  

“min f(x)  
such that      x o A = b” 
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subjects to neutrosophic relation constrains also. 

It is left once again for the reader to establish that when the 
solution set of the neutrosophic relation equation x o A = b is not 
empty the existence of a minimal solution. (In fact we have a 
finite number of minimal solution it can be established in an 
analogous way as in FRE under certain constraints). 

The optimal solution can be obtained as in case of fuzzy 
relation equations. The study and analysis of finding solution to 
the problem (1) with a non linear objective function will be 
termed as a non linear optimization problem with neutrosophic 
relation constrains. 

The process of obtaining the solution is similar to that done in 
the case of fuzzy relation equation. This study itself can be written 
as a book we leave the interested reader to develop. However we 
would be bringing forth a separate book on this topic. 
 
 
4.3  Method of solution to NRE in a complete Brouwerian lattices 
 
Xue-ping Wang [110] has given a method of solution to fuzzy 
relation equations in a complete Brouwerian lattice. Here we give 
a method of solution to neutrosophic relation equations in a 
complete Brouwerian neutrosophic lattice. 

Unfortunately, how to solve a fuzzy relation equation in a 
complete Brouwerian lattice is still an open problem so it is an 
open problem to study neutrosophic relation equation in a 
complete Brouwerian neutrosophic lattice. 

We only propose a few problems as even in case of fuzzy 
relation equations the method of solution is open. 
 
 
4.4  Multi objective optimization problem with NRE constraints 
 
We define analogous to multi objective optimization problems 
with fuzzy relation equation the procedure of solution to 
neutrosophic relational equation. 

Let Xn = {[0 1] ∪ FN}m. Let A = m × n neutrosophic fuzzy 
matrix I = {1, 2,…, m} and J = {1, 2,…, n}. b = [bj]1 × n such that 
aij ∈ [ 0, 1] ∪ FN for all i ∈ I and j ∈ J. Given A and b, a system 
of neutrosophic relation equation defined  
 

x o A = b       (1) 
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where ‘o’ represents the max-min composition defined in chapter 
3 of this book for neutrosophic min max and relational equations. 

A solution to (1) is a neutrosophic vector x = (x1,…, xm), xi ∈ 
[0 1] ∪ FN such that  
 

Ii∈
max [min (xi, aij)] = bj ∀ j ∈ J     (2) 

 
In other words the optimization problem we are interested in, has 
the following form  
 

Min {f1(x), f2(x),…, fk(x)} 
Such that  x o A = b      (3) 

 
xi ∈ [0 1] ∪ [F N], i∈I where fk(x) is an objective function, k ∈ K 
= {1, 2,…p}. In case of FRE, the properties of efficient points 
were investigated by [110]. 
 Here fk’s are the neutrosophic criterion vectors. The problem 
(3) is restated as follows. Let XN be the feasible domain  

 
XN = {x ∈ Rn ∪ {IR}n / x o A = b}, xi ∈ Rn ∪ {IR}n}.  

 
For each x∈XN we say x is a solution vector and define  
 

z = {f1(x), f2(x),…, fp(x)} 
 

to be its neutrosophic criterion vector. Moreover define  
 
ZN = {{z ∈ Rp ∪ {IR}p / (f1 (x), f2(x),…, fp(x)) for some x ∈ XN}, 
 
z may be indeterminate or may be in RP

N. 
 
DEFINITION 4.4.1: A point NXx ∈  is an efficient or a pare to 
optimal solution to problem (3) if and only if there does not exist 
any x ∈ XN  such that fk(x) ≤ fk ( )x  for all k ∈ K, and fk(x) < fk ( )x  
for at least one k; otherwise x is an inefficient solution. 
 
DEFINITION 4.4.2: Let Z1, Z2 ∈ ZN be two neutrosophic criterion 
vectors. Then Z1 dominates Z2 if and only if Z1 ≤ Z2 and Z1 ≠ Z2. 
That is Z1

k ≤ Z2
k for all k ∈ K and  

Z1
k  <  Z2

k for at least one k. 
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Note:  Here comparison is possible only within criterion vectors 
or neutrosophic criterion vectors if one is just a criterion vector 
and other a neutrosophic criterion vector comparison is not 
possible. 
 
DEFINITION 4.4.3: Let z ∈ ZN. Then z  is non-dominated if and 
only if there does not exists any z ∈ ZN that dominates. z  is a 
dominated neutrosophic criterion vector.  
 
 The idea of dominance is applied to the neutrosophic 
criterion vectors whereas the idea of efficiency is applied to the 
solution vectors. A point x ∈ XN is efficient if its criterion vector 
is non-dominated in ZN. The set of all effective points is called the 
neutrosophic efficient set or neutrosophic p are to optimal set. The 
set of all non-dominated neutrosophic criterion vectors is called 
the non-dominated neutrosophic set. 
 As in case of FREs a system of NREs may be manipulated in 
a way such that the required computational effort of the proposed 
genetic algorithm is reduced. Due to the requirement of x o A = b 
some components of every solution neutrosophic vector or vector 
may have to assume a specific value of an indeterminate value. As 
in case of FREs the genetic operators are applied to the reduced 
problem. 

We at the first stage divide the problem into two components 
i.e. the components of vector b is divided into b’ and b”,  b’ 
having fuzzy values and b” having neutrosophic values so that b’ 
and b” can be ordered and the matrix A is correspondingly 
rearranged. Notice the corresponding x̂ , and x̂ ” which are the 
maximum solution can be obtained by the following formula 

  

x̂ ’ = A @ b’ = ⎥
⎦

⎤
⎢
⎣

⎡
∧
=

)'@'(
'

1 jij

n

j
ba  

 
where ‘∧’ is the min operator 
 

       x̂ ” = A @ b” = ⎥
⎦

⎤
⎢
⎣

⎡
∧
=

)"@"(
''

1 jij

n

j
ba     (4) 

   a’ij @ b’j = 
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   a”ij @ b”j = 
⎪⎩

⎪
⎨
⎧

>

≤

jjj

jij

baifb

baif

"""

""1
     (5) 

These x̂ ’, and x̂ ” can be used to check whether the feasible 
domain is empty. 
 If max [min ( iji ax ','ˆ )] = b’j ∀j ∈ J       (6’) 

 and max [min ( iji ax ","ˆ )] = b”j ∀j ∈ J       (6”) 

then 'x̂  and x̂ ” is the maximum solution (1) x̂  = ∪'x̂  x̂ ” is the 
solution; other wise problem (3) is infeasible. 
 
DEFINITION 4.4.4: If a value change in some elements of a given 
neutrosophic relation matrix, A has no effect on the solution of the 
corresponding neutrosophic relation equations this value change 
is called an N-equivalence operation. 
 
DEFINITION 4.4.5: Given a system of neutrosophic relation 
equation. 

(1) a N-pseudo – characteristic matrix P = [Pij] is defined as  
 

Pij = 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧
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The N-pseudo characteristic matrix will be referred to as a NP – 
matrix. 
 
DEFINITION 4.4.6: Given the maximum solution x̂  = ∪'x̂  x̂ ” if 
there exists some i ∈ I and some j ∈ J such that 

jijijiji baxandbax """ˆ'''ˆ =∧=∧  then the corresponding a’ij and 

a”ij of matrix A is called a N-critical element for x̂  = ∪'x̂  x̂ ”. 
 
The results and definitions related to this can be carried out in an 
analogous way as in case of multi objective optimization 
problems with fuzzy relation equation constraints. 
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4.5  Neural Neutrosophic relational system with a new learning 
algorithm  
 
A neutrosophic t-norm (Triangular norm denoted by Nt – norm or 
tN – norm) is a function. 
 
tN: [0 1] ∪ I × [0 1] ∪ I → [0 1] ∪ I satisfying for any a, b, c, d ∈ 
[0, 1] ∪ I the following conditions  
 

i. tN (a, 1) = a and tN (a, 0) = 0 
ii. If a ≤ d then it implies tN (a, b) ≤ tN (a, d) 
iii. tN (a, I) = I 
iv. tN (a, b) = tN (b, a) 
v. tN (a, tN (b, d)) = tN (tN (a, b), d). 

 
Moreover tN is called Neutrosophic Archimedean if and only if  
 

i. tN is a continuous function. 
ii. tN (a tN (a, a)) < a ∀ a ∈ (0, 1). 

 
It is left as an exercise for the reader to study and analyze the 
properties of tN-norm. The general structure of a conventional 
neutrosophic neuron (N-neuron) can be shown in the figure. 

The equation that describes this kind of N-neuron is as 
follows 

y = a 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂+∑
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ii xw

1
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Figure: 1.9.1 
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where a is a non linearity ∂ is the threshold and wi are weights 
which can also be indeterminates i.e., I that can change on line 
with the aid of a learning process. 

The compositional neuron has the same structure with the 
neuron of equation (1) but it can still be described by the equation  
 

y  =  a ⎥⎦
⎤

⎢⎣
⎡

∈
)( jj

NJ
wxS      (2) 

 
where S is a fuzzy union operator as SN-norm, tN is a neutrosophic 
intersection operator and a is the activation function  
 

a(x) = 
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The analogous properties work in this situation as in case of 
neural fuzzy relational system with a new learning algorithm. 
 
 
4.6  Unattainable solution of NRE 
 
Hideyuki Imai et al [39]  have obtained a necessary and sufficient 
conditions for the existence of a partially attainable and an 
unattainable solution. 

Here we study the problem in the context of NRE. Let U and 
V be nonempty sets and let N(U), N(V), N(U × V) be the 
collection of neutrosophic sets of U, V and U × V respectively. 
The equation  

X o A = B     (*) 
is a neutrosophic relational equation where A ∈ N (U × V) 

and B ∈ N(V) are given and X ∈ N(U) is unknown and ‘o’ 
denotes the usual ∧-∨ composition. A neutrosophic set X 
satisfying the equation above is called a solution of the equation. 

If µX : U → FN ∪ [0  1] 
µA : U × V → FN ∪ [0 1] and µB : U × V → FN ∪ [0 1] are their 
neutrosophic membership functions. Now equation (*) is as 
follows. 
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V(µX(u) ∧ µA(u, ν) = µB(v)) (∀v ∈ V). The solution set in case of 
FRE has been investigated by several researchers and several 
important conclusions have been derived by the analysis of the 
solution set in case of NRE is at its dormant state. It will be an 
interesting and innovative research to study and analyze the 
solution set in case of NRE. 

We propose several problems about the solution set in case of 
NRE. When both the sets U and V are both finite sets, show that 
the solution set is completely determined by the greatest solution 
and the set of minimal solutions. Now we proceed on to define the 
neutrosophic membership function (N-membership function) of 
the neutrosophic sets X, Y, ∈ N(U). 
 
DEFINITION 4.6.1: Let µx  and µy be the neutrosophic membership 
functions of the neutrosophic set X, Y ∈ N(U) respectively. Then 
the partial order ≤  the join ∨  the meet ∧ are defined as follows. 
 

µX ≤ µy ⇔ for all u ∈ U (µX (u) ≤ µy (u)) 
µX ∨ µY : ∋u → µX (u)∨ µY (u)∈ FN ∪ [0 1] 
µX ∧ µY : ∋u → µX (u)∧ µY (u)∈ FN ∪ [0 1]. 

Note that µX < µY is equivalent to X ⊂ Y for X, Y ∈ N(U). The 
greatest solution and minimal solution for NRE minimal solution 
are defined as in case of FRE. We can in case of NRE also define 
the attainable and unattainable solution. 
 
As they can be derived as a matter of routine it is left as an 
exercise for the reader. 
 
 
4.7  Specificity Shift in solving NRE 
 
The specificity shift method can be classified as an approach 
situated between analytical and numerical method of solving FRE. 
When we study or impose specificity shift for solving NRE we 
call them neutrosophic specificity shift (N-specificity shift). 
 

X � R = y   (1) 
 
which denotes a FRE with max t-composition where t is assumed 
to be a continuous t-norm while X R and y are viewed as fuzzy set 
and a fuzzy relation defined in finite universe of discourse. 
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We take X, y and R to be neutrosophic sets and the norm t is 
assumed to be a continuous tN-norm. [14] have studied in case of 
FRE. Here we just sketch the method analogous to that given by 
[14] for FRE in case of NRE. Given a collection of neutrosophic 
data ((x(1), y(1)), (x(2), y(2),…, (x(N), y(N)) where x(k) ∈ {[0 1] 
∪ FN}n and y(k) ∈ {[0 1] ∪ FN}m. 

Determine a neutrosophic relation R satisfying the collection 
of the relational constrains (Neutrosophic relational equations). 
 

x(k) � R = y (k) 
 
Expressing the above equation in terms of corresponding 
membership functions of x(k), y(k) and R we drive  
 

yj (k) = 
n

i 1=
∨ (xi (k) t rij) 

 
where k = 1, 2, …, N; j = 1, 2, …, m. 

The problem has to be talked using interpolation under the 
special assumptions and conditions. Further one cannot always be 
guaranteed of a solution. The solution may or may not exist.  

It is appropriate to study whether the maximal neutrosophic 
(fuzzy) relation with the membership function equal to  
 

R = I
N

k
kykx

1
))()((

=

→  

exist. This task is also left as an exercise to the reader. 
 It is pertinent to mention here that the computations involve 
an intersection of the individual neutrosophic relations determined 
via a pseudo complement associated with the tN –norm. The study 
and analysis of the problem under the neutrosophic setup happens 
to be very different in only certain situations. When the notion of 
indeterminacy plays a vital role in the problem we see solutions so 
obtained may be entirely different from the usual fuzzy relation 
equations. As use of the optimization methods leads to better 
approximate solutions yet the entire procedure with indeterminacy 
could be quite time consuming. Further more as there could be a 
multiplicity of solutions such approaches usually identify only 
one of them leaving the rest of them unknowns or as a 
indeterminacy. The entire investigated setting can be changed 
from the fuzzy model to the neutrosophic model with appropriate 
modification to ingrain the element of indeterminacy. 
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4.8   NRE with deneutrofication algorithm for the largest solution 
 
Kagei [42] has provided algorithm for solving a new fuzzy 
relational equation including defuzzificaiton. Here we extend it in 
case of a new neutrosophic relational equation and adopt in our 
study the notion of deneutrofication. An input neutrosophic set is 
first transformed into an internal neutrosophic set by a 
neutrosophic relation. The internal neutrosophic relation is 
obtained from neutrosophic input and deneutrosified output. 
 The problem is classified under two types in case of fuzzy 
setup. In type I problem there exists nontrivial largest solution. 
For type II the largest solution is trivial. The neutrosophic 
relational equations which are used analogous to fuzzy relational 
equation is  

N
NN Rpq oλλ =  where Npλ  and Nqλ  

 
are neutrosophic sets and X and Y respectively (λ is an index of 
the equation), RN is a neutrosophic relation from X to Y to be 
solved and ‘oN’ is a neutrosophic composition operator defined 
analogous to a fuzzy composition operator.  

Study the existence or non-existence of the largest solution of 
RN when the neutrosophic set is defined as a mapping from a 
nonempty set to a complete Brouwerian neutrosophic lattice. 
Some researchers used fuzzy sets qλ as output data. We can use 
the neutrosophic sets Nqλ as output data. Study and analyze the 
output data. In certain cases the output data can itself be a 
deneutrosified data. 

Now we shall indicate how to solve the neutrosophic relation 
RN when the system includes deneutrosophic processes. 

In these systems the neutrosophic membership values have to 
be compared with each other for the deneutrosofication of internal 
neutrosophic sets. Therefore a complete totally ordered set must 
be used this is done only as two steps one with fuzzy values and 
another only with neutrosophic values as both these values cannot 
be compared with each other. Thus the procedure used for fuzzy 
sets can be adopted, by replacing U by UN a union the complete 
subsets of the unit interval [0 1] and FN and all analogous 
operations are performed to attain a solution. 
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Thus we assume we may arrive at a unique solution which is 
the unique solution given by fuzzy sets and the other given by the 
neutrosophic sets by giving a unique output. 

 
 

4.9   Solving neutrosophic relation equation with a linear objective 
function 
 
[24] has given an optimization model with a linear objective 
function subject to a system of FRE. Solving such equations is not 
an easy job due to the non-convexity of its feasible domain. Now 
we define analogous methods for NRE. 

Let AN = (aij); aij ∈ FN ∪ [0 1] be an m × n dimensional 
fuzzy matrix and bN = (b1,…, bn)T, bij ∈ [0 1] ∪ FN be an n-
dimensional neutrosophic vector, then the following system of 
FRE is defined by AN and bN  

x o AN = bN         (1) 
where ‘o’ denotes the usual min max composition defined in 
Chapter 3. In other words we try to find a neutrosophic vector x = 
(x1 ,…, xm)T with xi ∈ [0 1] ∪ FN such that  

max min (xi, aij) = bj (j = 1, 2, …, n)  (2) 
 

The resolution of the NRE (1) is an interesting and a 
undeveloped research topic at it is very dormant state as even in 
case of FRE the study of the problem and the research is only on 
going. 

Let CN = (c1,…, cm)T ∈ Rm ∪ {IR}m be a m-dimensional 
vector where ci represents the weight (or cost) associated with 
variable xi for i = 1, 2,…,n. We consider the following 
optimization problem. 

Minimize    ∑
=

=
n

1i
iin xcZ       (3) 

 
such that x o AN = bN, xi ∈ [0 1] ∪ FN compare it with regular 
linear programming and fuzzy linear programming this linear 
optimization problem subject to NRE is very different from FRE 
and are of different nature. 

Note the feasible domain of problem (3) is the solution set of 
system (1). We denote it by X (AN bN) = {x = (x1, …, xm)T / (x1, 
…, xm)T ∈ Rm ∪ (IR)m  such that x o AN = bN xi ∈ [0 1] ∪ FN}. 

To characterize X (AN, bN) we define I = (1, 2, …, m},  J = 
{1, 2, …, n} and XN = {x ∈ Rm ∪ (IR)m / xi ∈ FN ∪ [0 1] for all 
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i∈I}. For x1, x2 ∈ XN we say x1 ≤ x2 if and only if 2
i

1
i xx ≤ , 

∀i∈I. In this way ‘≤’ forms a partial order relation on XN and (XN, 
≤) becomes a neutrosophic lattice. We call ∈x̂ XN (AN, bN) a 
maximum solution, if x ≤ x̂  for all x ∈ XN (AN bN). Similarly  x̂  
∈ XN (AN, bN) is called a minimum solution if x ≤ x̂  for all x ∈ 
XN (AN, bN). When XN (AN, bN) ≠ φ it can be completely 
determined by one maximum solution and a finite number of 
minimum solutions.  

The maximum solution can be obtained by assigning  
 

 x̂  = AN @ bN = 
Ii

jij

n

j
ba

∈
= ⎥

⎦

⎤
⎢
⎣

⎡
∧ )@(

1
 

where  aij @ bj = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤

jij

jijj

jij

bwithleincomparabisaifI

baifb

baif1

 

 
Suppose we denote the set of all minimum solution by  

NX~ (AN, bN) then  
 

NX~ (AN, bN) = { }U
)(

),(
|

NNN bAXx
N xxxXx

∈

≤≤∈ . 

 
Now we take a close look at XN (AN, bN). All analogous results in 
the Neutrosophic setup is left as exercise for the reader. 
 
 
4.10  Some properties of minimal solution for a NRE. 
 
NRE occurs in practical problems for instance in neutrosophic 
reasoning. Therefore it is necessary to investigate properties of the 
set of solutions [39] have given a necessary and sufficient 
conditions for existence of a minimal solution of a FRE defined 
on an infinite index sets. 

Here we suggest analogous results in case of NRE. Let I and 
J be the index set and let AN = (aij) be a coefficient matrix bN = 
(bj) be a constant vector where i ∈ I and j ∈ J the equation 

x  o  AN  =   bN      (1)  
or            ∨  (xi ∧ aij)  =   bj 
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for all j ∈ J is called the Neutrosophic relation equation where o 
denotes the sup-min composition and all xi, bj, aij are in [0 1] ∪ 
FN. An x which satisfies (1) is called a solution of equation (1) 
 
DEFINITION 4.10.1: Let (PN, ≤ ) be a partially ordered set and     
XN ⊂ PN. A minimal element of XN is an element  p ∈ XN such that 
x < p for x ∈ XN. The greatest element of XN is an element g ∈ XN 
such that x ≤ g for all x ∈ XN. 
 
DEFINITION 4.10.2: Let aN = (aij) and bN = (bij) be neutrosophic 
vectors. Then the partial order ≤ the join ∨ and the meet ∧ are 
defined as follows. 

aN ≤ bN ⇔  ai ≤  bi  for all i∈ I aN ∨ bN 
−
∆ , 

(ai ∨ bi) aN ∧ bN 
−
∆ ai ∧ bi). 

 
DEFINITION 4.10.3: Let {[0 1]l ∪ FN l, ≤ } be a poset with the 
partial order given in definition 4.10.2. and let xN ⊂ [0 1]l ∪ [F 
N] l be the solution set of equation (1). The greatest element of xN 
is minimal element of xN and x0

N is called the greatest solution; 
which denote a minimal solution and a set of minimal solutions of 
Equation (1) respectively. 
 
DEFINITION 4.10.4: For a, b, ∈ [0 1] ∪ FN 
 

aN  α   bN  
−
∆   

⎪
⎩

⎪
⎨

⎧ ≤

leincomparabarebandaifI
otherwiseb

baif

NN

N

NN1
 

Moreover  
 

AN@b-1
N 

−
∆  ⎥⎦

⎤
⎢⎣
⎡ ∧

∈
jijJj

oba  

where b-1
N denotes the transposition of vector bN. 

 
DEFINITION 4.10.5: The solution x = (xij) ∈ xN is N-attainable for 
j ∈ J if there exists ij ∈ I such that xi ∧ aij = bj and the solution x 
= (xi) ∈ ℵN is unattainable for j ∈ J if xi ∧ aij < bj for all i ∈ I. 
 
DEFINITION 4.10.6: The solution x ∈ ℵN is called a N-attainable 
solution if x is N-attainable for j ∈ J, the solution is called an     
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N-unattainable solution if x is )1()( −ℵ jN  for j ∈ J and the solution 

x ∈ X is called a N-partially attainable solution if x ∈ ℵN is 
neither an N-attainable solution nor an N-unattainable solution. 
In other words, x∈ ℵN is an N-attainable solution if and only if    
x ∈ ( ) )(+ℵ jN x ∈ ℵN  is an N-unattainable solution if and only if     

x ∈ )1()( −ℵ jN  x ∈ ℵN is a N-partially attainable solution if and 

only if x ∈ ℵN  - ( ) )(+ℵ jN – )1()( −ℵ jN . 
 
The set of all N-partially attainable solution is denoted by 

(*))( jNX . All properties related to attainable, unattainable partially 
attainable solutions can be also be derived with appropriate 
modifications in case of N-attainable, N-unattainable and N-
partially attainable solution. Some of these results are proposed as 
problems in chapter V. 
 
 
4.11  Applications of NRE to Real World Problems  
 
In this section we hint the applications of NRE to various real 
world problems like flow rate in chemical plants, transportation 
problem, study of bonded labor problem study of interrelations 
among HIV/ AIDS affected patients and use of genetic algorithms 
in chemical problems.   
 
4.11.1 Use of NRE in chemical engineering  
 
The use of FRE for the first line has been used in the study of 
flow rates in chemical plants. In this study we are only guaranteed 
of a solution but when we use NRE in study of flow rates in the 
chemical plants we are also made to understand that certain flow 
rates are indeterminates depending on the leakage, chemical 
reactions and the new effect due to chemical reactions which may 
change due to change in the density/ viscosity of the fluid under 
study their by changing the flow rates while analyzing as a 
mathematical model. So in the study of flow rates in chemical 
plants some indeterminacy are also related with it. FRE has its 
own limitation for it cannot involve in its analysis the 
indeterminacy factor.  
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We have given analysis in chapter 2 using FRE. Now we 
suggest the use of NRE and bring out its importance in the 
determination of flow rates in chemical plants. 

Consider the binary neutrosophic relations PN (X, Y) QN (Y, 
Z) and R (X, Z) which are defined on the sets X, Y and Z. Let the 
membership matrices of P, Q and R be denoted by P = [pij], Q = 
[qjk] and R = [rij] respectively where pij = P(xi, yj), qjk = Q (yj, rk) 
and rik = R (xi, zk) for i∈I = Nn, j∈J = Nm and k ∈ K = Nk entries 
of P, Q and R are taken for the interval [0 1] × FN. The three 
neutrosophic matrices constrain each other by the equation  

 
P o Q = R        (1) 

 
where ‘o’ denotes the max-min composition (1) known as the 
Neutrosophic  Relational Equation (NRE) which represents the set 
of equation  

max pij qjk = rik.        (2) 
 
For all i ∈ Nn and k ∈ Ns. After partitioning the matrix and 
solving the equation (1) yields maximum of qjk < rik for some qjk, 
then this set of equation has no solution so to solve equation (2) 
we invent and redefine a feed – forward neural networks of one 
layer with n-neurons with m inputs. The inputs are associated with 
wij called weights, which may be real, or indeterminates from RI. 
The neutrosophic activation function fN is defined by  
 

fN(a) = 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<
>
∈

>
∈
<

.0,0

11
]01[

00

aaIinif
IaIifI
FNaifaI

aif
aifa
aif

 

 
The out put yi = fN (max wij xj). Now the NRE is used to estimate 
the flow rates in a chemical plant. In places where the 
indeterminacy is involved the expert can be very careful and use 
methods to overcome indeterminacy by adopting more and more 
constraints which have not been given proper representation and 
their by finding means to eliminate the indeterminacy involved in 
the weights. 
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In case of impossibility to eliminate these indeterminacy one 
can use the maximum caution in dealing with these values which 
are indeterminates so that all types of economic and time loss can 
be met with great care. In the flow rate problem the use of NRE 
mainly predicts the presence of the indeterminacy which can be 
minimized using fN; where by all other in-descripancies are given 
due representation.  

We suggest the use of NRE for when flow rates are 
concerned in any chemical plant the due weightage must be given 
the quality of chemicals or raw materials which in many cases are 
not up to expectations, leakage of pipe, the viscosity or density 
after chemical reaction time factor, which is related with time 
temperature and pressure for which usually due representations, is 
not given only ideal conditions are assumed. Thus use of NRE 
may prevent accident, economic loss and other conditions and so 
on. 
 
4.11.2   Use of NRE to determine the peak hours of the day for 
transport system. 
 
In an analogous way to modified fuzzy relation equations we 
given a sketch of the modified form of Neutrosophic relation 
equations and analyze the passenger preference for a particular 
hour of a day. Since the very term preference is a fuzzy term and 
sometimes even an indeterminate one we at the out set are 
justified in using these neutrosophic relational equations. Let      
PN o QN = RN be any neutrosophic relational equation where P, Q 
and R are neutrosophic matrices. We reduce the NRE, PN  o  QN = 
RN into NREs  

 
S
N

S
N

S
NNNNNNN RQoPRQoPRQoP === ,...,, 222111   

 
where QN = S

NNN QQQ UUU ...21  such that φ=j
N

i
N QQ I  if i ≠ j. 

Hence by this method we get S-preferences. 
 We briefly describe the modified or new NRE used here. We 
know the NRE can be represented by  
 

PN o QN = RN     (1) 
 
where ‘o’ is the max product composition with PN = [pij], QN = 
[qjk], RN = [rik] with i∈Nn, j∈Nm and k∈Ks. We want to determine 
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PN (All PN , QN and RN are neutrosophic fuzzy matrices i.e. the 
entries of PN, QN and RN are from [0 1] ∪ F N). 

Equation 1 gives 
ikjkij

Nj
rqp

m

=
∈

max       (2)  

 
for all i ∈ Nn and k ∈ Ns to solve equation (2) for pij we use the 
linear activation function fN for all a ∈ RN by 
 

fN (a) = 

⎪
⎪
⎪

⎩
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⎪
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We as in case of FRE work with equation 1 so that the error  
function becomes very close to zero. The solution is then 
expressed by the weight wij as pij = wij for all i ∈ Nn and j ∈ Nm; 
PN = (wij) is the neutrosophic n × n  matrix. 

Thus by transforming the single neutrosophic relation 
equation into a collection of NREs we analyze each  
 

i
N

i
N

i
N RoQP =  

 
for 1 ≤ i ≤ S and obtain the preferences. The preferences so 
calculated can also be indeterminates when the corresponding 
weights are indeterminates i.e. from FN. For the data discussed in 
chapter two of this book we have taken a nice preferences. We 
may have data were the preferences of the day may be very 
fluctuating say for one day the number of passengers in the same 
route for a particular hour may be 144 and for the same hour in 
the same route for the same hour on some other day the number of 
passenger may be in a single digit in such cases we have to use 
indeterminacy and work with NRE for average will not serve the 
purpose for when they ply on that hour it will be a very heavy loss 
so that if that hour for a particular route is kept as an 
indeterminate the government may choose to run a bus or not to 
run to save money or avoid loss. Thus when the indeterminacy is 
present we are in a position to use the indeterminacy factor and 
accordingly work with caution so that unnecessary economic loss 
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is averted. Thus NREs prove itself to be useful when the real data 
under analysis is a fluctuating one for a particular period. 
 
 
4.11.3  Use of NRE to the study the problems of bonded labor  
 
Now we apply it to the problems faced by the silk weavers who 
are bonded labourers using NRE. We take the attributes 
associated with this problem only as given in chapter 2. Now we 
use the NRE PN o QN = RN where PN, QN and RN are neutrosophic 
matrices.  

Now we determine the neutrosophic matrix associated with 
the attributes relating the bonded labourers and the owners using 
NRE. 

       O1     O2     O3     O4 

PN = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

9.5.4.0
4.2.4.8.
4.3.03.
3.3.4.3.
.3.4.7.

3.06.

6

5

4

3

2

1

I
II

I
OI

B
B
B
B
B
B

 

 
Suppose the QT

N = [.6, .5, .7, .9]. Now PN and QN are known in 
the neutrosophic relational equation PN o QN = RN. Using the max-
min principle in the equation PN o QN = RN we get RT

N = {.6, .8I,  
.4, .4I, .6, .9}.  

In the neutrosophic relational equation PN o QN = RN, PN 
corresponds to the weightages of the expert, QN is the profit the 
owner expects and RN is the calculated or the resultant giving the 
status of the bonded labourers. Now we have taken a neutrosophic 
vector in which the demand for the finished goods is in the 
indeterminate state for we see people at large do not seek now a 
days hand woven materials to the machine woven ones for the 
reasons very well known to them so we see we cannot say how far 
the demand is for such goods so we give it the highest 
indeterminate value. Now we consider the next highest value for 
globalization followed by availability of raw goods and finally 
profit or no loss.  

Using these we obtain the neutrosophic resultant vector RT
N = 

{.6, .8I, .4, .4I, .6, .9} where hours of days work is the highest and 
the advent of power looms and globalization has made them still 
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poorer is an higher indeterminacy followed by no knowledge of 
any other work has made them only bonded but live in penury and 
government interferes and frees them they don’t have any work 
and government does not give them any alternative job remains 
next maximum. 
 Thus we have given only one illustration one can work with 
several of the possible neutrosophic vectors and derive the 
resultants. Several experts opinion can be taken and their 
neutrosophic resultant vectors can be determined. We have just 
given illustration of one case.  

Now we give yet another relation between 8 symptoms and 
10 patients; P1, P2,…, P10. The 8 symptoms which are taken are 
S1,…, S8 are given as follows. 

 
S1  - Disabled  
S2  - Difficult to cope with  
S3  - Dependent on others  
S4  - Apathetic and unconcerned  
S5  - Blaming oneself  
S6  - Very ill  
S7  - Depressed  
S8  - Anxious and worried 

 
We study the 10 patients P1,…, P10 related to 8 symptoms 

which they suffer. It is pertinent to mention that all the patients 
may not suffer all types of diseases / symptoms some of the 
diseases / symptoms they suffer may be an indeterminate.  
 
Now using the experts opinion who is the ward doctor we give the 
related neutrosophic matrix PN with weights wij. PN is a 8 × 10 
matrix. 
 

   P1    P2     P3     P4    P5    P6    P7    P8    P9   P10 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

3.2.07.000002.
4.0009.8.004.9.
0110003.0.7.3.
7.07.3.017.03.8.0

008.03.08.007.
000009.0005.
6.9.012.00000
5.07.6.005.2.00

8

7

6

5

4

3

2

1

II
I

II
I

I

II

S
S
S
S
S
S
S
S
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Let QN denote the set of 8 symptoms / diseases i.e., QN the 
neutrosophic vector is a 1 × 8 neutrosophic matrix. 

Consider the neutrosophic equation QN o PN = RN; clearly 
when QN and PN are known we can easily solve the neutrosophic 
relational equation and obtain the neutrosophic vector RN. 

Let QN = (.3, .7, .5I .3, 0, .3, .2, .3I) be the neutrosophic 
vector given by the expert he feels the dependence is an 
indeterminate concept to some extent and difficult to cope with is 
present in most patients and in fact all patients suffer from 
depression. Using the neutrosophic equation QN o PN = RN we 
calculate RN as follows: 
 

RN = (.5I, .3, .3, .3, .5I, 0, .7, .3, .7, .6) 
 
which shows for the given input the relations with the patients. 
For in case of the first patient a combination of symptoms given 
by QN results in an indeterminate the same happens to be true for 
the 5th patients so for the given set of symptoms / disease given by 
QN has nil influence on the patient P6. But the same set of 
combination of symptoms has the maximum influence on the 
patients P7 and P9 with their membership grade equal to 0.7. The 
patient P10 has 0.6 membership grade for the same neutrosophic 
vector QN. Thus the doctor can feed in any combination of the 
neutrosophic vectors and get the relative influence on the patients. 
We have illustrated this for a particular QN, an interested reader 
can work with any desired QN. 

Thus we see how NRE can be used in the medical field to 
compare the relative effect on the patients apply neutrosophic 
linear programming defined by  

 
Maximize z = cx, Ax ≤  b such that x ≤  0  

 
where the coefficients A, b, c, ∈ FN ∪ [0 1] the constraints 

may be considered as neutrosophic inequalities with variables x 
and z. Construct a neutrosophic linear programming to determine 
the uncertainty for any real world problem.  
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Chapter Five 

 
 
SUGGESTED PROBLEMS 
 
 
Here we suggest a few problems for the reader to solve. Some of 
the problems will help one to build neutrosophic models.  
  
 
1. Define for the neutrosophic relational equation x o A = b, 

where A = (aij)mxn is a neutrosophic matrix, (b = (b1… bn), 
bi ∈ [0 1] ∪ I. The users criterion function f(x) so as to 
form.  

 
i. Non-linear programming model with 

neutrosophic relation constrains.  
 
Min  f(x)  

  Such that   
x o A = b        (1)  

 
ii. Does minimizer of equation (1) prove a best 

solution to the user based on the objective 
function f(x). 

 
2. Apply this model in medical diagnosis like symptom/ 

disease model or death wish of terminally ill patients.  
 
3. Find a method of solution to neutrosophic relation 

equations in a complete Brouwerian neutrosophic lattice. 
Does a solution exist?  
 
(Hint: A solution to this problem will also give a solution 
to the fuzzy relation equations in a complete Brouwerian 
lattice). 
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4. Whether there exists a minimal elements in the solution 
set? Can one determine the minimal elements in the 
neutrosophic relation equation? 

 
5. Define and describe the multi objective optimization 

problems with neutrosophic relation equation constraints. 
 
6. Obtain properties of tN-norm, compare a t-norm and a       

tN norm. 
 
7. Develop an efficient learning algorithm for neural 

neutrosophic relational system with a new learning 
algorithm. 

 
8. Define equality index for NRE mentioned in problem 7. 
 
9. Study the solution set of NRE defined in chapter 4. 
 
10. Investigate the solution set of the NRE described in 

problem 9, when  
 

i. Both U and V are finite  
ii. One of U or V is infinite.  

 
11. If both the sets U and V are finite; does it imply all 

solutions are attainable for V for any NRE. (In case of FRE 
when both U and V are finite all solutions are attainable  
for V). 

 
12. Find condition for X to be an unattainable solution in case 

of NRE. 
 
13. Obtain any other interesting notions about attainable and 

unattainable solutions in case of NRE. 
 
14. Define neutrosophic interpolation problem given in the 

form of the maximal neutrosophic relation with the 
membership function equal to  

 

R = I
N

K
NN kykx

1
))()((

=

→ . 
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15. Compare the neutrosophic model with a fuzzy model given 
in Problems 9 and 10 for any specific problem. 

 
16. Form an algorithm to tackle largest solution of type I 

problem described in Kagei in case new neutrosophic 
relational equations. 

 
17. Give the quasi-largest solution to type II problem in case of 

NRE analogous to those given by Kagei. 
 
18. Prove If XN (AN, bN) ≠ φ then Ij ≠ φ for all j ∈ J. 
 
19. If x ∈ XN (AN, bN) then for each j ∈ J does there exists i ∈ I 

such that jii oo
ax ∧ = bj and xi ∧ aij  ≤  bj for all i ∈ I. 

 
20. Find an algorithm for finding an optimal solution of 

problem,  

minimize ZN = ∑
=

m

i
ii xC

1
 

such that  
xN o AN = bN, 

xi ∈ [0 1] ∪ FN. 
 
21. ℵN ≠ φ ⇔ AN @ 1−

Nb  ∈ ℵN then is AN @ 1−
Nb  the greatest 

solution ? 
 
22. When both index sets I and J are finite ℵN  ≠ φ implies  

o
Nℵ  ≠ φ then does x ∈ ℵN ⇔ ( ∈Nx( o

Nℵ , )ˆNN xxx <≤( ? 
 
23. If Nx̂  is the greatest solution of the NRE and J is a finite 

set will φ≠⇔∈ + 0)(
jN X)X(x̂ ? 

 
24. Construct a neutrosophic linear programming analogous to 

fuzzy linear programming defined by  
 

Maximize z = cx 
such that  

Ax ≤ b  
x ≤ 0 
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where the coefficients A, b, c, ∈ FN  ∪ [0 1] the 
constraints may be considered as neutrosophic inequalities 
with variables x and z. 

 
25. Use the neutrosophic linear programming to solve the 

problem of control of waste gas pollution in environment 
by oil refinery. (The analogous problem done in chapter 
two using fuzzy linear programming). 

 
26. Define neutrosophic relational products analogous to fuzzy 

relational products given in (chapter 2)  
 Study using the new definition given in Problem () the 

relation between systems/diseases and its relation with the 
patients. 
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